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Abstract—Compute-in-memory (CIM) is a promising solution to efficiently implement multiply-
and-accumulate (MAC) operations involved in deep neural network (DNN) computations. 
However, the mixed-signal compute scheme for CIM paradigm faces grand challenges in the 
necessary analog-to-digital converter (ADC) at the array outputs, which introduces quantization 
loss for inference accuracy and suffers from large area/energy overhead in peripheral circuitry. 
In this article, we comprehensively explore conventional ADC designs (Flash vs. SAR) for CIM 
application. Then we investigate a new data conversion scheme that performs the analog shift-
add for multiple weight significance bits, namely analog shift-add ADC. Impact of the ADC 
precision on inference accuracy performance is thoroughly analyzed and illustrated for the 
representative CIFAR-10 dataset based on a multi-bit VGG-8 network. The evaluation results 
show that the analog shift-add ADC can tolerate up to 7-bit quantization loss without accuracy 
degradation. We benchmark the hardware performance of CIM arrays with various ADC designs 
at 40nm given similar area constraint, and the results show that the analog shift-add ADC 
achieves 37× and 4.9× lower energy-delay-product (EDP), compared to state-of-the-art Flash-
ADC and SAR-ADC, respectively 

 
 Deep neural network (DNN) has been enabling 
various artificial intelligence applications, from image 
classification to speech recognition. From the 
hardware’s perspective, a variety of application-
specific integrated circuit (ASIC) designs have been 
proposed to accelerate the multiply-and-accumulate 
(MAC) operations. However, the traditional von 

Neumann architecture inherently limits the parallelism 
of DNN algorithms since massive data movement 
happens between the computing units and the storage 
units, which results in low energy efficiency. To 
address this memory bottleneck, researchers have 
proposed the compute-in-memory (CIM) paradigm 
whereby the computation is performed inside the 
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memory array [1]. The crossbar-like memory array is 
usually employed in CIM to store the values of the 
weight matrix [1], where the weights are mapped as the 
conductance of the memory cells. The MAC operations 
can be performed in parallel: the input voltage activates 
multiple rows and the products between the inputs and 
the weights are summed up along the columns as 
current output. In most of today’s CIM designs, 
memory array is equipped with analog-to-digital 
converter (ADC) to convert analog MAC values to 
digital outputs, which can be passed to the peripheral 
circuitry for further processing steps such as activation 
function/pooling, and then being sent to the next array 
as the input. This mixed-signal compute scheme offers 
the scalability towards multiple-array designs via 
interconnect buses or network-on-chip, while 
introducing significant power dissipation and area 
overhead in the necessary data conversion at the array 
outputs. For example, the ISAAC architecture [2] 
reports that ADCs contribute up to 58% of the total 
power and 31% of the total area. From the algorithm’s 
standpoint, despite binary neural network such as 
XNOR-Net [3] may greatly reduce the required 
memory capacity and eliminate ADCs, multi-bit 
precision is a more generic setting for large-scale 
DNNs for complex datasets to avoid inference accuracy 
degradation. To reduce the overhead of ADCs, there 
are two straightforward approaches. One is to limit the 
number of ADCs employed in one array, which means 
each ADC is shared by multiple columns. As a penalty, 
the parallel computing throughput is reduced. The other 
solution is to lower the ADC precision. However, the 
quantization loss of partial sum may hamper the 
inference accuracy performance. Therefore, under the 
hardware constraints, the choice of ADC topologies 
and configurations is critical to the design of the CIM 
architecture. 
    In this article, we explore the trade-offs involving 
different types of ADCs and investigate a new ADC 
design [4] especially suited for the CIM context, which 
can perform analog shift-add to alleviate the overhead. 
The impact of quantization loss for different ADC 
topologies is also analyzed. For the hardware 
evaluation, we comprehensively compare the ADC-
only and array-level performance between the analog 
shift-add ADC and the conventional ADC designs that 
are integrated with a CIM array.  

BACKGROUND AND RELATED WORK 

    CIM is a promising solution to perform extensive 
MAC operations, which is suitable for a weight 

 
Figure 1. (a) Weight matrix mapping in crossbar 
array. (b) Generic dataflow of multi-bit MAC 
operations. (c) Principle of Flash-ADC and SAR-
ADC 

stationary dataflow in DNN acceleration as it combines 
memory access and computation. Fig. 1 (a) shows a 
conceptual resistor-based crossbar array when mapping 
weight matrix for MAC operations. Memory cell 
conductance 𝐺𝐺𝑖𝑖𝑖𝑖 represents the weight 𝑊𝑊𝑖𝑖𝑖𝑖. During the 
computation, the neuron activations 𝑋𝑋𝑖𝑖, are converted 
to voltages 𝑉𝑉𝑥𝑥𝑖𝑖  and applied to the crossbar rows in 
parallel. The summed current through the column 𝐼𝐼𝑖𝑖 , 
could be converted to an analog voltage by a resistor 
divider (or by a diode-connected transistor in practice). 
Transimpedance amplifier (TIA) is a more advanced 
approach to realize current-to-voltage conversion. The 
analog voltage is then quantized by ADC.  In the 
following section, we briefly introduce recent 
progresses of versatile CIM designs and a generic 
dataflow in CIM.  
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Memory technologies employed in CIM 
    Theoretically, the CIM architecture could be 
implemented by any memory device technologies. 
SRAM is considered as a mature candidate for CIM 
from the technology availability point of view. The 
general idea is to modify the SRAM bit-cell and 
periphery to enable the parallel access. Sense amplifier 
(SA) is usually replaced by ADC to produce quantized 
output. Multi-bit inference [4] and on-device training 
[5] have been demonstrated in with SRAM based CIM 
macros. Meanwhile, CIM architectures based on 
emerging non-volatile memories (eNVMs) have also 
been proposed. For instance, resistive random-access 
memory (RRAM) [6] provide attractive solutions due 
to multilevel states and higher density at the same 
technology node. Recently, the ferroelectric field effect 
transistor (FeFET) [7] is also regarded as a promising 
candidate for low power platforms, with intrinsically 
low write energy because its switching is field-driven 
rather than current-driven, and low read energy due to 
elevated on-state resistance (with proper gate biasing). 
However, in industrial prototypes [8], binary states are 
used and multi-level operations are still premature at 
scaled FeFET. Therefore, in this work, we evaluate the 
overhead of different ADC designs on the CIM 
architecture consisting of binary FeFET cells. The 
evaluation methodology could be extended to multi-
level cells in principle. 

Generic dataflow in CIM architecture 
    Fig. 1 (b) shows the conventional dataflow of multi-
bit MAC operations in CIM. Input vectors are fed into 
CIM array cycle by cycle. Each cycle contains one 
significant bit. Multiple binary memory cells in 
multiple columns are used to represent a fixed-point 
weight in a binary format. Therefore, two separate 
shift-add processes are needed for CIM array: One is to 
weigh and sum up partial sums according to different 
significant input bits; the other one is to weigh and sum 
up partial sums according to different significant 
weight bits. The shift-add process for input is identical 
for different ADC topologies, thus it is skipped in our 
study. As shown in the diagram, the shift-add process 
for weight contains two phases: analog MAC and ADC 
in a single column (Phase I) and digital shift-add 
between columns (Phase II). Phase II is required to 
accumulate the weighted sum from the Least 
Significant Bit (LSB) and the Most Significant Bit 
(MSB). The CIM periphery usually employs digital 
shift-add module to process such multi-bit MAC 
operations.  

ADC TOPOLOGY DESIGN EXPLORATION 
    A compact ADC design plays an important role in 
the area/energy efficiency of the CIM array. Especially 
when considering the column pitch of eNVM-based 
array is much less than that of the SRAM, it is 
imperative to explore possible ADC topology options. 
Conventional ADC choices for CIM application 
    The popular ADC topologies in prior CIM works are 
Flash-ADC [9] and successive-approximation-register 
(SAR)-ADC [6] due to their simplicity and suitability 
for low to medium precision (i.e. <8 bit). Flash-ADC is 
made of cascading comparators. For an N-bit converter, 
the circuit employs 2𝑁𝑁 − 1  comparators. The 
thermometer code generated by comparators is then 
encoded to the digital output code. Flash-ADC is the 
fastest ADC design in principle but consumes 
exponentially larger power and area when the precision 
increases. SAR-ADC employs a single comparator but 
performs one-bit comparison only in one internal clock. 
Based on binary search algorithm, the SAR logic 
(implemented with multi-stage shift registers) will 
adjust the references dynamically and does the 
comparison in a bit-by-bit fashion. This sequence 
continues all the way from MSB to LSB. Once all bits 
are done, the conversion is complete and the N-bit 
digital output is available in the register. Typically, a 
capacitive digital-to-analog converter (DAC) array that 
exploits the charge redistribution is used to generate the 
analog reference voltage. Generally Flash-ADC has 
better performance for lower precision (3-bit or below) 
while SAR-ADC performs better for relatively higher 
precision. In the recent CIM macros [10], 3-bit Flash-
ADC was used for small-scale arrays with 64~128 rows. 
However, the scalability of Flash-ADC towards large-
scale arrays remains unexplored.  
Analog Shift-add ADC 
    As aforementioned, there is a tight area constraint for 
ADC in CIM array, which means multiple columns 
have to share one ADC. Consequently, the throughput 
will be reduced due to the time-multiplexing. Besides, 
additional circuits such as multiplexer (MUX) and 
digital shift-add are also needed. To reduce the ADC 
overhead, an analog shift-add approach was 
demonstrated in [5]. As shown in Fig. 2 (a), 
modification of analog shift-add ADC is applied to 
where the shift-add is performed. Here the shift-add 
process for weight precision is moved prior to the ADC 
and being conducted in the analog domain, which will 
weigh and sum up the analog MAC outputs from each 
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Figure 2. (a) Alternative CIM dataflow which 
performs weighted sum before ADC. (b) Schematic 
of analog shift-add block. (c) Schematic of latched-
based sense amplifier. (d) Top-level structures of 
analog shift-add ADC. 
column in multiple internal clock cycles. Then the pre-
shifted and added MAC value will go through the 
regular SAR-ADC to generate the final output that 
already contains the weight significance. This design 
effectively eliminates the digital shift-add module for 
multi-bit weight computation and reduce the MUXs of 
multiple columns. So it can improve throughput and 
energy efficiency under the same area constraint but it 
has a potential precision impact. Both aspects will be 
studied in more details in the next section. Fig. 2 (b) 
shows the circuit schematic of the analog shift-add 
block. We exploit the charge redistribution nature of 
the capacitor array to perform the weighted 
accumulation before ADC quantization. This block is 
connected to multiple columns that represent the 
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Figure 3.  Accuracy performance vs. precision for 
different ADC designs. 
 
different weight significance. As the weight value 
could be either positive or negative in DNN, 2’s 
complement code is used to store the weight where the 
first bit is the sign bit. The capacitors involved in this 
block from top to bottom exponentially increase in 
capacitance, which represent from LSB to MSB. The 
switches enable the corresponding capacitor to be 
coupled to the power supply or the analog output from 
the corresponding column. All the switches are 
synchronously switched. When the voltage level of the 
sign-bit switch equals to zero, the voltage level of all 
other switches equals to one. Once the charge 
redistribution is stabilized, the analog shifted and added 
MAC value can be directly read out from the SUM port 
for the regular SAR-ADC process. The comparator is 
based on a simple latch-based sense amplifier, as 
shown in Fig. 2 (c). It comprises M4-M7 transistor as 
strong positive feedback amplifier and M8-M9 are used 
to pre-charge the output node and M2-M3 can be 
treated as common source differential amplifier. Tail 
transistor M1 is used to enable the sensing process. 
Such a latch-based sense amplifier is commonly used 
in embedded memory design due to its advantages of 
low power and high speed. The top-level diagram of the 
analog shift-add ADC is shown in Fig. 2. (d). To our 
best knowledge, such analog shift-add ADC design was 
not thoroughly evaluated in prior works, especially 
lacking of exploring the impact on software accuracy 
performance and hardware overhead compared to 
conventional ADCs at array-level. Array-level 
hardware performance will be quite different from the 
ADC-only result where the rest of array is ignored since 
different ADC topologies may also cause diversities on 
other periphery circuits. In this article, we 
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comprehensively explore the ADC designs above for 
CIM application. 

ADC PRECISION IMPACT ON TESTING 
ACCURACY 
    To determine the minimally required ADC precision, 
we investigate the impact of ADC quantization loss on 
inference accuracy performance. As a case study, we 
build a VGG-8 model for CIFAR-10 dataset. There are 
two algorithmic techniques to quantize the partial sum 
from the CIM array: One is to reduce full range of the 
partial sum. Since the partial sum distribution is 
typically concentrated near the center [10], 
appropriately reducing range in the two tails will not 
introduce significant accuracy loss. The other is the 
nonlinear quantization to statistically gather similar 
counts of partial sums in each quantization step [10]. 
Fig. 3 shows the accuracy performance vs. ADC 
precision for the conventional ADC designs 
(representing both Flash and SAR) and the proposed 
analog shift-add ADC. Here we group Flash-ADC and 
SAR-ADC together since they have the same dataflow 
in which ADCs first quantize partial sums and then 
digital shift-add modules are employed to accumulate 
digitized partial sums. Oppositely, the analog shift-add 
ADCs first weigh and sum up the analog multi-bit 
MAC outputs and then quantize the final output that 
already contains the weight significance. We embedded 
these two different quantization approaches in software 
simulation and investigated the impact of ADC 
quantization loss on inference accuracy performance. 
The data precision setting in the algorithm is 4-bit 
weight, 8-bit activation, 8-bit gradient and 8-bit error, 
following the WAGE method [11]. The software 
baseline accuracy is 89%. 
    We assume 512×512 memory array is used which 
means the full precision of each column’s partial sum 
is 9-bit. For conventional ADCs, we can see that 6-bit 
precision could obtain the same accuracy as the 
baseline which means 3-bit quantization loss is 
tolerable. For analog shift-add ADC, the input full 
precision for partial sum is 13-bit (9-bit from column 
partial sum and 4-bit from shift-add for weight 
precision). From the plot, we can find that 6-bit analog 
shift-add ADC could also maintain baseline accuracy, 
tolerating 7-bit quantization loss. Analog shift-add 
ADC could tolerate more quantization loss because 
quantization loss only happens at the final stage for 
analog shift-add ADC. On the contrary, conventional 
ADCs have quantization loss on each partial sum and 
then accumulate these quantized partial sums by shift-

add, which means errors will be accumulated. In sum, 
the analog shift-add before the ADC could preserve 
more information, while the digital shift-add after the 
ADC may lose some residual information, resulting in 
more errors on the final output. In our evaluation 
environment, using ADCs with more than 6-bit 
resolution is an overkill, which will introduce more 
hardware penalties with no accuracy improvement, as 
shown in Fig. 3. On the other hand, the accuracy loss 
for 3-5 bits is non-trivial under our configuration. Other 
quantized low-precision networks (e.g. XNOR-Net [3]) 
or using smaller sub-array size (e.g. 128×128 instead of 
512×512) can maintain accuracy performance even 
under lower ADC precision 3-5 bits [12]. Thus, we 
made the ADC comparison from 3-bit to 6-bit in this 
work. 

EVALUATION 
    In this section, we evaluate the hardware 
performance of the three ADC topologies based on 
SPICE simulation. As a case study, we use FeFET as 
memory device for the CIM array, as already motivated 
in the introduction section. The reason to select FeFET 
is because its elevated channel resistance (~500kΩ [7]) 
could potentially support a large array size as 512×512. 
The FeFET bit cell size (4F by 4F) is assumed 
considering a relaxed channel length as high voltage is 
required for programming. The technology node used 
is 40 nm low power due to our foundry PDK 
availability. The ADC designs and evaluation results 
presented in this work generally are applicable to other 
charge-based CIM scheme in other technology nodes 
and other memory devices. 

ADC-only Performance Benchmarking 
    Firstly, we compare the hardware performance of a 
single ADC only. To have a fair comparison, ADC 
performance should be evaluated under the same 
number of operations. The analog shift-add ADC is 
designed to convert multi-bit MAC results during one 
conversion process. As described in the previous 
section, traditional dataflow in CIM could only perform 
non-weighted MAC at one time, corresponding to 1-bit 
input × 1-bit weight. As shown in Fig. 4. (a), a MUX is 
needed to switch from different significant weight bits. 
Therefore, the hardware performance for Flash-ADC 
and SAR-ADC should be evaluated during 4× single 
ADC conversion time (as 4-bit weight is used in our 
case study). Fig. 4 (b) shows the hardware performance 
comparison including power, latency, energy and EDP 
among the three ADC designs. We can find that Flash-
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Figure 4.  (a) Periphery configuration for different 
ADC design. (b) ADC performance comparison.  
ADC consumes the most power which exponentially 
increases with ADC precision, while SAR-ADC and 
analog shift-add ADC have power dissipation nearly 
irrespective to ADC precision. Obviously, Flash- ADC 
is faster than SAR-ADC. One interesting observation is 
that analog shift-add ADC could complete multi-bit 
MAC in one conversion, thus its processing speed is 
even comparable to Flash-ADC. Since the conversion 
mechanism of this analog shift-add ADC is the same as 
SAR-ADC, the latency will linearly increase with ADC 
precision but with much smaller slope as shown in the 
latency plot.  For the energy consumption, we can see 
an exponential growth in Flash-ADC. Finally, we 
evaluate energy-delay product (EDP), a well-defined 
metric that reflects the balance between energy 
consumption and throughput performance. We can see 
that analog shift-add ADC has the best performance 
across 3-6 bits for completing the same number of 
MAC operations. However, this is only a module-level 
benchmarking for ADC comparison regardless of CIM 
array-level constraints. 

Array-level Performance Comparison 
To systematically compare ADC performance for 

CIM application in a fair way, we need to consider the 
area constraint at the array-level. Under a similar area 

Table 1. ADC configuration under area constraint 

 
Figure 5. Array-level performance comparisons 
with possible ADC designs. (a) Latency vs precision. 
(b) Area vs precision (c) Energy vs precision (d) 
EDP vs precision. 
constraint (e.g., 2× of memory array area, ~13,422 µm2 
in our case study), we need to consider how many 
columns should share one ADC and employ 
appropriate MUX to switch columns for the time 
multiplexing. For Flash-ADC and SAR-ADC, the cost 
of digital shift-add should also be included for multi-bit 
MAC operations. Table 1 shows array-level ADC 
configuration under area constraint. For SAR-ADC and 
analog shift-add ADC, since the area of single ADC is 
relatively small and only increases slightly as ADC 
precision increases. The column sharing factor 
maintains 16 from 3-bit to 6-bit ADC precision. For 
Flash-ADC, as the area is exponential to ADC 
precision, we have to reduce the number of ADCs to 
satisfy area constraint, which means more column 
sharing when the precision increases. We can find that   
even with larger column sharing factor, the total area 
for Flash-ADC is still much larger than that of SAR- 
and analog shift-add ADC. Array-level performance of 
ADC-related periphery is shown in Fig. 5. Fig. 5. (a) 
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represents total latency of ADC processing time 
including digital shift-add processing time. For 
example, for 6-bit Flash-ADC, 64 columns share one 
ADC thereby sacrificing the throughput by 8 times 
compared to 3-bit case (8 columns share one) if 
considering ADC only. However, the latency of digital 
shift-add for weight significance will remain the same 
as ADC precision increases, which slows down the 
increase of total latency, because the number of shift-
add cycles is only related to weight precision. This is 
the reason why total latency (including shift-add 
latency) increases 7 times from 3-bit to 6-bit, instead of 
8 times. The plot shows that analog shift-add ADC 
needs the smallest latency to finish all the operations 
for the entire array since it can convert a multi-bit MAC 
operation in one cycle and less total number of cycles 
are caused by a relatively small column sharing factor.  
    Fig. 5 (b) shows the substantial area overhead of 
Flash-ADC but it is flattened with higher precision due 
to the increasing column sharing factor. With the same 
column sharing, the area of the other two ADCs slightly 
increases, but still it is much smaller than that of Flash-
ADC, even at 6-bit. Fig. 5 (c) and (d) show that the 
analog shift-add ADC has the lowest energy and EDP 
across the targeted precision range from 3-bit to 6-bit. 
From the previous results on ADC precision impact, we 
need 6-bit ADC to maintain the inference accuracy for 
a 512×512 array size. Thanks to the improved dataflow 
that performs multi-bit MAC operations before ADC, 
analog shift-add ADC is a promising solution for CIM 
application. 

CONCLUSION 
    In this article, we comprehensively investigated 
analog shift-add ADC design for CIM array. The 
quantization loss on inference accuracy for different 
ADC designs is also explored. The array-level 
performance with possible ADC schemes are 
systematically evaluated, providing understandings of 
the tradeoff between hardware performance and area 
overhead. In this work, 6-bit ADC precision is 
sufficient for no accuracy degradation for a large array 
(512×512). At 6-bit, the analog shift-add ADC scheme 
achieves 37× and 4.9× higher EDP, compared to Flash-
ADC and SAR-ADC, respectively. The area footprint 
of analog shift-add ADC is comparable to that of SAR-
ADC and only 0.77× that of Flash-ADC.  
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