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We review the pros and cons of analog and digital computation. We pro-
pose that computation that is most efficient in its use of resources is nei-
ther analog computation nor digital computation but, rather, a mixture of
the two forms. For maximum efficiency, the information and information-
processing resources of the hybrid form must be distributed over many
wires, with an optimal signal-to-noise ratio per wire. Our results suggest
that it is likely that the brain computes in a hybrid fashion and that an
underappreciated and important reason for the efficiency of the human
brain, which consumes only 12 W, is the hybrid and distributed nature of
its architecture.

1 Introduction

We estimate that the human brain performs on the order of 3.6×1015 synaptic
operations per second (appendix A.1 in Sarpeshkar, 1997). From measure-
ments of cerebral blood flow and oxygen consumption, it is known that the
brain consumes only 12 W (appendix A.2 in Sarpeshkar, 1997). Its efficiency
of computation is thus about 3×1014 operations per joule. The human brain
is capable of doing tremendously complex computation in real time despite
the slow and noisy components in our heads and bodies.

An extremely fast microprocessor such as the DEC Alpha 21164 performs
about 255× 106 floating-point operations per second and consumes 40 W.1

Its efficiency is thus about 6.25 × 106 operations per joule. It is incapable
of solving even relatively simple behavioral tasks in real time in spite of its
blazingly fast and precise transistors.

If we compare the computing efficiency of the human brain with that
of a digital microprocessor, we observe that the brain is at least seven or-

1 On the specfp92 Ear Program, which performs auditory computations similar to
those in the human ear, the DEC 21164 running on an Alpha Server 8200 5/300 is 1275
times as fast as a VAX 11/780, which would run at about 0.2 MFLOPS for our computation.
Thus, we estimate that it is equivalent to about 1275×0.2 = 255 MFLOPS. These numbers
are for 1995.
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ders of magnitude more efficient.2 Mead was the first scientist to point
out the great discrepancy in the computational efficiencies of neurobiology
and electronics (Mead, 1990). He also pioneered the field of neuromorphic
computation—electronic computation inspired by and similar to that per-
formed by neural systems (Mead, 1989).

How is efficient and complex computation with noisy components
achieved in neurobiological systems? Mead attributed the enormous effi-
ciency of neurobiological systems to their clever exploitation of the physics
of the medium that they were built in, to their local wiring strategies, and to
their enormous capabilities to adapt and learn. In this article we will focus
on the trade-offs involved in using physics to do computation.

The three physical resources that a machine uses to perform its compu-
tation are time, space, and energy. Computer scientists have traditionally
treated energy as a free resource and have focused mostly on time (the num-
ber of clock cycles required for the computation to terminate) and space (the
amount of memory needed or the number of devices needed to perform the
computation). However, energy cannot be treated as a free resource when
we are interested in systems of vast complexity, such as the brain. With the
current efficiencies of digital computation, it would take tens of megawatts
to build a system like the brain, assuming we could do so at all. If we wanted
to make this system portable as well, energy constraints would be very im-
portant indeed. Energy has clearly been an extremely important resource
in natural evolution. (For an interesting discussion on energy constraints in
biology and evolution, see Allman, 1990; and Aiello & Wheeler, 1995.) On a
smaller scale, energy constraints are important in all portable applications,
such as radio telephony, laptop computing, and hearing aids.

Biological systems typically compute constantly, rather than episodically,
with the resource of time fixed by the computational requirements of the
task. For example, for a sensorimotor task, we may need to respond within
a few hundred milliseconds, whereas for the task of hearing a 1 K Hz tone,
we will need to respond to cycle-by-cycle variations on a 1 msec time scale.
Thus, throughout this article, we will assume that the bandwidth of the
computational task is fixed and that the resource of time is not a degree of
freedom (it will be a parameter in our equations but not a variable). The
other two resources (energy and space) will be degrees of freedom; we shall

2 It may be argued that our comparisons have not been fair since the floating-point
computations that a microprocessor performs are more complex than are those that a
synapse performs, and they are also more precise. However, in addition to multiplica-
tion, synaptic computations involve temporal filtering and adaptation, which are fairly
complex operations in digital computation. We have also neglected several complex spa-
tiotemporal correlations and additions that are performed in the dendrite of a neuron.
Thus, for simplicity, we have chosen to compare just the efficiency of an “elementary
operation” in digital computation and in neurobiology. There are so many orders of mag-
nitude of discrepancy between neurobiology and electronics that such concerns will not
alter our conclusions.
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use the more natural resources of power (energy per unit time) and area (the
spatial resource in a two-dimensional substrate such as nerve membrane or
in VLSI) as our degrees of freedom.

Suppose that we are given two systems, A and B, that do a computa-
tion at the same bandwidth (in Hz), at the same output information rate
(in bits/sec), and with the same input. A is more efficient than B if it con-
sumes less power (and/or area) in doing this computation. In this article,
we shall be interested in understanding the reasons for the efficiency of one
system over another. In particular, we will study the reasons for differences
in efficiency between analog and digital systems.

Electronic systems are far simpler to understand and analyze than are
biological systems. So in sections 2 and 3, we begin by analyzing the dif-
ferences between analog and digital electronic systems. In section 4, we use
the insights gained by this analysis to outline how efficient, precise compu-
tation can be achieved by hybrid and distributed electronic architectures. In
section 5 we extrapolate our ideas for electronic systems to neurobiological
systems. Section 6 summarizes the article.

2 Analog Versus Digital: The Intuitive Picture

Electronic systems operate with continuous signals (CS) or discrete signals
(DS), and in continuous time (CT) or discrete time (DT). Thus, there are
four classes of systems: CSCT, CSDT, DSCT, DSDT (Hosticka, 1985). Figure
1 shows examples of systems, either electronic or biological, in each class.
Typically, CS systems are referred to as analog, and DS systems are referred
to as digital, irrespective of their representation in the time domain. In this
article, we first concentrate on analog systems that are continuous in both the
signal and time domains (CSCT), and on digital systems that are discrete
in both the signal and time domains (DSDT). Such systems are the most
common examples of analog and digital systems, respectively, and are also
the most disparate from each other. Later, in section 4, we discuss why an
alternation between the CSCT and DSCT domains can be advantageous over
operation in the DSDT or CSCT domain alone. We shall ignore the CSDT
domain in this article because its relevance to neurobiology is generally
believed to be small.

Following is a comparison of CSCT and DSDT systems from a signal-
processing viewpoint, emphasizing topics of importance in this article. It is
by no means a comprehensive and exhaustive list of all the differences be-
tween analog and digital systems. For example, we completely omit all dis-
cussion of programmability and learning in these systems, although these
issues are very important; also, we omit all discussion of temporal aliasing,
which is an important source of distortion in discrete systems.
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Figure 1: The four types of systems. The figure shows examples of electronic
and biological systems that operate with continuous or discrete signals (CS or
DS) and in continuous or discrete time (CT or DT). Analog systems that are
continuous in both the signal and time domains (CSCT) and digital systems
that are discrete in both the signal and time domains (DSDT) have been boxed
in the figure. SCF stands for switched capacitor filter; CCD stands for charge
coupled device.

ANALOG DIGITAL

1. Compute with continuous val-
ues of physical variables in
some range, typically voltages
between the lower and upper
power-supply voltages.

Compute with discrete values of
physical variables, typically the
lower and upper power supply
voltages, denoted by 0 and 1,
respectively.
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2. Primitives of computation arise
from the physics of the comput-
ing devices: physical relations of
transistors, capacitors, resistors,
floating-gate devices, Kirchoff’s
current and voltage laws and so
forth. The use of these primi-
tives is an art form and does
not lend itself easily to automa-
tion. The amount of computation
squeezed out of a single transis-
tor is high.

Primitives of computation arise
from the mathematics of boolean
logic: logical relations like AND,
OR, NOT, NAND, and XOR. The
use of these primitives is a sci-
ence and lends itself easily to au-
tomation. The transistor is used
as a switch, and the amount of
computation squeezed out of a
single transistor is low.

3. One wire represents many bits of
information at a given time.

One wire represents 1 bit of in-
formation at a given time.

4. Computation is offset prone
since it is sensitive to mis-
matches in the parameters of the
physical devices. The degrada-
tion in performance is graceful.

Computation is not offset prone
since it is insensitive to mis-
matches in the parameters of
the physical devices. However,
a single bit error can result in
catastrophic failure.

5. Noise is due to thermal fluctua-
tions in physical devices.

Noise is due to round-off error.

6. Signal is not restored at each
stage of the computation.

Signal is restored to 1 or 0 at each
stage of the computation.

7. In a cascade of analog stages,
noise starts to accumulate. Thus,
complex systems with many
stages are difficult to build.

Round-off error does not accu-
mulate significantly for many
computations. Thus, complex
systems with many stages are
easy to build.

2.1 Physicality: Advantage Analog. Items 1 through 3 show that analog
computation can be far more efficient than digital computation because of
analog computation’s repertoire of rich primitives. For example, addition
of two parallel 8-bit numbers takes one wire in analog circuits (using Kir-
choff’s current law), whereas it takes about 240 transistors in static CMOS
digital circuits. The latter number is for a cascade of 8 full adders. Simi-
larly an 8-bit multiplication of two currents in analog computation takes
4 to 8 transistors, whereas a parallel 8-bit multiply in digital computation
takes approximately 3000 transistors. Although other digital implementa-
tions could make the comparisons seem less stark, the point here is simply
that exploiting physics to do computation can be powerful. The advantage
of an analog machine over a digital machine is especially great when there
is a straightforward mapping between the operations needed in the com-
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putation and the primitives of the technology. For large-scale systems, as in
the implementation of silicon cochleas (Sarpeshkar, Lyon, & Mead, 1998),
depending on the nature of the digital implementation, the advantage can
range from a factor of 300 to 105 in power consumption.

Because the number of devices required to perform a computation is
greater in digital systems, there is more wiring and communication over-
head. The presence of more devices and more communication overhead
causes digital circuits to have typically higher area consumption than that
of analog circuits. The switching energy dissipation due to the large num-
ber of devices and the communication overhead also causes the power con-
sumption to be higher in digital circuits. If the number of devices switching
per clock cycle is N, the clock frequency is f , the average load capacitance
that a device has to drive is C, and the power supply voltage is VDD, then
the power consumption PD of digital circuits is given by the simple formula
(Rabaey, 1996),

PD = Nf CVDD
2. (2.1)

Unlike digital CMOS circuits, whose power dissipation occurs only during
switching and is entirely dynamic, many analog circuits have standby or
static power dissipation and little or no dynamic power dissipation.3 Thus
their power dissipation is given by the simple formula,

PA = NVDDI, (2.2)

where N is the number of computational stages, VDD is the power supply
voltage, and I is the average bias current flowing through each computa-
tional stage.

We can make digital computation more power efficient by using archi-
tectures that operate on a slow-and-parallel paradigm. Such architectures
conserve power by allowing the use of lower–clock-frequency and lower–
supply-voltage operation, although they require increased area consump-
tion (Chandrakasan, Sheng, & Brodersen, 1992). Bit-serial digital imple-
mentations are area efficient because they use time multiplexing to perform
several computations on the same circuit (Denyer & Renshaw, 1985). The
rapid evolution of digital technology has shrunk the efficiency gap between
analog and digital computation. However, the inefficiency of ignoring the
physical computational primitives inherent in the technology and the inef-
ficiency of encoding only 1 bit per wire is always present in digital compu-
tation. Consequently, analog computation still retains its advantage.

3 Of course, class AB analog systems have dynamic power dissipation, but we are
focusing on only general trends.
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2.2 Noise and Offset: Advantage Digital. Although the use of physics
made analog systems much more efficient than digital systems, items 4
through 7 reveal that the very same physics causes analog systems to be
much more sensitive to noise and offset than digital systems. The use of
continous signal variables precludes analog systems from having any dis-
crete attractor state to which they can be restored. Thus, for a sufficiently
complex computation, the noise accumulation in analog systems becomes
severe, not enough precision can be maintained at the output of the system,
and analog systems clearly emerge as the losers.

Adaptation can help to compensate for offset in analog systems. How-
ever, performance is still ultimately limited by residual offsets due to the
finite loop gains of the compensating circuits and by the offsets introduced
by the compensating circuits themselves. If the compensation of offset is
done periodically or continuously, such that the offset remains bounded
throughout the computation, then the problem of offsets may be alleviated
in analog systems. However, offset compensation is achieved at the cost of
increased complexity, area, or power consumption; also, care must be taken
to ensure that the feedback loops do not cause unwanted dynamics due to
interactions with the rest of the analog system.

We can attenuate noise if we are willing to spend a large amount of
power (and/or area) resources. However, as we shall show in section 3, by
this point a digital solution would be more efficient than an analog solution.
Parasitic capacitances and resistances in physical devices set a lower bound
on the achievable noise floor in practical analog systems.

3 Analog Versus Digital: The Quantitative Picture

In this section we quantify the intuitive picture of section 2. We need to
have an understanding of what causes noise in the devices with which we
compute and how the noise accumulation from the various devices in a
system degrades the output signal-to-noise ratio of an analog system.

3.1 Noise in MOS Transistors. We usually treat current as though it is
the flow of a continuous fluid, although it is the flow of discrete charged elec-
trons. Due to thermal fluctuations, these electrons have random, diffusive
motions that are uncoordinated with one another. These incoherent motions
give rise to shot-noise currents and cause white noise in the device. The noise
is called white because its power spectrum is flat. Intuitively, by simple

√
N

law-of-large-numbers arguments, we might expect that shot noise would be
less important at larger current levels because we average over the motions
of more electrons per unit time. This intuition is indeed borne out. (For
further details of noise in transistors, see Sarpeshkar, Delbrück, & Mead,
1993, and Sarpeshkar, 1997.) White noise is fundamental and is present in
all physical devices at room temperature. The input-referred white noise of
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an MOS transistor is given by

v2
n =

Kw(p)
Ip 1f, (3.1)

where p = 1.0 in the subthreshold region of operation of the MOS transistor,
and p = 0.5 in the above-threshold region of operation of the MOS transistor;
I is the DC current through the transistor; v2

n is the expected value of the
square of a band-limited white noise voltage signal, applied between the
transistor gate and source;1f = fh− fl is the bandwidth of operation, with
fh and fl being, respectively, the highest and lowest frequencies of operation;
the technology-dependent parameter Kw(p) increases with temperature and
with thick gate oxides, and is given by

Kw(1.0) = 4kTUT

2κ2 (3.2)

in the subthreshold regime, and by

Kw(0.5) = 4kT(2/3)√(
2µCox

W
L

) (3.3)

in the above-threshold regime. The parameter κ is the subthreshold expo-
nential coefficient; kT is a unit of thermal energy; UT = kT/q is the thermal
voltage where q is the charge on the electron; µ is the mobility of the elec-
tron; Cox is the oxide capacitance per unit area; and W and L are the width
and length of the transistor, respectively. Note that Kw is independent of
transistor geometry in the subthreshold regime, but is dependent on the
transistor geometry in the above-threshold regime. The parameter Kw(p) is
an important parameter of MOS technology.

Another kind of noise in the transistor is called 1/ f noise because its
power spectrum varies inversely with the frequency. It is widely believed
that this form of noise arises from electrons in the channel going into and out
of surface states, and into and out of impurities or defect traps in the gate
oxide of the transistor. It is known that the mean square 1/ f noise voltage
at the gate input of the transistor v2

nf scales inversely with the area of the
transistor A = WL. The noise is approximately independent of the current
flowing through the transistor,

v2
nf =

Kf

A

∫ fh

fl

df
f
,

= Kf

A
ln
(

fh
fl

)
. (3.4)
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The parameter Kf is given by

Kf = B
Cox

, (3.5)

where B is a measure of the number of surface states, impurities, or defects
in the gate oxide of the transistor.

The electronic fluctuations just described dynamically modulate the sur-
face potential and thus the threshold voltage of the transistor. Hence, 1/ f
noise can be viewed as noise due to a dynamically varying threshold volt-
age. Since the current in a transistor depends on the difference between the
gate voltage and its threshold voltage, independent of where the transistor is
operating, the input-referred 1/ f noise is independent of current. The larger
the area of the transistor, the greater the oxide capacitance of the transistor,
and the smaller the effect of any one fluctuating electronic charge on the
transistor’s threshold voltage. However, since the trap and defect densities
are approximately constant, the larger the area of the transistor, the greater
the number of fluctuating charges. The increased capacitance effect reduces
the noise power like 1/A2, and the increased total charge effect increases the
noise power like A, such that the input-referred noise scales like 1/A.

The parameter B also determines the magnitude of typical offsets in MOS
technology. Offsets between transistors are mainly due to mismatches in
threshold voltage caused by charges in impurities, surface states, defect
traps, and so on. By applying the reasoning of the previous paragraph, we
can show that offsets scale inversely with the area of the transistor as well.
Thus, the R.H.S. of equation 3.4, which models the magnitude of 1/ f noise
in MOS technology, also models the magnitude of the typical offsets in this
technology. Actually, the total 1/ f noise would be affected by fl and fh,
but the offsets would not be. So to model offsets, we should add another
term proportional to Kf but independent of fl and fh. However, this added
complication neither affects nor adds to our conclusions. Thus, we model
1/ f noise and offsets with one term. For similar reasons, we do not discuss
other less important sources of offset such as geometric mismatches which
scale like 1/L or 1/W or some function of L and W.

Adaptation may help lower the effective value of Kf in a circuit, but it
cannot make it zero. Area is expended in the adaptation circuitry and in
improving the residual offsets after adaptation.

Thus, we observe that the noise and offset (or 1/ f noise) in an MOS
transistor decrease with an expenditure of power and area resources in the
transistor, respectively. The total input-referred noise is given by

v2
n =

Kw(p)
Ip 1f + Kf

A
ln( fh/fl). (3.6)

We call such an equation a noise resource equation for the transistor. In any
technology, each device will have its own noise resource equation that il-
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lustrates how the noise in the device decreases with an increase in the re-
sources consumed by the device. In this case, we consume the resource of
power (current) to reduce thermal noise, and the resource of area to reduce
1/ f noise (or offset). In general, in any technology, by similar law-of-large-
numbers arguments, the thermal noise reduces with power consumption,
and the offsets reduce with the increased consumption of some spatial re-
source like length, area, or volume.

The resource of time is implicitly represented in equation 3.6 as the 1f
and ln( fh/fl) variables. A small bandwidth ( fl and fh are near each other)
implies that we have a lot of time at our disposal, which we may trade
off for lower noise or lower power/area consumption. Thus, equation 3.14
also captures trade-offs between maintaining low noise with few resources
and maintaining bandwidth. Averaging is an example of a technique that
reduces the bandwidth of a computation while lowering noise.

3.2 Noise in Analog Systems. Figure 2 shows a cascade of M analog
computational stages with an input Vin and output Vout. Each stage i has
a certain number of devices ni, has a gain gi, consumes a current Ii, con-
sumes an area Ai, and adds a certain amount of noise vni. The cascade is
representative of many analog computations that involve distributed gain
amplification. In neurobiology, distributed gain amplification occurs in the
dendrites of neurons or in the traveling wave amplifier architecture of the
cochlea.

The complexity of the computation sets a lower bound on the number of
devices in each stage ni and on the total number of stages M. The ingenuity
of the analog designer determines how close to the bound a realization of
this system is. Depending on the details of the computation, the bound may
be on M×6ni, on all the ni, on n1 and M×6ni, and so on. We assume that
the power supply voltage VDD is fixed and is equal to or slightly greater
than the linear voltage range of the system, otherwise power is unnecessar-
ily wasted, with no increase in output signal-to-noise ratio. So, we choose
not to operate the system in this nonoptimal situation. We also make two
simplifying assumptions. We assume that the current Ii and area Ai of stage
i are divided equally among all the ni devices in the stage. We also assume
that each of the ni devices contributes equally to the noise of the stage vni and
is amplified by the full gain gi of that stage. In practice, the circuit topology
of a stage determines the amount of current through a device. The circuit
topology also determines the noise contribution of that device to the noise
of the stage. In spite of our simplifying assumptions, our model captures
the general trend of the noise in each stage to increase with increasing ni,
and the noise at the output of the cascade to increase with increasing M.

The total mean square noise at the output of the cascade, v2
no, is made up

of noise from each of the computational stages. The noise at the first stage is
amplified by the cascaded gain of all the stages, whereas noise at the output
of the ith stage is amplified by the cascaded gain of all stages from i to M.



Analog Versus Digital 1611

Figure 2: Noise accumulation in an analog system. The figure shows a cascade
of M analog computational stages, each of which contributes some noise to
the output. The common power supply is represented by VDD. If we want to
minimize noise at the final output, Vout, subject to fixed constraints on total
current consumption (sum of the Ii’s) and total area consumption (sum of the
Ai’s), then equations 3.7, 3.11, and 3.13 show that the complex stages (stages with
large values of ni) and the early stages (stages with large amounts of accumulated
gain) should get most of the system’s resources of current and area.

Therefore, the early computational stages typically contribute more noise
than do the later stages (Haus & Adler, 1959). We define the noise gain from
stage i to the output as Gi, with

Gi =
k=M∏
k=i

gk. (3.7)

Then, from equation 3.6, the assumptions of the previous paragraph, and
Figure 2, we have the total noise at the output given by4

v2
no =

i=M∑
i=1

v2
niG

2
i

=
i=M∑
i=1

(
ni

Kw(p)
(Ii/ni)

p1f + ni
Kf

(Ai/ni)
ln( fh/fl)

)
G2

i . (3.8)

The nature of the computational task determines the requirements on fl and

4 For simplicity, we assume that p is the same across all stages. In a practical situation,
the first few amplifiers may be operated above threshold (p = 0.5) to reduce noise, and the
last few amplifiers may be operated in subthreshold (p = 1.0).
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fh. The bandwidth of the system, 1f = fh − fl, is the overall bandwidth of
the system at the output. Any individual computational stage may have a
bandwidth higher than this, but that is not the bandwidth that is relevant
for noise calculations at the final output.

Suppose that we have a total amount of current IT, or equivalently power
PT = VDDIT, at our disposal; suppose that we also have a total amount of
area AT—that is,

i=M∑
i=1

Ii = IT,

i=M∑
i=1

Ai = AT. (3.9)

We now ask how we should distribute our current and area resources among
the various stages to minimize the output noise given by equation 3.8. The
answer to this question is a simple exercise in multivariable minimization
through a Lagrange-multiplier technique. We find that the currents Ii and
areas Ai should be distributed such that

Ii = wiIT∑
wi
, (3.10)

wi = G2/(1+p)
i ni, (3.11)

Ai = ziAT∑
zi
, (3.12)

zi = Gini. (3.13)

With the optimal allocation of resources, the total noise at the output is given
by

v2
no =

(∑i=M
i=1 wi

)1+p
Kw(p)1f

Ip
T

+
(∑i=M

i=1 zi

)2
Kf ln( fh/fl)

AT
. (3.14)

This equation is the noise resource equation for our system. We find that the
noise resource equation for the device equation 3.6 and the noise resource
equation for the system equation 3.14 are very similar. The noise resource
equation for the device modeled the technology with the p, Kw(p), and Kf
parameters. The noise resource equation for the system added the effects of
the complexity of the task and the ingenuity of the analog designer in the∑

wi and
∑

zi terms. Both equations reveal that power and area resources
lower thermal noise and 1/f noise (or offset), respectively. (Further subtleties
of noise in analog systems are discussed in Sarpeshkar, 1997.)
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To first order, equation 3.14 quantitatively captures all the intuitive ideas
about noise and offset that we expressed in items 4–7 of our analog-versus-
digital list. Equation 3.14 reveals how noise accumulates in analog systems;
if M and/or ni are large, as would be the case for a complex computation,
then the output noise can be large indeed. Equations 3.11, 3.13, and 3.14
show that if noise is to be minimized, more resources should be distributed
to the parts of a system that affect all other parts of it (the initial stages)
and to those parts of it that are complex (high ni). Above threshold, the
weighting of power resources toward the early stages is more severe than
is that for subthreshold (G4/3

i versus Gi).
It is convenient to rewrite equation 3.14 as

v2
no =

Cw

PT
p +

Cf

AT
, (3.15)

where PT = VDDIT. The parameter Cw is simply the numerator of the first
term of equation 3.14 multiplied by Vp

DD, and the parameter Cf is the nu-
merator of the second term of equation 3.14.

3.3 The Costs of Analog Precision. In an analog system, the maximum
possible amplitude of an output sinusoidal signal Y is VDD/2. The power of
this signal is V2

DD/8. For such a signal, the maximum possible signal-to-noise
ratio is given by

SN =
V2

DD

8v2
no
, (3.16)

where v2
no is the noise power at the output. The parameter SN is important

because the information H(Y) that we can observe at the output of our
system is a monotonically increasing function of SN. The larger the value of
SN, the more finely can we distinguish among states at the output, and the
greater is the output precision. The exact form of the function depends on
the amplitude distribution of the output signal and the output noise. For
many practical situations, H(Y) ≈ (log2 (1+ SN))/2 is a good approximation
to the number of bits of information present at the output; this formula is
exact if the amplitude distributions of the signal and noise are gaussian.
The information at the output is an upper bound on the mutual information
between the function of the input implemented by the computation and the
output (Cover & Thomas, 1991).

By using the expression for system-level noise from equation 3.15 in
equation 3.16, solving for PT at constant SN and AT, and solving for AT at
constant SN and PT, we get,

PT =
(

CwSN

V2
DD/8−

(
Cf /AT

)
SN

) 1
p

, (3.17)
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AT =
(

Cf SN

V2
DD/8−

(
Cw/PT

p)SN

)
. (3.18)

We refer to these equations as the resource precision equations for analog
computation; they tell us how the resource utilization is a function of SN,
the variable that determines the output precision. For small values of SN, the
denominator is constant in both expressions and PT ∝ SN

1/p, while AT ∝ SN.
Since p = 1.0 in the subthreshold regime and p = 0.5 in the above-threshold
regime, the scaling laws of power versus SN are PT ∝ SN in the subthreshold
regime and PT ∝ SN

2 in above-threshold regime. The scaling laws for area,
A ≈ SN, are similar in both regimes. The power cost PT diverges when SN
is limited by 1/ f noise (or offset); we must spend area in this situation to
reduce 1/ f noise (or offset). Similarly, the area cost AT diverges when SN is
limited by thermal noise; we must spend power in this situation to reduce
the thermal noise. Actually, these conclusions of divergence are true only
for the subthreshold regime, where we cannot trade the power and area
resources of a transistor to obtain a certain value of SN. Sarpeshkar (1997)
shows how to trade between power and area in the above-threshold regime.

3.4 The Costs of Digital Precision. In many digital systems, the power
and area costs are proportional to the number of bits b used in the compu-
tation. In such cases, a 12-bit computation consumes one-half as much area
and one-half as much power as does a 24-bit computation if all parameters—
such as clock frequency f , average switching capacitance C, and power sup-
ply voltage—remain fixed. If we do allow the clock frequency and power
supply voltage to scale with the number of bits, as in a bit-serial implemen-
tation, then the power costs scale as a polynomial function of the number
of bits. Some computations like multiplication have power and area costs
that scale like the square of the number of bits. In general, most tractable
computations scale as a polynomial function of the number of bits. For sim-
plicity, we assume that the power and area costs are proportional to the
number of bits. It is straightforward to extend the arguments that follow to
the polynomial-scaling case, although a quantitative solution may not be
possible for any general polynomial. Thus, the resource precision equations
for digital computation are given by

PT = Lplog2 (1+ SN), (3.19)

AT = Lalog2 (1+ SN), (3.20)

where b is defined from the relationship b ≈ (log2(1+SN))/2. The parameter
La would scale like NWL where W and L are the widths and lengths of a small
transistor, and N represents the complexity of the task and the ingenuity of
the digital designer. The parameter Lp would scale like Nf CVDD

2.
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3.5 Precision Costs: Analog Versus Digital. Figure 3 shows power and
area resource-precision curves for subthreshold analog computation (equa-
tions 3.17 and 3.18 with p = 1) and for digital computation (equations 3.19
and 3.20). We see that analog computation is cheaper than digital compu-
tation at low values of SN and more expensive than digital computation at
high values of SN. Note also the divergence in power and area costs when SN
is limited by 1/ f noise (area) and thermal noise (power), respectively. The
exact location of the crossover point will depend on the task, technology,
and ingenuity of the analog and digital designers. We have chosen values
for Cw, Cf , Lp, and La such that the crossover happens near 10 bits (60 dB
in SN). For many common computations in today’s CMOS technology, the
crossover happens near 8 bits.

Curves such as the ones in Figure 3 were first proposed for comparisons
of delay operations in a seminal paper (Hosticka, 1985). Recently, there
has been additional work on comparing analog and digital systems for
delay operations (Furth & Andreou, 1996). Vittoz (1990) compared filtering
operations in analog versus digital systems, and Kearns (1993) compared
analog and digital systems for their performance on the tasks of comparing
two N-bit numbers, and also for the construction of delay lines. To our
knowledge, the comparison presented in this article is the first to generalize
the prior results to a broad class of analog and digital systems and to include
the effects of 1/f noise and offset along with the effects of thermal noise.

3.6 Caveats. A/Ds and D/As are analog systems, and the costs of oper-
ating these systems at high precision (high SN) are high. In a digital system
with analog inputs and outputs, the precision costs of the A/D and D/A
are paid once at the front end and once at the back end, respectively. The
cost of the high-precision processing between the front end and back end
is determined by the digital system in between. Thus, the total cost of the
overall system is made up of an analog part for the A/D and D/A, and a
digital part for the rest of the processing. Our comparisons between analog
and digital computation ignored the additional A/D and D/A costs of a
digital system. In a sufficiently complex computation, the A/Ds and D/As
represent a small fraction of the total cost of the computation. In an analog
system doing the same high-precision processing, the high-precision ana-
log costs are paid throughout all parts of the system, rather than only at the
front and back ends; that is why, for a sufficiently complex task, a digital
system with an A/D and D/A would still be more efficient than an analog
system.

In practice there is a minimum area or power consumption for both tech-
nologies that is independent of the value of SN—for example, the minimum
feature size of a technology determines the minimum possible area that
may be expended. Thus, both analog and digital curves flatten out to con-
stant values at low SN. We have ignored such overhead costs in our simple
analysis.
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Figure 3: Resource precision curves—analog versus digital. Plots of the resource
precision equations for analog computation (equations 3.17 and 3.18) and digital
computation (equations 3.19 and 3.20) for subthreshold technology (p = 1). The
plots show how the resource utilization—power in (a) and area in (b)—is a
function of SN, the output signal-to-noise ratio (a measure of precision).
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3.7 Summary of the Analog-Versus-Digital Analysis. Before we begin
our discussion of hybrid systems in section 4, it is worth recapitulating the
lessons learned from our analysis. Physical primitives are more efficient at
computing than are logical primitives as long as we do not attempt to com-
pute with low noise on one wire. Thus, the analog constants Cw and Cf and
the digital constants Lp and La are such that the analog curves lie below the
digital curves at low SN. At high SN, however, the multiwire representation
of information by digital systems divides the information processing into
independent bit parts that many simple processing stages can collectively
handle more efficiently than can one precise single-wire analog processing
stage. This intuition is mathematically expressed by a logarithmic scaling
of digital computation with SN, and a power law–like scaling of analog
computation with SN. Furthermore, the lack of signal restoration in analog
systems causes the noise accumulation for complex analog systems to be
much more severe than that for complex digital systems. Thus, we have
large values of Cw and Cf for complex analog computations (large M, wi,
or zi in equation 3.14), whereas Lp and La remain of reasonable size for the
equivalent complex digital computation.

4 The Best of Both Worlds

It is attractive to combine the best of both computing paradigms to make
a hybrid paradigm that is better than either one. In this section, we sug-
gest a framework for such a paradigm. In section 4.1 we show that analog
computation that distributes its precision and processing resources over
many wires is maximally efficient at a certain signal-to-noise ratio per wire.
In section 4.2, we propose a hybrid architecture that combines the advan-
tages of discrete-signal restoration with the advantages of continuous-signal
continuous-time analog computation. In section 4.3 we describe a comput-
ing architecture that illustrates the simultaneous workings of distributed
and hybrid computation.

4.1 Distributed Analog Computation. Figure 4a shows an example that
illustrates the idea behind distributed analog computation. Instead of the
usual analog paradigm that represents 8 bits of information on one wire, or
the usual digital paradigm that represents 8 bits of information on 8 wires, in
distributed analog computation, we represent 8 bits of information on two
wires that carry analog signals; instead of one analog processor maintaining
8 bits of precision on its output wire, we now have two processors that
interact with each other and maintain 4 bits of precision on their respective
output wires. The analog signals each have a signal-to-noise ratio of 24 dB
in order to encode 4 bits of information. For example, we could encode the
four most significant bits of a digital number as an analog signal on one
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Figure 4: Distributed analog computation. (a) The idea behind distributed ana-
log computation is illustrated by contrasting it with purely analog and purely
digital computation. In distributed analog computation, analog processors in-
teract with one another and maintain only a moderate amount of precision on
their respective output wires. (b) Plots of the total cost of computation and com-
munication as a function of SN in each wire, for c = 1, and for various w/c ratios
in equation 4.1 are shown.

wire by doing a 4-bit D/A operation on the four most significant bits of the
digital number. Similarly, we could encode the four least significant bits of
the number as an analog signal on another wire.

If the original signal was an analog signal present on a single wire, then
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an 8-bit A/D encoder must first convert the single-wire analog representa-
tion into a digital number. The precision of this front-end A/D operation
will be at a resolution of 8 bits. However, once we have a distributed rep-
resentation (2 wires × 4 bits), all subsequent analog operations may be
done at a resolution of 4 bits. As in digital computation, where overflows in
one channel are handled via carry propagation to an adjacent channel, the
analog processors must interact with each other appropriately to preserve
their distributed representation. The interaction between analog processors
necessarily involves interaction between their signal-restoration circuitry as
well (signal-restoration circuitry is described in section 4.2).

Because each analog processor operates at a low precision, its power
consumption and area consumption requirements are low. We are inter-
ested in knowing whether the total costs in power consumption and area
consumption are lower for two 4-bit processors than for one 8-bit processor.
We therefore ask the following question: Suppose we want to output N bits
of information by outputting b bits of information from N/b analog proces-
sors on N/b wires. What is the optimal number of bits b on each wire such
that the total power or area consumption of all circuitry is minimized?

To answer the question, we will have to take the costs of wiring (com-
munication) and computation into account. Wires cost area and add capaci-
tance. In order to keep the bandwidth of the system constant as capacitance
is added, the power consumption in the system rises. The wiring costs for
area increase in linear proportion to the number of wires.5 If bandwidth is
to be maintained, the power consumption must rise in linear proportion
to the total capacitance in the analog processor. Thus, the power costs of
wiring also increase in linear proportion to the number of wires. In neu-
robiological systems, the power costs of wiring include the costs of active
restoring circuitry in axons as well. Thus, wiring costs are a function of the
technology.

From equations 3.17 and 3.18, for relatively small SN where analog com-
putation is more effective than digital computation, the power consumption
and area consumption are power law functions of SN in the subthreshold
and above-threshold regimes. Thus, the analog cost function for computa-
tion per processor is well described by cSN

l, where l = 2 for above-threshold
power consumption, and l = 1 in all other cases of interest; here, c is a compu-
tation cost constant that accounts for all computation costs at each channel,
including those necessary for interactions with adjacent channels, and the
cost of signal restoration circuitry in the channel. We will discuss only the

5 The linear proportionality of area cost with the number of wires accounts for only the
area occupied by the wires themselves. In practice, area costs for wiring will involve the
area between wires and the area between computational elements as well. Such consider-
ations cause the area cost function to be supralinear in the number of wires. For simplicity,
we assume a linear function as the supralinear case will not alter the basic nature of our
conclusions.
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case for l = 1 since the l = 2 case follows by straightforward extension. The
cost function for wiring is given by a constant cost of w per wire. The num-
ber of bits per wire b = (

log2(1+ SN)
)
/2. Thus the total cost function for

computation and communication is given by

Cost = (cSN + w)
(

N
b

)
= (cSN + w)

(
N

0.5
(
log2(1+ SN)

)) . (4.1)

Figure 4b shows plots of the total cost of computation and communication
as a function of SN in each wire, for c = 1, and for various w/c ratios. We see
that when wiring is expensive (w/c = 10), the optimal signal-to-noise ratio
is high, b is high, and we have few wires. When wiring is cheap (w/c = 0.1),
the optimal signal-to-noise ratio is low, b is low, and we have many wires.

By simple calculus, we can show that the optimal SN occurs when

ln (1+ SN) =
(

SN + w/c
1+ SN

)
. (4.2)

The optimal value So
N has the following limiting solutions:

So
N =

√
w/c if w/c¿ 1, (4.3)

So
N ln So

N = w/c if w/cÀ 1. (4.4)

At the optimal value, the total cost of computation and communication
is 2Nc ln 2(1 + SN). For the case where w/c ¿ 1, the cost is 2Nc ln 2. The
cost of outputting all N bits from one single analog processor is c2N. Thus,
if N is sufficiently big, 2Ncln2 ¿ c2N. Therefore, if the amount of output
information is large, it is better to distribute the information and information
processing on many wires.

4.1.1 Caveats. In general, there may be overlap in the information dis-
tributed among the channels; for example, one wire may encode the six least
significant bits of an 8-bit digital number, and the other wire may encode
the six most significant bits of the 8-bit number. In the latter case, we have a
redundant and correlated representation of amplitude information between
the two wires. We do not analyze such cases here for they are technically
harder and do not illustrate the point any better.

In our analysis we have ignored the front-end costs of distributing the
information from a single wire onto many wires. As we described in section
3.6, this operation is analogous to an A/D encoding cost that we pay once
at the front end. For a sufficiently complex computation where we do a
lot of distributed computation, this cost is negligible. Similarly, if we must
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eventually collapse distributed information back onto a single wire (e.g., at
the output end of the system), then we will have to pay a high-precision
decoding cost, as in an output D/A.

If the encoding and decoding costs are a significant part of the com-
putation, then we have another trade-off in having our representation be
highly distributed. An excessively distributed representation may require
very complex encoding and decoding operations (such as A/Ds and D/As)
that grow in an exponential fashion with the number of wires. The optimiza-
tion of resources must then include the costs of encoding and decoding in
addition to those of computation and communication.

4.2 Hybrid Computation. Noise always accumulates in a cascade of
analog processing stages. If a computation is sufficiently complex, then at
some point, an analog system simply cannot maintain enough precision at
its output to do anything useful. Even if we require the system to maintain
only 1 bit at its output, it will be unable to do so. We now show how to use
a building block called the A/D/A, and an architecture that uses A/D/As
for solving the noise accumulation problem in analog systems. The A/D/A
is an A/D converter that is immediately followed by a D/A converter.
However, its most efficient circuit implementation does not involve explicit
implementation of an A/D converter and a D/A converter. The A/D/A
has been proposed as a useful building block for various analog and digital
storage and processing applications (Cauwenberghs, 1995).

The basic ideas are illustrated in Figure 5. A hybrid link is a set of analog
processing stages (denoted Ai in the figure) followed by an A/D/A that
restores the analog signal to one of M discrete attractor states. A hybrid
chain is composed of a sequence of hybrid links. Each chain can maintain
analog information to a precision of N = log2(M) bits with a low probability
of error, provided that we meet the following constraint: The net input-
referred noise of the A/D/A, due to all processing stages in a link and
the restoration circuits in the A/D/A, must be significantly lower than the
minimum distance between attractor states. In section 4.2.1, we show that an
error probability of 10−12 can be achieved in an N-bit hybrid link if the input-
referred noise is low enough such that we operate with a precision of N+ 4
bits. Thus, in order to restore signals reliably, we need four redundant bits
of precision. To keep the error probability low in a hybrid chain composed
of many links, the requisite precision before restoration needs to grow only
very slowly with the number of links in the chain (like the log(log(size of
the chain)).

Thus, a hybrid chain can do an extremely large amount of analog process-
ing and still maintain a precision of log2(M) bits at its output. Effectively,
we can operate with the precision and complexity characteristic of digital
systems, while doing efficient analog processing. If we assume that we do
not want to have more than 8 bits of precision at the input to the A/D/A,
then the best A/D/A that we can build would restore a signal to 4 bits of
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Figure 5: Hybrid computation. In this form of computation, analog processing
is followed by restoration of the analog signal to a set of M discrete attractor
states. As discussed in section 4.2, hybrid chains allow us to operate with the
precision and complexity characteristic of digital systems, while doing efficient
analog processing.

precision. Using A/D/As is probably not a good technique for maintain-
ing anything more than 4 bits of precision on an analog input. As we shall
discuss in section 4.3, the main use for A/D/As is in distributed analog
computation, where it is unnecessary to maintain too much precision on
one wire.

To maximize the efficiency of information processing in a hybrid chain,
there is an optimal amount of analog processing that must occur before
signal restoration in a hybrid link; that is, hybrid links should not be too
long or too short. If the link is too long, we expend too much power (or
area, or both) in each analog stage to maintain the requisite precision at the
input of the A/D/A. If the link is too short, we expend too much power
(or area or both) in frequent signal restorations. In section 4.2.2, we analyze
the optimal length of a hybrid link quantitatively. Needless to say, if we are
unconcerned about efficiency, then the link can be as long or as short as we
like, as long as we meet the A/D/A constraint.

4.2.1 The A/D/A. To restore a signal, we must have discrete attractor
states. In digital signal restoration, the input signal is compared with a
threshold, and high-gain circuits restore the output to an attractor state that
is a function of the input attractor state. The input may deviate by a fairly
large amount from its attractor state, and the output will still be very close
to its attractor state. The noise immunity of digital circuits arises because the
typical distance in voltage space between an input attractor-state level and
a threshold level is many times the variance of the noise or the offset in the
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circuit. We can generalize this two-state restoration to an M-state restoration
by having M−1 input threshold levels and M output state levels. The input
signal is compared with M − 1 threshold levels and is rounded off to that
attractor state level that it is closest to. Systems like these have been proposed
for multistate logic systems. Figure 6a shows the threshold levels VTi and
restoration levels VLi for a four-state or 2-bit system. The arrows converge
on restoration levels and diverge from threshold levels.

The A/D/A modifies the digital restoration scheme for M states to an
analog restoration scheme for M states. In the analog restoration scheme, M
can be arbitrary and does not have to be 1, 2, 4, 8, 16, 32, and so on. It can be
any arbitrary number that we choose because, unlike multistate logic, we
do not do any digital computation with our inputs or outputs. The input Vin
is an analog signal that may have been processed by many analog stages.
The output Vout is a restored and filtered analog signal that can serve as
an input to future analog-processing stages. Figure 6b shows a circuit for
one possible implementation of a four-state A/D/A.6 The analog signal is
compared with three thresholds, and zero, one, two, or three currents are
switched onto a resistor, whose voltage then equilibrates at VL1, VL1 + IR,
VL1+2IR, or VL1+3IR, respectively. The RC circuit acts as a filter and removes
sharp edges in the signal. The capacitance is chosen such that 1/RC is at or
near the desired bandwidth of the input. Figure 6a shows that if an input
analog signal happens to be exactly at a threshold level VTi, then it will
be constantly restored at random to the attractor state above or below it.
However, since we are always within half a bit of the analog input, this
random restoration still preserves the input information to within 1 bit, as
desired. All other analog inputs are restored to within a half-bit of their
input values as well. Thus, we preserve information in the analog signal to
a precision of log2M bits.

Now we analyze how large the input noise and offset of the A/D/A can
be if we need to preserve a precision of log2M bits in the output analog signal.
Suppose that because of noise and offsets, the input signal is described by
a gaussian probability distribution with variance σ 2, as shown in Figure
6c.7 If the analog input is situated at a threshold level VTi, then it needs to
deviate by a full 1-bit distance from this level for a bit error to occur. If, on
the other hand, the analog input is situated at a restoring level VLi that is
not at the extremes such as VL1 or VL4, but rather is midway such as VL1
and VL2, then a deviation from this level by half-bit distance is sufficient for

6 There are vastly more efficient circuit representations that we can use to construct
an A/D/A. However, we do not discuss these here because they are of a more technical
nature and require a background in analog circuit design.

7 The gaussian assumption is not essential to the qualitative nature of our arguments,
although it does affect our quantitative answers. If the probability distribution was not
gaussian, we may still perform the calculations outlined below, although closed-form
answers may not be possible.
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Figure 6: The A/D/A. (a) The threshold levels VTi and restoration levels VLi for a
four-state or 2-bit A/D/A system. (b) A circuit for one possible implementation
of a four-state A/D/A. (c) The probability of a bit error for a worst-case situation
when the input is at VL2 is given by the area under the gaussian tails—to the left
of VT1 and to the right of VT2. Section 4.2.1 provides further details.

a bit error to occur. Thus, we analyze this worst-case situation for the input
situated at VL2.

Let the variance of the noise be σ 2. The distance between a threshold
level and a restoration level is bd/2, where bd is a bit distance given by
(VLM−VL1)/(M− 1) in an M-state A/D/A. The probability of a bit error Pe
is then given by the area under the gaussian tails in Figure 6c, that is, to the
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left of VT1 and to the right of VT2. Thus, Pe is given by

Pe = erfc
(

bd/2

σ
√

2

)
, (4.5)

where erfc(x) is defined by

erfc(x) = 2√
π

∫ ∞
x

e−u2
du ≈ e−x2

√
πx
. (4.6)

Now Pe = 1 × 10−12 if bd/(2σ
√

2) = 5.04. Thus, bd = 2
√

2 × 5.04σ = 14.3σ .
Hence, to restore the signal faithfully, with a low bit-error rate, an N-bit
A/D/A requires that the precision at its input be≈ N+4 bits (log2(14.3) ≈
4).

4.2.2 The Optimal Length of a Hybrid Link. For simplicity, assume that
our computation is a cascade of N identical analog processing stages, as
in a many-pole filter. By the reasoning of the last paragraph of section 4.2,
if the stages are not identical, we can show that an optimal length still
exists. However, the closed-form solution is hard to obtain. The simplest
case with all identical gains for which we may obtain a closed-form solution
corresponds to all the stages having unity gain. Thus, we shall discuss only
the case with identical unity-gain stages to avoid complexity that does not
add much insight. For similar reasons, we shall analyze only the simple case
of current (power) optimization assuming that the 1/f (or offset) terms in the
resource noise equation (3.6) are negligible. Other simplifying assumptions
also include that p = 1(subthreshold) and that we pay a fixed cost in power
per A/D/A restoration stage.8 Suppose that there are M computational
stages and 1 A/D/A in every hybrid link. Then, there will be N/M links with
a total of N computational stages, and N/M A/D/As in the chain. Suppose
that the complexities of the A/D/A stage and of each computational stage
correspond to nr and nc devices, respectively. By equation 4.5, corresponding
to whatever error criterion we pick, the input-referred noise σ at every
A/D/A must be less than or equal to some value σt. The value of σt depends
on only bd, the distance between attractor states in the A/D/A, which is fixed
by the precision desired for a given hybrid chain. Thus, from equations 3.14,
3.11, and 3.13, with ni = nc for all i, and Gi = 1 for all i, the noise due to the
computational stages in a link is given by

vc
2 = (Mnc)

2Kw(1)1f
IC

, (4.7)

8 There is a possible variant of the problem, where we simultaneously optimize the
power allocated between the A/D/A stages and the computation stages, as well as the
number of stages per link.
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where IC is the total power consumption in the computational stages. Sim-
ilarly, the noise due to an A/D/A stage in a link is given by

v2
r =

(nr)
2Kw(1)1f

IR
, (4.8)

where IR is the fixed current consumption of the restoration stage. The
A/D/A constraint gives us

v2
c + v2

r = σt
2. (4.9)

Algebraic manipulation of equations 4.7, 4.8, and 4.9 then yields

IC = M2

 n2
c Kw(1)1f

σt2 − n2
r Kw(1)1f

IR

 , (4.10)

= M2Cc, (4.11)

where Cc is defined by the preceding equations. The total current consump-
tion due to N/M links in the entire chain is then given by

ICH =
(

N
M

)
(IC + IR) ,

= N
(

CcM+ IR

M

)
. (4.12)

Figure 7 shows a plot of the current consumption for differing values
of Cc = 2.06 pA, 5.11 pA, 9.52 pA, and 15.34 pA; IR is fixed at 100 pA.
The parameter Cc was changed by varying σt in equation 4.10. Thus, as
we increase the precision of the hybrid link, the costs of computation rise
with respect to the costs of signal restoration, and the optimal length of the
link decreases. The mathematics is in accord with the intuition expressed
in the last paragraph of section 4.2. The curves in Figure 7 were drawn for
1f = 100 Hz, Kw(1) = 4.38× 10−22, nr = 3, and nc = 150. It is easy to show
that the location of the optimum in equation 4.12 is given by

M =
√

IR

Cc
. (4.13)

4.3 Distributed and Hybrid Computation. Figure 8 combines the ideas
of sections 4.1 and 4.2. The information from a single-wire analog input
is encoded onto many wires by an analog encoder. Typically, the encoder
might be more redundant and thus might distribute the information over
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Figure 7: Optimal length of a hybrid link. (a) A hybrid chain with M stages
of computation per link, N/M links, and N total stages of analog computation.
(b) A plot of the current consumption (obtained from equation 4.12) versus link
length (M) for differing values of precision, parameterized by σt, the input-
referred noise at the A/D/A. As the precision increases, the optimal length of
the hybrid link is shortened. Section 4.2.2 provides further details.

many more wires, but for simplicity, we have shown a nonredundant en-
coder. A cochlea, retina, and A/D are all good examples of encoders that
distribute information from one wire onto many wires. In this example, we
have an analog encoder, so if we used an A/D, we would have to follow
it with a D/A. In the example of Figure 8, the distributed information is
preserved in the first stage of processing by 2-bit A/D/As. In the next stage
of processing, the analog processors or the A/D/As, or both, make deci-
sions based on the information and reduce the output information to 1 bit.
Thus, the analog circuits in the second half can afford to be noisier, since the
A/D/A restoration has a precision of only 1 bit. The use of distributed ana-
log computation and low-precision A/D/A signal restoration makes this
architecture ideal for efficient precise computation.

Mixed-signal circuits that involve analog and digital techniques have
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Figure 8: Distributed and hybrid computation. The information from a single-
wire analog input is encoded onto many wires by an analog encoder such as a
cochlea, retina, or A/D. Interacting hybrid chains process the information on
these wires. Section 4.3 provides further details.

been proposed for efficient low-precision sensory data processing (Martin,
1996). Distributed-and-hybrid schemes, such as ours, illustrate how mixed-
signal circuits can be architected to be suited for high-precision processing
as well. For example, it is possible to implement efficient high-precision
arithmetic circuits using distributed-and-hybrid architectures. The results
from several low-precision analog addition and multiplication operations
are appropriately combined via carry and A/D/A interactions. A more
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detailed description of such arithmetic architectures is outside the scope of
this article and a topic of our research; these architectures may represent the
first practical applications of the ideas described in this article.

5 Extrapolating to Neurobiology

Our analysis for electronic systems suggests why neuronal information pro-
cessing is distributed, that information processing in the brain is likely to
be hybrid, and how signal restoration in neurons may be implemented. In
sections 5.1 through 5.3 we discuss these suggestions in more detail. In sec-
tions 5.4 through 5.5 we shall discuss how our arguments about noise in
electronic systems can be extrapolated to neurobiology.

5.1 Why Neuronal Information Processing Is Distributed. Informa-
tion processing in networks of neurons is accomplished in a tremendously
distributed fashion. It has often been pointed out that this distribution re-
sults in fault-tolerant behavior, since the destruction of any one neuron or
synapse hardly affects the operation of the overall network. However, we
suggest that the primary reason for the distributed nature of neuronal in-
formation processing is not fault tolerance but efficiency. We showed in
section 4.1 that if the costs of computation are to be cheap, then the informa-
tion and information processing must be distributed across as many wires
as possible. However, if the costs of communication are to be cheap, then
the information and information processing must be localized among as few
wires as possible. The trade-off between these two constraints, as revealed
in equation 4.1, results in an optimal number of wires and an optimal signal-
to-noise ratio per wire, as revealed in Figure 4. In neurobiological systems,
where communication costs are relatively low compared with communica-
tion costs in silicon, the optimal signal-to-noise ratio is lower than that in
silicon.9 Thus, we believe that nature was smart to distribute computational
resources over many noisy neurons (dendrites and somas) and communi-
cate that information between neurons over many noisy fibers (axons). The
noisiness of the brain is due to the wisdom of millions of years of evolution,
and is not a reflection of the incompetence of biology. We believe that the
“use” of neuronal noise in phenomena such as stochastic resonance, or in
phenomena that prevent trapping in a local minima, may be valuable in cer-
tain special cases, but the primary reason for the noisy nature of the brain
is efficiency.

Experimentally based estimates of the energy required to transmit a bit of
information in various stages of the blowfly retina are rather large (Laughlin,

9 In today’s electronic technology, it would be unthinkable even to dream of wiring on
the scale of neurobiology. For example, the million fibers of the optic nerve or the 35,000
fibers of the auditory nerve would simply be too expensive to implement.
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van Stevenick, & Anderson, 1998a; Laughlin, Anderson, O’Carroll, & van
Stevenick, 1998b). Therefore, these authors have independently arrived at
conclusions very similar to ours: Distributed coding of information among
multiple pathways is important for energy efficiency in noise-limited sys-
tems.

5.2 Information Processing in the Brain Is Likely to Be Hybrid. Ac-
tion potentials are all-or-none discrete events that usually occur at or near
the soma or axon hillock. In contrast, dendritic processing usually involves
graded synaptic computation and graded nonlinear spatiotemporal pro-
cessing. The inputs to the dendrites are caused by discrete events. Thus,
in neuronal information processing, there is a constant alternation between
spiking and nonspiking representations of information. This alternation is
reminiscent of the constant alternation between discrete and continuous
representations of information in Figure 5. Thus, it is tempting to view a
single neuron as a D/A/D. However, although the firing of a spike is a dis-
crete event, it does not imply that it encodes information about a discrete
state. The information encoded by a spike is meaningful only in relation to
spikes in different neurons, or in relation to earlier or later spikes in the same
neuron. If these relationships are analog, then all-or-none events do not im-
ply the encoding of discrete states. So how do we know whether the brain is
analog (continuous signal) or digital (discrete signal) or hybrid (both)? Al-
most everybody accepts that the brain does a tremendous amount of analog
processing. The controversy lies in whether there is anything digital about
it.

We know, from the arguments of this article, that the noise accumulation
in complex systems is simply too high for purely analog processing to be ef-
ficient in such systems. Given that the brain is made up of a large number of
physical devices that exhibit noise at room temperature and is yet extremely
efficient (12 W power consumption and 300 ms response time for complex
tasks), we may hypothesize that it must be mixing continuous-signal and
discrete-signal processing to compute in a hybrid fashion. In section 5.4
we review noise in biological devices, and in Sarpeshkar (1997) we review
numbers on the interconnectivity and complexity of the brain’s architec-
ture. These reviews suggest that although it is theoretically possible that
the brain’s complexity is small enough that a purely analog brain could be
efficient, a purely analog brain seems unlikely. However, more quantitative
studies need to be done on noise in biological devices and on the archi-
tecture of the brain before we can conclusively rule out the possibility of a
purely analog brain. Thus, the suggestion that the brain is hybrid is only a
hypothesis supported by our quantitative arguments from electronics and
by some qualitative facts from our current knowledge of neurobiology.

5.3 How Signal Restoration May Be Implemented. To implement sig-
nal restoration, there must be a set of discrete states that the continuous
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signal is periodically restored to. How are the discrete restorative states of
neurons encoded in the firing of action potentials? Conceptually, at the level
of a single neuron, the discrete states of a spike train may be encoded in the
number of spikes that occur in a given window of time (the mean-firing-
rate code), or in a discrete set of firing patterns that occur within that same
window of time (the timing-pattern code). Such codes are scalar codes since
they involve only one neuron. As experimental (Abeles, Bergman, & Gat,
1995) and theoretical (Hopfield & Herz, 1995) work indicate, it is more likely
that discrete states involve a vector code that is implemented in a collective
fashion across many neurons. The window of time over which we count
spikes or detect temporal patterns within the spikes is determined by the
integration time constants of the neurons.

The mean firing rate and timing pattern scalar codes have direct analo-
gies in vector codes. In the mean firing rate case, instead of counting the
number of spikes in one neuron within a window of time, we count the
number of spikes across many neurons that are present within some time
window. In the timing pattern case, instead of a discrete set of firing patterns
of one neuron that occur within some time window, we have a discrete set
of cross-correlated firing patterns of many neurons within some time win-
dow. For simplicity, we shall assume that our time window is short enough
that each neuron contributes at most one spike within that time window.
It is easy to generalize our ideas to multiple spikes within one time win-
dow.

The key building block of our electronic signal restoration schemes was
the A/D/A, which was basically an A/D followed by a D/A. In the signal-
representation scheme of neurons, how might we build a A/D/A? We shall
discuss only signal restoration for vector codes.

5.3.1 Von Neumann Restoration for Spike Counting. Suppose we have 3N
neurons. We group them into N sets of three each. For each of the N sets
we perform a simple majority vote and regenerate three signals, each of
which encodes the result of the majority vote. Thus, if we have (spike, spike,
no spike) across the three neurons, we restore this signal to (spike, spike,
spike). If we have (no spike, spike, no spike) across the three neurons, then
we restore this signal to (no spike, no spike, no spike). Thus, we restore
the original 3N + 1 possible states (ordering of neurons does not matter)
into N + 1 possible states. Just as in the A/D/A, if we want to have low
rates of error, we must compute with more redundancy (20N instead of
3N). The majority-vote scheme was first proposed by John Von Neumann
(Von Neumann, 1952) as a way for doing signal restoration. Note that in
this scheme, we are really restoring a fine-grained discrete quantity to a
coarse-grained discrete quantity. In the A/D/A, we restore a continuous
analog quantity with a fine-grain size determined by analog noise into a
coarse-grained discrete quantity.
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5.3.2 Restoration for Spike Timing. Here, we detect the presence of a dis-
crete timing pattern by building suitable delays in the dendrites or synapses
or input axons of a “matched-filter” neuron such that the inputs from the
N neurons that encode the timing pattern arrive in synchrony at the axon
hillock (Abeles, 1991). The matched-filter neuron regenerates the timing pat-
tern by fanning out collaterals to a set of N output neurons with appropriate
axonal or synaptic delays such that the timing pattern is regenerated. The
restoration in pattern timing will occur if the matched-filter neuron is con-
figured to respond to inputs with somewhat skewed timing patterns; this
is accomplished by setting its threshold so it is not too high. If we want to
restore M timing patterns that are encoded on N input axons, then we need
M matched-filter neurons and N output neurons. Each of the N output neu-
rons could receive inputs in parallel from the M matched-filter neurons, as,
in a good design, only one of the M matched-filter neurons would be active
at any given time. As in the A/D/A, if we want to ensure low error rates,
M should be significantly less than the possible number of timing patterns
encoded among the N neurons. It is also crucial that the delays involved
in regeneration be precise enough to maintain a precision that is a few bits
above log2(M) bits.

In digital electronic circuits, an inverter performs restoration and compu-
tation at the same time. It inverts its input (1 goes to 0, and 0 goes to 1), but
it is also restorative since a “bad 1” is restored to a “good 0.” Similarly, in a
time-delay restoration scheme, we could have the regenerated pattern be a
different timing pattern such that a somewhat skewed input temporal pat-
tern is restored to a clean-output temporal pattern. In a pattern-recognition
computation, such as that performed by an associative memory, computa-
tion and restoration are intermingled because the nature of the computation
inherently requires a discrete set of outputs.

5.3.3 Caveats. We have made many simplifying assumptions such as
treating computation and restoration as distinct entities, and similarly treat-
ing computation and communication as separate entities. It is likely that
such entities are more deeply intertwined in the brain and that the rather
sharp digital restorations that we propose are really soft restorations in
the brain, such that a more accurate description would need to involve
the language of complex nonlinear dynamical systems. The processing of
information in a single dendrite, let alone the whole brain, is enormously
complex. Such processing could be very useful in performing signal restora-
tion within the level of the dendrite itself. Thus, we do not, by any means,
claim that the brain is implementing the particular architectures, and the
particular restorative schemes that we have proposed. We have merely of-
fered our schemes as a possible way in the hope that it will stimulate further
discussion and work on the subject.

The importance of action potentials for avoiding temporal dispersion
and signal attenuation over long communication distances is well known.
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That is not the issue under discussion in this article since we take that is-
sue to be resolved. Rather, the issue under discussion revolves around the
importance of action potentials for signal restoration in complex local net-
works of neurons. In the latter case, the complexity of computation degrades
the signal-to-noise ratio due to the large number of processing steps, and
restorative action-potential codes serve to preserve the signal-to-noise ratio.

In this article, we have emphasized that the hybrid and distributed nature
of the brain’s signal processing is likely to be an important and underappre-
ciated reason for its efficiency. Other reasons for the efficiency of the brain
are discussed in detail in Sarpeshkar (1997). They include the marvelous
technology of devices and interconnect available to the brain, its nonlinear
and adaptive signal processing strategies, and its strategies for process-
ing only the information that is useful for solving a given computational
task.

5.4 Noise in Biological Devices. In any technology, the starting point
for an analysis of the information costs of computing is the noise resource
equation of that technology. It was the noise resource equation for MOS tech-
nology (see equation 3.6) that enabled us to construct a set of resource pre-
cision equations (equations 3.17 and 3.18). The resource precision equations
evaluated the costs of a computation as a function of the output information
or precision. What might the noise resource equations for neurobiological
devices look like? Due to the great diversity of biological devices and the
incomplete knowledge that we have about their functioning, a quantitative
theory for the technology of neurobiology seems premature. However, we
can make qualitative statements that reveal how the noise can be decreased
with an increase in resource consumption.

The limiting form of noise in biological devices is typically the random-
ness in ion channel openings and closings (DeFelice, 1981) and the unrelia-
bility of synaptic vesicle release (Allen & Stevens, 1994). Channels transition
between discrete closed and open states with certain finite probabilities per
unit time. The transition probabilities depend on the membrane voltage or
the chemical concentration of a substance. For a good discussion of the ki-
netics of ion channels, see Weiss (1996). The noise can be reduced by

√
N

law-of-large-numbers averaging over several ionic channels (i.e., through
the increase of ion channel densities). Similarly, the noise of synaptic trans-
mission may be reduced through the use of averaging over many vesicles,
many synaptic contacts, and so on. Such averaging costs area and also turns
up power consumption since the power per unit channel, vesicle, or con-
tact is approximately constant. It is intuitive to expect that averaging over
large areas of membrane would improve offsets and 1/f noise, but we are
unaware of any actual experimental measurements that address whether
they do. Interestingly, as in electronics, the magnitude of the 1/f noise in
biology is highly unpredictable. It is dependent on the concentrations in the
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cellular environment of substances that alter transport properties of nerve
membrane (DeFelice, 1981). In electronics, 1/f noise is also strongly depen-
dent on the concentrations of impurities in an insulating membrane, the
gate oxide.

Averaging strategies were at the root of a reduction in noise in electronic
systems as well. In electronics, we averaged over more electrons per unit
time (to reduce thermal noise by increasing power), or over more traps
and impurity defects (to reduce 1/f noise and offset by increasing area). In
biology, we average over more ion channels or over larger stretches of mem-
brane. Indeed, a simple

√
N averaging would yield noise resource equations

that are similar to equation 3.6, with p = 1. However, there are sugges-
tions that neurobiological systems may be even smarter and may attain
noise reductions that scale like 1/N rather than like 1/

√
N (Salman, Soen, &

Braun,1996); such scaling laws require the use of interactions between chan-
nel kinetics and membrane kinetics through the use of membrane voltage
feedback.

In situations where it is important to maintain reliability and precision,
such as at a neuromuscular junction, there is a lot of averaging over numer-
ous synaptic connections and synaptic vesicles. In situations where it is not
that important to be very reliable, such as in the highly distributed archi-
tecture of cortex, there is little averaging over synapses or vesicles (Koch,
1997). When timing must be precise, synapses are typically large (Zhang &
Trussell, 1994). From numerous examples, it is qualitatively clear that the
reduction of noise is accomplished through resource consumption in neuro-
biology, as it is in electronics. Neurobiology and electronics behave similarly
because physical and mathematical laws like the laws of thermodynamics
and the law of large numbers do not change with technologies.

5.5 Noise in Neurobiological Systems. In section 3.2, we abstracted
the mapping from computational task to circuit topology in the parameters
M and ni. The ingenuity of the designer lies in mapping the task to the
primitives and architecture of the technology, such that M and ni are as
small as possible. Consequently, when function is well mapped to structure,
noise is minimized; the wiring of the architecture also is more efficient.
Computational architectures where function and structure are well matched
amplify the computational information above the noise in the components.
This amplification is analogous to the way a matched filter amplifies the
signal above the background noise.

Two topologies that may be completely equivalent functionally may have
markedly different noise properties. For example, suppose that in topology
A we take the difference between a large, positive current and a large, neg-
ative current to output a small differential current; in topology B we just
output a small differential current. The noise of topology A will be much
higher than that of topology B even though the two topologies may be in-
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distinguishable as far as outputs go. Thus, the mapping from function to
structure must be done with care.

It is clear that natural structures have evolved to match structure and
function. The architectures of the cochlea, the retina, the hippocampus, the
cerebellum, the neocortex, and various other regions have patterns of con-
nectivity, cellular organization, and cell differentiation that indicate a close
relationship between structure and function. Cells of various anatomical
types are specialized to have certain functional characteristics. (For a good
review, see Shepherd, 1990.)

For noise minimization, resource allocation should be increased in the
initial and complex stages of a computation, as discussed in section 3.2.

6 Summary

We conclude by reviewing the main points of the article:

1. Analog computation is efficient at low-precision processing, and digi-
tal computation is efficient at high-precision processing. The resource
precision equations for analog computation (equations 3.17 and 3.18)
and the resource precision equations for digital computation (equa-
tions 3.19 and 3.20) quantify the costs of computing at a certain preci-
sion in MOS technology. Figure 3 shows a plot of the costs of analog
and digital computation at different levels of precision. The noise re-
source equation of a technology (equation 3.6 for MOS technology)
determines the form of the resource precision curves for that technol-
ogy.

2. The advantages of analog computation arise from its exploitation of
physical primitives for computation. The advantages of digital com-
putation arise from its multiwire representation of information and
information processing, and from its signal restoration properties.

3. Analog computation that distributes its precision and processing re-
sources over many wires is maximally efficient at a certain signal-to-
noise ratio per wire, due to the trade-offs between computation and
communication. Equation 4.1 and Figure 4 illustrate this fact in more
detail.

4. We proposed a hybrid architecture that combines the advantages of
discrete-signal restoration with the advantages of continuous-signal,
continuous-time analog computation. The key building block of such
a hybrid scheme is a restoration circuit called an A/D/A, which is
described in section 4.2.1. Figures 5 and 6 illustrate the workings of
the hybrid scheme. For maximum efficiency in a computation, there
is an optimal amount of continuous analog processing that must be
done before a discrete signal restoration; Figure 7 and equation 4.12
illustrate how this optimum can be determined.



1636 Rahul Sarpeshkar

5. We described a computing architecture that illustrates the simultane-
ous working of distributed and hybrid computation in section 4.3 and
Figure 8. Distributed and hybrid computation combines the best of
the analog and digital worlds to create a world that is more efficient
than either.

6. In neurobiological systems, where communication costs are relatively
low compared with communication costs in silicon, the optimal signal-
to-noise ratio per wire is lower than that in silicon. Thus, we be-
lieve that nature was smart to distribute computational resources over
many noisy neurons (dendrites and somas) and communicate infor-
mation between neurons over many noisy wires (axons).

7. Since the brain appears to be extremely efficient in its information
processing and hybrid representations are the most efficient repre-
sentations in massively complex systems, it is likely that the brain
uses hybrid representations.

8. Experiments suggest that discrete states in the brain are encoded in
the cross-correlated firing patterns of neurons in a network (Abeles
et al., 1995). Neuronal information processing is thus most likely to
involve vector signal restoration. In section 5.3, we discussed how
signal restoration in networks of neurons may be implemented using
A/D/A-like schemes.

9. From numerous examples, it is qualitatively clear that in neurobi-
ology, the reduction of noise is accomplished through resource con-
sumption as it is in electronics. Neurobiology and electronics behave
similarly because physical and mathematical laws such as the laws of
thermodynamics and the law of large numbers do not change with
technologies. It is such laws that, with a few technology-dependent
parameters, determine noise resource equations. Since our conclu-
sions depend only on general properties of noise resource equations
such as a polynomial reduction in noise with resource consumption,
we suggest that our extrapolation from electronics to neurobiology is
correct to leading order.

Acknowledgments

I thank Carver A. Mead, John Allman, Christof Koch, Yaser Abu Mostafa,
Kwabena Boahen, Sanjoy Mahajan, Mike Levene, David Kewley, and a cou-
ple of anonymous reviewers for useful discussions. As well, I thank Lyn
Dupre for her detailed editing of the manuscript, and Shih–chii Liu for a
thorough review of this work.



Analog Versus Digital 1637

References

Abeles, M. (1991). Corticonics (pp. 227–259). Cambridge: Cambridge University
Press.

Abeles, M., Bergman, H., & Gat, I. (1995). Cortical activity flips among quasi-
stationary states. Proceedings of the National Academy of Sciences of the United
States of America, 92, 8616–8620.

Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain
and digestive system in human and primate evolution. Current Anthropology,
36,199–221.

Allen, C., & Stevens, C. F. (1994). An evaluation of causes for unreliability of
synaptic transmission. Proceedings of the National Academy of Sciences, 91,
10380–10383.

Allman, J. (1990). Evolution of neocortex. Cerebral Cortex, 8A, 269–283.
Cauwenberghs, G. (1995). A micropower CMOS algorithmic A/D/A converter.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 42, 913–919.

Chandrakasan, A., Sheng, S., & Brodersen, R. W. (1992). Low-power CMOS
digital design. IEEE Journal of Solid-State Circuits, 27, 473–484.

Cover, T., & Thomas, J. (1991). Elements of information theory (p. 20). New York:
Wiley.

DeFelice, L. J. (1981). Introduction to membrane noise. New York: Plenum Press.
Denyer & Renshaw. (1985). VLSI signal processing: A bit serial approach. Reading,

MA: Addison-Wesley.
Furth, P. M., & Andreou, A. G. (1996). Bit-energy comparison of discrete and

continuous signal representations at the circuit level. Proceedings of the 4th
Physics of Computation Conference. Boston.

Haus, H., & Adler, R. (1959). Circuit theory of linear noisy networks.
Hopfield, J., & Herz, A. V. M. (1995). Rapid local synchronization of action

potentials: Toward computation with coupled integrate-and-fire neurons.
Proceedings of the National Academy of Sciences, 92, 6655–6662.

Hosticka, B. J. (1985). Performance comparison of analog and digital circuits.
Proceedings of the IEEE, 73, 25–29.

Kearns, D. A. (1993). Experiments in very large-scale analog computation. Un-
published doctoral dissertation, California Institute of Technology.

Koch, C. (1997). Biophysics of computation: Information processing in single neurons.
Unpublished manuscript.

Laughlin, S., de Ruyter van Stevenick, R., & Anderson, J. C. (1998a). The
metabolic cost of neural information. Nature Neuroscience, 1.

Laughlin, S., Anderson, J. C., O’Carroll, D., & de Ruyter van Stevenick, R. (1998b).
Coding efficiency and the metabolic cost of sensory and neural information.
In Information theory and the Brain. R. Baddeley, P. Hancock, & P. Foldiak (Eds.),
Cambridge: Cambridge University Press.

Martin, D. A. (1996). ADAP: A mixed-Signal array processor with early vision appli-
cations. Unpublished doctoral dissertation, Massachusetts Institute of Tech-
nology.



1638 Rahul Sarpeshkar

Mead, C. A. (1989). Analog VLSI and neural systems. Reading, MA: Addison-
Wesley.

Mead, C. A. (1990). Neuromorphic electronic systems. Proceedings of the IEEE,
78, 1629–1636.

Mead, C. A., & Conway, L. (1980). Introduction to VLSI systems. Reading, MA:
Addison-Wesley.

Rabaey, J. (1996). Digital integrated circuits. Englewood Cliffs, N.J.: Prentice Hall.
Salman, H., Soen, Y., & Braun, E. (1996). Voltage fluctuations and collective

effects in ion-channel protein ensembles. Physics Review Letters, 77, 4458–
4461.

Sarpeshkar, R. (1997). Efficient precise computation with noisy components:
Extrapolating from an electronic cochlea to the brain. Unpublished doc-
toral dissertation, California Institute of Technology. Chapter 5: Section 6,
Appendix A, Appendix B, and Appendix C; Postscript copy available on
http://www.pcmp.caltech.edu/anaprose/rahul/thesis/.

Sarpeshkar, R., Delbrück, T., & Mead, C. (1993). White noise in MOS transistors
and resistors. IEEE Circuits and Devices, 9, 23–29.

Sarpeshkar, R., Lyon, R. F., & Mead, C. A. (1998). A low-power wide-dynamic-
range analog VLSI cochlea. Analog Integrated Circuits and Signal Processing,
16, 3; Postscript copy available on
http://www.pcmp.caltech.edu/anaprose/rahul/cochlea/.

Shepherd, G. M. (1990). The synaptic organization of the brain. Oxford: Oxford
University Press.

Vittoz, E. A. (1990). Future of analog in the VLSI environment. Proceedings of the
International Symposium on Circuits and Systems, 2, 1347–1350.

Von Neumann, J. (1952). Probabilistic logics and the synthesis of reliable organisms
from unreliable components. Lecture delivered at the California Institute of
Technology, Pasadena, CA, January 4–15.

Weiss, T. F. (1996). Cellular biophysics (2 vols.) Cambridge, MA: MIT Press.
Zhang, S., & Trussell, L. O. (1994). A characterization of excitatory postsynaptic

potentials in the avian nucleus magnocellularis. Journal of Neurophysiology,
72, 705–718.

Received February 3, 1997; accepted March 4, 1998.


