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Abstract

This paper defines the notion of analogical dissimilarity between four objects, with a special
focus on objects structured as sequences. Firstly, it studies the case where the four objects have a
null analogical dissimilarity, i.e. are in analogical proportion. Secondly, when one of these objects
is unknown, it gives algorithms to compute it. Thirdly, it tackles the problem of defining analogical
dissimilarity, which is a measure of how far four objects are from being in analogical proportion. In
particular, when objects are sequences, it gives a definition and an algorithm based on an optimal
alignment of the four sequences. It gives also learning algorithms, i.e. methods to find the triple
of objects in a learning sample which has the least analogical dissimilarity with a given object.
Two practical experiments are described: the first is a classification problem on benchmarks of
binary and nominal data, the second shows how the generation of sequences by solving analogical
equations enables a handwritten character recognition system to rapidly be adapted to a new writer.

1. Introduction

Analogy is a way of reasoning that has been studied throughout the history of philosophy and has
been widely used in Artificial Intelligence and Linguistics. We focus in this paper on a restricted
concept of analogy called ‘analogical proportion’.

1.1 Analogical Proportion between Four Elements

An analogical proportion between four elements A, B, C and D in the same universe is usually
expressed as follows: “A is to B as C is to D”. Depending on the elements, analogical proportions1

can have very different meanings. For example, natural language analogical proportions could be:
“a crow is to a raven as a merlin is to a peregrine” or “vinegar is to wine as a

sloe is to a cherry”. They are based on the semantics of the words. By contrast, in the formal
universe of sequences, analogical proportions such as “abcd is to abc as abbd is to abb” or
“g is to gt as gg is to ggt” are morphological.

Whether morphological or not, the examples above show the intrinsic ambiguity in
defining an analogical proportion. We could as well accept, for other good reasons:
“g is to gt as gg is to ggtt” or “vinegar is to wine as vulgar is to wul”. Obviously,
such ambiguities are inherent in semantic analogies, since they are related to the meaning of words
(the concepts are expressed through natural language). Hence, it seems important, as a first step,
to focus on formal morphological properties. Moreover, solving such analogies in sequences is an

1. When there is no ambiguity, we may use ‘analogy’ for short instead of ‘analogical proportion’.
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operational problem in several fields of linguistics, such as morphology and syntax, and provides a
basis to learning and data mining by analogy in the universe of sequences.

In this paper, we will firstly consider analogical proportions in sets of objects and we will sec-
ondly present how they may be transferred to sequences of elements of these sets.

1.2 Solving Analogical Equations

When one of the four elements is unknown, an analogical proportion turns into an equation. For
instance, on sequences of letters, the analogical proportion “wolf is to leaf as wolves is to x”
corresponds to the equation S = {x | wolf is to leaf as wolves is to x}. Resolving this equa-
tion consists in computing the (possibly empty) set S of sequences x which satisfy the analogy. The
sequence leaves is an exact semantic and morphological solution. We shall see that, however, it
is not straightforward to design an algorithm able to solve this kind of equation, in particular when
looking for an approximate solution if necessary.

Solving analogical equations on sequences is useful for linguistic analysis tasks and has been
applied (with empirical resolution techniques, or in simple cases) mainly to lexical analysis tasks.
For example, Yvon (1999) presents an analogical approach to the grapheme-to-phoneme conversion,
for text-to-speech synthesis purposes. More generally, the resolution of analogical equations can
also be seen as a basic component of learning by analogy systems, which are part of the lazy

learning techniques (Daelemans, 1996).

1.3 Using Analogical Proportions in Machine Learning

Let S = {(x, u(x))} be a finite set of training examples, where x is the description of an example
(x may be a sequence or a vector in Rn, for instance) and u(x) its label in a finite set. Given
the description y of a new pattern, we would like to assign to y a label u(y), based only from the
knowledge of S . This is the problem of inductive learning of a classification rule from examples,
which consists in finding the value of u at point y (Mitchell, 1997). The nearest neighbor method,
which is the most popular lazy learning technique, simply finds in S the description x⋆ which
minimizes some distance to y and hypothesizes u(x⋆), the label of x⋆, for the label of y.

Moving one step further, learning from analogical proportions consists in searching in S for a
triple (x⋆, z⋆, t⋆) such that “x⋆ is to z⋆ as t⋆ is to y” and predicts for y the label û(y) which is
solution of the equation “u(x⋆) is to u(z⋆) as u(t⋆) is to û(y)”. If more than one triple is found,
a voting procedure can be used. Such a learning technique is based on the resolution of analogical
equations. Pirrelli and Yvon (1999) discuss the relevance of such a learning procedure for various
linguistic analysis tasks. It is important to notice that y and u(y) are in different domains: for
example, in the simple case of learning a classification rule, y may be a sequence whereas u is a
class label.

The next step in learning by analogical proportions is, given y, to find a triple (x⋆, z⋆, t⋆) in
S such that “x⋆ is to z⋆ as t⋆ is to y” holds almost true, or, when a closeness measure is defined,
the triple which is the closest to y in term of analogical proportion. We study in this article how to
quantify this measure, in order to provide a more flexible method of learning by analogy.
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1.4 Related Work

This paper is related with several domains of artificial intelligence. Obviously, the first one is that
of reasoning by analogy. Much work has been done on this subject from a cognitive science point
of view, which had led to computational models of reasoning by analogy: see for example, the
classical paper (Falkenhainer, Forbus, & Gentner, 1989), the book (Gentner, Holyoak, & Kokinov,
2001) and the recent survey (Holyoak, 2005). Usually, these works use the notion of transfer,
which is not within the scope of this article. It means that some knowledge on solving a problem
in a domain is transported to another domain. Since we work on four objects that are in the same
space, we implicitly ignore the notion of transfer between different domains. Technically speaking,
this restriction allows us to use an axiom called ‘exchange of the means’ to define an analogical
proportion (see Definition 2.1). However, we share with these works the following idea: there may
be a similar relation between two couples of structured objects even if the objects are apparently
quite different. We are interested in giving a formal and algorithmic definition of such a relation.

Our work also aims to define some supervised machine learning process (Mitchell, 1997; Cor-
nuéjols & Miclet, 2002), in the spirit of lazy learning. We do not seek to extract a model from the
learning data, but merely conclude what is the class, or more generally the supervision, of a new
object by inspecting (a part of) the learning data. Usually, lazy learning, like the k-nearest neighbors
technique, makes use of unstructured objects, such as vectors. Since distance measures can be also
defined on strings, trees and even graphs, this technique has also been used on structured objects, in
the framework of structural pattern recognition (see for example the work of Bunke & Caelli, 2004;
Blin & Miclet, 2000; Basu, Bunke, & Del Bimbo, 2005). We extend here the search of the nearest
neighbor in the learning set to that of the best triple (when combined with the new object, it is the
closest to make an analogical proportion). This requires defining what is an analogical proportion
on structured objects, like sequences, but also to give a definition of how far a 4-tuple of objects is
from being in analogy (that we call analogical dissimilarity).

Learning by analogy on sequences has already being studied, in a more restricted manner, on
linguistic data (Yvon, 1997, 1999; Itkonen & Haukioja, 1997). Reasoning and learning by anal-
ogy has proven useful in tasks like grapheme to phoneme conversion, morphology and translation.
Sequences of letters and/or of phonemes are a natural application to our work, but we are also in-
terested in other type of data, structured as sequences or trees, such as prosodic representations for
speech synthesis, biochemical sequences, online handwriting recognition, etc.

Analogical proportions between four structured objects of the same universe, mainly strings,
have been studied with a mathematical and algorithmic approach, like ours, by Mitchell (1993) and
Hofstadter et al. (1994), Dastani et al. (2003), Schmid et al. (2003). To the best of our knowledge
our proposition is original: to give a formal definition of what can be an analogical dissimilarity
between four objects, in particular between sequences, and to produce algorithms that enable the
efficient use of this concept in machine learning practical problems. We have already discussed
how to compute exact analogical proportions between sequences in the paper by Yvon et al. (2004)
and given a preliminary attempt to compute analogical dissimilarity between sequences in the paper
by Delhay and Miclet (2004). Excerpts of the present article have been presented in conferences
(Bayoudh, Miclet, & Delhay, 2007a; Bayoudh, Mouchère, Miclet, & Anquetil, 2007b).

To connect with another field of A.I., let us quote Aamodt and Plaza (1994) about the use of
the term ‘analogy’ in Case-Based Reasoning (CBR): ’Analogy-based reasoning: This term is some-
times used, as a synonym to case-based reasoning, to describe the typical case-based approach.
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However, it is also often used to characterize methods that solve new problems based on past cases
from a different domain, while typical case-based methods focus on indexing and matching strate-
gies for single-domain cases.’ According to these authors, who use the word ‘analogy’ in its broader
meaning, typical CBR deals with single domain problems, as analogical proportions also do. In that
sense, our study could be seen as a particular case of CBR, as applied in this paper to supervised
learning of classification rules.

1.5 Organization of the Paper

This paper is organized in six sections. After this introduction, we present in section 2 the general
principles which govern the definition of an analogical proportion between four objects in the same
set and we define what is an analogical equation in a set. We apply these definitions in Rn and
{0, 1}n. Finally, this section defines analogical proportion between four sequences on an alphabet
in which an analogy is defined, using an optimal alignment method between the four sequences.

Sections 3 introduces the new concept of analogical dissimilarity (AD) between four objects, by
measuring in some way how much these objects are in analogy. In particular, it must be equivalent
to say that four objects are in analogy and that their analogical dissimilarity is null. Then we extend
it to sequences. The end of this section gives two algorithms: SEQUANA4 computes the value of
AD between four sequences and SOLVANA solves analogical equations in a generalized manner:
it can produce approximate solutions (i.e. of strictly positive AD).

Section 4 begins to explore the use of the concept of analogical dissimilarity in supervised
machine learning. We give an algorithm (FADANA) for the fast search of the k-best analogical
3-tuples in the learning set.

Section 5 presents two applications of these concepts and algorithms on real problems. We
firstly apply FADANA to objects described by binary and nominal features. Experiments are con-
ducted on classical benchmarks and favorably compared with standard classification techniques.
Secondly, we make use of SOLVANA to produce new examples in a handwritten recognition sys-
tem. This allows training a classifier from a very small number of learning patterns.

The last section presents work to be done, particularly in discussing more real world application
of learning by analogy, especially in the universe of sequences.

2. Analogical Proportions and Equations

In this section, we give a formal definition of the analogical proportion between four objects and
explain what is to solve an analogical equation. Instanciations of the general definitions are given
when the objects are either finite sets (or equivalently binary vectors), or vectors of real numbers or
sequences on finite alphabets.

2.1 The Axioms of Analogical Proportion

The meaning of an analogical proportion A : B :: C : D between four objects in a set X depends
on the nature of X, in which the ‘is to’ and the ‘as’ relations have to be defined. However, general
properties can be required, according to the usual meaning of the word ’analogy’ in philosophy and
linguistics. According to Lepage (2003) three basic axioms can be given:

Definition 2.1 (Analogical proportion) An analogical proportion on a set X is a relation on X4,

i.e. a subset A ⊂ X4. When (A,B,C,D) ∈ A, the four elements A, B, C and D are said to be
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in analogical proportion, and we write: ‘the analogical proportion A : B :: C : D holds true’,

or simply A : B :: C : D , which reads ‘A is to B as C is to D’. For every 4-tuple in analogical

proportion, the following equivalences must hold true:

Symmetry of the ‘as’ relation: A : B :: C : D ⇔ C : D :: A : B

Exchange of the means: A : B :: C : D ⇔ A : C :: B : D

The third axiom (determinism) requires that one of the two following implications holds true

(the other being a consequence):

A : A :: B : x ⇒ x = B
A : B :: A : x ⇒ x = B

According to the first two axioms, five other formulations are equivalent to the canonical form
A : B :: C : D :

B : A :: D : C D : B :: C : A C : A :: D : B

D : C :: B : A and B : D :: A : C

Consequently, there are only three different possible analogical proportions between four objects,
with the canonical forms:

A : B :: C : D A : C :: D : B A : D :: B : C

2.2 Analogical Equations

To solve an analogical equation consists in finding the fourth term of an analogical proportion, the
first three being known.

Definition 2.2 (Analogical equation) D is a solution of the analogical equation A : B :: C : x if

and only if A : B :: C : D .

We already know from previous sections that, depending on the nature of the objects and the defini-
tion of analogy, an analogical equation may have either no solution or a unique solution or several
solutions. We study in the sequel how to solve analogical equations in different sets.

2.3 Analogical Proportion between Finite Sets and Binary Objects

When the ‘as’ relation is the equality between sets, Lepage has given a definition of an analogical
proportion between sets coherent with the axioms. This will be useful in section 2.3.2 in which
objects are described by sets of binary features.

2.3.1 AN ANALOGICAL PROPORTION IN FINITE SETS

Definition 2.3 (Analogical proportion between finite sets) Four sets A, B, C and D are in ana-

logical proportion A : B :: C : D if and only if A can be transformed into B, and C into D, by

adding and subtracting the same elements to A and C .

This is the case, for example, of the four sets: A = {t1, t2, t3, t4, }, B = {t1, t2, t3, t5} and C =
{t1, t4, t6, t7}, D = {t1, t5, t6, t7}, where t4 has been taken off from, and t5 has been added to A
and C , giving B and D.
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2.3.2 SOLVING ANALOGICAL EQUATIONS IN FINITE SETS

Considering analogy in sets, Lepage (2003) has shown the following theorem, with respect to the
axioms of analogy (section 2.1):

Theorem 2.4 (Solution of an analogical equation in sets) Let A, B and C be three sets. The ana-

logical equation A : B :: C : D where D is the unknown has a solution if and only if the following

conditions hold true:

A ⊆ B ∪ C and A ⊇ B ∩ C

The solution is then unique, given by:

D = ((B ∪ C)\A) ∪ (B ∩ C)

2.3.3 ANALOGICAL PROPORTIONS IN {0, 1}n

Let now X be the set {0, 1}n. For each x ∈ X and each i ∈ [1, n], fi(x) = 1 (resp. fi(x) = 0)
means that the binary feature fi takes the value TRUE (resp. FALSE) on the object x.

Let A : B :: C : D be an analogical equation. For each feature fi, there are only eight different
possibilities of values on A, B and C . We can derive the solutions from the definition and properties
of analogy on sets, with the two following principles:

• Each feature fi(D) can be computed independently.

• The following table gives the solution fi(D):

fi(A) 0 0 0 0 1 1 1 1
fi(B) 0 0 1 1 0 0 1 1
fi(C) 0 1 0 1 0 1 0 1
fi(D) 0 1 1 ? ? 0 0 1

In two cases among the eight, fi(D) does not exists. This derives from the defining of X by binary
features, which is equivalent to defining X as a finite set. Theorem 2.4 imposes conditions on the
resolution of analogical equations on finite sets, which results in the fact that two binary analogical
equations have no solution.

2.4 Analogical Proportion in Rn

2.4.1 DEFINITION

Let O be the origin of Rn. Let a = (a1, a2, . . . , an)⊺ be a vector of Rn, as defined by its n
coordinates. Let a, b, c and d be four vectors of Rn. The interpretation of an analogical proportion
a : b :: c : d is usually that a, b, c, d are the corners of a parallelogram, a and d being opposite
corners (see Figure 1).

Definition 2.5 (Analogical proportion in Rn) Four elements of Rn are in the analogical propor-

tion (a : b :: c : d) if and only if they form a parallelogram, that is when
−→
Oa +

−→
Od =

−→
Ob +

−→
Oc

or equivalently
−→
ab =

−→
cd or equivalently −→ac =

−→
bd

It is straightforward that the axioms of analogy, given in section 2.1 are verified by this definition.
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a

b

c

d

Figure 1: Analogical parallelogram in Rn.

2.4.2 SOLVING ANALOGICAL EQUATIONS IN Rn

Solving the analogical equation a : b :: c : x , where a, b and c are vectors of Rn and x is the
unknown derives directly from the definition of analogy in vector spaces: the four vectors must
form a parallelogram. There is always one and only one solution given by the equation:

−→
Ox =

−→
Ob +

−→
Oc −

−→
Oa

2.5 Analogical Proportion between Sequences

2.5.1 NOTATIONS

A sequence2 is a finite series of symbols from a finite alphabet Σ. The set of all sequences is denoted
Σ⋆. For x, y in Σ⋆, xy denotes the concatenation of x and y. We also denote | x | = n the length
of x, and we write x as x = x1 . . . x|x| or x = x[1] . . . x[n], with xi or x[i] ∈ Σ. We denote ǫ the
empty word, of null length, and Σ+ = Σ⋆\{ǫ}.

A factor (or subword) f of a sequence x is a sequence in Σ⋆ such that there exists two sequences
u and v in Σ⋆ with: x = ufv. For example, abb and bbac are factors of abbacbbaba.

A subsequence of a sequence x = x1 . . . x|x| is composed of the letters of x with the indices
i1 . . . ik, such that i1 < i2 . . . < ik. For example, ca and aaa are two subsequences of abbacbaba.

2.5.2 DEFINITION

Let Σ be an alphabet. We add a new letter to Σ, that we denote ∽, giving the augmented alphabet
Σ′. The interpretation of this new letter is simply that of an ‘empty’ symbol, that we will need in
subsequent sections.

Definition 2.6 (Semantic equivalence) Let x be a sequence of Σ⋆ and y a sequence of Σ′⋆. x and

y are semantically equivalent if the subsequence of y composed of letters of Σ is x. We denote this

relation by ≡.

For example, ab ∽ a ∽ a ≡ abaa.
Let us assume that there is an analogy in Σ′, i.e. that for every 4-tuple a, b, c, d of letters of Σ′,

the relation a : b :: c : d is defined as being either TRUE or FALSE.

Definition 2.7 (Alignment between two sequences) An alignment between two sequences x, y ∈
Σ⋆, of lengths m and n, is a word z on the alphabet (Σ′) × (Σ′)�{(∽,∽)} whose first projection

is semantically equivalent to x and whose second projection is semantically equivalent to y.

2. More classically in language theory, a word or a sentence.
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Informally, an alignment represents a one-to-one letter matching between the two sequences, in
which some letters ∽ may be inserted. The matching (∽,∽) is not permitted. An alignment can
be presented as an array of two rows, one for x and one for y, each word completed with some ∽,
resulting in two words of Σ′ having the same length.

For instance, here is an alignment between x = abgef and y = acde :

x′

y′

=

=

a
|
a

b
|
c

∽

|
d

g
|
∽

e
|
e

f
|
∽

We can extend this definition to that of an alignment between four sequences.

Definition 2.8 (Alignment between four sequences) An alignment between four sequences

u, v, w, x ∈ Σ∗, is a word z on the alphabet (Σ ∪ {∽})4�{(∽,∽,∽,∽)} whose projection on

the first, the second, the third and the fourth component is respectively semantically equivalent to

u, v, w and x.

The following definition uses alignments between four sequences.

Definition 2.9 (Analogical proportion between sequences) Let u, v, w and x be four sequences

on Σ⋆, on which an analogy is defined. We say that u, v, w and x are in analogical proportion in Σ⋆

if there exists four sequences u′, v′, w′ and x′ of same length n in Σ′, with the following properties:

1. u′ ≡ u, v′ ≡ v, w′ ≡ w and x′ ≡ x.

2. ∀i ∈ [1, n] the analogies u′
i : v′i :: w′

i : x′
i hold true in Σ′.

One has to note that Lepage (2001) and Stroppa and Yvon (2004) have already proposed a defi-
nition of an analogical proportion between sequences with applications to linguistic data. Basically,
the difference is that they accept only trivial analogies in the alphabet (such as a : b :: a : b or
a :∽:: a :∽).

For example, let Σ′ = {a, b, α, β,B,C,∽} with the non trivial analogies a : b :: A : B ,
a : α :: b : β and A : α :: B : β . The following alignment between the four sequences aBA,
αbBA, ba and βba is an analogical proportion on Σ⋆:

a
α
b
β

∽

b
∽

b

B
B
a
a

A
A
∽

∽

3. Analogical Dissimilarity

3.1 Motivation

In this section, we are interested in defining what could be a relaxed analogy, which linguistic
expression would be ‘a is to b almost as c is to d’. To remain coherent with our previous definitions,
we measure the term ‘almost’ by some positive real value, equal to 0 when the analogy stands true,
and increasing when the four objects are less likely to be in analogy. We also want this value, that we
call ‘analogical dissimilarity’ (AD), to have good properties with respect to the analogy. We want it
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to be symmetrical, to stay unchanged when we permute the mean terms of the analogy and finally
to respect some triangle inequality. These requirements will allow us, in section 4, to generalize
a classical fast nearest neighbor search algorithm and to exhibit an algorithmic learning process
which principle is to extract, from a learning set, the 3-tuple of objects that has the least AD when
combined with another unknown object. This lazy learning technique is a therefore a generalization
of the nearest neighbor method.

We firstly study the definition of the analogical dissimilarity on the same structured sets as in
the previous sections, and secondly extend it to sequences.

3.2 A Definition in {0, 1}n

Definition 3.1 (Analogical dissimilarity in {0, 1}) The analogical dissimilarity between four bi-

nary values is given by the following table:
u 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

v 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

w 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

AD(u, v, w, t) 0 1 1 0 1 0 2 1 1 2 0 1 0 1 1 0

In other words, the AD between four binary values is the minimal number of bits that have to be
switched in order to produce an analogical proportion. It can be seen as an extension of the edit
distance in four dimensions which supports the coherence with analogy.

Definition 3.2 (Analogical dissimilarity in {0, 1}n) The analogical dissimilarity AD(u, v, w, t) be-

tween four objects u, v, w and t of a finite set X defined by binary features is the sum of the values

of the analogical dissimilarities between the features.

3.2.1 PROPERTIES

With this definition, the analogical dissimilarity has the following properties:

Property 3.1 (Properties of AD in {0, 1}n)

Coherence with analogy.

(AD(u, v, w, x) = 0) ⇔ u : v :: w : x

Symmetry for ‘as’. AD(u, v, w, x) = AD(w, x, u, v)

Exchange of medians. AD(u, v, w, x) = AD(u,w, v, x)

Triangle inequality. AD(u, v, z, t) ≤ AD(u, v, w, x) + AD(w, x, z, t)

Asymmetry for ‘is to’. In general: AD(u, v, w, x) �= AD(v, u,w, x)

The first properties are quite straightforward from the definition. The demonstration of the third one
is simple as well. If the property

AD(fi(u), fi(v), fi(z), fi(t)) ≤ AD(fi(u), fi(v), fi(w), fi(x))

+ AD(fi(w), fi(x), fi(z), fi(t))
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Figure 2: Analogical dissimilarity in vector spaces with distance δ2.

holds true for every 6-tuple of elements and every feature fi, then property (4) is true. The demon-
stration being done by examining all possible cases: it is impossible to find 6 binary features a, b,
c, d, e, f such that AD(a, b, e, f) = 2 and AD(a, b, c, d) + AD(c, d, e, f) < 2. More precisely,
if AD(a, b, e, f) = 2, AD(a, b, c, d) + AD(c, d, e, f) is also equal to 2 for all the four values that
(c, d) can take.

3.3 Analogical Dissimilarity in Rn

The analogical dissimilarity between four vectors must reflect in some way how far they are from
constructing a parallelogram. Four vectors u, v, w and x are in analogical proportion (i.e., form a
parallelogram) with opposite sides −→uv and −→wx if and only if

−→
Ou +

−→
Ox =

−→
Ov +

−→
Ow, or equivalently

u + x = v + w, we have chosen the following definition (see Figure 2):

Definition 3.3 (Analogical dissimilarity between vectors) The analogical dissimilarity between

four vectors u, v, w and x of Rn in which is defined the norm ‖ ‖p and the corresponding distance

δp is given by the real positive value AD(u, v, w, x) = δp(u + x, v + w) = ‖(u + x)− (v + w)‖p.

It is also equal to δp(t, x), where t is the solution of the analogical equation u : v :: w : t.

Property 3.2 (Properties of AD between vectors) This definition of analogical dissimilarity in

Rn guarantees that the following properties hold true: coherence with analogy, symmetry for ‘as’,

exchange of medians, triangle inequality and asymmetry for ‘is to’.

The first two properties are quite straightforward from the definition. Since ‖ ‖p is a norm, it
respects the triangle inequality which involves the third property:

AD(u, v, z, t) ≤ AD(u, v, w, x) + AD(w, x, z, t)

3.4 Analogical Dissimilarity between Sequences

We present in the following a definition and two algorithms. Firstly, we extend the notion of ana-
logical dissimilarity to sequences. The first algorithm, called SEQUANA4, computes the analogical
dissimilarity between four sequences of Σ⋆. The second one, called SOLVANA, given an analogical
equation on sequences, produces the Directed Acyclic Graph (DAG) of all the solutions. If there is
no solution, it gives the DAG of all the sentences that have the least analogical dissimilarity when
associated with the three known sentences of the equation.
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These two algorithms are quite general, since they make no particular assumption on the al-
phabet of the sequences. This alphabet Σ is simply augmented to Σ′ = Σ ∪ {∽} to produce
alignments as described in section 2.5. The analogical dissimilarity on Σ′ must be such that:
AD(∽,∽, a, a) = 0, and AD(∽, a, b, c) > 0 for every a, b, c ∈ Σ, but no more constraint is
required.

3.4.1 DEFINITION

Let Σ be a set on which is defined an analogical dissimilarity AD. We augment it to Σ′ by adding
the special symbol ∽. We assume now that there is an analogical dissimilarity AD on Σ′.

Definition 3.4 (Analogical dissimilarity between four sequences) The cost of an alignment be-

tween four sequences is the sum of the analogical dissimilarities between the 4-tuples of letters

given by the alignment.

The analogical dissimilarity AD(u, v, w, x) between four sequences in Σ⋆ is the cost of an

alignment of minimal cost of the four sequences.

This definition ensures that the following properties hold true: coherence with analogy, symmetry
for ‘as’, exchange of medians and asymmetry for ‘is to’3.

Depending on what are we looking for, many methods have been developed for multiples align-
ment in bio-informatics (Needleman & Wunsch, 1970; Smith & Waterman, 1981) :

1. For structure or functional similarity like in protein modelization, pattern identification or
structure prediction in DNA, methods using simultaneous alignment like MSA (Wang &
Jiang, 1994) or DCA (Dress, Füllen, & Perrey, 1995), or iterative alignment like MUSCLE
(Edgar, 2004) are the best.

2. For Evolutionary similarity like in phylogenic classification, methods using progressive align-
ment and tree structure, like ClustalW (Thompson, Higgins, & Gibson, 1994), are the most
fitted.

However, all of these alignment methods (global or local) are heuristic algorithms to overcome the
problem of time and space complexity introduced first by the length of sequences and second by the
number of the sequences to align. In our generation problem neither the sequence length which is
around 30 characters nor the number of sequences to align which is always four in analogy need a
heuristic alignment to speed up the algorithm. But techniques used in bio-informatics to compute
automatically the substitution matrix could be very helpful and interesting in handwritten characters
recognition. Introducing Gap (Gep, Gop) penalties like in DNA or protein sequences should also be
an interesting idea to explore.

3.5 Computing the Analogical Dissimilarity between Four Sequences: the SEQUANA4

Algorithm

We compute AD(u, v, w, x) with a dynamic programming algorithm, called SEQUANA4, that pro-
gresses in synchronicity in the four sequences to build an optimal alignment.

3. With this definition of AD, the ‘triangle inequality’ property is not always true on sequences.
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The input of this algorithm is the augmented alphabet Σ′ on which there an analogical dis-
similarity AD(a, b, c, d). The output is the analogical dissimilarity between four sentences of Σ⋆,
namely AD(u, v, w, x).

We give below the basics formulas of the recurrence. When implementing the computation, one
has to check the correct progression of the indexes i, j, k and l.

Initialisation

Cu0v0

w0x0
← 0 ;

for i = 1, |u| do Cuiv0

w0x0
← C

ui−1v0

w0x0
+ AD(ui,∽,∽,∽) done ;

for j = 1, |v| do C
u0vj
w0x0

← C
u0vj−1

w0x0
+ AD(∽, vj ,∽,∽) done ;

for k = 1, |w| do Cu0v0

wkx0
← Cu0v0

wk−1x0
+ AD(∽,∽, wk,∽) done ;

for l = 1, |x| do Cu0v0

w0xl
← Cu0v0

w0xl−1
+ AD(∽,∽,∽, xl) done ;

Recurrence

C
uivj
wkxl

= Min

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
ui−1vj−1

wk−1xl−1
+ AD(ui, vj , wk, xl)

[
i ← i + 1; j ← j + 1; k ← k + 1; l ← l + 1

]

C
ui−1vj−1

wk−1xl
+ AD(ui, vj , wk,∽)

[
i ← i + 1; j ← j + 1; k ← k + 1

]

C
ui−1vj−1

wkxl−1
+ AD(ui, vj ,∽, xl)

[
i ← i + 1; j ← j + 1; l ← l + 1

]

C
ui−1vj−1

wkxl
+ AD(ui, vj ,∽,∽)

[
i ← i + 1; j ← j + 1

]

C
uivj−1

wk−1xl−1
+ AD(∽, vj , wk, xl)

[
j ← j + 1; k ← k + 1; l ← l + 1

]

C
uivj−1

wkxl−1
+ AD(∽, vj ,∽, xl)

[
j ← j + 1; l ← l + 1

]

C
uivj−1

wk−1xl
+ AD(∽, vj , wk,∽)

[
i ← i + 1; k ← k + 1

]

C
uivj−1

wkxl
+ AD(∽, vj ,∽,∽)

[
j ← j + 1

]

C
ui−1vj
wk−1xl−1

+ AD(ui,∽, wk, xl)
[
i ← i + 1; j ← j + 1; l ← l + 1

]

C
ui−1vj
wkxl−1

+ AD(ui,∽,∽, xl)
[
i ← i + 1; l ← l + 1

]

C
ui−1vj
wk−1xl

+ AD(ui,∽, wk,∽)
[
i ← i + 1; k ← k + 1

]

C
ui−1vj
wkxl

+ AD(ui,∽,∽,∽)
[
i ← i + 1

]

C
uivj
wk−1xl−1

+ AD(∽,∽, wk, xl)
[
k ← k + 1; l ← l + 1

]

C
uivj
wkxl−1

+ AD(∽,∽,∽, xl)
[
l ← l + 1

]

C
uivj
wk−1xl

+ AD(∽,∽, wk,∽)
[
k ← k + 1

]

End

When i = |u| and j = |v| and k = |w| and l = |x|.
Result

C
u|u|v|v|
w|w|x|x|

is AD(u, v, w, x) in Σ⋆.
Complexity

This algorithms runs in a time complexity in O
(
|u|.|v|.|w|.|x|

)
.

Correctness

The correctness of this algorithm is demonstrated by recurrence, since it uses the dynamic pro-
gramming principles. It requires only the analogical dissimilarity in Σ′ to have the properties that
we have called: coherence with analogy, symmetry for ‘as’ and exchange of medians. The triangle

inequality property is not necessary.
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3.6 Generalized Resolution of Analogical Equations in Sequences: the SOLVANA Algorithm

3.6.1 APPROXIMATE SOLUTIONS TO AN ANALOGICAL EQUATION

Up to now, we have considered that an analogical equation has either one (or several) exact solutions,
or no solution. In the latter case, the concept of analogical dissimilarity is useful to define an
approximate solution.

Definition 3.5 (Best approximate solution to an analogical equation) Let X be a set on which is

defined an analogy and an analogical dissimilarity AD. Let a : b :: c : x be an analogical

equation in X. The set of best approximate solutions to this equation is given by:

{
y : arg min

y∈X

AD(a, b, c, y)
}

In other words, the best approximate solutions are the objects y ∈ X that are the closest to be
in analogical proportion with a, b and c. Obviously, this definition generalizes that of a solution
to an analogical equation given at section 2.2. Since we have defined AD with good properties on
several alphabets and on sequences on these alphabets, we can compute an approximate solution to
analogical equations in all these domains.

We can easily enlarge this concept and define the set of the k-best solutions to the analogical
equation a : b :: c : x . Informally, it is any subset of k elements of X which have a minimal AD
when associated in fourth position with a, b and c.

In Rn and {0, 1}n, there is only one best approximate solution to an analogical equation, which
can be easily computed (see sections 3.2 and 3.3). Finding the set of the k-best solutions is also a
simple problem.

Let us turn now to an algorithm which finds the set of the best approximate solutions to the
equation u : v :: w : x when the objects are sequences on an alphabet on which an AD has been
defined. We will also make some comments to extend its capacity to find the set of the k-best
solutions.

3.6.2 THE SOLVANA ALGORITHM

This algorithm uses dynamic programming to construct a 3-dimensional array. When the construc-
tion is finished, a backtracking is performed to produce the DAG of all the best solutions.

An alignment of four sequences of different lengths is realized by inserting letters ∽ so that all
the four sequences have the same length. Once this is done, we consider in each column of the
alignment the analogical dissimilarity in the augmented alphabet.

We construct a three dimensional n1 × n2 × n3 matrix M (respectively the length of the first,
second and third sequences A, B and C of the analogical equation ‘A is to B as C is to x’).
To find the fourth sequence, we fill up M with the following recurrence:
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M [i, j, k]
1≤i,j,k≤n1,n2,n3

= Min

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M [i − 1, j − 1, k − 1] + Min
x∈Σ′

AD(ai, bj, ck, x)

M [i, j − 1, k − 1] + Min
x∈Σ′

AD(∽, bj , ck, x)

M [i, j, k − 1] + Min
x∈Σ′

AD(∽,∽, ck, x)

M [i, j − 1, k] + Min
x∈Σ′

AD(∽, bj ,∽, x)

M [i − 1, j, k − 1] + Min
x∈Σ′

AD(ai,∽, ck, x)

M [i − 1, j − 1, k] + Min
x∈Σ′

AD(ai, bj ,∽, x)

M [i − 1, j, k] + Min
x∈Σ′

AD(ai,∽,∽, x)

ai is the ith object of the sequence A. Σ′ = Σ ∪ {∽}.

At each step, we save in the cell M [i, j, k] not only the cost but also the letter(s) found by analogical
resolution along the optimal way of progression. When M is completed, a backward propagation
gives us all the optimal generated sequences with the same optimal analogical dissimilarity, stru-
cured as a DAG.
The computational complexity of this algorithm is O(m ∗ n3), where m = Card(Σ′) and n is the
maximum length of sequences

3.6.3 EXAMPLE

Let Σ = {a, b, c, A,B,C} be an alphabet defined by 5 binary features, as follows:

f1 f2 f3 f4 f5

a 1 0 0 1 0
b 0 1 0 1 0
c 0 0 1 1 0
A 1 0 0 0 1
B 0 1 0 0 1
C 0 0 1 0 1
∽ 0 0 0 0 0

The first three features indicates what is the letter (for example, f1 is true on a and A only) and the
last two indicate the case of the letter (f4 holds true for lower case letters, f5 for upper case letters).

For example, let ab : Bc :: Bc : x be an analogical equation. There is no exact solution, but six
best approximate solutions y such that AD(ab,Bc,Bc, y) = 4, for example y = BB or y = Cc.
Figure 3 displays the DAG of the results produced by SOLVANA on this example.

4. Analogical Dissimilarity and Machine Learning

4.1 Motivation

We assume here that there exists an analogy defined on the set X and an analogical dissimilarity
AD with the following properties: coherence with analogy, symmetry for ‘as’, triangle inequality,
exchange of medians and asymmetry for ‘is to’.

Let S be a set of elements of X, which is of cardinality m, and let y be another element of X
with y �∈ S. The problem that we tackle in this section is to find the triple of objects (u, v, w) in S
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Figure 3: Result of SOLVANA: the DAG of all best approximate solutions to an analogical equation

on sequences. Each path displays a different alignment of optimal cost.

such that:

AD(u, v, w, y) = arg min
t1,t2,t3∈S

AD(t1, t2, t3, y)

This will directly lead us to use the notion of AD in supervised machine learning, e.g. of a classifi-
cation rule.

4.2 The Brute Force Solution

An obvious solution is to examine all the triples in S . This brute force method requires m3 calls
to a procedure computing the analogical dissimilarity between four objects of X. According to
the properties of analogical dissimilarity, this number can actually be divided by 8, but it does not
change the theoretical and practical complexity of the search.

The situation is similar to that of the search for the nearest neighbor in Machine Learning, for
which the naive algorithm requires m distance computations. Many proposals have been made to
decrease this complexity (see for example the work of Chávez, Navarro, Baeza-Yates, & Marroquín,
2001). We have chosen to focus on an extension of the AESA algorithm, based on the property
of triangle inequality for distances (Micó, Oncina, & Vidal, 1994). Since we have defined the
concept of analogical dissimilarity with a similar property, it is natural to explore how to extend this
algorithm.
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4.3 ‘FADANA’: FAst search of the least Dissimilar ANAlogy

This section describes a fast algorithm to find, given a set of objects S of cardinalty m and an
object y, the three objects (z⋆, t⋆, x⋆) in S such that the analogical dissimilarity AD(z⋆, t⋆, x⋆, y)
is minimal. It is based on the AESA technique, which can be extended to analogical dissimilarity.
Thanks to its properties, an analogical dissimilarity AD(z, t, x, y) can be seen as a distance between
the two couples (z, t) and (x, y), and consequently we will basically work on couples of objects. We
use equivalently in this paragraph the terms ‘(analogical) distance between the two couples (u, v)
and (w, x)’ and ‘(analogical) dissimilarity between the four elements u, v, w and x’ to describe
AD(u, v, w, x).

4.3.1 PRELIMINARY COMPUTATION

In this part, which is done off line, we have to compute the analogical dissimilarity between every
four objects in the data base. This step has a complexity in time and space of O(m4), where m
is the size of S . We will come back to this point in section 4.4, where we will progress from an
AESA-like to a LAESA-like technique and reduce the computational complexity.

4.3.2 PRINCIPLE OF THE ALGORITHM

The basic operation is to compose a couple of objects by adding to y an object xi ∈ S where i =
1,m. The goal is now to find the couple of objects in S having the lowest distance with (xi, y), then
to change xi into xi+1. Looping m times on an AESA-like select and eliminate technique insures to
finally find the triple in S having the lowest analogical dissimilarity when associated with y.

4.3.3 NOTATIONS

Let us denote:

• C the set of couples (u, v) which distance to (xi, y) has already been computed.

• δ = arg min
(z,t)∈U

(AD(z, t, xi, y))

• δi = arg min
(z,t)∈U ,1≤j≤i

(AD(z, t, xi, y))

• Dist = {AD(z, t, xi, y), (z, t) ∈ C}

• Dist(j) the jth element of Dist

• QuadU = {(z, t, xi, y), (z, t) ∈ C}

• QuadU (j) the jth element of QuadU

The algorithm is constructed in the three following phases:

4.3.4 INITIALIZATION

Each time that xi changes (when i is increased by 1), the set U is refilled with all the possible
couples of objects ∈ S.
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The set C and Dist which contain respectively the couples and the distances to (xi, y) that have
been measured during one loop, are initialized as empty sets.

The local minimum Min, containing the minimum of analogical dissimilarities of one loop is
set to infinity.

k = Card(C) represents the number of couples where the distance have been computed with
(xi, y) in the current loop. k is initialized to zero.

Algorithm 1 Algorithm FADANA: initialization.
begin

U ← {(xi, xj), i = 1, m and j = 1, m};
C ← ∅;
Min ← +∞;
Dist ← ∅;
k ← 0;
end

4.3.5 SELECTION

The goal of this function is to extract from the set U the couple (zz, tt) that is the more promising
in terms of the minimum analogical dissimilarity with (xi, y), using the criterion:

(zz, tt) = arg min
(u,v)∈U

Max
(z,t)∈C

∣
∣ AD(u, v, z, t) − AD(z, t, xi, y)

∣
∣

Algorithm 2 Algorithm FADANA: selection of the most promising couple.
selection(U , C, (xi, y), Dist)
begin

s ← 0
for i = 1, Card(U) do

if s ≤
∑

j∈C
|AD(zj , tj , ui, vi) − Dist(j)| then

s ←
∑

j∈C
|AD(zj , tj , ui, vi) − Dist(j)|;

argmin ← i;
end if

end for

Return (uarg min, varg min);
end

4.3.6 ELIMINATION

During this section all the couples (u, v) ∈ U where the analogical distance with (xi, y) can not be
less than what we already found are eliminated thanks to the two criteria below:

AD(u, v, z, t) ≤ AD(z, t, y, xi) − δ ⇒ AD(u, v, xi, y) ≥ δ

and
AD(u, v, z, t) ≥ AD(z, t, y, xi) + δ ⇒ AD(u, v, xi, y) ≥ δ
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where δ = AD(z⋆, t⋆, x⋆, y) represents the minimum analogical dissimilarity found until now (see
figure 4). Note that δ is updated during the whole algorithm and is never reinitialized when i is
increased.

Algorithm 3 Algorithm FADANA: elimination of the useless couples.
eliminate(U , C, (xi, y), δ, k)
(zk, tk) is the kth element of QuadU
begin

for i = 1, Card(U) do

if AD(zk, tk, ui, vi) ≤ Dist(k) + δ then

U ← U − {(ui, vi)};
C ← C ∪ {(ui, vi)};

else if AD(zk, tk, ui, vi) ≥ Dist(k) − δ then

U ← U − {(ui, vi)};
C ← C ∪ {(ui, vi)};

end if

end for

end

Algorithm 4 Algorithm FADANA: main procedure.
begin

S ← {xi, i = 1, m};
AD� ← +∞;
for i = Card(S) do

Initialize;
while U �= ∅ do

(z, t) ← selection(U , C, (xi, y), Dist);
Dist(k) ← AD(z, t, xi, y);
k = k + 1;
U ← U − {(z, t)};
C ← C ∪ {(z, t)};
if Dist(k) ≥ Min then

eliminate(U , C, (xi, y), δ, k)
else

Min ← Dist(k);
if Dist(k) < AD� then

AD� ← Dist(k);
z� ← z, t� ← t, x� ← xi;

end if

for k = 1, Card(C) do

eliminate(U , C, (xi, y), δ, k)
end for

end if

end while

end for

The best triple in S is (z�, t�, x�) ;
The least analogical dissimilarity is AD� = AD(z�, t�, x�, y) ;
end
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Figure 4: Elimination process in FADANA.

4.4 Selection of Base Prototypes in FADANA

So far, FADANA has the drawback of requiring a precomputing time and storage in O(m4), which
is in practice impossible to handle for m > 100.

To go further, we have devised an ameliorated version of the FADANA algorithm, in which the
preliminary computation and storage is limited to N.m2, where N is a certain number of couples of
objects. The principle is similar to that of LAESA (Micó et al., 1994). N base prototypes couples
are selected among the m2 possibilities through a greedy process, the first one being chosen at
random, the second one being as far as possible from the first one, and so on. The distance between
couples of objects is, according to the definition of the analogical dissimilarity:

δ
(
(x, y), (z, t)

)
= AD(z, t, x, y)

4.5 Efficiency of FADANA

We have conducted some experiments to measure the efficiency of FADANA. We have tested this
algorithm on four databases from the UCI Repository (Newman, Hettich, Blake, & Merz, 1998), by
noting each time the percentage of AD computed in-line for different numbers of base prototypes
compared to those made by the naive method (see Figure 5, the scales are logarithmic). The number
of base prototypes is expressed as percentage on the learning set. Obviously, if the learning set
contains m elements, the number of possible 3-tuples that can be built is m3. This point explains
why the percentage of base prototypes compared to the size of the learning set can rise above 100%.
The number of in-line computations of the AD is the mean over the test set.

We observe in these results that the optimal number of base prototypes is between 10% and 20%
if we aim to optimize the computation time performance.

5. Two Applications in Machine Learning Problems

5.1 Classification of Objects Described by Binary and Nominal Features

The purpose of this first experiment is to measure the benefit of analogical dissimilarity applied to
a basic problem of classification, compared to standard classifiers such k-nearest neighbors, neural
networks, and decision trees. In this benchmarking, we are not yet interested in classifying se-
quences, but merely to investigate what the basic concept of analogical dissimilarity can bring to
the learning of a classification rule for symbolic objects.
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Figure 5: Efficiency of FADANA w.r.t. the number of base prototypes

5.1.1 METHOD DESCRIPTION

Let S =
{(

oi, h(oi)
)
| 1 ≤ i ≤ m

}
be a learning set, where h(oi) is the class of the object oi. The

objects are defined by binary attributes. Let x be an object not in S . The learning problem is to find
the class of a new object x, using the learning set S . To do this, we define a learning rule based on
the concept of analogical dissimilarity depending on an integer k, which could be called the k least

dissimilar 3-tuple rule.
The basic principle is the following: among all the 3-tuples (a, b, c) in S3, we consider the subset

of those which produce the least analogical dissimilarity when associated with x (the FADANA
algorithm is used here). For a part of them, the analogical equation h(a) : h(b) :: h(c) : g has an
exact solution in the finite set of the classes. We keep only these 3-tuples and we choose the class
which takes the majority among these values g as the class for x.

More precisely, the procedure is as follows:

1. Compute the analogical dissimilarity between x and all the n 3-tuples in S which produce a
solution for the class of x.

2. Sort these n 3-tuples by the increasing value of their AD when associated with x.

3. If the k-th object has the value p, then let k′ be the greatest integer such that the k′-th object
has the same value p.

4. Solve the k′ analogical equations on the label of the class. Take the winner of the votes among
the k′ results.

To explain, we firstly consider the case where there are only two classes ω0 and ω1. An example
with 3 classes will follow.

Point 1 means that we retain only the 3-tuples which have one of the four4 configurations for
their class displayed in Table 1. We ignore the 3-tuples that do not lead to an equation with a trivial
solution on classes:

4. There are actually two more, each one equivalent to one of the four (by exchange of the means objects).
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h(a) : h(b) :: h(c) : h(x) resolution
ω0 : ω0 :: ω0 : ? h(x) = ω0

ω1 : ω0 :: ω1 : ?
ω1 : ω1 :: ω1 : ? h(x) = ω1

ω0 : ω1 :: ω0 : ?

Table 1: Possible configurations of a 3-tuple

o1 o2 o3 h(o1) h(o2) h(o3) h(x) AD k
b a d ω0 ω0 ω1 ω1 0 1
b d e ω0 ω1 ω2 ⊥ 1
c d e ω1 ω1 ω2 ω2 1 2
a b d ω0 ω0 ω1 ω1 1 3
c a e ω1 ω0 ω2 ⊥ 2
d c e ω1 ω1 ω2 ω2 2 4
d b c ω1 ω0 ω1 ω0 2 5
a c e ω0 ω1 ω2 ⊥ 2
a c c ω0 ω1 ω1 ⊥ 3
a b e ω0 ω0 ω2 ω2 3 6
b a e ω0 ω0 ω2 ω2 3 7
b c d ω0 ω1 ω1 ⊥ 3
c c c ω1 ω1 ω1 ω1 4 8
a a c ω0 ω0 ω1 ω1 4 9

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2: An example of classification by analogical dissimilarity. Analogical proportions whose
analogical resolution on classes have no solution (represented by ⊥) are not taken into
account. AD is short for AD(o1, o2, o3, x).

h(a) : h(b) :: h(c) : h(x)

ω0 : ω1 :: ω1 : ?
ω1 : ω0 :: ω0 : ?

Example

Let S = {(a, ω0), (b, ω0), (c, ω1), (d, ω1), (e, ω2)} be a set of five labelled objects and let x �∈ S
be some object to be classified. According to the analogical proportion axioms, there is only 75
(= (Card(S)3 + Card(S)2)/2) non-equivalent analogical equations among 125(= Card(S)3)
equations that can be formed between three objects from S and x. Table (2) shows only the first 14
lines after sorting with regard to some arbitrarily analogical dissimilarity. The following table gives
the classification of an object x according to k:

k 1 2 3 4 5 6 7
k′ 1 3 3 5 5 7 7

classification of x 1 1 1 ? ? 2 2
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5.1.2 WEIGHTING THE ATTRIBUTES

The basic idea in weighting the attributes is that they do not have the same importance in the classi-
fication, and that more importance has to be given to the most discriminative. The idea of selecting
or enhancing interesting attributes is classical in Machine Learning, and not quite new in the frame-
work of analogy. In a paper of Turney (2005), a discrimination is done by keeping the most frequent
patterns in words. Therefore, a greater importance is given to the attributes that are actually discrim-
inant. However, in an analogical classification system, there are several ways to find the class of the
unknown element. Let us take again the preceding two class problem example (see table 1) to focus
on this point.

We notice that there are two ways to decide between the class ω0 and the class ω1 (there is also
a third possible configuration which is equivalent to the second by exchange of the means). We
therefore have to take into account the equation used to find the class. This is why we define a set
of weights for each attribute, depending on the number of classes. These sets are stored in what we
call an analogical weighting matrix.

Definition 5.1 An analogical weighting matrix (W ) is a three dimensional array. The first di-

mension is for the attributes, the second one is for the class of the first element in an analogical

proportion and the third one is for the class of the last element in an analogical proportion. The

analogical proportion weighting matrix is a d × C × C matrix, where d is the number of attributes

and C is the number of classes.

For a given attribute ak of rank k, the element Wkij of the matrix indicates which weight must

be given to ak when encountered in an analogical proportion on classes whose first element is ωi,

and for which ωj is computed as the solution.

Hence, for the attribute ak:

Last element (decision)

First ele-
ment

class ωi class ωj

class ωi Wkii Wkij

class ωj Wkji Wkjj

Since we only take into account the 3-tuples that give a solution on the class decision, all the possible
situations are of one of the three patterns:

Possible patterns First Decision
element class

ωi : ωi :: ωj : ωj ωi ωj

ωi : ωj :: ωi : ωj ωi ωj

ωi : ωi :: ωi : ωi ωi ωi

This observation gives us a way to compute the values Wkij from the learning set.

5.1.3 LEARNING THE WEIGHTING MATRIX FROM THE TRAINING SAMPLE

The goal is now to fill the three dimensional analogical weighting matrix using the learning set.
We estimate Wkij by the frequency that the attribute k is in an analogical proportion with the first
element class ωi, and solves in class ωj .

Firstly, we tabulate the splitting of every attribute ak on the classes ωi:
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. . . class ωi . . .
ak = 0 . . . n0i . . .
ak = 1 . . . n1i . . .

where ak is the attribute k and n0i (resp. n1i) is the number of objects in the class i that have the
value 0 (resp. 1) for the binary attribute k. Hence,

∑1
k=0

∑C
i=1 nki = m (the number of objects

in the training set). Secondly, we compute Wkij by estimating the probability to find a correct
analogical proportion on attribute k with first element class ωi which solves in class ωj .
In the following table we show all the possible ways of having an analogical proportion on the
binary attribute k. 0i (resp. 1i) is the 0 (resp. 1) value of the attribute k that has class ωi.

1st 0i : 0i :: 0j : 0j 4th 1i : 1i :: 1j : 1j

2sd 0i : 1i :: 0j : 1j 5th 1i : 0i :: 1j : 0j

3rd 0i : 0i :: 1j : 1j 6th 1i : 1i :: 0j : 0j

Pk(1
st) estimates the probability that the first analogical proportion in the table above occurs.

Pk(1
st) = n0in0in0jn0j/m

4

...

From Wkij = Pk(1
st) + · · · + Pk(6

th), we compute

Wkij =
(
(n2

0i + n2
1i)(n

2
0j + n2

1j) + 2 ∗ n0in0jn1in1j

)
/(6 ∗ m4)

The decision algorithm of section 5.1.1 is only modified at point 1, which turns into Weighted

Analogical Proportion Classifier (WAPC):

• Given x, find all the n 3-tuples in S which can produce a solution for the class of x. For every
3-tuple among these n, say (a, b, c), consider the class ωi of the first element a and the class
ωj of the solution. Compute the analogical dissimilarity between x and this 3-tuple with the
weighted AD:

AD(a, b, c, x) =

d∑

k=1

WkijAD(ak, bk, ck, xk)

Otherwise, if point 1 is not modified, the method is called Analogical Proportion Classifier (APC).

5.1.4 EXPERIMENTS AND RESULTS

We have applied the weighted analogical proportion classifier (WAPC) to eight classical data
bases, with binary and nominal attributes, of the UCI Repository.

MONK 1,2 and 3 Problems (MO.1, MO.2 and MO.3), MONK3 problem has noise added.
SPECT heart data (SP.). Balance-Scale (B.S) and Hayes Roth (H.R) database, both multiclass
database. Breast-W (Br.) and Mushroom (Mu.), both data sets contain missing values. kr-vs-kp

Kasparov vs Karpov (k.k.).
In order to measure the efficiency of WAPC , we have applied some standard classifiers to the

same databases, and we have also applied APC to point out the contribution of the weighting matrix
(Sect.5.1.2). We give here the parameters used for the comparison method in Table 3:
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• Decision Table: the number of non improving decision tables to consider before abandoning
the search is 5.

• Id3: unpruned decision tree, no missing values allowed.

• Part: partial C4.5 decision tree in each iteration and turns the ‘best’ leaf into a rule, One-per-
value encoding.

• Multi layer Perceptron: back propagation training, One-per-value encoding, one hidden
layer with (# classes + # attributes)/2 nodes.

• LMT (’logistic model trees’): classification trees with logistic regression functions at the
leaves, One-per-value encoding.

• IB1: Nearest-neighbor classifier with normalized Euclidean distance, which have better re-
sults than IB10.

• JRip: propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), optimized version of IREP. .

We have worked with the WEKA package (Witten & Frank, 2005), choosing 6 different classi-
fication rules on the same data. Some are well fit to binary data, like ID3, PART, Decision Table.
Others, like IB1 or Multilayer Perceptron, are more adapted to numerical and noisy data.

The results are given in Table 3. We have arbitrarily taken k = 100 for our two rules. The value
k is not very sensitive in the case of nominal and binary data and on small databases such as the ones
that are used in the experiments (see Figure 6). However, it is possible to set k using a validation
set.

Figure 6: Modification in recognition rate subject to k. Full line and dotted line are respectively the
recognition rates on the database ‘breast-w’ and ‘vote’.

We draw the following conclusions from this study: firstly, according to the good classification
rate of WAPC in Br. and Mu. databases, we can say that WAPC handles the missing values
well. Secondly, WAPC seems to belong to the best classifiers for the B.S and H.R databases,
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Methods MO.1 MO.2 MO.3 SP. B.S Br. H.R Mu. k.k.

nb. of nominal atts. 7 7 7 22 4 9 4 22 34
nb. of binary atts. 15 15 15 22 4 9 4 22 38
nb. of train instances 124 169 122 80 187 35 66 81 32
nb. of test instances 432 432 432 172 438 664 66 8043 3164
nb. of classes 2 2 2 2 3 2 4 2 2

WAPC (k = 100) 98% 100% 96% 79% 86% 96% 82% 98% 61%
APC (k = 100) 98% 100% 96% 58% 86% 91% 74% 97% 61%
Decision Table 100% 64% 97% 65% 67% 86% 42% 99% 72%
Id3 78% 65% 94% 71% 54% − 71% − 71%
PART 93% 78% 98% 81% 76% 88% 82% 94% 61%
Multi layer Perceptron 100% 100% 94% 73% 89% 96% 77% 96% 76%
LMT 94% 76% 97% 77% 89% 88% 83% 94% 81%
IB1 79% 74% 83% 80% 62% 96% 56% 98% 71%
IBk (k = 10) 81% 79% 93% 57% 82% 86% 61% 91% −
IB1 (k = 5) 73% 59% 97% 65% 78% 95% 80% 97% −
JRip 75% 62.5% 88% 80% 69% 86% 85% 97% 94%

Table 3: Comparison Table between WAPC and other classical classifiers on eight data sets. Best
classifiers on a database are in bold with a significance level equal to 5%.

which confirms that WAPC deals well with multiclass problems. Thirdly, as shown by the good
classification rate of WAPC in the MO.3 problem, WAPC handles well noisy data. Finally, the
results on MO. and B.S database are exactly the same with the weighted decision rule WAPC than
with APC . This is due to the fact that all AD that are computed up to k = 100 are of null value.
But on the other data bases, the weighting is quite effective. Unfortunatly, the last database show
that WAPC have a poor recognition rate on some databases, which means that analogy do not fit
all classification problems.

5.2 Handwritten Character Recognition: Generation of New Examples

5.2.1 INTRODUCTION

In a number of Pattern Recognition systems, the acquisition of labeled data is expensive or user
unfriendly process. For example, when buying a smartphone equipped with a handwritten recogni-
tion system, the customer is not likely to write dozens of examples of every letter and digit in order
to provide the system with a consequent learning sample. However, to be efficient, any statistical
classification system has to be retrained to the new personal writing style or the new patterns with
as many examples as possible, or at least a sufficient number of well chosen examples.

To overcome this paradox, and hence to make possible the learning of a classifier with very
few examples, a straightforward idea is to generate new examples by randomly adding noise to the
elements of a small learning sample. In his recent book, Bishop (2007) gives no theoretical coverage
of such a procedure, but rather draws a pragmatic conclusion: ‘ . . . the addition of random noise to
the inputs . . . has been shown to improve generalization in appropriate circumstances’.

As far as character recognition is concerned, generating synthetic data for the learning of a
recognition system has mainly be used with offline systems (which process an image of the char-
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u = 9 ∽ 9 ∽ 9 9 9 9 9 ∽ E 1 2 ∽ 4 L 6 9 9 9
v = 1 L ∽ 8 9 9 9 9 9 10 E ∽ 2 2 4 L ∽ 8 8 9
w = ∽ ∽ 9 8 9 9 9 9 9 10 E 2 2 3 3 L 8 9 9 ∽

x0 = 1 L ∽ 8 9 9 9 9 9 10 E 2 2 3 3 L 8 8 8 ∽

(a)

(b)

Figure 7: (a) Resolution on Freeman direction sequences by AP. (b) the corresponding characters
representation.

acter). For offline character recognition, several image distortions have however been used (Cano,
Pérez-Cortes, Arlandis, & Llobet, 2002): slanting, shrinking, ink erosion and ink dilatation. For
online character recognition, several online distortions have been used, such as speed variation and
angular variation (Mouchère, Anquetil, & Ragot, 2007).

We therefore are interested in the quick tuning of a handwritten character recognition to a new
user, and we consider that only a very small set of examples of each character (typically 2 or 3) can
be required from the new user. As we learn a writer-dependent system, the synthetic data have to
keep the same handwriting style as the original data.

5.2.2 ANALOGY BASED GENERATION

In this second experiment, we are interested in handwritten characters, which are captured online.
They are represented by a sequence of letters of Σ, where Σ = {1, 2, ..., 16, 0, C, ..., N} is the al-
phabet of the Freeman symbols code augmented of symbols for anchorage points. These anchorage
points come from an analysis of the stable handwriting properties, as defined in (Mouchère et al.,
2007): pen-up/down, y-extrema, angular points and in-loop y-extrema.

Having a learning set that contains a few examples of each letter, we generate synthetic examples
by analogical proportion as described in section 3.6 (see Figure 7). Hence, by generating artificial
examples of the letter f by analogical proportion using only three instances we augment the learning
set with new and different examples as shown in the following pictures.

︸ ︷︷ ︸

Original letters

=⇒
︸ ︷︷ ︸

Analogy based generated letters

5.2.3 EXPERIMENTS

In this section we show that our generation strategies improves the recognition rate of three classical
classifiers learned with few data.

Experimental Protocol In the data base that we use (Mouchère et al., 2007), twelve different
writers have written 40 times the 26 lowercase letters (1040 characters) on a PDA. We use a 4-fold
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stratified cross validation. The experiments are composed of two phases in which three writer-
dependent recognition systems are learned: a Radial Basis Function Network (RBFN), a K-Nearest
Neighbor (K-NN) and a one-against-all Support Vector Machine (SVM).

Firstly, we compute two Reference recognition Rates without data generation: RR10 which is
the recognition rate achievable with 10 original characters without character generation and RR30
gives an idea of achievable recognition rates with more original data. Practically speaking, in the
context of on the fly learning phase we should not ask the user to input more than 10 characters per
class.

Secondly the artificial character generation strategies are tested. For a given writer, one to ten
characters per class are randomly chosen. Then 300 synthetic characters per class are generated to
make a synthetic learning database. This experiment is done 3 times per cross validation split and
per writer (12 times per user). The mean and the standard deviation of these 12 performance rates
are computed. Finally the means of these measurements are computed to give a writer dependent
mean recognition rate and the associated standard deviation.

We study three different strategies for the generation of synthetic learning databases. The strat-
egy ’Image Distortions’ chooses randomly for each generation one among several image distor-
tions. In the same way the strategy ’Online and Image Distortions’ chooses randomly one distortion
among the image distortions and online distortions. The ’Analogy and Distortions’ strategy gener-
ates two-thirds of the base with the previous strategy and the remaining third with AP generation.

Results Figure 8 compares the recognition rates achieved by the three generation strategies for
the three classifiers. Firstly we can note that the global behavior is the same for the three classifiers.
Thus the following conclusions do not depend on the classifier type. Secondly the three generation
strategies are complementary because using ’Online and Image Distortions’ is better than ’Image

Distortions’ alone and ’Analogy and Distortions’ is better than using distortions. Furthermore us-
ing only four original character with the complete generation strategy is better than the RR10. The
RR30 is achieved by using 9 or 10 original characters. Thus we can conclude that using our gener-
ation strategies learns classifier with very few original data as efficiently as using original data from
a long input phase : we need about three times fewer original data to achieve the same recognition
rate.

Comparing ‘Image Distortions’, ‘Online Distortions’ and ‘Analogy’ alone shows that ‘Analogy’
is less efficient than the ad-hoc methods. Nevertheless, generating sequences by approximate ana-
logical proportion is meaningful and somewhat independant of classical distorsions. In other words,
the analogy of character shapes, which is used in ‘natural intelligence’, has been somehow captured
by our definition and algorithms.

Our aim here is to know if the difference of the average of the three methods is significant. We
have performed two methods of validation to evaluate the difference between two stategies. The first
method is parametric: the T-TEST (Gillick & Cox, 1989). The second method is non-parametric:
the SIGN TEST (Hull, 1993). In both methods, the comparaison is between the first and the second
strategy then between the second and the third strategy on each number of original characters.

The T-TEST compares the value of the difference between the two generation methods regarding
to the variation between the differences. The assumption is that the errors are in a normal distribution
and that the errors are independent. If the mean difference is large comparing to the standard
deviation, the two strategies are statistically different. In our case, the probability that our results
are a random artefact is less than 10−12.
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The SIGN TEST is non-parametric comparison method. Its benefit is to avoid assumptions on
the normal distribution of the observations and the errors. This test replaces each difference by the
sign of this difference. The sum of these occurrences is compared to the value of the hypothesis H0

(H0: the difference between the methods is not significant). Thus if a strategy is frequently better
than the expected mean, then this strategy is significantly better. In our case, the probability that the
hypothesis H0 is true is less than 10−30. Hence, the difference is significantly better.
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Figure 8: Writer-dependent recognition rates (mean and standard deviation) depending on the num-
ber of used original characters compared to reference rates using 10 or 30 characters per
class for RBFN, KNN and SVM classifiers.

6. Conclusions and Future Work

In this article, we have investigated a formal notion of analogy between four objects in the same
universe. We have given definitions of analogy, formulas and algorithms for solving analogical
equations in some particular sets. We have given a special focus on objects structured as sequences,
with an original definition of analogy based on optimal alignments. We also have introduced, in a
coherent manner, the new notion of analogical dissimilarity, which quantifies how far four objects
are from being in analogy. This notion is useful for lazy supervised learning: we have shown
how the time consuming brute force algorithm could be ameliorated by generalizing a fast nearest
neighbor search algorithm, and given a few preliminary experiments. However, much is left to be
done, and we want especially to explore further the following questions:
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• What sort of data are particularly suited for lazy learning by analogy? We know from the
bibliography that linguistic data have been successfully processed with learning by analogy
techniques, in fields such as grapheme to phoneme transcription, morphology, translation.
We are currently working on experiments on phoneme to grapheme transcription, which can
be useful in some special cases in speech recognition (for proper names, for example). We
also are interested on other sequential real data, such as biosequences, in which the analogical
reasoning technique is (rather unformally) presently already used. The selection of the data
and of the supervision are equally important, since both the search of the less dissemblant
analogic triple and the labelling process are based on the same concept of analogy.

• What sort of structured data can be processed? Sequences can naturally be extended to or-
dered trees, in which several generalizations of alignments have already been defined. This
could be useful, for example, in extending the nearest neighbor technique in learning prosodic
trees for speech synthesis (Blin & Miclet, 2000). We could also imagine that sequences mod-
els, like Hidden Markov Models (HMM) could be combined through an analogical construc-
tion.

• What sort of algorithms can be devised to let large amount of data be processed by such
techniques? We have given a first answer with the FADANA algorithm, and we believe that
the quality of the results can be still increased. More experiments remain to be done with this
type of algorithm. We have to notice also that not all the properties of analogical dissimilarity
have been used so far. We believe that an algorithm with a precomputing and a storage in
O(m) can be devised, and we are currently working on it.

In conclusion, we are confident in the fact that the new notion of analogical dissimilarity and the
lazy learning technique that we have associated with it can be extended to more real data, other
structures of data and larger problems.
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