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Abstract— In order to reduce parasitic mismatch in analog circuits,
some groups of devices are required to share a common centroid while
being placed. Devices are split into smaller ones and placed with a
common center point. We will address this problem of handling common
centroid constraint in placement. A new representation called Center-
based Corner Block List (C-CBL) is proposed which is a natural extension
of Corner Block List (CBL) [1] to represent a common centroid placement
of a set of device pairs. C-CBL is complete and non-redundant in
representing any common centroid mosaic packings with pairs of blocks
to be matched. To address the same problem with an additional constraint
that devices are required to be placed uniformly to average out the
parasitic errors, a grid-based approach is proposed. Experimental results
show that both approaches are fast and promising, and have high
scalability that even large data sets can be handled effectively.

I. INTRODUCTION

In today’s SoC designs, both digital and analog parts of a circuit
will be implemented on one chip. Placement of the analog part is
an error prone and time-consuming process. In analog placement,
parasitic mismatch induced by the layout will affect the circuit per-
formance significantly. Parasitic mismatch may lead to higher offset
voltage and degraded power-supply rejection ratio [3]. Considerations
of symmetry and common centroid constraints during placement can
help to reduce these errors. For symmetry constraint, pairs of cells
are required to be placed symmetrically with respect to a horizontal
or a vertical axis and this problem has been extensively studied [4],
[5], [6], [7], [8], [9], [10]. This paper will address the problem of
handling common centroid constraint in placement.

As mentioned above, component mismatch have adverse effects on
many analog circuits. One of the most important sources of mismatch
is process gradient, like oxide thickness, threshold voltage, resistor-
layer thickness, etc. These kinds of mismatch can be effectively
suppressed by common centroid layout, which refers to a layout
style in which a set of devices have a common center point. Devices
will be split into a number of smaller ones and placed with the
same center point. The devices can be arranged with a common
centroid in one dimension as for a differential pair, or in two
dimensions as for a capacitor or resistor array in data converters.
Two-dimensional arrangement is desired especially when the number
of devices is large, because of the floorplanning constraint and the
close proximity requirement. Close proximity is desirable for better
electrical properties such as parasitic matching and thermal gradients.

Common centroid constraint is not the same as 2-D symmetry
constraint. To satisfy a 2-D symmetry constraint, blocks can only be
placed along the horizontal and vertical axes of the symmetry group.
The blocks will have a common centroid in such placements but
there are still a lot of other kinds of feasible placements satisfying
the common centroid constraint. Examples of these two types of
constraints are shown in Figure 1. To the best of our knowledge,
this is the first work in the literature to handle common centroid
constraint for groups of blocks in placement.

We will present two approaches to solve the problem. In the

first approach, the Corner Block List (CBL) [1] data structure is
extended naturally to represent common centroid placements. This
new representation, called Center-based Corner Block List (C-CBL),
is complete and non-redundant in representing any mosaic packing
of a common centroid group with pairs of blocks to be matched.
Simulated annealing is used as the basic searching engine. In order
to demonstrate the effectiveness of using C-CBL, we have compared
this approach with an extension of a previous work [10] on symmetry
constraint and the experimental results are promising in both run
time and placement quality. To address the same problem with an
additional constraint that devices are required to be placed uniformly
to average out the parasitic errors, another grid-based approach is
proposed and studied. In this second approach, the devices in a group
are split into unit devices of the same dimensions. A set of feasible
packings for each common centroid group will first be generated by
placing these unit devices into a 2-D array satisfying the common
centroid constraint. Experimental results show that both approaches
are fast and promising, and have high scalability that even large data
sets can be handled effectively.
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Fig. 1. 2-D symmetry (b) does not include placement (a) which also satisfies
the common centroid constraint.

In the following, we will define the problem in section II, we will
then discuss our two approaches in section III and IV. The exper-
imental results will be reported in section V before the conclusion
and discussion appear in the last section.

II. PROBLEM FORMULATION

We are given a set of n blocks of areas Ai and aspect ratio
bounds [li, ui] where i = 1 . . . n, together with a set of m nets
N1, N2 . . . Nm. We are also given a set of p common centroid groups
G1, G2 . . . Gp. Each group Gi containing si devices is labeled by
{gi1, gi2 . . . gisi} where gij denotes the area of the jth device in Gi

and has an aspect ratio bound. The si devices, which can be further
split into a set of smaller devices, are required to be placed in a
common centroid geometry. Note that the shapes of those smaller
devices produced after splitting are bounded by the corresponding
aspect ratio range. Throughout this paper, we use ni to denote the
total number of devices in Gi after the splitting process, and each
original device gij is called a subgroup of Gi. Our objective is to
obtain a placement F of the circuit satisfying the common centroid
constraint for all the common centroid groups, while minimizing a
cost function cost(F ) = area(F )+λ×wire(F ) where area(F ) is
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the total area of F , wire(F ) is the total wire length of F measured
by the half-perimeter estimation, and λ is a parameter specifying
the relative importance between these two terms. Figure 2 shows a
sample packing with two common centroid groups.
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Fig. 2. A packing with two common centroid groups.

III. METHODOLOGY

Simulated annealing is used with the sequence pair representa-
tion [2] as the basic searching engine in our approach. In order to
maintain the performance and stability of a circuit, it is desirable
to restrict all the devices of a common centroid group to form a
cluster in the final placement, without interleaving with other blocks
not in the same group. Therefore, each common centroid group can
be treated as a super-block in the sequence pair, whereas its internal
structures will be handled specially in order to satisfy the common
centroid constraint. During the annealing process, a set of random
moves will be performed to perturb both the global SP that contains
the super-blocks representing the common centroid groups and the
other blocks of the circuits, and the internal structures of the common
centroid groups. In the following, we will introduce the Center-based
Corner Block List representation, which is a natural extension of CBL
to represent a packing of block pairs with one common centroid.

A. Center-based Corner Block List

One way to solve the placement problem with common centroid
constraint is to split each device into two smaller devices of the
same dimension, and require all these pairs from the same group
to be placed with a common centroid. This approach is good
since the total number of devices after splitting will be small.
Now, each common centroid group Gi contains si pairs of devices
(ai1, bi1), (ai2, bi2) . . . (aisi , bisi) with sizes gi1

2
, gi2

2
. . .

gisi
2

. In or-
der to represent a common centroid placement of all these si pairs
of blocks, a new representation called Center-based Corner Block
List (C-CBL) is used, which is a natural extension of CBL. In the
following, we will first review CBL briefly.

1) Review of Corner Block List: Figure 3 shows a mosaic packing
and its horizontal and vertical constraint graph (HCG and VCG).
Mosaic floorplan, first introduced in [1], was defined as a packing
without empty rooms or crossing junctions. In these constraint
graphs, the nodes represent the vertical or horizontal segments in
the packing while the edges represent the rooms for placing the
modules. Additional nodes, labeled by W , E, S and N , are inserted
to represent the west, east, south and north boundaries of the chip.
A block is called a corner block if its corresponding edges in the
HCG and VCG are pointing to the E and N node respectively. The
orientation of a corner block is defined by the orientation of the
T-junction at its lower left corner. If the T-junction is rotated by
90◦ counterclockwise, its orientation is vertical and is denoted by a

bit zero; if the T-junction is rotated by 180◦ counterclockwise, it is
horizontal and is denoted by a bit one.
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(a) Floorplan (b) HCG (c) VCG

Fig. 3. A (a) mosaic packing with its (b) horizontal and (c) vertical constraint
graphs.

Given a mosaic packing, its CBL representation can be obtained
by deleting the corner blocks one after another. The corner block
of a packing can be deleted by sliding the non-crossing segment
the T-junction at its lower left corner to the right (for horizontal
block) or to the top (for vertical block). In this way, a new packing
with one less block will be formed and the deletion process can
be repeated until there is no more blocks left. The CBL, a 3-
tuple (S, L, T ) where S is a sequence of block names, L is a list
of orientations and T is a list of T-junction information, can be
constructed in this recursive deletion process in a reversed order.
Taking the packing in Figure 3 as an example, its CBL will be
(S = (a2, a1, c, b1, b2), L = (0, 1, 1, 0), T = (0, 0, 1, 1)). The T-
junction information is the number of T-junctions uncovered if the
corner block is deleted from the packing. For example, in Figure 3, if
the corner block b2 is deleted, one T-junction will be uncovered, so
the T-junction information of block b2 is one. Notice that both L and
T are one element less than S because the orientation and T-junction
information for the last deleted block (the first element in S) do not
matter. On the other hand, a mosaic packing can be obtained from a
CBL by iteratively inserting back each block according to the S list
and the orientation and T-junction information.

2) Center-based Corner Block List (C-CBL): The Center-based
Corner Block List extends the basic CBL to represent the placement
of a common centroid group. It is different from the original CBL
that C-CBL works on corner block pairs. Given a mosaic packing,
we can define the following:

Definition 1: UR Corner Block - A block is a UR (upper right)
corner block if its corresponding edges in the HCG and VCG
are pointing to the E and N nodes respectively. Its orientation is
horizontal (vertical) if the T-junction at its lower left corner is rotated
by 180◦ (90◦) counterclockwise. A UR corner block can be deleted
from the packing by sliding the non-crossing segment of its lower
left T-junction to the right (top) if it is horizontal (vertical). When
there is only one pair of blocks in the packing, the UR corner block
is horizontal (vertical) if the other one is on its left (below it).

Definition 2: LL Corner Block - A block is an LL (lower left)
corner block if its corresponding edges in the HCG and VCG are
pointing from the W and S nodes respectively. Its orientation is
horizontal (vertical) if the T-junction at its upper right corner is
rotated by 0◦ (270◦) counterclockwise. An LL corner block can be
deleted from the packing by sliding the non-crossing segment of its
upper right T-junction to the left (bottom) if it is horizontal (vertical).
When there is only one pair of blocks in the packing, the LL corner
block is horizontal (vertical) if the other one is on its right (top).

Definition 3: Corner Block Pair - The UR corner block and the
LL corner block of a packing are called a corner block pair if and
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only if they have the same orientation and have the same number of
T-junctions uncovered after their deletions.

Given a mosaic packing of n pairs of blocks1 satisfying the com-
mon centroid constraint, we can decompose the packing iteratively
by removing it’s UR and LL corner blocks. Each removed pair,
representing devices aij and bij , will have the same orientation and
T-junction information, i.e., they form a corner block pair. The C-
CBL representation can thus be defined naturally according to this
deletion process. In the following, we assume that there is always a
single block located at the center of the placement, for the sake of
unified representation. This center block will be a dummy one with
zero width and height when there are only n pairs of blocks.

Definition 4: Center-based Corner Block List (C-CBL) - A C-
CBL is a four tuple (C, S, L, T ) where

• C is the name of the center block;
• S is a sequence of x block names;
• L is a list of x bits representing the orientations;
• T is a list of x integers representing the T-junction information.

(1) Obtaining C-CBL from a packing
Given a mosaic packing satisfying the common centroid constraint,

we can obtain the corresponding C-CBL by recursively deleting
the corner block pairs. For example, suppose that we are now
given a common centroid placement containing five pairs of blocks
{g1(a1, b1), g2(a2, b2), g3(a3, b3), g4(a4, b4), g5(a5, b5)}. Figure 4
shows the process to obtain the C-CBL by iteratively performing
corner block pair deletion. Note that the center block labeled as cdmy

denotes a dummy center. We can prove the following theorem:

b5 b1
b3

cdmy

b2

a4

b4
a2

a1
a5

a3

Delete g3 Delete g1

Delete g2
Delete g4

D
elete g

5

C = null
S = null
L = null
T = null

(1) C = null
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L = 1
T = 1

(2) C = null
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T = 0   1

(3)

C = null
S = g5 g1 g3

L = 0   1   1
T = 1   0   1

(4)(5)(6) C = null
S = g2 g5 g1 g3

L = 0   0   1   1
T = 1   1   0   1

C = cdmy

S = g4 g2 g5 g1 g3
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b4

b4a4 cdmy cdmycdmy

Fig. 4. Obtaining the C-CBL from a packing.

Theorem 1: A unique C-CBL can be obtained from a mosaic
packing with n pairs of blocks (or n pairs plus one block) satisfying
the common centroid constraint.
(2) Obtaining a packing from a C-CBL

A mosaic packing satisfying the common centroid constraint can
be constructed from a C-CBL(C,S, L, T ) by initializing the packing
with the center block C and then inserting the corner block pairs
one by one according to the lists’ information. Figure 5 shows this
packing procedure for the previous example, with the C-CBL given
as (C = cdmy , S = (g4, g2, g5, g1, g3), L = (1, 0, 0, 1, 1), T =

1The C-CBL can also handle n pairs of blocks plus one single block.

(0, 1, 1, 0, 1)). Similar to the CBL representation, an arbitrary 4-
tuple may not correspond to a feasible packing since the number
of available T-junctions may be less than the required number of
T-junctions to be covered (according to the T list) when we try to
insert the UR and LL corners blocks. However, this condition can be
checked and maintained easily in the implementation. We can prove
the following theorem:
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T = 0   1   1   0   1
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T = 0   1   1   0   1

S = g4 g2 g5 g1 g3

L = 1   0   0   1   1
T = 0   1   1   0   1

Initialize with cdmy

Fig. 5. Obtaining the packing from a C-CBL.

Theorem 2: A packing constructed from a C-CBL satisfies the
common centroid constraint.

B. Realization of Common Centroid Placement from C-CBL

To obtain the coordinates of the blocks inside a common centroid
group Gi from a C-CBL, we will first construct the HCG and
V CG for Gi, as described in section III-A.1. Then a single source
longest path algorithm will be performed on both graphs, with node
W and S as the sources respectively. After this, we will obtain an
(x, y) coordinates for each block, together with the width w(Gi) and
height h(Gi) of the whole packing. However, we need to adjust the
coordinates of the blocks since they may not satisfy the common
centroid constraint after this bottom-left-compacted packing process.
We will re-compute the coordinates of those UR corner blocks
(assume that they are the bij blocks) as follows:

bij .x = w(Gi) − aij .x − width(bij),

bij .y = h(Gi) − aij .y − height(bij)

In addition, the coordinates of the center block bc (if it is not dummy)
can be computed as (w(Gi)/2−w(bc)/2, h(Gi)/2−h(bc)/2). Obvi-
ously, after this adjustment, the blocks in Gi will satisfy the common
centroid constraints, while staying within the smallest possible region
w(Gi)×h(Gi) without any overlapping. This procedure is performed
whenever the C-CBL of any common centroid group Gi is perturbed,
after which Gi will be regarded as a super-block with width w(Gi)
and height h(Gi) in the global SP describing the whole circuit.

C. Global Sequence Pair

We use sequence pair to represent the whole circuit in the an-
nealing process. In sequence pair, a packing is encoded by a pair of
sequences, (α, β), both of which are combinations of module names.
We use αi to denote the module occupying position i in α, and use
α−1

A to denote the position of A in α. The relative position between
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two modules specified by a SP is as follows. If α−1
A < α−1

B and
β−1

A < β−1
B , module A is to the left of module B; if α−1

A < α−1
B

and β−1
B < β−1

A , module A is above module B.
In the global SP, each common centroid group Gi is regarded as

one entity and we will use an index n + i to label this super-block
in our implementation, where n is the total number of blocks given.
The global SP consists of n ordinary blocks without any common
centroid constraint and p super-blocks representing the common
centroid groups, so the length of each sequence is n + p.

D. Simulated Annealing

Simulated annealing is used as our basic searching engine:
1) Set of Moves: There are seven kinds of moves employed to

perturb a current candidate solution. The moves can be divided into
two categories as described below.

(1) Global SP perturbations:
1) Change aspect ratio - The aspect ratio of a block bi that is not

in any common centroid group is changed.
2) Swap two blocks in α - Two randomly chosen blocks (including

super-blocks) are swapped in the α sequence.
3) Swap two blocks in both sequences - Two randomly chosen

blocks (including super-blocks) are swapped in both α and β.
(2) C-CBL perturbations:

1) Change aspect ratio - A pair of blocks in an arbitrary group
are randomly selected and have their shapes changed.

2) Swap two devices - Two pairs are randomly chosen from an
arbitrary group and their positions in the corresponding S list
are swapped.

3) Change orientation - A randomly chosen bit in the L list of an
arbitrary group is toggled.

4) Change T-junction information - The value at a randomly
chosen position in the T list of an arbitrary common centroid
group is changed. The new value must not exceed the number
of current available T-junctions.

2) Cost Function: We use the cost function cost(F ) = area(F )+
λ × wire(F ) to evaluate a packing F , where area(F ) is the area
of F and wire(F ) is the total wire length estimated by the half
perimeter method. The parameter λ specifies the relative importance
between area and wire length.

3) Annealing Schedule: Before the annealing process, a random
walk with 1000 moves will be performed to determine the value of
the parameter λ in the cost function, where we try to balance the
relative weighting between area and wire length. In our annealing
engine, the temperature is set to 105 at the beginning and will drop at
a rate of 0.95. At each temperature, (n+

∑p

i=1
ni)/2 random moves

are performed, where n is the number of blocks without constraints
and

∑p

i=1
ni denotes the total number of blocks in all the common

centroid groups after splitting. The annealing process stops when the
temperature falls below 10−5.

IV. AN ALTERNATIVE APPROACH WITH GRID

The C-CBL based approach can solve the problem effectively.
However, in some cases, we may want to distribute all the devices
in one group uniformly to average out the influence of the parasitic
effects. Therefore, in the following, we will propose another approach
to deal with this specific case, where we split all devices within a
group into a set of small devices of the same dimension, called basic
unit block2, and place them with a common centroid. We assume

2The dimensions of the basic unit block will be fixed according to the
aspect ratio range of the group.

that the areas of the devices in each group are integral ratios of each
other. For example, for a group {2, 4, 8}, its three devices will have
one, two and four basic unit blocks after splitting.

A. Candidate Placements of Each Group

In this second approach, the common centroid groups are also
handled separately. We will first independently generate a collection
of feasible placement solutions for each group Gi, followed by a
pruning procedure to eliminate the redundant solutions dominated by
others. Then, each common centroid group will be treated as a super-
block in the global SP, with a set of discrete aspect ratios available.

Since the ni blocks in Gi are of the same shape and size, we
can naturally pack them in a regular Nc ×Nr grid geometry, where
Nc is the number of columns and Nr is the number of rows in the
grid. The grid is empty at the beginning and the basic unit blocks
are then assigned symmetrically (in both the x and y-direction) into
the vacant positions. For each group Gi, we will generate at most ni

different feasible packings called j-column-compacted solutions for
j = 1, 2 . . . ni. A j-column-compacted solution is defined as:

Definition 5: j-Column-Compacted Solution - A common cen-
troid placement of Gi is a j-column-compacted solution (denoted by
Sij) if it is a grid-based placement with j columns to accommodate
all the basic unit blocks, while minimizing the number of rows used.

Here, we use column number to count the solutions. Note that
this is the same as using row number, since we will have a move in
the annealing process to rotate one whole common centroid group.
Figure 6 shows all the j-column-compacted solutions of a common
centroid group consisting of two subgroups, each of which contains
two basic unit blocks. Before the annealing process, all the feasible
j-column-compacted packing solutions for 1 ≤ j ≤ ni will be
generated for each group Gi. Details of this solution generation
procedure will be discussed in the following sections.
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Fig. 6. All j-column-compacted solutions of a common centroid group
consisting of four basic unit blocks.

1) Matching of Basic Unit Blocks in Subgroups: To ensure that
all subgroups of Gi share a common centroid, the basic unit blocks
in each subgroup will form a number of pairs (or a number of pairs
plus a single block or a triple). Notice that if all these pairs, triples
or single block have the same centroid, the whole group will share
a common centroid C(Gi). Therefore, we need to pair up the basic
unit blocks in each subgroup first. There are three cases to consider:
(1) A subgroup contains an even number of basic unit blocks:

We will just arbitrarily pair up all the basic unit blocks in the
subgroup, since they are all equivalent. For example, assume that the
jth subgroup of Gi contains 2t blocks labeled as b1, b2, . . . b2t, we
will pair them up and require them to be symmetrical in both the x
and y direction as follows:

sym x(b2l−1) = sym y(b2l−1) = b2l,

sym x(b2l) = sym y(b2l) = b2l−1.

where sym x(b) (sym y(b)) denotes the block that is symmetrical
to b in the x-direction (y-direction). The above formulation indicates
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that b2l−1 and b2l are placed symmetrically to each other with respect
to the common centroid C(Gi) in both the x and y-direction, where
l = 1, 2 . . . t.
(2) A subgroup contains only a single basic unit block:

We put this single block bs at the center of the group placement,
so bs should be symmetrical with itself in both the x and y-direction:

sym x(bs) = bs, sym y(bs) = bs.

It is impossible to handle the situation that more than one subgroups
contain a single basic unit block, since these blocks will overlap with
each other due to the common centroid requirement. However, this
is sometimes the case in realistic analog circuits. We will deal with
this situation in a reasonable way of approximation that those single
blocks will be placed adjacent to each other at the center position.
(3) For a subgroup containing an odd number (≥ 3) of basic unit
blocks, there are two options to handle this case:

• Option 1: Select one block b in this subgroup as a self symmetry
block, and pair up the remaining blocks.
• Option 2: Three blocks (labeled as bx, by and bd) are selected
and placed in symmetrical relative positions as shown in Figure 7:

sym x(bx) = bx, sym y(bx) = bd,

sym x(by) = bd, sym y(by) = by,

sym x(bd) = by, sym y(bd) = bx.

The remaining blocks in the subgroups (must be in even number) will
be paired up arbitrarily. We will choose between these two options
in different situations and details will be explained in later sections.
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y
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Fig. 7. Arrangement of a triple with a common centroid.

2) Assignment into Grids: After the pairing up process, all the
basic unit blocks in Gi will fall into three categories: singles, pairs
and triples (singles and triples can only be formed from odd number
subgroups). We will then construct all the j-column-compacted
solutions Sij for Gi, where 1 ≤ j ≤ ni. A procedure called Grid
Position Assignment will be performed to generate Sij , in which
the singles, pairs and triples of Gi will be assigned into a grid of
j columns in such a way that they share a common centroid, while
trying to minimize the number of rows. The basic unit blocks in Gi

will be assigned into the grid following an order of (1) singles, (2)
triples and (3) pairs. Notice that the number of columns of a grid is
bounded below according to the following theorem:

Theorem 3: We need a grid of size at least N×N to accommodate
a group with a total of t triples or t − 1 triples plus one single in
a common centroid grid-based layout where N = t when t is odd,
and N = t + 1 otherwise. Besides, all the triples and single can be
placed in this minimum size grid with a common centroid.

Figure 8 illustrates an example of this position assignment step.
In this example, we are going to generate a 3-column-compacted
packing solution for a common centroid group consisting of three
subgroups, g1, g2 and g3, which contain one (a1), three (a2, b2, c2),
and two (a3, b3) basic unit blocks respectively. After pairing up, there
will be one single (a1), one triple (a2, b2, c2) and one pair (a3, b3).

We will begin with an empty 3 × 3 grid (the minimum number of
columns is three according to Theorem 3, and there is no 1-column-
compacted or 2-column compacted solutions). The single a1 is given
the highest priority, thus a1 will be first considered and assigned at
the center point of the grid. The triple is taken into consideration
next, and the three blocks in g2 will be assigned into the grid with
relative positions as described in Figure 7. Finally, the two blocks
in g3 will be inserted into the two symmetrical vacant positions left.
If, unfortunately, there are no such symmetrical positions available,
we will increase the row number of the grid until such positions
appear. According to Theorem 3, all the triples and single can be
assigned into the grid, and the remaining pairs can always be placed
symmetrically by increasing the number of rows (note that the number
of columns is unchanged). After performing this position assignment
step, we can easily obtain the absolute coordinates of each basic unit
block in the group. In this step, we do not differentiate between the
singles, pairs and triples from different subgroups. This will be taken
care of in the moves of the annealing process.
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Fig. 8. An example of assigning basic unit blocks into a grid.

3) Solution Pruning: After all the feasible j-column-compacted
solutions for each group Gi have been generated, we will delete
those redundant ones (dominated by at least one other solution in
both the width and height). A procedure Solution Pruning() will be
performed to eliminate the redundant solutions, leaving only with
those potentially optimal ones. For example, in Figure 6, the 3-
column-compacted solution is redundant because it is dominated by
the 2-column-compacted solution which also uses two rows but one
column less, and it will be deleted by the pruning procedure.

4) Summary: We can now summarize the steps to generate the
candidate placement solutions for each common centroid group. Note
that this All Solution Gen() procedure is called only once at the
beginning and will not contribute much to the total run time.

Pseudocode All Solution Gen()
// This procedure is to generate all the feasible j-column-compacted
// packing solutions, where 1 ≤ j ≤ ni, for each common
// centroid group Gi, and store them in a look up table.

1. For i = 1 to p do // p is the number of groups
2. Pair up the basic unit blocks in Gi;
3. (min column, min row) = get min grid size();
4. For j = min column to ni do
5. Sij = grid position assignment(Gi, j);
6. Calculate the exact coordinates of each block in Sij ;
7. Calculate the width and height of Sij ;
8. Store Sij to the look-up table;
9. Solution Pruning(Gi);
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B. Simulated Annealing

This grid approach is similar to the C-CBL approach that a global
SP is used to represent the whole circuit. In the annealing process,
the cost function, the annealing schedule and the random moves to
perturb the global SP are exactly the same as that in the C-CBL
approach, but we need to re-define the moves that perturb a common
centroid group as follows:

1) Change packing solution of a group - A common centroid
group Gi is randomly selected and a new packing solution
is chosen from its look-up table. This move will also include
changing the mapping of the singles, pairs and triples with
different subgroups in Gi.

2) Rotate a group - In this move, a common centroid group is
randomly selected and rotated.

V. EXPERIMENTAL RESULTS

Since no previous works have studied this common centroid
placement problem and no existing benchmarks are available, we have
constructed our own benchmarks from some realistic analog circuits3,
on which we have tested our algorithms. In order to demonstrate the
effectiveness of our methods, we will compare them with an extension
of a previous work [10] on 1-D symmetry to solve this common
centroid problem. The extension can be done in a straight forward
way of adding dummy vertices and edges with variable weights
to both the vertical and horizontal constraint graphs. Table I is a
comparison between this extended method and our C-CBL approach.
Result shows that our C-CBL approach can perform much better.
In Table I, the column Block No. refers to the number of blocks
without common centroid constraints, and the column CC Groups
shows the information of the common centroid groups, e.g., for data
set c3, there are two common centroid groups with eight and ten
devices respectively (note that each of them will be split into two).
The deadspace percentage is 8.29% on average.

We have also performed another set of experiments in which the
devices are split into a number of basic unit blocks. Table II shows
the results with our grid approach on this data set. The column CC
Groups indicates the information of the common centroid groups,
e.g., for data set c5 int, there are two common centroid groups
both of which have seven devices with the same area ratios of
1:2:4:8:16:32:64. The results show that our algorithm is fast and has
high scalability. Even large data sets can be handled in a reasonable
amount of time. The deadspace percentage is 7.24% on average. The
algorithms, including the extended version of [10], are implemented
in the C programming language and all the experiments are performed
on a Sun Blade 2500 with a 1.6 GHz CPU and 2 GB RAM.

Figure 9-13 are several resultant packings generated by our ap-
proaches. Note that in each common centroid group, the blocks
belonging to the same device are labeled with the same number. The
three packings in Figure 9, 10 and 11 are generated by the C-CBL
approach. Figure 9 is a packing with two common centroid groups.
Notice that one group has a center block while the other one does not.
Figure 10 is a packing of a test case containing one common centroid
group and one 1-D symmetry group. The 1-D symmetry group is
handled using the approach in [10]. We can see that the C-CBL
method can be combined with other approaches smoothly to handle
mixed types of placement constraints. Figure 11 is a resultant packing
of the test case c8, which is a large data set consisting of 300 ordinary
blocks and six common centroid groups. A placement of a digital

3We will make these benchmarks publicly available on the www.

analog converter circuit (DAC) containing a common centroid group
with nine devices with area ratios {1, 1, 2, 4, 8, 16, 32, 64, 128} is
shown in Figure 12. Another test case containing a common centroid
group of 11 devices with area ratios {1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
is generated to test the performance of the grid based approach in
handling subgroups with odd numbers of basic unit blocks. We can
see in Figure 13 that the odd subgroups are properly arranged to
satisfy the common centroid requirement.
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VI. CONCLUSION

In this paper, we study the placement problem for analog circuits
with common centroid constraints. We defined the problem and
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TABLE I
EXPERIMENTAL RESULTS WITH C-CBL APPROACH

Data Block CC Groups Net C-CBL [10]
Set No. No. Device No. Area Dead HPWL Run Area Dead HPWL Run

No. Space (%) Time (s) Space (%) Time (s)
c1 30 1 8 36 512.9 4.24 303.7 4.51 517.4 5.07 312.5 96.30
c2 50 1 10 62 821.8 6.85 534.2 14.31 824.3 7.13 568.2 307.2
c3 70 2 8,10 104 1236 6.56 589.3 43.73 1274 9.38 633.7 914.5
c4 100 3 8,9,10 138 1820 7.89 631.8 129.9 1875 10.6 713.9 3914
c5 120 4 10,10,10,10 187 2654 8.71 802.2 254.5 - - - -
c6 150 5 10,10,10,10,10 242 3201 8.93 1021 508.1 - - - -
c7 200 5 10,10,10,10,10 379 4020 10.8 1912 1046 - - - -
c8 300 6 10,10,10,10,10,10 622 4848 12.4 2348 3396 - - - -

Average - 8.29 - - - - - -

TABLE II
EXPERIMENTAL RESULTS WITH GRID APPROACH

Data Block CC Groups Net Area Dead HPWL Run
Set No. No. Area Ratios of each Group No. Space (%) Time (s)

c1 int 30 1 {1,1,2,3,4,5,6,7,8,9,10} 42 581.6 6.81 392.4 7.13
c2 int 50 1 {1,1,2,4,8,16,32,64,128} 85 1251 3.06 1036 23.7
c3 int 70 1 {1,3,5,7,9,11,13,15,17,19} 105 1119 5.71 855.1 42.4
c4 int 100 1 {1,1,2,4,8,16,32,64,128} 160 2063 5.04 1629 150.3
c5 int 120 2 {1,2,4,8,16,32,64},{1,2,4,8,16,32,64} 212 2493 6.11 1873 262.1
c6 int 150 2 {1,3,5,7,9,11,13},{1,1,2,4,8,16,32,64,128} 265 3377 9.25 2274 473.8
c7 int 200 2 {1,1,2,4,8,16,32,64},{1,1,2,4,8,16,32,64,128} 412 4682 10.3 3022 984.6
c8 int 300 2 {1,1,2,4,8,16,32,64},{1,1,2,4,8,16,32,64,128} 580 6057 11.6 3973 3026.2

Average - 7.24 - -
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Fig. 12. Resultant packing of a DAC circuit (c2 int) with a
large common centroid group.
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Fig. 13. Resultant packing of a test case (c1 int) with a
common centroid group {1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

devised a new representation, called Center-based Corner Block List,
for common centroid placement with pairs of blocks to be matched.
Based on this representation, we proposed a simulated annealing
based method to solve the common centroid placement problem.
Experimental results have shown that placements satisfying the
constraints can be generated efficiently with an average dead space of
8.29%. To deal with the special cases that devices are required to be
distributed uniformly, we proposed another approach that produces
regular grid-based placements for the common centroid groups and
the experimental results are also very promising. Furthermore, since
both proposed approaches use global Sequence Pair, they can actually
be combined to solve this common centroid placement problem, with
each common centroid group handled by either of the two approaches,
according to the specific characteristics of each group.
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