
Analog recurrent neural network
simulation, Θ(log2 n) unordered search, and

bitonic sort with an optically-inspired
model of computation

Damien Woods, Thomas J. Naughton and J. Paul Gibson
TASS Research Group,

Department of Computer Science,
National University of Ireland, Maynooth, Ireland.
Email: {dwoods ,tomn ,pgibson }@cs.may.ie

URL: http://www.cs.may.ie/TASS

Date: 03 September 2001

Technical Report: NUIM-CS-2001-TR-06

Key words: model of computation, unconventional model of computation,
analog computation, optical computing, computability, computational

complexity, analog recurrent neural network, Fourier transform, unordered
search, bitonic sort.

Abstract

We prove computability and complexity results for an original model of
computation. Our model is inspired by the theory of Fourier optics. We
prove our model can simulate analog recurrent neural networks, thus estab-
lishing a lower bound on its computational power. We also prove some com-
putational complexity results for searching and sorting algorithms expressed
with our model.

1 Introduction

In this paper we prove some computability and complexity results for an original
continuous-space model of computation. The model was developed for the anal-
ysis of (analog) Fourier optical computing architectures and algorithms, specifi-
cally pattern recognition and matrix algebra processors [12, 13]. The functionality
of the model is limited to operations routinely performed by information process-
ing optical scientists and engineers. The model operates in discrete timesteps over
a finite number of two dimensional (2-D) images of finite size and infinite reso-
lution. It can navigate, copy, and perform other optical operations on its images.
A useful analogy would be to describe the model as a random access machine,
without conditional branching and with registers that hold continuous images. It
has recently been proven that the model can simulate Turing machines and Type-2
machines [14]. However, the model’s exact computational power has not yet been
characterised.

In Sect. 2, we define our optical model of computation and give the data repre-
sentations that will used in Sects. 3 and 4. In Sect. 3 we demonstrate a lower bound
on computational power by proving our model can simulate a type of dynamical
system called Analog Recurrent Neural Networks (ARNNs) [18, 17]. This sim-
ulation result proves our analog model can decide any language in finite time.
Our model admits some extremely efficient algorithms for standard searching and
sorting algorithms. In Sect. 4, aΘ(log2 n) binary search algorithm that can be
applied to certain unordered search problems and a sorting algorithm based on a
bitonic sort are investigated.

2 Computational model

Each instance of our machine consists of a memory containing a program (an
ordered list of operations) and an input. The memory structure is in the form of
a 2-D grid of rectangular elements, as shown in Fig. 1(a). The grid has finite size
and a scheme to address each element uniquely. Each grid element holds a 2-D
infinite resolution complex-valued image. There is a program start locationsta
and a small number of ‘well-known’ addresses labeleda, b, c, and so on. The two
most basic operations available to the programmer,ld andst (parameterised by
two column addresses and two row addresses), copy rectangularm×n subsets of
the grid into and out of imagea, respectively. Upon such loading and storing the
image contents are rescaled to the full extent of the target location [as depicted in

2

a b0 1 2 3

0

1

2

3

a b

(a) (b)

sta
sta

ld 2 3 1 3

Figure 1: Schematics of (a) the grid memory structure of our model of computa-
tion, showing example locations for the well-known addressesa, b andsta, and
(b) loading (and automatically rescaling) a subset of the grid into grid elementa.
The programld 2 3 1 3 . . . hlt instructs the machine to load into default location
a the portion of the grid addressed by columns 2 through 3 and rows 1 through 3.

Fig. 1(b)]. The complete set of atomic operations is given in Fig. 2.
In this paper, a complex-valued image is a functionf : R1

0 × R1
0 7→ C where

R1
0 = {x : x ∈ R ∧ 0 ≤ x ≤ 1}. Let I be the set of such images. Each instance

of our machine is a quadrupleM = (D,L, I, P), in which

• D = (m,n) , m, n ∈ N : grid dimensions

• L = (sx, sy, ax, ay, bx, by, . . .) , s, a, b ∈ N : locations ofsta and the well-
known locations

• I = [(i1x, i1y, ψ1) , . . . , (ikx, iky, ψk)] , i ∈ N, ψ ∈ I : the k inputs and
their locations

• P = [(p1x, p1y, π1) , . . . , (plx, ply, πl)] , p ∈ N, π ∈ {{ld, st, h, v,∗, ·, +,
br, hlt, /} ∪ N} ⊂ I : the l programming symbols, for a given instance of
the machine, and each of their locations.N is the set of row and column
addresses encoded as images.

As might be expected for an analog processor, its programming language does
not support comparison of arbitrary image values. Fortunately, not having such a
comparison operator will not impede us from implementing a conditional branch-
ing instruction (see Sect. 2.3). In addition, address resolution is possible since (i)
our set of possible image addresses is finite (each memory grid has a fixed size),

3

ld c1 c2 r1 r2 zl zu : c1, c2, r1, r2 ∈ N; zl , zu ∈ Q; copy intoa the rect-
angle of images defined by the image at coordinates
(c1, r1) and the image at (c2, r2). Two additional
real-valued parameters(zl , zu), specifying lower and
upper cut-off amplitudes respectively, filter the rect-
angle’s contents by amplitude before rescaling, as
defined by

ρ(f(i, j), zl , zu) =

zl , if |f(i, j)| < zl

|f(i, j)| , if zl ≤ |f(i, j)| ≤ zu

zu, if |f(i, j)| > zu .

In general we use a filter of(0, 1) in this paper, writ-
ten as(0/1, 1/1), where the symbol ‘/’ is used to
express rationals as the ratio of two integers.

st c1 c2 r1 r2 zl zu : c1, c2, r1, r2 ∈ N; zl , zu ∈ Q; copy the image ina
into the rectangle defined by the coordinates (c1, r1)
and (c2, r2).

h : perform a horizontal 1-D Fourier transform on the
2-D image ina. Store result ina.

v : perform a vertical 1-D Fourier transform on the 2-D
image ina. Store result ina.

· : multiply (point by point) the two images ina and
b. Store result ina.

+ : perform a complex addition ofa andb. Store result
in a.

∗ : replacea with the complex conjugate ofa.
br c1 r1 : c1, r1 ∈ N; unconditionally branch to the instruc-

tion at the image with coordinates (c1, r1).
hlt : halt.

Figure 2: The set of atomic operations permitted in the model.

4

and (ii) we anticipate no false positives (we will never seek an address not from
this finite set). A more formal treatment of this point is given in Sect. 2.2.

2.1 Encoding numerical values as images

There are many ways to encode finite, countable, and uncountable sets as images.
We outline a number of techniques that will be used later in the paper. Consider
an image that contains a high amplitude peak at its centre and zero everywhere
else,

|f(x, y)| =
{

1, if x, y = 0.5

0, otherwise .
(1)

Such an image encodes the symbol ‘1’. An empty imagef(x, y) = 0 encodes ‘0’.
Images encoding symbols ‘0’ and ‘1’ can be combined using a stepwise rescaling
technique (an image ‘stack’) or with a single rescale operation (an image ‘list’)
to encode nonnegative integers in unary and binary notations. These concepts are
illustrated in Fig. 3. A stack encoding of the integer 2 in unary could be accom-
plished as follows. Take an empty image, representing an empty stack, and an
imagei encoding a ‘1’ that that we will ‘push’ onto the stack. A push is accom-
plished by placing the images side-by-side withi to the left and rescaling both
into the stack location. The image at this location, a stack with a single ‘1’, would
be regarded as a stack encoding of the integer 1. Take another imagej encoding
a ‘1’, place it to the left of the stack, and rescale both into the stack location once
again. The unary stack image contains two peaks at particular locations that tes-
tify that it is an encoding of the integer 2. To decrement the value in the stack, a
‘pop’ operation is applied. Rescale the stack image over any two image locations
positioned side-by-side. The image to the left will contain the symbol that had
been at the top of the stack and the image to the right will contain the remainder
of the stack. The stack can be repeatedly rescaled over two images popping a
single image each time. Binary representations of nonnegative integers would be
encoded in a similar manner. A unary stack encoding of the integer 2 could be
regarded as a binary stack encoding of the integer 3. Our convention is to encode
binary strings with the least significant bit at the top of the stack. Therefore, ifj
in the preceding example had instead encoded a ‘0’ the resulting push operation
would have created a binary encoding of the integer 2. As a convenient pseu-
docode, we use statements such asc.push(‘1’) andc.pop() to increment
and decrement the unary string encoded in well-known image locationc.

In the ‘list’ encoding of a unary or binary string, each of the rescaled ‘0’ and

5

a b

ld ab

a b

ld ab

a

a

a b

st ab

a

a b

st ab

a

3ld

3 4 5

5 7 7 0/1
1/17

a

1 × C R × 1 R × C

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Encoding numbers in images through the positioning of amplitude
peaks. In the illustrations, the nonzero peaks are coloured black and the white
areas denote zero amplitude. (a) To encode the integer 1 in unary notation we
could use a ‘stack’ structure. We ‘push’ a symbol ‘1’ (imagea) onto an empty
stack (imageb) using the commandld ab. The result by default is stored ina. (b)
Pushing a ‘1’ onto a stack encoding the integer 1 in unary to create the encoding
of 2 in unary. (c) ‘Popping’ a stack encoding the number 1, resulting in a popped
symbol ‘1’ (in a) and an empty stack inb. (d) Popping an empty stack results
in the symbol ‘0’ and the stack remains empty. (e) Encoding the integer 3 in
unary in a ‘list’ structure. (f) Illustration of the matrix images used in the ARNN
simulation.

6

‘1’ images are equally spaced in the list image (in contrast to the Cantor dust
encoding used for stacks). A unary list encoding of the integer 3 would involve
positioning three ‘1’ symbols side-by-side in three contiguous image locations
and rescaling them into a single image in a single step [see Fig. 3(e)]. The choice
of encoding (stack or list) is usually driven by computational complexity consid-
erations. It is possible to enhance this encoding by allowing the peaks to have
real-valued amplitudes, and by using both dimensions of the image. This en-
hanced encoding is used in the ARNN simulation of Sect. 3. In this simulation,
the stack encoding of a finite number of real-valued amplitude peaks is referred to
as a1×C matrix image (when encoded in the horizontal direction), and anR× 1
matrix image (when encoded in the vertical direction), and anR×C matrix image
[when both dimensions are used – see Fig. 3(f)].

2.2 Transformation from continuous image to finite address

Our model uses symbols from a finite set in its addressing scheme and employs
an address resolution technique to effect decisions (see Sect. 2.3). Therefore,
during branching and looping, variables encoded in continuous images must be
transformed to the finite set of address locations. In one of the possible address-
ing schemes available to us, we use symbols from the set{0, 1}. We choose
B = {0i10j : i, j ≥ 0 ∧ i + j = m + n− 1} as our underlying set of address
words. Each of them column andn row address locations will be a unique bi-
nary word in the finite setB. An ordered pair of such binary words identifies
a particular image in the grid. Each address word will have an image encoding.
N is the set of such image encodings, with|N | = m + n. In order to facilitate
an optical implementation of our model we cannot presuppose any particular en-
coding strategy for the setN (such as the simple stack or list binary encodings
of Sect. 2.1). Our address resolution technique (our transformation fromI to B)
must be general enough to resolve addresses that use any sensible encoding.

Given an images ∈ I we wish to determine which address words′ ∈ B
is encoded bys. In general, comparing a continuous images with the elements
of N to determine membership is not guaranteed to terminate. However, since
it will always be the case that (i)s ∈ N , (ii) that |N | is finite, and (iii) thatN
contains distinct images, we need only search for the single closest match between
s and the elements ofN . We choose a transformation based on cross-correlation
(effected through a sequence of Fourier transform and image multiplication steps)
combined with a thresholding operation.

7

The transformationt : I × I 7→ B is specified by

t(s, P) = τ (P ~ s) , (2)

wheres encodes an unknown addressing symbol,P is a list image that contains a
predefined ordering of the elements ofN , ~ denotes a cross-correlation operation,
andτ is a thresholding operation. The cross-correlation operation produces an
image

f(u, v) = P ~ s =

1∫

0

1∫

0

P (x, y)s∗(x + u, y + v)dxdy , (3)

where(x, y) and(u, v) are the coordinates of the input and output spaces of the
correlation operation, respectively. In the theoretical machine,f(u, v) could be
produced by the code fragmentld P h v st b ld s h v ∗ · h v , where a multipli-
cation in the Fourier domain is used to effect cross-correlation. According to
Eq. (3), the point of maximum amplitude inf(u, v) will be a nonzero value at a
position identical to the relative positioning of the encoded symbol inP that most
closely matchess. All other points inf(u, v) will contain a value less than this
cross-correlation value. The thresholding operation of Eq. (2) is defined

τ (f(u, v)) =

{
1, if |f(u, v)| = max(|f(u, v)|)
0, if |f(u, v)| < max(|f(u, v)|) .

(4)

This produces an image with a peak at image coordinates(2i+1
2m+n

, 0.5) for one and
only one positive integeri in the range[0, m + n− 1]. Given the definition of a
list encoding of a binary string (Sect. 2.1), we can see that these unique identifiers
are exactly the images that encode the integers{20, . . . , 2(m+n−1)}. This gives
us a function from continuous images to a finite set of addressest : I × I 7→
{0, 1}m+n.

2.3 Conditional branching from unconditional branching

Our model does not have a conditional branching operation as a primitive; it was
felt that giving the model the capability for arbitrary comparison of continuous
images would rule out any possible implementation. However, we can effect in-
direct addressing through a combination of program self-modification and direct
addressing. We can then implement conditional branching by combining indirect

8

addressing and unconditional branching. This is based on a technique by Ro-
jas [15] that relies on the fact that|N | is finite. Without loss of generality, we
could restrict ourselves to two possible symbols ‘0’ and ‘1’. Then, the condi-
tional branching instruction “if (α=‘1’) then jump to addressX, else jump toY ”
is written as the unconditional branching instruction “jump to addressα”. We
are required only to ensure that the code corresponding to addressesX andY is
always at addresses ‘1’ and ‘0’, respectively. In a 2-D memory (with an extra ad-
dressing coordinate in the horizontal direction) many such branching instructions
are possible in a single machine.

2.4 A general iteration construct

Our iteration construct is based on the conditional branching instruction outlined
in Sect. 2.3. Consider a loop of the following general form, written in some un-
specified language,
SX
while (e > 0)

SY
e := e - 1

end while
SZ
where variablee contains a nonnegative integer specifying the number of remain-
ing iterations, andSX, SY, andSZ are arbitrary lists of statements. Without loss
of generality, we assume that statementsSY do not write toe and do not branch
to outside of the loop. Ife is represented by a unary stack image, this code could
be rewritten as
SX
while (e.pop() = ‘1’)

SY
end while
SZ

and compiled to a machine as shown in Fig. 4. In this machine,e specifies
the number of remaining iterations in unary and is encoded as a stack image. A
second well-known addressd, unused by the statements in the body of the loop,
holds the value popped frome and must be positioned immediately to the left
of e. The fragmentbr 0 *d is shorthand for a piece of indirect addressing code,
and means “branch to the instruction at the intersection of column 0 and the row
specified by the contents of well-known image locationd”.

9

d e
99

w ld e st de br 0 *d

SX br 0 w
1 SY br 0 w
0 SZ

0

Figure 4: Machine description of a while loop.

2.5 Complexity measures

The standard computational complexity measures of time and space could be used
to analyse instances of our machine.TIME would be measured by counting the
number of times any of the primitive operations of Fig. 2 was executed. Particular
operations could be weighted (h could have a different cost tobr) and parameter
values taken into account (ld andst would have costs proportional to the number
of grid elements accessed, andbr could have a cost proportional to the distance
of the jump). This would also accommodate addressing schemes where decoding
a numerical value from an image takesTIME proportional to the size of that value.
It is important to recognise that the temporal cost of grid element accesses would
differ by no more than a constant (worst case being the size of the grid) and does
not otherwise depend on the amount or type of information stored in an image.

SPACEcould be a straightforward static measure of the number of elements in
the grid. Such a measure would include storage of the program and input data. A
more standard costing would count the number of grid elements that were over-
written at least once. This latter measure does not count the grid elements reserved
for the program or the input.RESOLUTION is a measure of the spatial compres-
sion of image data due to rescaling, relative to the input resolution. For optical
algorithms that use stack encodings,RESOLUTION is of critical concern. A final
measure isRANGE, which is used to describe the amplitude resolution or ampli-
tude quantisation (if applicable) of the images stored in the machine.

In this paper we use a uniform cost measurement forTIME (each primitive
operation costs one unit),SPACE is the number of elements in the grid, andRES-
OLUTION is as defined above.

10

3 Computability results

In this section we prove our model can simulate ARNNs with real-valued weights.

3.1 Boolean circuits and ARNNs

Let Σ = {0, 1}, let Σ∗ =
⋃∞

i=0 Σi, and letΣ+ =
⋃∞

i=1 Σi.
Informally, a Boolean circuit, or simply a circuit, is a directed acyclic graph

where each node is an element of one of the following three sets:{∧,∨,¬} (called
gates, with respective in-degrees of 2,2,1),{x1, x2, . . . , xn} (xi ∈ {0, 1}, inputs,
in-degree 0),{0, 1} (constants, in-degree 0). A circuit family is a set of circuits
C = {cn, n ∈ N}. A languageL ⊆ Σ∗ is decided by the circuit familyC if
the characteristic function of the languageL ∩ {0, 1}n is computed bycn, for
eachn ∈ N. When the circuits are of exponential size (with respect to input
word length and where circuit size is the number gates in a circuit) circuit families
can decide all languagesL ⊆ Σ∗. It is possible to encode a circuit by a finite
symbol sequence, and a circuit family by an infinite symbol sequence. For a more
thorough introduction to circuits we refer the reader to [4].

ARNNs are finite size feedback first-order neural networks with real weights [18,
17]. The state of each neuron at timet + 1 is given by an update equation of the
form

xi(t + 1) = σ

(
N∑

j=1

aijxj(t) +
M∑

j=1

bijuj(t) + ci

)
, i = 1, . . . , N (5)

whereN is the number of neurons,M is the number of inputs,xj(t) ∈ R are the
states of the neurons at timet, uj(t) ∈ Σ+ are the inputs at timet, andaij, bij, ci ∈
R are the weights. An ARNN update equation is a function of discrete timet =
1, 2, 3, The network’s weights, states and inputs are often written in matrix
notation asA,B, c, x(t), andu(t). The functionσ is defined as

σ(x) :=

0 if x < 0
x if 0 ≤ x ≤ 1
1 if x > 1 .

(6)

A subsetP of the N neurons,P = {xi1 , . . . , xip}, P ⊆ {x1, . . . , xN}, are
called thep output neurons. The output from an ARNN computation is defined as
the states{xi1(t), . . . , xip(t)} of thesep neurons for timet = 1, 2, 3,

11

Deciding languages using formal nets

ARNN input/output mappings can be defined in many ways [18]. In this paper we
give a simulation of the general form ARNN which has update equation Eq. (5).
A specific type of ARNN, called a formal net [18], decides languages. Formal
nets are ARNNs with the following input and output encodings. A formal net
has two binary input lines, called the input data line (D) and the input validation
line (V), respectively. IfD is activeat a given timet thenD(t) ∈ {0, 1}, where
D(t) represents a symbol from the input word to be decided, otherwiseD(t) = 0.
V (t) = 1 whenD is active, andV (t) = 0 thereafter. An input to a formal net at
time t has the formu(t) = (D(t), V (t)) ∈ {0, 1}2. A formal net has two output
neuronsOd(t), Ov(t) ∈ {x1, . . . , xN} which are called the output data line and
output validation line, respectively.

We wish to decide if a wordw ∈ Σ+ is in languageL. An ARNN to decideL
is givenw as input. For somet if Ov(t) = 1 andOd(t) = 1 thenw ∈ L. For some
t, if Ov(t) = 1 andOd(t) = 0 thenw /∈ L.

In [18] Siegelmann and Sontag prove that for each languageL ∈ Σ+ there
exists an ARNNNL to decideL, hence proving the ARNN model to be compu-
tationally more powerful than the Turing machine model.NL contains one real
weight. This weight encodes a circuit family that decidesL. For a given input
word w ∈ Σ+, NL retrieves the encoding of the corresponding circuitc|w| from
its real weight and uses this encoding to decide ifw is in L. In polynomial time
ARNNs can decide the nonuniform language classP/poly. Given exponential
time ARNNs can decide all languages.

3.2 Simulation encoding scheme

In our ARNN simulation we use image amplitude values to represent arbitrary real
numbers.r ∈ R is represented by the amplitude value at coordinates(0.5, 0.5) of
an imagef ∈ I; |f(0.5, 0.5)| = r. Such an image representing one real number
is called a scalar image. A1×C matrix image is composed ofC amplitude peaks
in the horizontal direction, anR × 1 matrix image is composed ofR amplitude
peaks in the vertical direction, and anR×C matrix image is composed ofR×C
amplitude peaks, as shown in Fig. 3(f).

12

3.3 ARNN representation

In our notationα is the image encoding of symbolα. The ARNN weight matrices
A andB are represented byN × N andN ×M matrix imagesA andB respec-
tively. The weight vectorc and state vectorx(t) are represented byN × 1 matrix
imagesc andx(t) respectively.

The input vectoru(t) is represented by a1×M matrix imageu(t). Before our
simulation program begins executing we assume a stack calledI encodes all input
vectorsu(t) for t = 1, 2, 3, At time t, the top element of stackI is a1×M
matrix image representing the ARNN input vectoru(t). ARNNs are defined over
finite length input wordsw. ThereforeI ’s topn stack elements encode an ARNN
input w asn successive1 ×M matrix images and all other elements of the stack
encode the value 0.

The p output neurons are represented by anN × 1 matrix imageP . We
useP to extract thep output states from theN encoded neuron states inx(t).
x(t) containsN amplitude peaks, each at specific coordinates as illustrated in
Fig. 3(f). p of these peaks represent thep ARNN output states and have coor-
dinates{(x1, y1), . . . , (xp, yp)} in x(t). In P the amplitude values at coordinates
{(x1, y1), . . . , (xp, yp)} each encode the value 1, all other coordinates inP have
amplitude values encoding 0. We multiplyx(t) by P . This multiplication re-
sults in an output imageo(t) that contains the encoding of thep ARNN outputs
at the coordinates{(x1, y1), . . . , (xp, yp)}. o(t) encodes the value 0 at all other
coordinates. At each timestept the simulator pusheso(t) to an output stackO.

3.4 ARNN simulation overview

From the neuron state update equation Eq. (5), eachxj(t) is a component of the
state vectorx(t). Fromx(t) we can derive theN × N matrix X(t) where each
column ofX(t) is a copy of the vectorx(t). X(t) has componentsxij(t), where
i, j ∈ {1, . . . , N}. Fromu(t) we can derive theN ×M matrix U(t) where each
row of U(t) is a copy of the vectoru(t). U(t) has componentsuij(t), where
i ∈ {1, . . . , N} andj ∈ {1, . . . , M}. UsingX(t) andU(t) we rewrite Eq. (5) as

xi(t + 1) = σ

(
N∑

j=1

aijxij(t) +
M∑

j=1

bijuij(t) + ci

)
, i = 1, . . . , N . (7)

In our simulation we generateN ×N andN ×M matrix imagesX(t) andU(t)
representingX(t) andU(t) respectively. We then simulate the affine combination
in Eq. (7) using our model’s+ and· operators.

13

Recall from the model’s definition in Sect. 2 that theld and st operations
effect amplitude filtering. We use this amplitude filtering to simulate the ARNN
σ function. From the definition ofρ in Fig. 2, we setzl = 0 andzu = 1 to give

ρ(f(i, j), 0, 1) =

0, if |f(i, j)| < 0

|f(i, j)| , if 0 ≤ |f(i, j)| ≤ 1

1, if |f(i, j)| > 1 .

(8)

Using our encoding scheme,ρ(x, 0, 1) simulatesσ(x).

3.5 ARNN simulation algorithm

For brevity and ease of understanding we outline our simulation algorithm in a
high-level pseudocode, followed by an explanation of each algorithm step.

(i) u(t) := I.pop()
(ii) X(t) := pushx(t) onto itself horizontallyN − 1 times
(iii) AX(t) := A ·X(t)
(iv) ΣAX(t) := ΣN

i=1AX(t).popi()
(v) U(t) := pushu(t) onto itself verticallyN − 1 times
(vi) BU(t) := B · U(t)
(vii) ΣBU(t) := ΣM

i=1BU(t).popi()
(viii) affine-comb := ΣAX(t) + ΣBU(t) + c
(ix) x(t + 1) := ρ(affine-comb, 0, 1)
(x) O.push(P · x(t + 1))
(xi) Goto step (i)

In step (i) we pop an image from input stackI and call the popped imageu(t).
u(t) is a1×M matrix image that represents the ARNN’s inputs at timet. In step
(ii) we generate theN×N matrix imageX(t) by pushingN−1 identical copies of
x(t) onto a copy ofx(t). In step (iii),X(t) is point by point multiplied by matrix
imageA. This single multiplication of two matrix images efficiently simulates (in
parallel) the matrix multiplicationaijxj(t) for all i, j ∈ {1, . . . , N} (as described
in Sect. 3.4). Step (iv) simulates the ARNN summation

∑N
j=1 aijxj(t). Each of

the N columns ofAX(t) are popped and added (using the+ operation) to the
previous expanded image.

In step (v) we are treatingu(t) in a similar way to our treatment ofx(t) in
step (ii), except here we push vertically. In step (vi) we effectB ·U(t), efficiently

14

simulating (in parallel) the multiplicationbijuj(t) for all i ∈ {1, . . . , N}, j ∈
{1, . . . , M}. Step (vii) simulates the ARNN summation

∑M
j=1 bijuj(t) using the

same technique used in step (iv).
In step (viii) we simulate the addition of the three terms in the ARNN affine

combination. In our simulator this addition is effected in two simple image addi-
tion steps. In step (ix) we simulate the ARNN’sσ function by amplitude filtering
using ourρ function with the parameters(0, 1) as described in Sect. 3.4. We call
the result of this amplitude filteringx(t + 1); it represents the ARNN state vector
x(t + 1). In step (x) we multiplyx(t + 1) by the output maskP (as described
in Sect. 3.3). The result, which represents the ARNN output at time(t + 1)
is then pushed to the output stackO. The final step in our algorithm sends us
back to step (i). Notice our algorithm never halts as ARNNs are defined for time
t = 1, 2, 3,

15

x
(t

)
u
(t

)
Σ

A
X

(t
)

N
M

I
O

st
a

t 1
a

b
t 2

99
br

0
14

(i)
14

ld
I

st
t 1

a
st

I
ld

t 1
st

u
(t

)
(ii

)
13

ld
x
(t

)
st

t 1
w

hl
N

-1
ld

t 1
a

en
d

(ii
i)

12
st

b
ld

A
·

(iv
)

11
st

ab
st

t 1
ld

b
10

w
hl

N
-2

st
bt

2
ld

t 1
+

st
t 1

ld
t 2

en
d

9
st

b
ld

t 1
+

st
Σ

A
X

(t
)

(v
)

8
ld

u
(t

)
st

t 3
ld

at
3

w
hl

N
-2

st
t 3

ld
u
(t

)
ld

at
3

en
d

(v
i)

7
st

b
ld

B
·

(v
ii)

6
st

ab
st

t 1
ld

b
5

w
hl

M
-2

st
bt

2
ld

t 1
+

st
t 1

ld
t 2

en
d

4
st

b
ld

t 1
+

st
b

(v
iii

)
3

ld
Σ

A
X

(t
)

+
st

b
ld

c
+

(ix
)

2
st

a
0

/
1

1
/

1
st

x
(t

)
(x

)
1

st
b

ld
P

·
st

t 1
ld

O
ld

t 1
a

st
O

(x
i)

0
br

0
14

0
1

2
3

4
5

6
7

8
9

..
.

Id
en

tifi
er

t 3
re

fe
rs

to
ad

dr
es

s
(1

2,
14

)
A

B
c

P

Figure 5: Simulating an ARNN on our model of computation. The machine is in
two parts for clarity. The larger is a universal ARNN simulator and the smaller
is the inserted ARNN. The simulator is written in a compact shorthand notation.
The expansions into sequences of atomic operations are shown in Fig. 6 and the
simulation program is explained in Sect. 3.6.

16

(a) ld I → ld 5 5 99 99 0 / 1 1 / 1
st t1a → st 11 12 99 99 0 / 1 1 / 1
st I → st 5 5 99 99 0 / 1 1 / 1
ld t1 → ld 11 11 99 99 0 / 1 1 / 1
st u(t) → st 1 1 99 99 0 / 1 1 / 1
ld x(t) → ld 0 0 99 99 0 / 1 1 / 1
st t1 → st 11 11 99 99 0 / 1 1 / 1
ld t1a → ld 11 12 99 99 0 / 1 1 / 1
st b → st 13 13 99 99 0 / 1 1 / 1
ld A → ld 11 11 0 0 0 / 1 1 / 1
st ab → st 12 13 99 99 0 / 1 1 / 1
ld b → ld 13 13 99 99 0 / 1 1 / 1
st bt2 → st 13 14 99 99 0 / 1 1 / 1
ld t2 → ld 14 14 99 99 0 / 1 1 / 1
st ΣAX(t) → st 2 2 99 99 0 / 1 1 / 1
ld u(t) → ld 1 1 99 99 0 / 1 1 / 1
st t3 → st 12 12 14 14 0 / 1 1 / 1
ld at3 → ld 12 12 14 99 0 / 1 1 / 1
ld B → ld 12 12 0 0 0 / 1 1 / 1
ld ΣAX(t) → ld 2 2 99 99 0 / 1 1 / 1
ld c → ld 0 0 13 13 0 / 1 1 / 1
ld P → ld 0 0 14 14 0 / 1 1 / 1
ld O → ld 6 6 99 99 0 / 1 1 / 1
st O → st 6 6 99 99 0 / 1 1 / 1

(b) whl N-2 . . . end

Figure 6: Time-saving shorthand conventions. (a) Short-hand instructions used
in the simulator in Fig. 5. (b) Expands to initialisation instructions and the while
loop code given in Fig. 4.

17

3.6 Explanation of Figs. 5 and 6

The ARRN simulation with our model is shown in Fig. 5. The numerals (i)–(xi)
are present to assist the reader in understanding the program; they correspond to
steps (i)–(xi) in the high-level pseudocode in Sect. 3.5. Our ARNN simulator
program is written in a shorthand notation (including shorthand versions of the
operationsld, st, andbr from Fig. 2) that is expanded using Fig. 6. Before the
simulator begins executing a simple preprocessor or compiler could be used to
update the shorthand to the standard long-form notation.

The machine consists of two parts (separated in the diagram for clarity). The
larger is the universal ARNN simulator. Addressest1, t2, andt3 are used as tem-
porary storage locations during a run of the simulator [note: addresst3 is located
at grid coordinates(12, 14)]. In the simulator ourα notation denotes the image
encoding ofα, and also acts as an address identifier for the image representingα.
Locationsx(t) andu(t) are used to store our representation of the neurons’ states
and inputs during a computation.ΣAX(t) is a temporary storage location used to
store the result of step (iv). LocationsN andM store our representation of the di-
mensions ofx(t) andu(t) (necessary for bounding our while loops). The contents
of N andM must be supplied as input to the simulator. At timet, our representa-
tion of the ARNN inputu(t) is at the top of the stackI. This input is popped off
the stack and placed in memory locationu(t). The computation then proceeds as
described by the high-level pseudocode algorithm in Sect 3.5. The output mem-
ory locationO stores the sequence of outputs as described in Sect. 3.3. Program
execution begins at well-known locationsta and proceeds according to the rules
for our model’s programming language which are given in Sect. 2.

The smaller part of Fig. 5 illustrates how an ARNN definition must be inserted
into the universal ARNN simulator. The address identifiersA, B and c store
our encoding of the corresponding ARNN matrices, andP stores our mask for
extracting thep output states from theN neuron states, as described in Sect. 3.3.

The code fragmentwhl ctr . . . end is shorthand for code to initialise and
implement the while loop given in Sect. 2.4. The instructions betweenctr and
end are executedctr times. Thewhl routine hasTIME complexity4+ctr(s+4),
RESOLUTION complexity2ctr + maxres, and constantSPACE complexity, where
ctr ∈ N is the number of times the body of the while loop is executed,s is the
number of operations in the body of the while loop, and maxres is the maximum
resolution of any image accessed during execution of the code forwhl .

18

3.7 Complexity analysis of simulation algorithm

In our simulation pushing (or popping)p scalar images to (or from) ap × 1 or
1× p 1-D matrix image requiresTIME O(p), RESOLUTIONO(2p−1), and constant
SPACE. Pushingq p× 1 or 1× p 1-D matrix images to form ap× q or q × p 2-D
matrix image requiresTIME O(q), RESOLUTIONO(2p+q−2), and constantSPACE.
If the ARNN being simulated has timet = 1, 2, 3, . . . , M as the length of the
input vectoru(t) andN neurons, andn is the number of image stack elements
used to encode the finite input to our simulator, then our simulation program takes
TIME

T (N, M, t, n) = t(21N + 9M + 16) + 1 (9)

Our simulation takesTIME linear inN , M andt, and independent ofn. It takes
constantSPACE, and exponentialRESOLUTION

R(N, M, t, n) = max(2(n−t+M−1), 2(2N−2), 2(N+M−2), 2(N+t−1)) . (10)

3.8 Deciding languages

Let us assume we are simulating a formal netF and the language decided byF is
calledL. On input wordw, F decides ifw is in L in time tF (w), that is forF ’s
output validation lineOv, Ov(tF (w)) = 1. SimulatingF (on inputw) with our
ARNN simulator takes linearTIME T (NF ,MF , tF (w), nw), exponentialRESOLU-
TION R(NF ,MF , tF (w), nw) and constantSPACEto produce our representation of
Ov(tF (w)) = 1. By way of ARNN simulation our model decides all languages
with these complexity bounds.

4 Complexity Results

Sorting and searching [10] provide standard challenges to computer scientists in
the field of algorithms, computation, and complexity. In this paper we focus on
a binary search algorithm (with our model this algorithm can be applied to un-
ordered lists) and an implementation of the bitonic sort, first introduced by Batcher
[5] as one of the fastest sorting networks.

4.1 Unordered search

Consider an unordered list ofn elements. For a given property, each element could
be represented by a bit key denoting whether the element satisfies that property or

19

procedure search(i1, i2)
e := i2
c := ‘0’
while (e.pop() = ‘1’)

ab := i1
select (

∫∫
a)

case ‘1’:
i1 := a
c.push(‘0’)

case ‘0’:
i1 := b
c.push(‘1’)

end select
end while
a := c

end

Figure 7: Algorithm to perform aΘ(log2 n) search on an unsorted binary list.

not. If only one element satisfies that property, the problem of finding its index
becomes one of searching an unsorted binary list for a single ‘1’. This problem
was posed by Grover in [9]. His quantum computer algorithm requiresO(

√
n)

comparison operations on average. Bennett et al. [6] have shown the work of
Grover is optimal up to a multiplicative constant, and that in fact any quantum
mechanical system will requireΩ(

√
n) comparisons. Algorithms for conventional

models of computation requireΘ(n) comparisons in the worst case to solve the
problem. We present an algorithm that requiresΘ(log2 n), in the worst case, with
a model of computation that has promising future implementation prospects.

The algorithm in Fig. 7 takes two inputs, one a list image and the other a
stack image. (Unary and binary stack images and list images were introduced in
Sect. 2.1.) The first input,i1, is the binary list of lengthn, represented by a list
image withn equally spaced amplitude peak positions in the horizontal direction.
The image contains only one peak (a ‘1’) and the rest of the positions (and the rest
of the image) has zero amplitude (‘0’s). We assume thatn is a power of 2. The
numberlog2 n is also supplied as input (i2). This is used to bound the iteration
and is stored in unary in a stack image. The algorithm uses a well-known location
c as it constructs, bit by bit, the index of the only ‘1’ ini2. This index is stored
in binary in a stack image. This index is returned through locationa when the
algorithm terminates.

20

i1
i2

‘0
’

‘1
’

st
a

a
b

c
d

e
99

br
0

3

w
ld

e
st

de
br

0
*d

3
ld

i2
st

e
ld

‘0
’

st
c

br
0

w
2

h
v

st
b

∗
·

h
v

br
8

*a
1

ld
i1

st
ab

br
0

2
ld

i1
st

ab
st

i1
ld

‘0
’

st
b

ld
bc

st
c

br
0

w
0

ld
c

hl
t

ld
i1

st
ab

ld
b

st
i1

ld
‘1

’
st

b
ld

bc
st

c
br

0
w

0
1

2
3

4
5

6
7

8
..

.

Figure 8: Machine to perform aΘ(log2 n) search on an unsorted binary list.

An instance of our model implementing this algorithm is shown in Fig. 8. In
this machine, the computation begins by branching to location(0, 3) to execute the
two assignment statements before evaluating the loop guard. The code in row 2
corresponds to the line “select (

∫∫
a) ” from the algorithm above. This oper-

ation transforms the list ina into the symbol ‘1’ if there had been a ‘1’ anywhere
in the list, and into the symbol ‘0’ otherwise. It does this by integrating all of the
power ina and positioning it ata’s centre. The computation halts as soon as the
stack at locatione is exhausted and control branches to location(0, 0).

4.2 Bitonic sort

Bitonic sort is an important algorithm for facilitating efficient parallel imple-
mentations because the sequence of comparisons is not data-dependent. Bitonic
sort consists ofO(n(log2 n)2) comparisons inO((log2 n)2) stages. This is non-
optimal – [1] identifies a sorting network with onlyO(n log2 n) comparisons but
a very large constant factor. However, bitonic sort continues to be faster than
theoretically optimal solutions for all practical problem sizes.

In [3, 2] Akl provides a review of the history of parallel sorting and classi-
fies the bitonic sort as being one of many compare-and-exchange (CAE) based
sorts. Such sorts can be efficiently implemented on many different parallel archi-
tectures, whose commonality is the CAE component as a fundamental building
block. In [16] we see an optimal CAE sort algorithm for mesh-connected com-
puters which requires enormous electronic resources: this solution is complex
and difficult to build due to the electronic nature of the underlying implemen-
tation architecture. Stirk and Athale [19] provide one of the first treatments of
a parallel CAE sort with partial optical implementation. The optics eliminates
communication bottlenecks and interconnection problems by providing massive
parallelism free of electromagnetic interference. This work is built upon in [7]
where the bitonic sort is implemented on a parallel sorting architecture using hy-
brid optoelectronic technology. This system is proposed as a functional extension
of electronic computers and the main originality is in the smart optical interface
devices between parallel optical memories and electronic processors (the authors
do not advocate the development of an all-optical computer). In [11] a constant
time optical CAE sort is introduced. Their claim of constant time suggests that
the complexity of the algorithm is constant. However, there are upper bounds on
the number of elements that can be sorted.

We propose a novel optical implementation of the bitonic sort on our model.
A Java sequential implementation of our bitonic sort is given in Appendix A.

22

(Bitonic sorting is similar to MergeSort in that it requires a list of elements to
be split into two even sublists, recursively sorted and then merged. However, in
the bitonic merge step the lists to be sorted are bitonically ordered rather than
ordered.)

We followed a technique similar to [8] in order to verify the correctness of our
algorithm. The complexity of the sequential implementation isO(n(log2 n)2).
The complexity of the implementation on our optical computer is dependent on
the complexity of thebitonicMerge operation. As with a classical multipro-
cessor system (where the number of processors required is linear with respect
to the size of the lists to be merged) thebitonicMerge can be implemented
optically with complexityO(log2 n), given that we can provide a fully parallel
implementation of the CAEs contained within the iteration (see comment in the
code in Appendix A). In this case, the depth of our bitonic sort computation is
defined by the recurrence relationd(n) = d(n/2) + log2 n. This corresponds to a
O((log2 n)2) implementation – the same as is seen with the multiprocessor imple-
mentations referenced above. The advantage of our proposed implementation over
the electronic and optoelectronic implementations is that we execute the algorithm
on a single (optical) processor, where there is no theoretical bound on the number
of elements in our input list. (Although optoelectronic devices may be required
for input and output, no electronic circuitry is necessary for the computation.) In
the case of the implementations we reviewed that contain electronic circuitry, an
upper bound is hard-wired into the computation. Furthermore, our optical imple-
mentation can be viewed as a software solution, running on a universal computer,
not requiring dedicated hardware resources.

References

[1] M. Ajati, J. Kmolos, and S. Szemeredi. AnO(N log N) sorting network. In
Proc. 25th ACM Symposium on Theory of Computing, pages 1–9, 1983.

[2] S.G. Akl. Parallel Sorting Algorithms. Academic Press Inc., 1985.

[3] S.G. Akl. Parallel Computation Models and Methods. Prentice Hall, 1997.

[4] Jośe Luis Balćazar, Josep D́ıaz, and Joaquim Gabarró. Structural Complex-
ity, volume 1. Springer-Verlag, Berlin, 1988.

[5] K.E Batcher. Sorting networks and their applications. InProc. AFIPS Spring
Joint Computing Conference, volume 32, pages 307–314, 1968.

23

[6] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing.SIAM Journal on Com-
puting, 26(5):1510–1523, 1997.

[7] F.R. Beyette, P.A. Mitkas, and C.W. Wilmsen. Bitonic sorting using an op-
toelectronic recirculating architecture.Applied Optics, 33(35):8164–8172,
1994.

[8] R. Couturier. Formal engineering of the bitonic sort using PVS. In2nd Irish
Workshop on Formal Methods, Cork, Ireland, July 1998. BCS electronic
workshops in computing (eWiC).

[9] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proc. 28th Annual ACM Symposium on Theory of Computing, pages 212–
219, may 1996.

[10] D.E Knuth. The Art of Computer Programming, Vol 3: Sorting and Search-
ing. Addison-Wesley, 1973.

[11] A. Louri, J.A. Hatch, and J. Na. Constant-time parallel sorting algorithm and
its optical implementation using smart pixels.Applied Optics, 34(17):3087–
3097, 1995.

[12] Thomas Naughton, Zohreh Javadpour, John Keating, Miloš Klı́ma, and Jǐrı́
Rott. General-purpose acousto-optic connectionist processor.Optical Engi-
neering, 38(7):1170–1177, July 1999.

[13] Thomas J. Naughton. A model of computation for Fourier optical processors.
In Roger A. Lessard and Tigran Galstian, editors,Optics in Computing 2000,
Proc. SPIE vol. 4089, pages 24–34, Quebec, Canada, June 2000.

[14] Thomas J. Naughton and Damien Woods. On the computational power
of a continuous-space optical model of computation. In Maurice Margen-
stern and Yurii Rogozhin, editors,Machines, Computations and Universal-
ity: Third International Conference, volume 2055 ofLecture Notes in Com-
puter Science, pages 288–299, Chişinău, Moldova, May 2001.

[15] Rául Rojas. Conditional branching is not necessary for universal computa-
tion in von Neumann computers.Journal of Universal Computer Science,
2(11):756–768, 1996.

24

[16] C.P. Schnorr and A. Shamir. An optical sorting algorithm for mesh-
connected computers. InProc. 18th ACM Symposium on Theory of Com-
puting, pages 255–261, 1986.

[17] Hava T. Siegelmann.Neural networks and analog computation: beyond the
Turing limit. Progress in theoretical computer science. Birkhäuser, Boston,
1999.

[18] Hava T. Siegelmann and Eduardo D. Sontag. Analog computation via neural
networks.Theoretical Computer Science, 131(2):331–360, September 1994.

[19] C.W. Stirk and R.A. Athale. Sorting with optical compare-and-exchange
modules.Applied Optics, 27(9):1721–1726, 1988.

A Bitonic sort code

// Java sequential implementation of bitonic sort
// Parallelisation is commented in code
// The array to be sorted is defined by variable a
// This array must contain 2ˆk elements

public void sort(){bitonicSort(0, size, INC);}

private void bitonicSort(int low, int high, boolean dir){
if (high>1){

int mid=high/2;
bitonicSort(low, mid, INC); bitonicSort(low+mid, mid, DEC);
bitonicMerge(low, high, dir);

}
}

private void bitonicMerge(int low, int high, boolean dir){
if (high>1){

int mid=high/2;
for (int i=low; i<low+mid; i++) // in parallel

CAE(i, i+mid, dir);
bitonicMerge(low, mid, dir); bitonicMerge(low+mid, mid, dir);

}
}

25

// The compare and exchange (CAE) fundamental component
private void CAE(int i, int j, boolean dir){

if (dir==(a[i]>a[j])){
// if in wrong order then swap
int temp=a[i];a[i]=a[j];a[j]=temp;

}
}

26

