
IEEE Design & Test

Analog-to-Digital Converter Design
Exploration for Compute-in-Memory
Accelerators
Hongwu Jiang, Wantong Li, Shanshi Huang
Georgia Institute of Technology

Stefan Cosemans, Francky Catthoor
IMEC

Shimeng Yu
Georgia Institute of Technology

Abstract—Compute-in-memory (CIM) is a promising solution to efficiently implement multiply-
and-accumulate (MAC) operations involved in deep neural network (DNN) computations.
However, the mixed-signal compute scheme for CIM paradigm faces grand challenges in the
necessary analog-to-digital converter (ADC) at the array outputs, which introduces quantization
loss for inference accuracy and suffers from large area/energy overhead in peripheral circuitry.
In this article, we comprehensively explore conventional ADC designs (Flash vs. SAR) for CIM
application. Then we investigate a new data conversion scheme that performs the analog shift-
add for multiple weight significance bits, namely analog shift-add ADC. Impact of the ADC
precision on inference accuracy performance is thoroughly analyzed and illustrated for the
representative CIFAR-10 dataset based on a multi-bit VGG-8 network. The evaluation results
show that the analog shift-add ADC can tolerate up to 7-bit quantization loss without accuracy
degradation. We benchmark the hardware performance of CIM arrays with various ADC designs
at 40nm given similar area constraint, and the results show that the analog shift-add ADC
achieves 37× and 4.9× lower energy-delay-product (EDP), compared to state-of-the-art Flash-
ADC and SAR-ADC, respectively

 Deep neural network (DNN) has been enabling
various artificial intelligence applications, from image
classification to speech recognition. From the
hardware’s perspective, a variety of application-
specific integrated circuit (ASIC) designs have been
proposed to accelerate the multiply-and-accumulate
(MAC) operations. However, the traditional von

Neumann architecture inherently limits the parallelism
of DNN algorithms since massive data movement
happens between the computing units and the storage
units, which results in low energy efficiency. To
address this memory bottleneck, researchers have
proposed the compute-in-memory (CIM) paradigm
whereby the computation is performed inside the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

memory array [1]. The crossbar-like memory array is
usually employed in CIM to store the values of the
weight matrix [1], where the weights are mapped as the
conductance of the memory cells. The MAC operations
can be performed in parallel: the input voltage activates
multiple rows and the products between the inputs and
the weights are summed up along the columns as
current output. In most of today’s CIM designs,
memory array is equipped with analog-to-digital
converter (ADC) to convert analog MAC values to
digital outputs, which can be passed to the peripheral
circuitry for further processing steps such as activation
function/pooling, and then being sent to the next array
as the input. This mixed-signal compute scheme offers
the scalability towards multiple-array designs via
interconnect buses or network-on-chip, while
introducing significant power dissipation and area
overhead in the necessary data conversion at the array
outputs. For example, the ISAAC architecture [2]
reports that ADCs contribute up to 58% of the total
power and 31% of the total area. From the algorithm’s
standpoint, despite binary neural network such as
XNOR-Net [3] may greatly reduce the required
memory capacity and eliminate ADCs, multi-bit
precision is a more generic setting for large-scale
DNNs for complex datasets to avoid inference accuracy
degradation. To reduce the overhead of ADCs, there
are two straightforward approaches. One is to limit the
number of ADCs employed in one array, which means
each ADC is shared by multiple columns. As a penalty,
the parallel computing throughput is reduced. The other
solution is to lower the ADC precision. However, the
quantization loss of partial sum may hamper the
inference accuracy performance. Therefore, under the
hardware constraints, the choice of ADC topologies
and configurations is critical to the design of the CIM
architecture.
 In this article, we explore the trade-offs involving
different types of ADCs and investigate a new ADC
design [4] especially suited for the CIM context, which
can perform analog shift-add to alleviate the overhead.
The impact of quantization loss for different ADC
topologies is also analyzed. For the hardware
evaluation, we comprehensively compare the ADC-
only and array-level performance between the analog
shift-add ADC and the conventional ADC designs that
are integrated with a CIM array.

BACKGROUND AND RELATED WORK

 CIM is a promising solution to perform extensive
MAC operations, which is suitable for a weight

Figure 1. (a) Weight matrix mapping in crossbar
array. (b) Generic dataflow of multi-bit MAC
operations. (c) Principle of Flash-ADC and SAR-
ADC

stationary dataflow in DNN acceleration as it combines
memory access and computation. Fig. 1 (a) shows a
conceptual resistor-based crossbar array when mapping
weight matrix for MAC operations. Memory cell
conductance 𝐺𝐺𝑖𝑖𝑖𝑖 represents the weight 𝑊𝑊𝑖𝑖𝑖𝑖. During the
computation, the neuron activations 𝑋𝑋𝑖𝑖, are converted
to voltages 𝑉𝑉𝑥𝑥𝑖𝑖 and applied to the crossbar rows in
parallel. The summed current through the column 𝐼𝐼𝑖𝑖 ,
could be converted to an analog voltage by a resistor
divider (or by a diode-connected transistor in practice).
Transimpedance amplifier (TIA) is a more advanced
approach to realize current-to-voltage conversion. The
analog voltage is then quantized by ADC. In the
following section, we briefly introduce recent
progresses of versatile CIM designs and a generic
dataflow in CIM.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

 3

Memory technologies employed in CIM
 Theoretically, the CIM architecture could be
implemented by any memory device technologies.
SRAM is considered as a mature candidate for CIM
from the technology availability point of view. The
general idea is to modify the SRAM bit-cell and
periphery to enable the parallel access. Sense amplifier
(SA) is usually replaced by ADC to produce quantized
output. Multi-bit inference [4] and on-device training
[5] have been demonstrated in with SRAM based CIM
macros. Meanwhile, CIM architectures based on
emerging non-volatile memories (eNVMs) have also
been proposed. For instance, resistive random-access
memory (RRAM) [6] provide attractive solutions due
to multilevel states and higher density at the same
technology node. Recently, the ferroelectric field effect
transistor (FeFET) [7] is also regarded as a promising
candidate for low power platforms, with intrinsically
low write energy because its switching is field-driven
rather than current-driven, and low read energy due to
elevated on-state resistance (with proper gate biasing).
However, in industrial prototypes [8], binary states are
used and multi-level operations are still premature at
scaled FeFET. Therefore, in this work, we evaluate the
overhead of different ADC designs on the CIM
architecture consisting of binary FeFET cells. The
evaluation methodology could be extended to multi-
level cells in principle.

Generic dataflow in CIM architecture
 Fig. 1 (b) shows the conventional dataflow of multi-
bit MAC operations in CIM. Input vectors are fed into
CIM array cycle by cycle. Each cycle contains one
significant bit. Multiple binary memory cells in
multiple columns are used to represent a fixed-point
weight in a binary format. Therefore, two separate
shift-add processes are needed for CIM array: One is to
weigh and sum up partial sums according to different
significant input bits; the other one is to weigh and sum
up partial sums according to different significant
weight bits. The shift-add process for input is identical
for different ADC topologies, thus it is skipped in our
study. As shown in the diagram, the shift-add process
for weight contains two phases: analog MAC and ADC
in a single column (Phase I) and digital shift-add
between columns (Phase II). Phase II is required to
accumulate the weighted sum from the Least
Significant Bit (LSB) and the Most Significant Bit
(MSB). The CIM periphery usually employs digital
shift-add module to process such multi-bit MAC
operations.

ADC TOPOLOGY DESIGN EXPLORATION
 A compact ADC design plays an important role in
the area/energy efficiency of the CIM array. Especially
when considering the column pitch of eNVM-based
array is much less than that of the SRAM, it is
imperative to explore possible ADC topology options.
Conventional ADC choices for CIM application
 The popular ADC topologies in prior CIM works are
Flash-ADC [9] and successive-approximation-register
(SAR)-ADC [6] due to their simplicity and suitability
for low to medium precision (i.e. <8 bit). Flash-ADC is
made of cascading comparators. For an N-bit converter,
the circuit employs 2𝑁𝑁 − 1 comparators. The
thermometer code generated by comparators is then
encoded to the digital output code. Flash-ADC is the
fastest ADC design in principle but consumes
exponentially larger power and area when the precision
increases. SAR-ADC employs a single comparator but
performs one-bit comparison only in one internal clock.
Based on binary search algorithm, the SAR logic
(implemented with multi-stage shift registers) will
adjust the references dynamically and does the
comparison in a bit-by-bit fashion. This sequence
continues all the way from MSB to LSB. Once all bits
are done, the conversion is complete and the N-bit
digital output is available in the register. Typically, a
capacitive digital-to-analog converter (DAC) array that
exploits the charge redistribution is used to generate the
analog reference voltage. Generally Flash-ADC has
better performance for lower precision (3-bit or below)
while SAR-ADC performs better for relatively higher
precision. In the recent CIM macros [10], 3-bit Flash-
ADC was used for small-scale arrays with 64~128 rows.
However, the scalability of Flash-ADC towards large-
scale arrays remains unexplored.
Analog Shift-add ADC
 As aforementioned, there is a tight area constraint for
ADC in CIM array, which means multiple columns
have to share one ADC. Consequently, the throughput
will be reduced due to the time-multiplexing. Besides,
additional circuits such as multiplexer (MUX) and
digital shift-add are also needed. To reduce the ADC
overhead, an analog shift-add approach was
demonstrated in [5]. As shown in Fig. 2 (a),
modification of analog shift-add ADC is applied to
where the shift-add is performed. Here the shift-add
process for weight precision is moved prior to the ADC
and being conducted in the analog domain, which will
weigh and sum up the analog MAC outputs from each

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Figure 2. (a) Alternative CIM dataflow which
performs weighted sum before ADC. (b) Schematic
of analog shift-add block. (c) Schematic of latched-
based sense amplifier. (d) Top-level structures of
analog shift-add ADC.
column in multiple internal clock cycles. Then the pre-
shifted and added MAC value will go through the
regular SAR-ADC to generate the final output that
already contains the weight significance. This design
effectively eliminates the digital shift-add module for
multi-bit weight computation and reduce the MUXs of
multiple columns. So it can improve throughput and
energy efficiency under the same area constraint but it
has a potential precision impact. Both aspects will be
studied in more details in the next section. Fig. 2 (b)
shows the circuit schematic of the analog shift-add
block. We exploit the charge redistribution nature of
the capacitor array to perform the weighted
accumulation before ADC quantization. This block is
connected to multiple columns that represent the

3 4 5 6 7
0%

20%

40%

60%

80%

100%

Te
st

in
g

A
cc

ur
ac

y

ADC precision

 Analog shift-add ADC
 Conventional ADCs

VGG-8 for CIFAR-10

Baseline: 89%

Figure 3. Accuracy performance vs. precision for
different ADC designs.

different weight significance. As the weight value
could be either positive or negative in DNN, 2’s
complement code is used to store the weight where the
first bit is the sign bit. The capacitors involved in this
block from top to bottom exponentially increase in
capacitance, which represent from LSB to MSB. The
switches enable the corresponding capacitor to be
coupled to the power supply or the analog output from
the corresponding column. All the switches are
synchronously switched. When the voltage level of the
sign-bit switch equals to zero, the voltage level of all
other switches equals to one. Once the charge
redistribution is stabilized, the analog shifted and added
MAC value can be directly read out from the SUM port
for the regular SAR-ADC process. The comparator is
based on a simple latch-based sense amplifier, as
shown in Fig. 2 (c). It comprises M4-M7 transistor as
strong positive feedback amplifier and M8-M9 are used
to pre-charge the output node and M2-M3 can be
treated as common source differential amplifier. Tail
transistor M1 is used to enable the sensing process.
Such a latch-based sense amplifier is commonly used
in embedded memory design due to its advantages of
low power and high speed. The top-level diagram of the
analog shift-add ADC is shown in Fig. 2. (d). To our
best knowledge, such analog shift-add ADC design was
not thoroughly evaluated in prior works, especially
lacking of exploring the impact on software accuracy
performance and hardware overhead compared to
conventional ADCs at array-level. Array-level
hardware performance will be quite different from the
ADC-only result where the rest of array is ignored since
different ADC topologies may also cause diversities on
other periphery circuits. In this article, we

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

 5

comprehensively explore the ADC designs above for
CIM application.

ADC PRECISION IMPACT ON TESTING
ACCURACY
 To determine the minimally required ADC precision,
we investigate the impact of ADC quantization loss on
inference accuracy performance. As a case study, we
build a VGG-8 model for CIFAR-10 dataset. There are
two algorithmic techniques to quantize the partial sum
from the CIM array: One is to reduce full range of the
partial sum. Since the partial sum distribution is
typically concentrated near the center [10],
appropriately reducing range in the two tails will not
introduce significant accuracy loss. The other is the
nonlinear quantization to statistically gather similar
counts of partial sums in each quantization step [10].
Fig. 3 shows the accuracy performance vs. ADC
precision for the conventional ADC designs
(representing both Flash and SAR) and the proposed
analog shift-add ADC. Here we group Flash-ADC and
SAR-ADC together since they have the same dataflow
in which ADCs first quantize partial sums and then
digital shift-add modules are employed to accumulate
digitized partial sums. Oppositely, the analog shift-add
ADCs first weigh and sum up the analog multi-bit
MAC outputs and then quantize the final output that
already contains the weight significance. We embedded
these two different quantization approaches in software
simulation and investigated the impact of ADC
quantization loss on inference accuracy performance.
The data precision setting in the algorithm is 4-bit
weight, 8-bit activation, 8-bit gradient and 8-bit error,
following the WAGE method [11]. The software
baseline accuracy is 89%.
 We assume 512×512 memory array is used which
means the full precision of each column’s partial sum
is 9-bit. For conventional ADCs, we can see that 6-bit
precision could obtain the same accuracy as the
baseline which means 3-bit quantization loss is
tolerable. For analog shift-add ADC, the input full
precision for partial sum is 13-bit (9-bit from column
partial sum and 4-bit from shift-add for weight
precision). From the plot, we can find that 6-bit analog
shift-add ADC could also maintain baseline accuracy,
tolerating 7-bit quantization loss. Analog shift-add
ADC could tolerate more quantization loss because
quantization loss only happens at the final stage for
analog shift-add ADC. On the contrary, conventional
ADCs have quantization loss on each partial sum and
then accumulate these quantized partial sums by shift-

add, which means errors will be accumulated. In sum,
the analog shift-add before the ADC could preserve
more information, while the digital shift-add after the
ADC may lose some residual information, resulting in
more errors on the final output. In our evaluation
environment, using ADCs with more than 6-bit
resolution is an overkill, which will introduce more
hardware penalties with no accuracy improvement, as
shown in Fig. 3. On the other hand, the accuracy loss
for 3-5 bits is non-trivial under our configuration. Other
quantized low-precision networks (e.g. XNOR-Net [3])
or using smaller sub-array size (e.g. 128×128 instead of
512×512) can maintain accuracy performance even
under lower ADC precision 3-5 bits [12]. Thus, we
made the ADC comparison from 3-bit to 6-bit in this
work.

EVALUATION
 In this section, we evaluate the hardware
performance of the three ADC topologies based on
SPICE simulation. As a case study, we use FeFET as
memory device for the CIM array, as already motivated
in the introduction section. The reason to select FeFET
is because its elevated channel resistance (~500kΩ [7])
could potentially support a large array size as 512×512.
The FeFET bit cell size (4F by 4F) is assumed
considering a relaxed channel length as high voltage is
required for programming. The technology node used
is 40 nm low power due to our foundry PDK
availability. The ADC designs and evaluation results
presented in this work generally are applicable to other
charge-based CIM scheme in other technology nodes
and other memory devices.

ADC-only Performance Benchmarking
 Firstly, we compare the hardware performance of a
single ADC only. To have a fair comparison, ADC
performance should be evaluated under the same
number of operations. The analog shift-add ADC is
designed to convert multi-bit MAC results during one
conversion process. As described in the previous
section, traditional dataflow in CIM could only perform
non-weighted MAC at one time, corresponding to 1-bit
input × 1-bit weight. As shown in Fig. 4. (a), a MUX is
needed to switch from different significant weight bits.
Therefore, the hardware performance for Flash-ADC
and SAR-ADC should be evaluated during 4× single
ADC conversion time (as 4-bit weight is used in our
case study). Fig. 4 (b) shows the hardware performance
comparison including power, latency, energy and EDP
among the three ADC designs. We can find that Flash-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Figure 4. (a) Periphery configuration for different
ADC design. (b) ADC performance comparison.
ADC consumes the most power which exponentially
increases with ADC precision, while SAR-ADC and
analog shift-add ADC have power dissipation nearly
irrespective to ADC precision. Obviously, Flash- ADC
is faster than SAR-ADC. One interesting observation is
that analog shift-add ADC could complete multi-bit
MAC in one conversion, thus its processing speed is
even comparable to Flash-ADC. Since the conversion
mechanism of this analog shift-add ADC is the same as
SAR-ADC, the latency will linearly increase with ADC
precision but with much smaller slope as shown in the
latency plot. For the energy consumption, we can see
an exponential growth in Flash-ADC. Finally, we
evaluate energy-delay product (EDP), a well-defined
metric that reflects the balance between energy
consumption and throughput performance. We can see
that analog shift-add ADC has the best performance
across 3-6 bits for completing the same number of
MAC operations. However, this is only a module-level
benchmarking for ADC comparison regardless of CIM
array-level constraints.

Array-level Performance Comparison
To systematically compare ADC performance for

CIM application in a fair way, we need to consider the
area constraint at the array-level. Under a similar area

Table 1. ADC configuration under area constraint

Figure 5. Array-level performance comparisons
with possible ADC designs. (a) Latency vs precision.
(b) Area vs precision (c) Energy vs precision (d)
EDP vs precision.
constraint (e.g., 2× of memory array area, ~13,422 µm2
in our case study), we need to consider how many
columns should share one ADC and employ
appropriate MUX to switch columns for the time
multiplexing. For Flash-ADC and SAR-ADC, the cost
of digital shift-add should also be included for multi-bit
MAC operations. Table 1 shows array-level ADC
configuration under area constraint. For SAR-ADC and
analog shift-add ADC, since the area of single ADC is
relatively small and only increases slightly as ADC
precision increases. The column sharing factor
maintains 16 from 3-bit to 6-bit ADC precision. For
Flash-ADC, as the area is exponential to ADC
precision, we have to reduce the number of ADCs to
satisfy area constraint, which means more column
sharing when the precision increases. We can find that
even with larger column sharing factor, the total area
for Flash-ADC is still much larger than that of SAR-
and analog shift-add ADC. Array-level performance of
ADC-related periphery is shown in Fig. 5. Fig. 5. (a)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

 7

represents total latency of ADC processing time
including digital shift-add processing time. For
example, for 6-bit Flash-ADC, 64 columns share one
ADC thereby sacrificing the throughput by 8 times
compared to 3-bit case (8 columns share one) if
considering ADC only. However, the latency of digital
shift-add for weight significance will remain the same
as ADC precision increases, which slows down the
increase of total latency, because the number of shift-
add cycles is only related to weight precision. This is
the reason why total latency (including shift-add
latency) increases 7 times from 3-bit to 6-bit, instead of
8 times. The plot shows that analog shift-add ADC
needs the smallest latency to finish all the operations
for the entire array since it can convert a multi-bit MAC
operation in one cycle and less total number of cycles
are caused by a relatively small column sharing factor.
 Fig. 5 (b) shows the substantial area overhead of
Flash-ADC but it is flattened with higher precision due
to the increasing column sharing factor. With the same
column sharing, the area of the other two ADCs slightly
increases, but still it is much smaller than that of Flash-
ADC, even at 6-bit. Fig. 5 (c) and (d) show that the
analog shift-add ADC has the lowest energy and EDP
across the targeted precision range from 3-bit to 6-bit.
From the previous results on ADC precision impact, we
need 6-bit ADC to maintain the inference accuracy for
a 512×512 array size. Thanks to the improved dataflow
that performs multi-bit MAC operations before ADC,
analog shift-add ADC is a promising solution for CIM
application.

CONCLUSION
 In this article, we comprehensively investigated
analog shift-add ADC design for CIM array. The
quantization loss on inference accuracy for different
ADC designs is also explored. The array-level
performance with possible ADC schemes are
systematically evaluated, providing understandings of
the tradeoff between hardware performance and area
overhead. In this work, 6-bit ADC precision is
sufficient for no accuracy degradation for a large array
(512×512). At 6-bit, the analog shift-add ADC scheme
achieves 37× and 4.9× higher EDP, compared to Flash-
ADC and SAR-ADC, respectively. The area footprint
of analog shift-add ADC is comparable to that of SAR-
ADC and only 0.77× that of Flash-ADC.

ACKNOWLEDGMENT
This work was in part supported by NSF-CCF-1903951,
ASCENT, one of the SRC/DARPA JUMP centers.

 REFERENCES
1. S. Yu, “Neuro-inspired computing with emerging

nonvolatile memory,” Proceedings of the IEEE, vol.
106, no. 2, pp. 260-285, 2018.

2. A. Shafiee, et al., “ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in
crossbars,” IEEE International Symposium on
Computer Architecture (ISCA), pp. 14-26, 2016.

3. M. Rastegari, et al., “XNOR-Net: ImageNet
classification using binary convolutional neural
networks,” European Conference on Computer Vision
(ECCV), pp. 525-542, 2016.

4. X. Si, et al., “A twin-8T SRAM computation-in-
memory macro for multiple-bit CNN-based machine
learning,” IEEE International Solid-State Circuits
Conference (ISSCC), pp. 396-398, 2019.

5. J.-W. Su, et al., “A 28nm 64Kb inference-training two-
way transpose multibit 6T SRAM compute-in-
memory macro for AI edge chips,” IEEE International
Solid-State Circuits Conference (ISSCC), pp. 240-
242, 2020.

6. C.X. Xue, et al., “A 1Mb multibit ReRAM computing-
in-memory macro with 14.6 ns parallel MAC
computing time for CNN based AI edge processors,”
IEEE International Solid-State Circuits Conference
(ISSCC), pp. 388-390, 2019.

7. K. Ni, et al., "In-memory computing primitive for
sensor data fusion in 28 nm HKMG FeFET
technology," IEEE International Electron Devices
Meeting (IEDM), pp. 16-1, 2018.

8. S. Dunkel et al., “A FeFET based super-low-power
ultra-fast embedded NVM technology for 22 nm
FDSOI and beyond,” IEEE International Electron
Devices Meeting (IEDM), pp. 19-7, 2017.

9. W.H. Chen, et al., "A 65nm 1Mb nonvolatile
computing-in-memory ReRAM macro with sub-16ns
multiply-and-accumulate for binary DNN AI edge
processors," IEEE International Solid-State Circuits
Conference-(ISSCC), pp. 494-496, 2018.

10. R. Liu, et al., "Parallelizing SRAM arrays with
customized bit-cell for binary neural networks," ACM/
/IEEE Design Automation Conference (DAC), pp. 1-
6, 2018.

11. S. Wu, et al., "Training and inference with integers in
deep neural networks," International Conference on
Learning Representations (ICLR), 2018.

12. X. Peng, et al., " DNN+ NeuroSim: An end-to-end
benchmarking framework for compute-in-memory
accelerators with versatile device technologies,"
IEEE International Electron Devices Meeting (IEDM),
pp. 32-5, 2019.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Hongwu Jiang is currently working towards the PhD
degree in electrical and computer engineering at the
Georgia Institute of Technology in Atlanta, Georgia. His
research interests include SRAM-/eNVM- based hardware
architecture and accelerator design of deep learning. He
received the M.S. degree in electrical engineering from
Arizona State University in 2014. He is a Student Member
of the IEEE.

Wantong Li is currently pursuing the Ph.D. degree in
electrical and computer engineering at Georgia Institute of
Technology. He received the M.S. degree in electrical
engineering from Columbia University in 2016. His
research interests include low-power, secure, and fault-
tolerant in-memory computing systems.

Shanshi Huang is currently pursuing the Ph.D. degree in
electrical and computer engineering at the Georgia
Institute of Technology in Atlanta, Georgia. Her current
research interests include Deep learning algorithm &
hardware co-design and deep learning security. She
received the M.S. degree in electrical engineering from
Arizona State University in 2014.

Stefan Cosesman (IEEE SM’18) is a Principal Member
of Technical Staff at imec, Belgium. His current focus is
on circuits and memory devices for AI accelerators, with
emphasis on analog in-memory computing. He received
his Ph.D. degree in 2009 from KU Leuven for his work on
low power SRAM circuits.

Francky Catthoor has been active in research on
architectural methodologies; co-exploration of
application, computer architecture and deep-submicron
technology aspects; wireless, IoT and biomedical systems;
and renewable energy systems, all at IMEC. He is IMEC
senior fellow, part-time full professor at KULeuven and
IEEE Fellow.

Shimeng Yu is currently an associate professor of
electrical and computer engineering at Georgia Institute of
Technology. He received the Ph.D. degree from Stanford
University in 2013. His research interests are emerging
non-volatile memories for in-memory computing. He is a
senior member of the IEEE

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2021.3050715

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

