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Abstract— Many problems in radar and communication signal
processing involve radio frequency (RF) signals of very high
bandwidth. This presents a serious challenge to systems that
might attempt to use a high-rate analog-to-digital converter
(ADC) to sample these signals, as prescribed by the Shan-
non/Nyquist sampling theorem. In these situations, however, the
information level of the signal is often far lower than the actual
bandwidth, which prompts the question of whether more efficient
schemes can be developed for measuring such signals. In this
paper we propose a system that uses modulation, filtering, and
sampling to produce a low-rate set of digital measurements. Our
“analog-to-information converter” (AIC) is inspired by the recent
theory of Compressive Sensing (CS), which states that a discrete
signal having a sparse representation in some dictionary can
be recovered from a small number of linear projections of that
signal. We generalize the CS theory to continuous-time sparse
signals, explain our proposed AIC system in the CS context, and
discuss practical issues regarding implementation.

I. INTRODUCTION

The power, stability, and low cost of digital signal process-
ing (DSP) have pushed the analog-to-digital converter (ADC)
increasingly close to the front-end of many important sensing,
imaging, and communication systems. Unfortunately, many
systems, especially those operating in the radio frequency (RF)
bands, severely stress current ADC technologies. For example,
some important radar and communications applications would
be best served by an ADC sampling over 5 GSample/s and
resolution of over 20 bits, a combination that greatly exceeds
current capabilities.

It could be decades before ADCs based on current technol-
ogy will be fast and precise enough for these applications.
And even after better ADCs become available, the deluge
of data will swamp back-end DSP algorithms. For example,
sampling a 1GHz band using 2 GSample/s at 16 bits-per-
sample generates data at a rate of 4GB/s, enough to fill
a modern hard disk in roughly one minute. In a typical
application, only a tiny fraction of this information is actually
relevant; the wideband signals in many RF applications often
have a large bandwidth but a small “information rate” [1].

Fortunately, recent developments in mathematics and signal
processing have uncovered a promising approach to the ADC
bottleneck that enables sensing at a rate comparable to the
signal’s information rate. A new field, known as Compressive

Sensing (CS) [2], [3], establishes mathematically that a rela-
tively small number of non-adaptive, linear measurements can
harvest all of the information necessary to faithfully recon-
struct sparse or compressible signals. An intriguing aspect of
the theory is the central role played by randomization.

CS suggests a new framework for analog-to-information
conversion (AIC) as an alternative to conventional ADC. A
typical system is illustrated in Figure 1. The information
extraction denoted by the operation Φ replaces conventional
sampling. Back-end DSP reconstructs the signal, approxi-
mates the signal, computes key statistics, or produces other
information. For sparse input signals, AIC promises greatly
reduced digital data rates (matching the information rate of the
signal), and it offers the ability to focus only on the relevant
information.

In this paper, we develop a practical AIC architecture
based on a wideband pseudorandom demodulator and a low-
rate sampler that can efficiently acquire a large class of
compressible signals. The remainder of the paper is organized
as follows. In Section II, we explain the traditional discrete-
time CS problem, discuss methods for extending the basic
theory to continuous-time signals, and present a system-level
AIC design for low-rate sampling of continuous-time signals
having a low information rate. In Section III, we discuss
practical issues surrounding the implementation of such a
system. Section IV conducts a series of simulation experiments
to validate the design. We conclude in Section V.

II. COMPRESSIVE SENSING FOR ANALOG SYSTEMS

A. Compressive sensing background

CS deals with the problem of acquiring an N × 1 discrete-
time signal vector x that is K-sparse or compressible in
some sparsity basis matrix Ψ (where each column is a basis
vector ψi). By K-sparse we mean that only K � N of the
expansion coefficients α representing x = Ψα are nonzero.
By compressible we mean that the entries of α, when sorted
from largest to smallest, decay rapidly to zero; such a signal
is well approximated using a K-term representation.

The theory of CS as introduced by Candès, Romberg, and
Tao [2] and Donoho [3] demonstrates that a signal that is
K-sparse or compressible in one basis Ψ can be recovered
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Fig. 1. Analog-to-information converter (AIC). The operator Φ takes nonadaptive linear measurements of the analog signal x(t) to create
the digital sequence yn that preserves its salient information. Back-end DSP produces the desired output, from signal reconstruction to signal
detection.

from M = cK nonadaptive linear projections onto a second
basis Φ that is incoherent with the first, where c is a small
overmeasuring constant. By incoherent we mean that the rows
φj of the matrix Φ cannot sparsely represent the elements of
the sparsity-inducing basis ψi, and vice versa [2], [3]. Thus,
rather than measuring theN -point signal x directly, we acquire
the M � N linear projections y = Φx = ΦΨα. Define the
M ×N matrix V = ΦΨ.

Since M < N , recovery of the signal x from the measure-
ments y is ill-posed; however the additional assumption of
signal sparsity in the basis Ψ makes recovery both possible
and practical. The recovery of the sparse set of significant
coefficients α can be achieved using optimization by searching
for the signal with �0-sparsest1 coefficients α that agrees
with the M observed measurements in y. While solving
this �0 optimization problem is prohibitively complex (it is
believed to be NP-hard [4]), if we use M = O(K log(N/K))
measurements, then we need only solve for the �1-sparsest
coefficients α that agree with the measurements y [2], [3]

α̂ = arg min ‖α‖1 s.t. y = ΦΨα. (1)

This optimization problem, also known as Basis Pursuit [5]
can be solved with traditional linear programming techniques
whose computational complexities are polynomial in N . At
the expense of slightly more measurements, iterative greedy
algorithms like Orthogonal Matching Pursuit (OMP) [6] can
also be applied to the recovery problem.

In its present form, CS is only applicable to discrete signals.
Below we extend the framework to continuous signals in order
to build new kinds of samplers. Developing a framework for
continuous CS will require defining new analog signal models
for sparse signals and constructing an analog system that has
CS-compatible properties.

B. Analog-to-information conversion: signal processing issues

1) Analog signal model: Supposing our analog signal has
finite information rate, then it is reasonable to assume that it
can be represented using a finite number of parameters per
unit time in some continuous basis. More concretely, let the
analog signal x(t) be composed of a discrete, finite number
of weighted continuous basis or dictionary components

x(t) =
N∑

n=1

αn ψn(t), (2)

1The �0 “norm” ‖α‖0 merely counts the number of nonzero entries in the
vector α.
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Fig. 2. Pseudo-random demodulation scheme for AIC.

with t, αn ∈ R. In cases where there are a small number of
nonzero entries in α, we may again say that the signal x is
sparse. Although each of the dictionary elements ψn may have
high bandwidth, the signal itself has relatively few degrees
of freedom. Ideally, we would like to sample the signal at
some multiple of the sparsity level, rather than at twice the
bandwidth as demanded by the Shannon/Nyquist sampling
theorem.

2) Analog processing: Our signal acquisition system con-
sists of three main components; demodulation, filtering, and
uniform sampling. As seen in Figure 2, the signal is modulated
by a psuedo-random maximal-length PN sequence of ±1’s.
We call this the chipping sequence pc(t), and it must alternate
between values at or faster than the Nyquist frequency of the
input signal. The purpose of the demodulation is to spread the
frequency content of the signal so that it is not destroyed by
the second stage of the system, a low-pass filter with impulse
response h(t). Finally, the signal is sampled at rate M using
a traditional ADC.

3) Analog system as a CS matrix: Although our system
involves the sampling of continuous-time signals, the dis-
crete measurement vector y can be characterized as a linear
transformation of the discrete coefficient vector α. As in the
discrete CS framework, we can express this transformation as
an M ×N matrix V that combines two operators: Ψ, which
maps the discrete coefficient vector α to an analog signal x,
and Φ, which maps the analog signal x to the discrete set of
measurements y.

To find the matrix V we start by looking at the output y[m],
which is a result of convolution and demodulation followed
by sampling at rate M

y[m] =
∫ ∞

−∞
x(τ) pc(τ)h(t − τ) dτ

∣∣∣∣
t=mM

. (3)

Our analog input signal (2) is composed of a finite and discrete
number of components of Ψ, and so we can expand (3) to

y[m] =
N∑

n=1

αn

∫ ∞

−∞
ψn(τ) pc(τ)h(mM− τ) dτ. (4)



Fig. 3. Image depicting the magnitude of one realization of the M × N
complex matrix V for acquiring Fourier-sparse signals.

It is now clear that we can separate out an expression for each
element vm,n ∈ V for row m and column n

vm,n =
∫ ∞

−∞
ψn(τ) pc(τ)h(mM− τ) dτ. (5)

Figure 3 displays an image of the magnitude of a realization
of such a V (assuming that Ψ is the FFT).

4) Idealized simulations: Consider a smooth signal consist-
ing of the sum of 10 sine waves; this corresponds to 10 spikes
in the Fourier domain. We operated on the sparse coefficients
using the matrix V constructed via Equation (5) and illustrated
in Figure 3. We perform several tests; for clarity, the following
figures show the results in the Fourier domain. Figure 4 (a)
shows the original signal, and Figure 4 (b) shows a reconstruc-
tion of the signal from a measurement at 20% of the Nyquist
rate. The recovery is correct to within machine precision
(mean squared error is 2.22 × 10−15). We next apply noise
to the sparse vector (see Figure 4 (c)). Figures 4 (d) and (e)
show reconstruction results from measurement rates of 20%
and 40% of Nyquist. In the noisy situation, 20% of the Nyquist
rate is still enough to reconstruct several of the sinusoids,
however the noise floor (maximum noise value) decreases
from Figures 4 (d) to (e) with increased measurements. This
demonstrates that the system still performs reasonably well in
substantial amounts of additive noise, but more measurements
may be required to produce a higher quality result.

III. AIC SYSTEM IMPLEMENTATION

In order to verify the feasibility of our proposed AIC
system, we examine the system implementation shown in
Figure 5. The multiplier modulates the input signal with a ±1
sequence coming from a pseudo-random number generator.
The random number generator is implemented using a 10-bit
Maximal-Length Linear Feedback Shift Register (MLFSR).
The MLFSR has the benefit of providing a random sequence
of ±1 with zero average, while offering the possibility of
regenerating the same sequence again given the initial seed.
This feature allows the decoder to re-generate the pseudo-
random sequence in the reconstruction algorithm. The MLFSR
is reset to its initial state every time frame, which is the period
of time that is captured from the simulations and fed to the
frame-based reconstruction algorithm. The time-frame based
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Fig. 4. Idealized AIC simulations. (a) Original sparse vector α. (b) Re-
constructed sparse vector from measurements at 20% of the Nyquist rate.
(c) Noisy sparse vector with additive Gaussian noise. (d),(e) Reconstructed
sparse vector from measurements at 20% and 40% of Nyquist rate.
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Fig. 5. Architecture of the random demodulation AIC.

operation imposes synchronization between the encoder and
the decoder for proper signal reconstruction. To identify the
beginning of each frame, header bits can be added in the
beginning of each data frame in order to synchronize the
decoder; the overhead in the number of data bits is much
smaller than the data rate compression of the decoder.

Column n of the transfer function of the system V for use
in the reconstruction algorithm can be extracted as the output
of the AIC when we input the analog signal ψn. However, the
system is time-varying because the random number generator
has different values at different time steps. Therefore, we must
input all N of the ψn in order to account for the corresponding
N elements in the pseudo-random number sequence. The
resultant system impulse response can then be reshaped to
form the V matrix. Alternatively, we can input impulses in
order to extract the columns of the operator Φ and then
determine V via (5) using, for example, numerical integration.

IV. AIC SYSTEM SIMULATIONS

Figure 6(a) illustrates an example analog input composed
of two sinusoid tones located at 10 MHz and 20 MHz. The
clock frequency of the random number generator is 100 MHz.
(The MLFSR frequency must be at least 2× higher than the
maximum analog input frequency in order to provide the
necessary randomization.) The output of the demodulator is
low-pass filtered as shown in Figure 6(d), then its output
is sampled with a low-rate ADC. In Figure 6(e), the output
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Fig. 6. Time signals inside the AIC of Figure 5: (a) input signal, (b) pseudo-
random chipping sequence, (c) signal after demodulation, (d) signal after the
low-pass filter, (e) quantized, low-rate final output.

sampling rate is 10 MSample/s, which is 1/4 the traditional
Nyquist rate.

In order to quantify the performance of the AIC in term of
the probability of success in recognizing the sparse compo-
nents in the original signal without adding unnecessary spikes
in other frequency locations, we measure the performance in
terms of the Spurious Free Dynamic Range (SFDR) as shown
in Figure 7. The SFDR is the difference between the original
signal amplitude and the highest spurs. For this example at
1/4 Nyquist sampling, the SFDR was measured as 80 dB as
shown in Figure 7. Higher SFDR values can be obtained by
increasing the sampling frequency. Figure 8 presents another
example with the sampling frequency further decreased to
5 MSample/s. This frequency is 1/8 of the Nyquist rate; the
SFDR is reduced to 29 dB as expected.

V. CONCLUSIONS

In this paper, we have developed a novel analog-to-
information converter (AIC) architecture. Our design is based
on simple off-the-shelf components – a wideband pseudoran-
dom demodulator, a low-pass filter, and a low-rate ADC –
yet we demonstrated promising reconstruction results despite
sampling well below the Nyquist rate. These concepts could
give rise to new generation of AICs for applications where the
bandwidth significantly exceeds the “information rate.”
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Fig. 7. SFDR for a dual tone signal (10 MHz and 20 MHz) AIC’ed at
10 MSample/s.
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Fig. 8. SFDR for a dual tone signal (10 MHz and 20 MHz) AIC’ed at
5 MSample/s.
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