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ABSTRACT  In this paper we propose a CMOS Analog Vector-Matrix Multiplier for Deep Neural 

Networks, implemented in a standard single-poly 180 nm CMOS technology. The learning weights are stored 

in analog floating-gate memory cells embedded in current mirrors implementing the multiplication 

operations. We experimentally verify the analog storage capability of designed single-poly floating-gate cells, 

the accuracy of the multiplying function of proposed tunable current mirrors, and the effective number of bits 

of the analog operation. We perform system-level simulations to show that an analog deep neural network 

based on the proposed vector-matrix multiplier can achieve an inference accuracy comparable to digital 

solutions with an energy efficiency of 26.4 TOPs/J, a layer latency close to 100 µs and an intrinsically high 

degree of parallelism. Our proposed design has also a cost advantage, considering that it can be implemented 

in a standard single-poly CMOS process flow. 

INDEX TERMS Analog Neural Network, CMOS, Current-Mirror, DNN, Floating-Gate 

I. INTRODUCTION 

The increasing requirements of cognitive capabilities in 

electronic systems is driving research toward highly efficient 

and dense specialized hardware to implement Deep Neural 

Networks (DNNs). Migration toward architectures beyond the 

Von Neumann paradigm and towards in-memory computation 

may lead to an improvement in terms of Energy Efficiency 

(EE), defined as the ratio of the number of elementary 

operations to the energy consumed to perform these 

operations, and of throughput, i.e. the number of performed 

elementary operations per unit time. In the implementation of 

a DNN, the most recurring complex operation is the vector-

matrix multiplication, i.e. the multiplication of a vector of 

features (e.g. input of a layer) with a matrix of learning 

weights, that are constant quantities during the inference 

phase. The large number of multi-bit elementary arithmetic 

operations performed by the vector-matrix multiplier (VMM) 

and the heavy data exchange between the memory and logic 

elements represent the main limiting factors of both EE and 

throughput in conventional digital CPU architectures [1], [2], 

[3], [4]. The recurring nature of these arithmetic operations 

can be exploited by taking advantage of the parallel computing 

capability of GPUs [5] and of embedded ASIC accelerators 

[6], [7]. Parallelism in computation and in memory access can 

be better exploited through in-memory computing 

architectures, consisting of a large number of modularized 

processing elements distributed in space and operating in 

parallel, where each processing element contains both the 

logic and the memory to perform the assigned partial 

processing task. 

In this context, analog circuits enable the implementation of 

in-memory computing architectures where analog 

computations are performed by exploiting fundamental 

circuital laws and devices properties. Analog processing 

blocks are usually affected by circuit nonidealities such as 

noise, non-linearity and process variations. However, their 

finite precision can be well tolerated by the inherent 

capabilities of neuromorphic networks, which feature high 

tolerance of functional parameter variations [8] and to limited 

precision [9]. 
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In this paper we focus on the design, operation and 

experimental validation of an analog VMM realized by means 

of an array of tunable conversion-factor Current Mirrors 

(CMs) based on single-poly floating-gate (FG) cells, as 

illustrated in Fig.1. In each tunable CM, the current conversion 

ratio Iout/Iin can be interpreted as the weight associated to the 

charge stored in the FG. The FG cell is obtained by an n-type 

MOSFET (nMOS) and a p-type MOSCAP (pCAP) sharing an 

isolated polysilicon-gate. The multiplier is realized in a 

standard 180 nm single-poly CMOS technology, by using 

devices with 3.3 V nominal voltage domain realized with a 

thick gate oxide (⁓7 nm), typically required to achieve the ten-

year retention time adequate for a non-volatile memory. 

Single-poly FG cells have been designed and fabricated. In 

particular, we have experimentally verified the possibility to 

program an analog weight with a current conversion ratio 

equivalent to a nominal 8-bit integer. We have performed 

system-level simulations of trained DNNs, using parallel 

VMMs to implement both fully-connected and convolutional 

layers. The inference accuracy of the same network operated 

either with floating-point precision or with reduced bitwidth 

fixed-point precision was compared. This analysis has been 

repeated for a simple DNN purposely designed to classify the 

MNIST dataset [10], as well as for AlexNet [11] employed for 

ImageNet [12] dataset classifications. We have verified that a 

reduced bitwidth might allow for comparable inference 

accuracy as the original network, with a minimum number of 

equivalent bits that is a function of the particular application 

(dataset and DNN architecture). Then, we have selected a 6-

bit specification to design an analog CM-based VMM and 

have proposed a general design flow applicable to different 

CM topologies. We demonstrate with experiments and 

simulations the operation and performance of CM-VMM. The 

best option exhibits an energy efficiency of 26.4 TOPs/J and a 

layer latency of 100 µs. A 100×10 VMM has an area of 

0.868 mm2 and a throughput of 19.9 MOPs/s, with each 

multiplying cell of the matrix occupying a layout area of 

85.5 µm2. 

The remainder of this paper is organized as follows. In 

section II we present a discussion on the background of this 

work, by reviewing approaches using CMOS analog circuits 

to implement neuromorphic building blocks. In section III we 

present the CM-VMM basic principle and we introduce its 

main figures of merit (FOMs). Experimental results measured 

on silicon demonstrators are shown in Section IV, proving the 

analog multi-level storage capability of single-poly FG cells. 

Measurements on an experimental proof-of-concept of a 

programmable CM multiplier are also shown. Then, in 

Section V, four possible implementations of FG CM-VMM 

are designed and compared, in order to choose the best CM 

topology for the implementation of a FG-cell CM for a given 

ENOB specification. Our chosen design is finally 

benchmarked against state-of-the-art VMMs in Section VI. 

The conclusions of the paper are drawn in Section VII. 

II. BACKGROUND 

As DNNs are concerned, it has been shown that digital 

approaches with fixed-point data representation can provide 

comparable classification accuracy to a floating-point 

computation [13]. In addition, due to the intrinsic resilience of 

DNN algorithms to noise and uncertainty [8], data 

representation based on a limited number of bits reduces the 

arithmetic complexity of processing elements, leading to an 

improvement of both power consumption and computing 

time, possibly without losing classification accuracy [9]. In 

this regard, different approaches have been proposed, for 

instance relying on reduced bitwidth of the weight [14], of 

 
FIGURE 1.  (a) Architecture of the analog M×N Vector-Matrix-Multiplier based on an array of “M” input cells (in red), a “M×N” matrix of multiplying 
cells (in blue) and an array of “M” p-type current-mirrors (in grey). (b) Possible circuital realization of the current-mirrors implementing the input 
cells and multiplying cells (multiplier blocks), and of the p-mirror (summation block). 
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both weights and activation function [15], or by implementing 

the entire network with a limited data precision [16]. 

As discussed in the introduction, this consideration opened 

the opportunity to exploit analog computing circuits in 

implementing DNN blocks. Several papers have proven the 

capability of analog computing elements to achieve an 

acceptable trade-off between algorithmic accuracy and 

numerical precision. Analog solutions are also suitable to be 

implemented with an in-memory circuit architecture [17], 

[18], avoiding costly memory access. 

In addition, analog data might be stored in an analog non-

volatile memory. Innovative non-volatile memory solutions 

such as the Resistive Random Access Memories (RRAMs) 

have been proposed in the literature for this tasks, such as 

oxygen vacancy memory (OxRAM) [19], conductive bridging 

memory (CBRAM) [20], and spin-transfer torque magnetic 

memory (STT-MRAM) [21]. However, the intrinsic 

variability of OxRAMs and CBRAMs makes them not 

suitable for very large-scale integration; on the other hand, 

despite the high industrial maturity of STT-MRAMs, they are 

intrinsically bistable and are therefore not suitable as analog 

non-volatile memories, which would require continuous 

tuning. In fact, simulations of DNNs based on RRAMs have 

been recently proposed [22], [23], [24], [25], [26], but the lack 

of experimental demonstrators suggests that viable 

alternatives must be investigated. A worthy option is the 

industry-standard double-poly embedded FG memory cells, 

which have been proposed for similar applications [27], [28]. 

In fact, they can rely on the fine tuning of stored charge (up to 

4-bit single transistor memory cells have reached the market 

with a tunable 16-level threshold voltage and 10-year retention 

time [29]). However, the double-poly process flow is 

relatively expensive and the geometry of each single cell 

cannot be independently modified by designers, since the 

layout of an FG array is generally provided as foundry 

intellectual property [27], [30], [31]. An interesting option is 

to use single-poly embedded non-volatile cells, where the FG 

can be realized with a floating polysilicon area among two 

planar MOS devices, at the cost of larger area occupation [18], 

[32], [33] with respect to the double-poly case. 

Different techniques have been proposed to perform a 

vector-matrix multiplication in the analog domain: time-

domain approaches [22], [34] and current-mode sum operation 

[18], [27], [32], [33], [35]. Current-mode operation can be 

implemented by relying on the addition performed using 

Kirchhoff’s current law; currents resulting from weight 
multiplication of different inputs are added by letting all 

currents flow to the same node. 

III. CURRENT MIRROR VMM BASIC PRINCIPLE 

The basic principle of an analog VMM implemented with 

CMs and the representative FOMs used in this paper are 

discussed in this section. In subsection III-A, the concept of 

CMs with tunable conversion factors used as current 

multipliers is introduced. A discussion on the VMM operation 

is proposed, emphasizing nonidealities in terms of both 

linearity and noise immunity level, and their impact on the 

maximum achievable accuracy. In subsection III-B, FOMs 

normally used for generic analog-to-digital converters 

(ADCs), such as the Signal-to-Noise And Distortion ratio 

(SINAD) and the Equivalent Number Of Bits (ENOB) are 

introduced and matched to the particular VMM design 

parameters. 

A.  CURRENT-MIRROR VMM BASIC PRINCIPLE 

Fig.1(a) sketches the architecture of an analog current-mode 

M×N VMM, with M input currents (𝐼𝑖𝑛,(𝑖) is a generic input, 

for i = 1…M), M×N weights and multiplying blocks in the 

matrix (each element is 𝑤(𝑖,𝑗)), and N output currents (a 

generic output is 𝐼𝑜𝑢𝑡,(𝑖,𝑗), for j = 1…N). Each input signal is 

applied to all the matrix cells in the same row, where the 

multiply operation is performed between each row input and 

the corresponding weight in the cell, according to 

 𝐼𝑜𝑢𝑡,(𝑖,𝑗) = 𝐼𝑖𝑛,(𝑖) × 𝑤(𝑖,𝑗). (1) 

The output of the column is then obtained by summing over 

all terms to implement the scalar product operation 

 𝐼𝑜𝑢𝑡,(𝑗) = ∑ 𝐼𝑜𝑢𝑡(𝑖,𝑗)𝑀𝑖 = ∑ 𝐼𝑖𝑛,(𝑖)𝑀𝑖 × 𝑤(𝑖,𝑗). (2) 

The VMM basic implementation proposed in this paper is 

detailed in Fig.1(b), which show the CM approach where the 

current entering in an “input cell” (block in red) is multiplied 

by a scaling-factor by a “multiplying cell” (in blue) and 

provided as an output current, while all the currents of the 

same column are summed at the same circuit node. An 

additional p-type CM (in grey) is also added at the top of each 

column to provide the 𝐼𝑜𝑢𝑡,(𝑗) with the appropriate direction. 

The storage capability of the multiplying cell associated to 

a generic 𝑤(𝑖,𝑗) is obtained via a FG cell, implemented by an 

nMOS sharing an FG with a pCAP. By relying on specific 

programming and erasing schemes, charge can be added to or 

removed from the FG. The net charge in the FG results in a 

shift ∆𝑉𝑡ℎ,(𝑖,𝑗) of the threshold voltage determining the current 

magnification factor (i.e. the weight). For a given input current 𝐼𝑖𝑛,(𝑖), if the nMOS is operated in the subthreshold region, the 

corresponding output current 𝐼𝑜𝑢𝑡,(𝑖,𝑗) depends exponentially 

on the ∆𝑉𝑡ℎ,(𝑖,𝑗). Ideally, we have: 

 𝐼𝑜𝑢𝑡,(𝑗) =∑𝐼𝑖𝑛,(𝑖)𝑀
𝑖 × 𝑒∆𝑉𝑡ℎ(𝑖,𝑗)𝜂𝑉𝑇  (3) 

where the exponential represents ideal weight, 

 𝑤(𝑖,𝑗)𝑖𝑑𝑒𝑎𝑙 = 𝑒∆𝑉𝑡ℎ(𝑖,𝑗)𝜂𝑉𝑇 . (4) 

Beyond enabling a wide range of variations of the output of 

the multiplying operation, sub-threshold operation regime is 

also beneficial to reduce power consumption [27], [31], [32], 

[35], [36]. 
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Practical CMs do not exhibit the ideal behavior described 

by Eq.(3). Indeed, one should note the different VDS of the 

input and multiplying cells. The small output resistance of 

short channel devices can thus degrade the linearity. This 

weakness can be worsened if devices with poor electrostatics 

are used, due to finite pCAP capacitance. An additional 

degradation arises if the input current becomes too low, due 

to poor transistor saturation when the VDS of the diode-

connected nMOS input cell becomes comparable with VT. 

The non-linearity can be described in terms of Total 

Harmonic Distortion (THD). 

Another root cause of precision degradation comes from 

intrinsic noise sources of the devices implementing the CM. 

The Signal-to-Noise Ratio (SNR) of the CM output current 

increases with the input current, and it inversely depends on 

the bandwidth [35]. Furthermore, for short channel devices, it 

decreases with the square of the channel length [37]. 

Provided that in analog circuits both noise and nonlinearity 

can severely impact the accuracy of the analog function, 

distortion and noise nonidealities are normally considered 

together within the Signal-to-Noise And Distortion ratio 

(SINAD) [38], which depends on SNR and THD as Eq.(5): 

 10−𝑆𝐼𝑁𝐴𝐷10 = 10−𝑆𝑁𝑅10 + 10𝑇𝐻𝐷10  (5) 

THD, SNR and SINAD are all expressed in dB and their 

definition are given in Appendix A. 

B.  FIGURES OF MERIT FOR ANALOG MULTIPLIERS 

When DNNs consisting of multiple layers are considered (e.g. 

AlexNet [11]), the VMM arrays become the dominant 

functional blocks in the system, the main factor determining 

total area occupation and power consumption [11]. The design 

of an efficient analog VMM then involves different trade-offs 

among performance (throughput), EE, computation accuracy, 

and area occupation. 

To provide a comparison with DNN implemented in digital 

architectures, FOMs for analog VMMs are normally 

expressed in terms of elementary operations, such as P-bit 

(where P is the bit-width) multiplications and additions. An 

M×N VMM includes N columns of M-sized multiply-and-

accumulate (MAC) operations as shown in Eq. (2). We 

consider a number of M multiplications and M-1 additions per 

each MAC, corresponding to a total number of (2M-1)×N 

elementary operations in a VMM. 

The (2M-1)×N elementary operations are performed in 

parallel in a VMM, then the throughput is given by the ratio of 

(2M-1)×N to the worst case time Top needed by the CM 

multiplier to provide an output current corresponding to the 

expected result (within a confidence interval dependent on the 

assumed accuracy) in response to an input current step. 

The EE is the calculated as the ratio of the (2M-1)×N 

parallel operations to the average energy consumed by the 

VMM to perform a vector-matrix multiplication (i.e. the 

consumed power integrated over the Top). The energy is 

extracted using actual trained weights and it is averaged over 

a number of operations, each corresponding to an input array 

related to an actual input of the tested database (i.e. test images 

in case of MNIST or ImageNet). 

The accuracy of an analog VMM can be described by the 

SINAD, which can be related to linearity and noise immunity. 

In order to enable an intuitive comparison between the 

precision of an analog function and its digital counterpart, we 

can use the Effective Number of Bits (ENOB) linked to 

SINAD as [38]: 

 𝐸𝑁𝑂𝐵 = 𝑆𝐼𝑁𝐴𝐷 − 1.766.02  (6) 

Fig.2 depicts a contour plot of the ENOB as defined in 

Eq.(6), as a function of SNR and THD. SINAD, and therefore 

ENOB, is generally limited by the smaller between SNR and 

–THD. This plot is relevant in the choice of design trade-offs, 

since in several cases both SNR and THD play a role in the 

accuracy of an analog function. In fact, in most cases they 

should be balanced up in order to get a fine-grain optimization 

of the ENOB. In the definition of the ENOB given by Eq.(6), 

it is assumed that a sinusoidal input signal spanning the full-

scale of the ADC input swing is used. Similarly, these 

definitions can be adapted to an analog circuit, where SNR 

includes all kind of noises which affects the circuit, while 

THD accounts for the nonlinear behavior of its transfer 

function. For consistency, in our study we use a sine waveform 

for the input current spanning between 0 and the target 

maximum input current Iin,MAX, also referred to as full-scale 

(FS) hereafter. When the ENOB characterization is performed 

for a unitary weight (i.e. Iout,MAX = Iin,MAX), the FS current 

levels as for Iin are also spanned by the Iout waveform. On the 

other hand, when the ENOB characterization is performed 

with a weight < 1, the resulting peak-to-peak value of the 

 
FIGURE 2.  Contour plot of ENOB as a function of THD and SNR. 
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sinusoidal output current is Iout,MAX = Iin,MAX×w < FS. To 

account for this partial sweep of the assumed full-scale of the 

output, a “–log2(w)” correction term is added in Eq.(6) to 

extract the equivalent full-scale ENOB by a projection. 

IV. EXPERIMENTS ON SINGLE-POLY FG CURRENT 
MIRROR VMM 

In this section, the electrical characterization of single-poly FG 

cells fabricated with UMC 0.18 µm CMOS technology is 

discussed. The analog storage capability with a possible 

current resolution larger than 8 bits (i.e. Iout,(i,j)/Iin,(i) < 256 – 1) 

is first demonstrated. Then, a simple CM multiplier 

implemented with these cells is measured at different stored 

weight conditions. A good matching between experiments and 

simulations is demonstrated. 

With reference to the CM implementation shown in 

Fig.1(b), the non-ideal coupling between the pCAP and the 

nMOS enhances the asymmetry between the input cell and the 

multiplying cell, which is already in place due to difference in 

VDS. This asymmetry leads to a linearity degradation, which 

could be avoided by using a very large pCAP (so that 

ApCAP ≫ AnMOS) resulting in an almost ideal coupling factor, 

but this cannot be appointed as a recommended solution for 

obvious reasons. A better option to increase the symmetry can 

be the use of an additional pCAP in the input cell. In this case, 

the FG on the input cell is not used to store data but just for 

electrostatic symmetry. 

Experimental data for a symmetric CM are reported in 

Fig.3. The CM is realized with 0.5 µm long nMOS transistors 

sharing the floating poly with a pCAP area 49 times larger than 

the nMOS gate area, while the control gate (CG) is the N-well 

hosting the pCAP shorted with the P-diffusions implementing 

its S/D regions. All transistors have a 3.3V nominal voltage. 

Fig.3(a) and (b) report the voltage levels used for the 

program and erase operations, which are both possible by 

applying positive voltage pulses on the CG and D terminals, 

activating different gate injection phenomena in agreement 

with [39]: for a VDS in the range 4.5 V ⁓ 6.5 V, at high VCG-S 

voltages (>3V) both channel hot electron injection (CHEI) and 

impact-ionized hot-electron injection (IHEI) lead to an 

increase of the equivalent Vth, while the impact-ionized hot-

hole injection (IHHI) is the dominant mechanism at relatively 

low VCG-S voltage (e.g. 1V ⁓ 1.5V) leading to a Vth variation 

in the opposite direction. This means that the threshold voltage 

can be moved in both directions without the need to design 

complicated circuitry to generate the negative voltage levels 

normally needed to reset FG memory cells. It is important to 

highlight that this flexibility is possible only on the 

 
FIGURE 3.  (a) Write conditions to increase the Vth by means of impact-ionized and channel-hot-electron-injections (IHEI and CHEI, respectively). 
(b) Erase conditions to decrease the Vth through impact-ionized hot-hole-injection (IHHI). (c) Experimental ID-VCG-S transfer-characteristics of the 
diode-connected input cell (symbol) and output cell at VDS = 400 mV (lines). Simple symmetric current mirror: (d) experimental and simulated output 
current as a function of the input current at different weight conditions; (e) experimental and simulated Error = abs(Iout-wideal×Iin) as extracted from 
(d); (f) effective number of bits calculated from the error in (e), where ENOB*=log2(FS/(2‧max(Error))). W/L(NMOS) = 1 µm / 0.5 µm, A(P-CAP)/A(NMOS) ≈ 49. 
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multiplying cell, given that in the input cell the CG and the D 

are short-circuited. This issue is not really critical since the 

current conversion ratio (i.e. the weight of the CM) is 

dependent on the Vth difference between the input and output 

cell, thus a possible charge in the input cell FG can be 

compensated by offsetting the charge to be added in the 

multiplying one. 

Measurements for a typical cell are shown in Fig.3(c), on 

both the input and multiplying cell. The ID-VGS (the gate is the 

CG, since the FG is not accessible) transfer characteristics 

were measured. The input-cell has been measured with the FG 

discharged (symbols), while the multiplying-cell has been 

characterized at different stored charge conditions (lines). A 

possible threshold voltage shift ΔVth larger 500 mV has been 

verified, although few hundred of mV are enough to enable a 

sufficient conversion factor considering an average inverse 

subthreshold slope of 90 mV/dec in the current range upper-

limited by 20 nA (e.g. ΔVth ⁓215 mV for a weight of 256-1, 

i.e. 8 equivalent bits).  

For the same weights as programmed in Fig.3(c), the CM 

has been tested by providing an input current swept in the 

range 0.2 nA ↔ 20 nA. The resulting output current is shown 

in Fig.3(d) and post-processed to calculate the error and the 

corresponding ENOB in Fig.3(e) and (f), respectively. Similar 

data have been extracted from transient noise simulations 

performed with UMC 0.18 µm PDK models. The matching 

between theoretical data and experiments is quite good. Since 

gate current is not implemented in the transistor models, in the 

simulations we have used an ideal pulsed current source to 

inject the needed charge in the FG. 

Finally, Fig.4 demonstrates the operation of a 2x1 CM-

VMM, implemented with two separated input cells driving 

two multiplying cells whose weight is independently set to 

various conditions and whose currents are summed, by 

implementing the IOUT = wA×Iin,A + wB×Iin,B operation. 

V. OPTIMIZATION OF FG CURRENT MIRRORS 

After the demonstration of an experimental proof-of-concept 

of analog programmable CM multiplier, there is the need to 

better understand how to optimize the design of the CM in 

order to meet a desired precision specification. We have 

selected an ENOB of 6 bit as a reference specification for the 

remainder of this study, considering it a good trade-off 

between precision and cost of the VMM function (in terms of 

silicon area and power consumption). In section VI, by 

considering a simple DNN case study trained with the MNIST 

database, we have verified that with 6 bits the inference 

accuracy loss is almost negligible compared to higher 

resolution. However, the choice of a 6-bit ENOB does not 

affect the generality of our analysis. 

Input current FS, transistor sizing and CM topology are 

design knobs that determine the final performance of the 

VMM. Concerning the topology, we have already suggested 

the possible improvement provided by a symmetric CM. In 

addition, feedback can be also exploited in order to improve 

the linearity of the analog multiplier. For instance, a cascode 

CM topology relies on two additional transistors to regulate 

the VDS of the multiplying cell, by forcing it to follow the one 

of the input cell. 

The four topology options reported in Fig.5 have been 

considered, consisting in the asymmetric and symmetric 

versions of simple CMs ((a) ASCM and (b) SSCM, 

respectively) and of cascode CMs ((c) ACCM and (d) SCCM, 

respectively). Symmetric and cascode solutions require 

additional transistors to be implemented. For instance, in a 

fixed M×N VMM, there will be M additional pCAPs in the 

input cell array for a symmetric solution with respect to the 

 
FIGURE 4.  2x1 VMM transfer-function contour plot 
(IOUT = wA×Iin,A + wB×Iin,B) for different wA and wB conditions: 
(a) wA = 0.99, wB = 0.82; (b) wA = 0.26, wB = 0.25; (c) wA = 0.52, 
wB = 0.14; (d) wA = 0.12, wB = 0.44. Simple symmetric CM with: 
W/L(nMOS) = 1 µm / 0.4 µm, A(P- CAP)/A(nMOS) ≈ 49. 

 
FIGURE 5.  Schematics of (a) Asymmetric and (b) Symmetric Simple 
Current Mirror (ASCM and SSCM, respectively), and of (c) 
Asymmetric and (d) Symmetric Cascode Current Mirror (ACCM and 
SCCM, respectively). 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3037017, IEEE Access

 

VOLUME XX, 2020 
 

7 

asymmetric one, or M×(N+1) additional nMOS transistors for 

a cascode CM topology with respect to the simple one. It is 

important to highlight that it is not obvious that the additional 

transistors required by more complicated topologies will result 

in a larger are occupation, if we consider that solutions with a 

reduced number of transistors will likely require a different 

sizing of the cell in order to compensate for the reduced 

linearity performance (for instance a much longer channel 

transistor L). 

A detailed discussion on the linearity (THD), on the noise 

immunity (SNR), and on the resulting ENOB trends as a 

function of input current full-scale, supply-voltage VDD, and 

transistor sizing, as well as a suggested design flow to properly 

set the W and L sizes of CM transistors, can be found in the 

Appendix B. 

In Fig.6(a) and (c), THD and SNR were extracted at the 

input current FS IMAX value of 5 nA, VDD = 1.5 V, 

W/L = 1 µm/2 µm, for different pCAP/nMOS coupling ratios, 

for both symmetric and asymmetric versions of both simple 

(SSCM and ASCM) and cascode (SCCM and ACCM) 

topologies. Symmetric versions show much better linearity for 

smaller pCAP/nMOS ratio compared to the asymmetric 

counterpart. In addition, SNR depicted in Fig.6(c) is almost 

constant for the symmetric solution (⁓43 dB) down to the 
minimum considered point of pCAP/nMOS area ratio, while 

it shows a sudden degradation with reducing pCAP/nMOS 

ratio for the asymmetric options. From Fig.6(a) we have 

extracted the minimum pCAP/nMOS ratio (with a margin) 

which features a THD value of ⁓ -40 dB for each topology: 49 

for ASCM, 36 for ACCM, 25 for SSCM, and 9 for SCCM. 

Starting from these 4 conditions, we have plotted in Fig.6(b) 

and (d) the THD and SNR degradation with L scaling. Curves 

depicted in this plot have been obtained at fixed normalized 

input current (with respect to the width-to-length ratio, i.e. 

Inorm = I×L/W), basically meaning that when the L is halved 

the corresponding current is doubled, so that the transistor 

working point is maintained in similar sub-threshold operating 

condition (and similar linearity in case of long channel 

devices). As regards the THD trends, both asymmetric options 

require a longer channel device compared to the respective 

symmetric counterparts, despite a much larger pCAP/nMOS 

ratio initially selected. Then, the area advantage of using a 

symmetric solution is twofold (i.e. smaller pCAP/nMOS ratio 

and shorter L), although a pCAP is needed also in the input 

cell. In addition, if we focus on the symmetric options, it can 

be observed that SSCM features a small degree of linearity 

degradation at extremely short length, while the SCCM 

features a THD value which is optimum at LMIN. This result is 

attributed to the intrinsic feedback property of the cascode 

topology, whose action in enforcing similar VDS to the input 

and multiplying cell transistors results in an effective 

workaround for reduced output resistance of short-channel 

devices. As regards the SNR shown in Fig.6(d), a similar 

behavior is observed for all the configurations, with SNR 

degrading as the L is reduced. However, one should note that 

SNR can be independently adjusted by proportionally 

increasing the transistor width and the input operating current 

(i.e. at fixed IMAX/W) without impacting the THD (see related 

discussion in Appendix B). 

In Table I, the final transistor sizing and occupied areas of 

each topology, independently designed in order to meet a 6-bit 

ENOB specification (i.e. SNR & –THD > 40 dB, according to 

Fig.2) are listed. Asymmetric multiplying cells occupy from 

⁓3.8× to ⁓6.5× more gate area compared to the one of 

symmetric multipliers. In particular, SCCM is the best 

solution in terms of ENOB per unit area (with a single 

multiplying cell gate area equal to 33.8% and 15.4% the ones 

of SSCM and ACCM, respectively), due to the smallest 

required coupling ratio and transistor length needed to reach 

the ENOB target, despite the fact that such topology needs 

additional transistors compared to the simple CM. In case of a 

100×10 VMM (i.e. one column array of 100 input cells, a 

100×10 multiplying cell matrix, and 10 P-mirror adders) the 

advantage of SCCM persists, with an overall gate area equal 

to 33.9% and 15.6% the ones of SSCM and ACCM, 

respectively. 

 
FIGURE 6.  Linearity (a) -THD and (c) SNR degradation as a function 
of pCAP/nMOS coupling ratio scaling reported for symmetric (solid 
lines) and asymmetric (dashed lines), simple (black) and cascode 
(gray) current mirrors. Linearity (b) -THD and (d) SNR degradation as 
a function of the transistor length scaling, reported for different 
pCAP/nMOS ratio for each implementation in order to have similar 

THD values (⁓-41 dB) at L = 2µm. IMAX×L = 10 nA×µm. Area ratios 
(pCAP/nMOS): simple symmetric (25), simple asymmetric (49), 
cascode symmetric (9), cascode asymmetric (36). 

TABLE I.  Comparison of proposed CM topologies  

Type 
W 

(µm) 

L 

(µm) 

pCAP/ 

nMOS 

Ratio 

Single 

Mult.Cell 

Gate 

Area 

(µm2) 

Single 

Mult. Cell 

LayoutArea 

(µm2) 

100×10 

VMM 

Gate 

Area 

(mm2) 

100×10 

VMM 

Layout 

Area 

(mm2) 

ASCM 1 2 49 100 280 1.001 2.814 
SSCM 1 1 25 26 136 0.263 1.383 
ACCM 1 1.5 36 57 199 0.571 2.005 
SCCM 1 0.8 9 8.8 85.5 0.089 0.868 
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The example layout of an SCCM multiplying cell is 

depicted in Fig.7. We want to clarify that the overall area on 

the layout is much bigger than the one estimated by using the 

gate area. This is mainly due to the spacing needed to avoid 

the turn-on of PNP and NPN parasitic transistors (e.g. n+ 

diffusions of the nMOS S/D (emitter) / pwell of the nMOS 

(base) / n-well of the pCAP (collector)). In the reported layout, 

we have used 2 µm spacing for well-to-well parasitic bipolar 

paths, and at least 1 µm spacing for diffusion-to-well cases. 

One should however consider that standard design rules 

available in the PDK are not intended for such a specific 

design, then we can speculate that there is some margin to 

scale the overall layout, e.g. after a specific characterization of 

any of these paths with dedicated test-structures. Due to this 

extra area, the overall layout of a multiplying cell of the SCCM 

is 9.7× larger than the one extracted considering the gate area 

only (see Table I). However, the advantage of symmetric 

multipliers is still verified, and the best solution, which is 

SCCM cell, occupy much less layout area than the SSCM 

(- 59%) and the ACCM (-132%) multiplying cells. 

VI. SYSTEM-LEVEL ASSESSMENT ON ANALOG DNNS 

This section is dedicated to a system-level assessment of 

DNNs, using MATLAB, in order to link the behavior and the 

FOMs of analog VMMs to the system-level performance of a 

complete DNN. Two DNNs have been trained and simulated 

by relying on two different datasets in order to be used as test 

benches. The grey-scale MNIST [10] dataset has been used to 

train a purposely designed network (“Net A” in the following) 

depicted in Fig.8(a), while a subset of classes from ImageNet 

[12] has been used to train AlexNet [11], as sketched in 

Fig.8(b). The training has been performed by relying on 

floating-point data precision. 

The designed DNN Net A operates as follow: the input 

28×28 pixels gray-scale image is filtered by a convolutional 

layer with 20 filters on 9×9 kernels. The extracted features are 

then passed to the activation function, which is a Rectified 

Linear Unit (ReLU). Then the Maxpooling layer halves the 

 
FIGURE 8.  (a) Implemented neural network which has been trained for the classification of the MNIST database. (b) AlexNet used to classify a 
subset of ImageNet. Comparison of the error rate between “digital” and “analog” approximations is shown for Net A classifying MNIST (c) and for 
AlexNet classifying a subset of 50 classes of ImageNet (d). 
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FIGURE 7.  Layout of a cascode multiplying cell with W = 1 µm, 
L = 0.8 µm , pCAP/nMOS area ratio = 9. 
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overall number of coefficients by extracting the biggest 

elements in the 2×2 submatrices. Processed features are passed 

to the transform level, whose coefficients are trainable, in 

order to convert the two-dimensional image into a vector. This 

vector is the input of the fully-connected layer, containing 100 

nodes with ReLU. The output layer has 10 nodes and a 

softmax activation function for the final 10-digits 

classification. 

Details of AlexNet architecture will not be discussed here 

since they can be easily found in the literature [11]. 

When the DNNs are used to perform predictions, with 

floating-point precision, we have found an inference accuracy 

of 99.8% and 95% for the MNIST and ImageNet datasets, 

respectively.  

Beyond extracting the inference accuracy for the original 

network, we have artificially derived reduced-precision 

networks from Net A and AlexNet. Two approximation cases 

were considered, a “digital” and an “analog” version: a) in the 

“digital case”, floating-point numbers have been replaced with 

integers with different number of bits; b) in the “analog case”, 
floating-point precision has been maintained, but a white noise 

has been added to the output of each multiplication based on 

the assumed SINAD value (and therefore ENOB), according 

to the following expression: 𝑦𝑖,𝑗 = 𝑤𝑖,𝑗𝑥𝑖,𝑗 + 𝛼 (𝐹𝑆2 ) × 10−𝑆𝐼𝑁𝐴𝐷20  (7) 

where α is a random value with a Gaussian distribution of 

average zero and standard deviation 1. 

The inference error rate of the tested DNNs as a function of 

the corresponding SINAD and ENOB is reported in Fig.8(c) 

and (d) for the MNIST and ImageNet cases, respectively. As 

for the digital case, simulations were run on the complete 

validation dataset of 2000 images for MNIST and almost 1000 

images for ImageNet. Instead, for the analog case, the 

inference on validation dataset was repeated for 5 times and 

the mean value of the inference accuracy was extracted. 

The similarity between the inference capability of a 

“digital” and of an “analog” network for similar number of bits 

and ENOB validates the FOMs used in this study. In addition, 

it also confirms that 6 equivalent bits represent a reasonable 

value to provide an almost maximum accuracy for MNIST 

classification by the Net A, while at least 7 bits would be 

required in the case of ImageNet tested with AlexNet. As a 

result, we can conclude that the ENOB which must be targeted 

when designing an analog VMM is dependent on the specific 

DNN architecture and dataset applications, as expected. 

In order to provide a dependable estimation of the energy 

efficiency of the designed symmetric cascode current-mirror 

VMM, featuring 6 equivalent bits, we have extracted a 100×10 

weight matrix from a trained fully-connected layer of Net A. 

The estimation was performed by assuming to operate the 

VMM at VDD = 1.5 V, IMAX = 12.5 nA and to perform 1990 

elementary operations in parallel (100 multiplications and 99 

summations per each of the 10 columns of the VMM) in a Top 

close to 100 µs (with a resulting throughput of 19.9 MOPs/s). 

The energy has been measured for 100 different input vectors, 

resulting in an average energy efficiency of 26.4 TOPs/J. 

Finally, in Table II we have benchmarked our proposal 

against state-of-art analog VMMs, by selecting the analog 

VMMs executing arithmetic operation in either current mode 

or time domain, implemented with memristors [22], 

embedded FG arrays [27], [30], [31], [36], or single poly FG 

memories [18], [32], [33]. Both gate and layout areas of a 

VMM cell, as well as the energy efficiency, are compared to 

the other design solutions. A single VMM multiplying cell 

occupies a total gate area of 8.8 µm2, while the estimated 

layout area is 85.5 µm2. Although other single-poly FG 

solutions are implemented with a more scaled 130 nm 

technology, the area of our VMM cell is almost one order of 

magnitude smaller than other proposals based on a similar 

TABLE II.  Comparison with state-of-art CMOS VMM solutions 

Reference [18] [22]  [27] [30],[36]  [31] [32] [33] This work 

Approach CM TD CM CM TD CM CM CM 

Tech. Node 180 nm 55 nm 55 nm 180 nm 55 nm 130 nm 130 nm 180nm 

Mem. Type Digital 1T1R Embedded 

NOR 

Embedded 

NOR 

Embedded 

NOR 

Single-poly 

FG 

Single-poly 

FG 

Single-poly 

FG 

ENOB (bit) 4 4 2 ~5 6 7 8 6 

Single cell 

gate area 

(µm2) 

8.1 ~3 N/A N/A N/A N/A 120 8.8 

Single cell 

layout area 

(µm2) 

N/A N/A 0.33 18.5 4.33 792 N/A 85.5 

EE (TOPs/J) ~8 1305 𝑁/𝐴 5.7 85 1 6.32 26.4 

Results Meas. Sim. Meas. Meas. Meas. Meas. Meas. Sim./Meas. 
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process technology. The 6-bit ENOB precision is lower than 

other single-poly multipliers, but similar precision can be 

matched with a trimming of the design. Compared to the 

double poly embedded FG array based multipliers, our 

solution is much bigger, but it has to be considered that the 

counterpart can rely on the advantages of the double poly and 

of the more scaled technology node (55 nm). On the other 

hand, one should note that with double poly technologies it is 

not possible to modify the geometry of a single cell, thus the 

optimization of transistor size aiming at increasing the 

accuracy of the cell is not feasible. Another weakness is that 

the CMOS double poly process is much more expensive than 

the single poly one. As regards to the energy efficiency, our 

multiplier reaches 26.4 TOPs/J, which is better than all the 

other single-poly VMM counterparts, but worse than the one 

proposed in [31] (55 nm embedded NOR solution) and the one 

based on memristors in [22] (only simulations, no 

experimental data are provided). 

VII. CONCLUSION 

We have demonstrated an in-memory analog VMM based on 

current mirrors realized in a commercial 180 nm CMOS 

technology platform with experiments, circuit-level and 

system-level simulations. Single-poly floating-gate memory 

cells provide the possibility to implement the in-memory 

computing approach. FG cell programming/erasing methods 

and storing capability have been validated by experimental 

measurements showing the possibility to set a single poly FG 

current mirror with a current scaling factor corresponding to 

more than 256 levels (i.e. >8-bit). Measurements on a 

symmetric simple current-mirror multiplier resulted to be well 

matched to circuit level simulations. With the validated 

simulation deck, a design optimization has been performed for 

four current mirror topologies, by relying on a proposed 

design flow targeting a specific precision. It has been 

demonstrated that complex current mirrors such as the cascode 

topology feature a better trade-off between ENOB and area 

occupancy than the simpler version implemented with a 

reduced number of transistors. Furthermore, the electrostatic 

symmetry produced by placing a pCAP in both the input and 

multiplying cell allows to further reduce the area, allowing the 

current mirror multiplier to reach the accuracy specifications 

with much smaller transistor sizes. Both MNIST and 

ImageNet databases have been used as representative 

examples to train two DNNs, which are a purposely developed 

DNN and the well-known AlexNet, respectively. System-

level simulations were performed for both cases, and the 

inference accuracy has been extracted as a function of the 

assumed ENOB. We have found that a precision of 6 

equivalent bits allows an almost maximum accuracy in 

classifying images from the MNIST database, while ImageNet 

requires at least 7 bits. Our CM-VMM reach an energy 

efficiency of 26.4 TOPs/J, that is very promising with respect 

to the state-of-the art of experimentally tested analog 

neuromorphic circuits considering the relatively high 

precision (ENOB = 6) and small area occupation of the 

proposed VMM. 

APPENDIX 

APPENDIX A: Definitions of THD, SNR and SINAD 

Definitions of THD, SNR and SINAD for current waveforms 

are given below. 

 𝑇𝐻𝐷 = −10 ∙ 𝑙𝑜𝑔10(𝐼𝑆𝐼𝐺𝑁𝐴𝐿2 /𝐼𝐷𝐼𝑆𝑇𝑂𝑅𝑇𝐼𝑂𝑁2 ) (8) 

 𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10(𝐼𝑆𝐼𝐺𝑁𝐴𝐿2 /𝐼𝑁𝑂𝐼𝑆𝐸2 ) (9) 

 𝑆𝐼𝑁𝐴𝐷 = 10 ∙ 𝑙𝑜𝑔10 ( 𝐼𝑆𝐼𝐺𝑁𝐴𝐿2𝐼𝑁𝑂𝐼𝑆𝐸2 + 𝐼𝐷𝐼𝑆𝑇𝑂𝑅𝑇𝐼𝑂𝑁2 ) (10) 

ISIGNAL, IDISTORTION and INOISE are the RMS values of signal, 

distortion and noise contributions, extracted by means of the 

Fourier Transform of the output waveform in response to a 

clean sine waveform provided as an input.  

APPENDIX B: THD and SNR trends as a function of 

design parameters 

Details of THD and SNR trends as a function of basic design 

parameters are discussed in this Appendix. In this analysis a 

simple and idealized CM is considered, where both the input 

and the multiplying cell are implemented by a nMOS 

transistor only; the magnification of the current conversion 

ratio (i.e. the weight) is not accounted with the realistic FG but 

by relaying on an ideal weight represented by a DC voltage 

generator simulated in series to the gate of the multiplying 

transistor. By analyzing simulated trends, we are able to 

suggest a consistent design flow which can be applicable also 

to more complicated current mirror topologies. 

A current sine waveform with a peak-to-peak amplitude 

equal to the selected Iin,MAX is applied to the input cell. The 

THD and SNR FOMs are computed by post-processing the 

waveform of the corresponding output for a variable weight. 

In this discussion it will be recurrent the normalization of the 

operating current with respect to the width-to-length ratio (i.e. 

INORM. = Iin,MAX×L/W), so that the transistor working point is 

maintained in similar sub-threshold region conditions (and 

similar linearity) when the transistor aspect ratio is changed. 

In Fig.9, simulations were carried out by varying electrical 

parameters such as the maximum amplitude of the input signal 

Iin,MAX×L, ((a) and (e)), the supply voltage VDD ((b) and (f)), 

the transistor L ((c) and (g)) and the transistor W ((d) and (h)). 

Two different trends can be observed in Fig.9(a) and (e): 

first, there is a trade-off between THD and SNR in terms of 

Iin,MAX. If the current is increased, the THD curves worsen and, 

at currents higher than ⁓100 nA, their shape and the related 

slopes change as transistors are on the edge between 

subthreshold and inversion regions. According to this trend, it 

would be recommended to operate the transistors in deep sub-

threshold to increase linearity, although in case of short 

channel devices, e.g. L = 0.5 µm, the benefit of reducing the 

current is less pronounced considering that the short-channel 
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effects (SCEs) affect the THD. As an opposite trend, 

increasing Iin,MAX is instead beneficial from the SNR point of 

view, as shown in Fig.9(e). In addition, even at the same 

biasing condition (constant Iin,MAX×L), longer devices feature 

higher SNR, as highlighted by the three different curves. 

According to Fig.9(b) and Fig.9(f), once the bias point is set 

by the operating current, THD and SNR values are typically 

not affected by the supply voltage variation. A VDD 

dependence can be observed only for short channel devices 

featuring a worsening of the THD for an increasing VDD, and 

in those cases a low supply voltage should be preferred in 

order to save power consumption. We choose a value of 

VDD = 1.5 V for the remainder of the analysis. 

The analysis based on geometrical parameters, L and W, 

were still performed for constant IMAX×L/W, where W = 1 µm 

when L is varied, and L = 1 µm when W is varied. In Fig.9(c) 

there is a very small length range where the linearity increases 

by moving toward longer devices because of the reduction of 

SCEs. Furthermore, the curves taken at 10 and 

100 nA×µm/µm show a flat THD region in the longer cases. 

Here the simulated length is sufficient to screen any impact of 

SCEs, and the similar operating points in subthreshold 

(guaranteed by the same IMAX×L) result in similar values for 

linearity. However, for very low current levels (i.e., 

1 nA×µm/µm), after the initial rise, a flat region extends only 

for few µm, i.e. up to ⁓3 µm, considering that beyond this 

value THD starts to decrease for increasing length. This is due 

to the fact that, for long transistors, a normalized current of 

 

FIGURE 9.  Simple n-type current mirror simulated with an ideal threshold voltage offset to mimic the weight (i.e. FG cell with ideal coupling ratio). 
THD and SNR as a function of the normalized input current IMAX×L at VDD = 1.5 V ((a) and (e), respectively), of the supply voltage VDD at constant 
IMAX×L = 10 nA×µm ((b) and (f), respectively), of the nMOS transistor length ((c) and (g), respectively) and of the nMOS transistor width ((d) and (h), 
respectively). Nominal parameters (unless specified differently in the plots): WN = 1 µm, WP = 4×WN, LP = LN = 1 µm. VDD = 1.5V, Iin,MAX×L/W = 10 nA. 

 

FIGURE 10.  Proposed design flow. 
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1 nA×µm/µm corresponds to a very small unnormalized 

current (e.g. 200 pA for L = 5 µm), and at this current value it 

corresponds a VDS lower than 4VT which does not guarantee a 

proper transistor saturation. However, if we focus on the 

1 ⁓ 3 µm range, lower IMAX×L values always corresponds to a 

better linearity, in agreement with Fig.9(a). SNR in Fig.9(g) 

has a strong increase with increasing L for short channel 

devices, although it tends to saturate for longer values. Finally, 

when varying W for fixed normalized currents, linearity is 

practically independent (Fig.9(d)), while SNR always 

increases for an increasing width (Fig.9(h)), with an almost 

linear dependence on the square root of the width. 

By taking into account all the plots depicted in Fig.9, as a 

conclusion we can assert that there is a certain region in the 

design space where THD and SNR can be independently set, 

and a possible design flow with the target to reach a given 

ENOB can be suggested, as detailed in Fig.10. For instance, 

by using one of the curves depicted in Fig.9(a) (e.g. with at 

least L = 1 µm to screen SCEs), one could decrease Iin,MAX×L 

down to the value which guarantee the specification on the 

linearity (i.e. desired THD). Then, by referring to Fig.9(c), the 

length can be scaled down to the value that does not produce 

a linearity degradation (still for fixed Iin,MAX×L). Both design 

choices aim at linearity by trading off against a SNR 

degradation (see Fig.9(e) and Fig.9(g)). However, the 

specification on the SNR can be reached by a final trimming 

of W (according to Fig.9(h)) which can be modified – for fixed 

normalized current – without impacting the linearity obtained 

by previous design choices (see Fig.9(d)). 
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