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Abstract

Image-to-image translation is to map images from a given
style to another given style. While exceptionally successful,
current methods assume the availability of training images
in both source and target domains, which does not always
hold in practice. Inspired by humans’ reasoning capability of
analogy, we propose analogical image translation (AIT) that
exploit the concept of gist, for the first time. Given images of
two styles in the source domain: A and A

′, along with images
B of the first style in the target domain, learn a model to trans-
late B to B

′ in the target domain, such that A : A
′
:: B : B

′.
AIT is especially useful for translation scenarios in which
training data of one style is hard to obtain but training data
of the same two styles in another domain is available. For in-
stance, in the case from normal conditions to extreme, rare
conditions, obtaining real training images for the latter case
is challenging. However, obtaining synthetic data for both
cases is relatively easy. In this work, we aim at adding ad-
verse weather effects, more specifically fog, to images taken
in clear weather. To circumvent the challenge of collecting
real foggy images, AIT learns the gist of translating synthetic
clear-weather to foggy images, followed by adding fog effects
onto real clear-weather images, without ever seeing any real
foggy image. AIT achieves zero-shot image translation capa-
bility, whose effectiveness and benefit are demonstrated by
the downstream task of semantic foggy scene understanding.

Introduction

Image-to-image translation has enjoyed tremendous
progress in the last years. Excellent methods have been
developed for a diverse set of learning paradigms such as
supervised (Isola et al. 2017), unsupervised (Zhu et al. 2017;
Huang et al. 2018) and few-shot (Liu et al. 2019). While
exceptionally successful, current methods have a shared
assumption that training data, be it paired or unpaired,
is available for both styles 1. This may limit the use of
image translation when data in one of the two styles is hard
to obtain, e.g. translation from a normal condition to an
extreme, corner-case condition. To address this, we take a
new route and propose analogical image translation (AIT)
which learns image translation via analogy.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We reserve ‘domains’ for analogy since the sought analogy
exists between domains, and use ‘styles’ for image translation.

Analogy is a basic reasoning process to transfer informa-
tion or meaning from the source to the target. Humans use
it commonly to solve problems, provide explanations and
make predictions (Hertzmann et al. 2001; Schunn and Dun-
bar 1996). In this paper, we explore the use of analogy as
a means for extracting the gist of image translation in the
source domain and apply it the target domain. Particularly,
we aim to solve the following problem:

Problem (“Analogical Image Translation”): Given images
of two styles in the source domain: A and A′, with images
B of the first style in the target domain, learn the translation
gist and apply it to B to obtain B′, such that A : A′ :: B : B′.

The above problem cannot be addressed by the traditional
image translation methods, due to the absence of B′. On the
other hand, there exist only one work, up to our knowledge,
that exploits the concept of analogy for deep image trans-
lation, namely (Chen, Xu, and Jia 2020). However, (Chen,
Xu, and Jia 2020) does not use the concept of gist. In this
work, we demonstrate that the task of AIT can greatly bene-
fit from modeling the concept of gist. In fact, our work also
introduces the formal concept of gist for the task at hand.

A schematic comparison of AIT to the standard image
translation is shown in Fig. 1. Our work is partially moti-
vated by the difficulty in obtaining real training images for
semantic understanding tasks of autonomous driving in ad-
verse conditions, e.g., the foggy weather. Despite tremen-
dous progress, prior works in semantic scene understand-
ing (Ronneberger, Fischer, and Brox 2015; Chen et al. 2017;
Yu and Koltun 2016; Zhao et al. 2017; Lin et al. 2017) have
mostly focused on the clear-weather, leading to unsatisfac-
tory performance for adverse conditions (Halder, Lalonde,
and Charette 2019; Sakaridis, Dai, and Van Gool 2018;
Blum et al. 2019; Li et al. 2017). Collecting large-scale train-
ing datasets for such adverse conditions, and other corner
cases, may resolve the issue. Unfortunately, such solutions
are neither scalable and affordable, nor very practical.

To address the issues of scarce data, recent works focus
on synthesizing fog effects onto clear-weather images by us-
ing a physical optical model (Sakaridis, Dai, and Van Gool
2018; Hahner et al. 2019; Ren et al. 2016). The success of
these methods hinges on accurate depth and atmospheric
light estimation, both of which, however, are still open prob-
lems on their own. Therefore, the synthesized fog still suf-
fers from artifacts. On the other hand, synthetic foggy im-
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Figure 1: Traditional image translation (TIT) vs. analogical
image translation (AIT). Given images of two styles in the
source domain A and A′ with images of the first style B
on the target domain, traditional methods can only translate
between seen styles A,A′ and B. The proposed analogical
image translation is able to translate B to B′, such that A :
A′ :: B : B′, without requiring any sample from B′.

ages can be generated easily in virtual environments (Gaidon
et al. 2016). This motivates the development of our AIT
method which learns from the abundant synthetic clear-
weather and synthetic foggy images to perform an analog-
ical image translation from real clear-weather images to
‘real’ foggy images. AIT learns the correlation between syn-
thetic clear-weather and synthetic foggy images, and then
applies the learned knowledge to the real domain. We call
such learned correlation the gist of translation and assume
it transferable across domains. Since the proposed method
uses analogy in the GAN setup, we call it AnalogicalGAN.

AnalogicalGAN achieves zero-shot translation ability by
coupling a supervised training scheme in the synthetic do-
main, a cycle consistency strategy in the real domain, and
an adversarial training scheme between the two domains.
More specifically, in the synthetic domain, the gist of trans-
lation is learned in the supervised manner with the accessi-
ble paired clear-weather and foggy images. Then, this trans-
lation gist is transferred to the real domain through an ad-
versarial learning scheme. In the real domain, the learning is
further supervised through a cycle consistency scheme. The
pipeline of AnalogicalGAN is shown in Fig. 2. Our exten-
sive experiments demonstrate the superiority of Analogical-
GAN over the standard zero-shot image translation methods,
when tested for fog generation. The quality of our fogy real
images is also validated by the state-of-the-art performance
on downstreamed semantic foggy scene understanding task.

Related Works

Image-to-Image Translation. Image translation methods
have been developed to convert images of one given style
to another given style with remarkable success in the last
years (Zhu et al. 2017; Huang et al. 2018; Liu et al. 2019).
Image translation is also becoming a standard step for do-
main adaptation (Tsai et al. 2018; Lian et al. 2019; Tsai
et al. 2019; Zou et al. 2019; Vu et al. 2019; Hoffman et al.
2016; Chen, Li, and Van Gool 2018) – synthetic images are
first translated to ‘real’ on which the downstream tasks such
as segmentation and detection are then conducted (Hoffman
et al. 2018; Chen et al. 2019; Li, Yuan, and Vasconcelos
2019; Gong et al. 2019; Dundar et al. 2018). The standard
image translation frameworks (Zhu et al. 2017; Isola et al.

2017; Huang et al. 2018; Liu, Breuel, and Kautz 2017) re-
quire the availability of images of both styles involved in
translation. To facilitate the translation to an unseen style,
the proposed AIT exploit the concept of analogy from syn-
thetic images, followed by its application on real images.

Image Analogy. The image analogy works (Hertzmann
et al. 2001; Liao et al. 2017; Cheng, Vishwanathan, and
Zhang 2008; Chen, Xu, and Jia 2020) aim to find B′ related
to B in the same way as A′ relates to A. Even though the
purpose of image analogy is similar to that of our AIT, tra-
ditional image analogy works (Hertzmann et al. 2001; Liao
et al. 2017; Cheng, Vishwanathan, and Zhang 2008) only
apply coarse-to-fine filters to reduce the perceptual similar-
ity distance, such as luminance feature (Hertzmann et al.
2001) and VGG feature (Liao et al. 2017) distances, be-
tween source and target domains. They do not disentangle
the gist and have no knowledge transfer between the source
and target domains. These works limit themselves, by de-
sign, to low-level applications such as the super resolution,
artistic filters, and texture transfer (Hertzmann et al. 2001).
In contrast, the high-level task of image translation in the
concurrent work (Chen, Xu, and Jia 2020) combines GANs
with analogical perceptual loss. Although the used percep-
tual loss is found to be effective for attribute manipulation,
the same loss may not be sufficient for other image trans-
lation tasks (Huang et al. 2018). Furthermore, (Chen, Xu,
and Jia 2020) does not exploit the concept of gist. Our work
demonstrates that the gist can be effectively used for the task
of analogical image translation.

Semantic Foggy Scene Understanding. Our work is
also related to methods for semantic foggy scene under-
standing (SFSU). The SFSU aims to improve the perfor-
mance of semantic scene understanding under foggy con-
dition (Sakaridis, Dai, and Van Gool 2018; Dai et al. 2019;
Hahner et al. 2019; Erkent and Laugier 2020; Tarel et al.
2010). Due to the difficulty of gathering and labeling large-
scale foggy image dataset, some works (Sakaridis, Dai, and
Van Gool 2018; Dai et al. 2019) synthesize fog by apply-
ing a physical model to the real clear weather images from
the Cityscapes (Cordts et al. 2016), resulting the Foggy
Cityscapes dataset. While yielding improved results, these
methods require accurate depth and atmospheric light esti-
mation. Any failure of these two tasks directly implies the
failure of fog synthesis. The proposed AIT does not require
to estimate atmospheric light, and uses depth only as an aux-
iliary information. Instead, AIT learns the necessary gist for
translation from synthetic examples.

Unsupervised Domain Adaptation. AIT also shares
some similarity with the unsupervised domain adaptation
(UDA) works. UDA has been extensively studied in the past
years, mainly for classification (Ganin and Lempitsky 2015;
Long et al. 2018; Tzeng et al. 2017), semantic segmenta-
tion (Chen, Li, and Van Gool 2018; Tsai et al. 2019; Dai
et al. 2019; Li, Yuan, and Vasconcelos 2019) and object de-
tection (Chen et al. 2018; Xie et al. 2019; Zhu et al. 2019).
Given a set of images and annotation pairs from the source
domain, along with only the images from target, the goal is
to learn a model that performs well also in the target domain.
Our AIT shares the same spirit, in regard to transferring the

1434



learned model from the source to target domain, without us-
ing annotations (images of desired styles) from the target
domain. While previous UDA works only focus on the un-
derstanding tasks such as classification, object detection and
segmentation, our work pays attention to the totally different
task, i.e. image-to-image translation.

Analogical Image Translation

Problem Statement

In the image translation problem, we are given a source do-
main S and a target domain T , which consist of the sam-
ples x

s ∈ S and x
t ∈ T , respectively. The goal of tra-

ditional image translation is to transfer image samples x
s

and x
t between domain S and domain T . In our work,

we propose analogical image translation (AIT), where the
source domain S and the target domain T cover two styles
A,A′ and B,B′, respectively. But during training and test-

ing, there are only samples x
a ∈ A, xa′

∈ A′ and x
b ∈

B available. AIT aims at learning from available samples

x
a,xa′ to translate x

b to the unseen samples x
b′ , such that

x
a : xa′

:: xb : xb′ . The data distributions are denoted as
x
a ∼ PA,x

a′

∼ PA′ ,xb ∼ PB and x
b′ ∼ PB′ . Our objec-

tive in this work is to learn the mapping GBB′ : B → B′

conditioned on the mapping GAA′ : A → A′. Note that, un-
like our objective, the traditional methods (Zhu et al. 2017;
Hoffman et al. 2018; Huang et al. 2018; Dundar et al. 2018)
only focus on learning the mapping GST : S → T .

AnalogicalGAN Model

In this section, we present our AnalogicalGAN for the ana-
logical image translation problem. The key idea of Analog-
icalGAN is to disentangle the translation gist in the source
domain, transfer the gist to the target domain, and make the
gist compatible with the target domain. In our work, the gist
is measured with the alignment map M and the residual map
N , formally denoted as {M,N}. Taking the translation di-
rection into account, the {M,N} can be further expressed
in detail as M = {MAA′ ,MA′A,MBB′ ,MB′B},N =
{NAA′ ,NA′A,NBB′ ,NB′B}. Moreover, the gist is as-
sumed to be invariant to the source domain and the target
domain. Then the gist can be defined implicitly as:

A′ = A⊙MAA′ +NAA′ , (1)

B′ = B ⊙MBB′ +NBB′ , (2)

A = A′ ⊙MA′A +NA′A, (3)

B = B′ ⊙MB′B +NB′B , (4)

where ⊙ denotes the element-wise multiplication. On this
basis, as shown in Fig. 2, taking the direction of first style
to second style for example, i.e. A → A′, B → B′, our
framework consists of three main components: the super-
vised module, the adversarial module and the cycle consis-
tent module. Firstly, on the source domain, due to the paired
samples from A and A ′ available, the gist, MAA′ ,NAA′ ,
is disentangled in the supervised way according to the Eq.
(1), which forms the supervised module. Secondly, in the
adversarial module, based on the domain invariant assump-
tion of the gist, the gist on the source domain, MAA′ ,NAA′

Supervised Module

Cycle Consistent Module

Adversarial Module

Figure 2: AnalogicalGAN overview. The AnalogicalGAN
consists of three modules: the supervised, the adversar-
ial, and the cycle-consistent. The supervised module disen-
tangles the gist, MAA′ ,NAA′ , using the supervised learn-
ing. The adversarial module transfers the learned gist
from source domain, MAA′ ,NAA′ , to the target domain,
MBB′ ,NBB′ . The cycle consistent module ensures that the
transferred gist is compatible with the target domain.

, is transferred to the target domain, MBB′ ,NBB′ , through
the adversarial learning. Thirdly, on the target domain,
due to the unavailability of the second style B′, the gist,
MBB′ ,NBB′ is retained to be compatible with the target
domain through the cycle consistency, constructing the cycle
consistent module. The other direction from the second style
to the first style, A′ → A,B′ → B, acts in the same way.
Next, the different modules and corresponding loss function
are introduced in detail.

Supervised Module. The supervised module is used to
disentangle the gist, M,N , from the source domain. Given

the paired sample x
a ∈ A and x

a′

∈ A′ on the source do-
main S , the translation between A and A′ can be trained in
the supervised way, by substituting in Eq.(1), written as,

Lsup = Ex
a
∼PA

[

‖xa ⊙m
aa′

+ n
aa′

− x
a′

‖1
]

(5)

+E
x
a′

∼P
A′

[

‖xa′

⊙m
a′a + n

a′a − x
a‖1

]

, (6)

where (maa′

,naa′

) = GAA′(xa) and (ma′a,na′a) =

GA′A(x
a′

).
Adversarial Module. The adversarial module aims to

transfer the gist, disentangled from the source domain, to
the real domain. Specifically, taking the direction, A →
A′, B → B′, for example, we introduce the discrimina-
tor DI to distinguish the gist between the source domain,
{MAA′ ,NAA′}, and the target domain, {MBB′ ,NBB′}.
And the discriminator DJ acts in the same way in the in-
verse direction A′ → A, B′ → B. Then the adversarial loss
of gist {M,N} on S and T can be written as,

Ladv1(GAA′ ,GBB′ , DI) (7)

= Ex
a
∼PA

[log(DI(GAA′(xa)))]

+ E
x
b
∼PB

[

log(1−DI(GBB′(xb)))
]

.
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The similar adversarial loss Ladv2(GA′A, GB′B , DJ) is also
defined for the direction A′ → A, B′ → B. Then the gist
adversarial loss can be formulated as:

Ladv = Ladv1 + Ladv2. (8)

In order to make the mapping GBB′ conditional on GAA′ ,
the GAA′ and GBB′ , GA′A and GB′B share all the parame-
ters, respectively.

Cycle Consistent Module. The cycle consistent module
is utilized to make the gist compatible with the target do-
main, i.e. preserve the target domain feature of the translated
gist. Accordingly, the reconstruction loss is taken to recover

x
b from the translated image x

b′ through the inverse map-
ping GB′B . Furthermore, in order to strengthen the recovery,
another discriminator DT is introduced to distinguish be-
tween the recovered x

b and the original xb. Then the image
cycle consistency loss Lcyc consists of the reconstruction
loss Lrec and the adversarial loss Ladv(GBB′ , GB′B , DT ),
by substituing in Eq. (2), given by:

Lcyc = Lrec + Ladv(GBB′ , GB′B , DT ) (9)

Lrec = E
x
b
∼PB

[

‖mb′b ⊙ (xb′) + n
b′b − x

b‖1
]

(10)

Ladv(GBB′ , GB′B , DT )

= E
x
b
∼PB

[

log(1−DT (m
b′b ⊙ x

b′ + n
b′b))

]

(11)

+ E
x
b
∼PB

[

log(DT (x
b))

]

,

where (mbb′ ,nbb′) = GBB′(xb), (mb′b,nb′b) =

GB′B(x
b′) and x

b′ = m
bb′ ⊙ x

b + n
bb′ .

Auxiliary Module. Besides the three main modules, the
auxiliary module is added to assist the analogical image
translation process and introduce the auxiliary information.
From (Huang et al. 2018) and (Johnson, Alahi, and Fei-
Fei 2016), the perceptual loss calculates the VGG feature
distance Φ(·) (Simonyan and Zisserman 2014) between the
translated image and the reference image, and is proven to
be able to assist the image translation process. Generalizing
the perceptual loss to analogical image translation, the per-
ceptual loss is given in the analogical way, formulated as,

e
S =Φ(xa′

)− Φ(xa) (12)

e
T =Φ(xb′)− Φ(xb) (13)

Lpercep = E
x
b
∼PB

[

‖eS − e
T ‖1

]

, (14)

where (mbb′ ,nbb′) = GBB′(xb) and x
b′ = m

bb′⊙x
b+n

bb′ .
Meanwhile, in terms of specific setting such as the analogi-
cal foggy image translation, the corresponding auxiliary in-
formation to fog effects, such as depth information (Fattal
2008; Sakaridis, Dai, and Van Gool 2018; Dai et al. 2019),
can also be leveraged. By introducing the mapping GIH :
A → HS ,B → HT and GJH : A′ → HS ,B

′ → HT ,
where HS and HT denote the depth domain corresponding
to S and T , composed of depth map d

S and d
T , respec-

tively. The auxiliary depth loss is given by,

Ldep = Ex
a
∼PA

[

‖GIH(xa)− d
S‖1

]

(15)

+ E
x
a′

∼P
A′

[

‖GJH(xa′

)− d
S‖1

]

+ E
x
b
∼PB

[

‖GIH(xb)− d
T ‖1

]

+ E
x
b′
∼P

B′

[

‖GJH(xb′)− d
T ‖1

]

.

By sharing the network parameters between GIH , GAA′ ,
and GBB′ , GJH , GA′A and GB′B respectively, the depth
information is implicitly encoded into our analogical trans-
lation process.

Full Objective. Integrating the losses defined above, our
full objective for AnalogicalGAN can be defined as:

L = Ladv + λ1Lsup + λ2Lcyc + λ3Ldep + λ4Lpercep, (16)

where λ1, λ2, λ3 and λ4 are hyper-parameters used to bal-
ance different parts of training loss. Following the general
manner for training the adversarial model, the full objective
is trained in the minimax way, i.e. minimize the objective for
generator while maximizing the objective for discriminator.

Domain Interpolation. Benefiting from the disentangled
gist, our AnalogicalGAN is able to generate the intermediate
domain between B and B′ during testing stage. Following
(Gong et al. 2019), the variable z ∈ [0, 1] is used to measure
the domainness. The intermediate domain between B and B′

are denoted as I
(z)
B . When z = 0, the intermediate domain

I
(z)
B are identical to B; and when z = 1, it is identical to B′.

In order to generated the intermediate domain, it is assumed
that the gist between B and B′ is linear. On the basis of the
linear assumption and Eq. (2), the intermediate domain can
be written as,

I
(z)
B = B ⊙ ((MBB′ − 1)× z + 1) +NBB′ × z. (17)

Experiments
In this section, we evaluate our AnalogicalGAN for fog gen-
eration task. As aforementioned, our method consists of two
domains: a source domain S and a target domain T . On S
and T , there are two styles A and A′, B and B′ defined,
respectively. Because training data for B′ is unavailable, ex-
isting image translation methods can only be trained for A′

and B, which does not serve the exact purpose – generating
data in B′. Training standard translation methods on A′ and
B, nevertheless, can be taken as baseline methods. In our ex-
periments, we instantiate S , T , A, A′, B and B′ as follows:
synthetic as S , real as T , synthetic, clear weather as A, syn-
thetic, foggy weather as A′, real, clear weather as B, and
real, foggy weather as B′.

Analogical Image Translation

We conduct the analogical image translation experiments by
regarding Virtual KITTI (Gaidon et al. 2016) as synthetic
domain, while Cityscapes (Cordts et al. 2016) as real do-
main. The depth maps of Cityscapes are generated from pre-
trained deep model developed in (Chang and Chen 2018).

Virtual KITTI. Virtual KITTI is a dataset consisting of
2136 photo-realistic synthetic clear weather images imitat-
ing the content and structure of KITTI dataset (Geiger et al.

1436



2013), each of which has paired foggy weather image and
corresponding depth map available.

Cityscapes. Cityscapes is a dataset covering 2975 real
clear weather images taken from different European cities,
which are densely labeled with 19 semantic categories.

We follow the training procedure, generators and discrim-
inators structure as CycleGAN (Zhu et al. 2017). The Adam
optimizer (Kingma and Ba 2015) is adopted, the learning
rate is fixed to 0.0002 and the batch size is set as 1. The im-
age is resized to 512×256. The weight of the gist adversarial
loss is set as 3, the weight of cycle consistency adversarial
loss is set as 1, and the weight of rest parts are 10. We im-
plement our model with PyTorch (Paszke et al. 2017). More
detailed network architecture and implementation are shown
in Appendix due to space limitation.

Gist. In order to verify the necessity of gist for the AIT
task, the state-of-the-art traditional image translation frame-
works CyelGAN (Zhu et al. 2017), and recent domain adap-
tive image translation framework DAI2I (Chen, Xu, and Jia
2020) are taken as baseline methods. When applied to AIT
task, the traditional frameworks do not disentangle the gist
from the source domain S . For example, CycleGAN is only
able to translate between S (A, A′) and T (B). The di-
rect translation between S and T , if performed, unavoid-
ably translates the feature irrelevant to gist. Such translation
causes the artifacts in the generated B′. In the fog genera-
tion case, the translation from real, clear weather to syn-
thetic, clear weather (similarly for real clear to synthetic
foggy weather) introduces the synthetic style to the real do-
main. It causes the generated real, foggy weather images in-
herit abundant of synthetic artifacts, instead of only foggy
weather style. Though auxiliary information such as depth
can be encoded into the CycleGAN baseline, by network
parameters sharing as done in Eq.(16), it still cannot resolve
the synthetic artifacts problem. Fig. 3b shows the qualita-
tive results of the CycleGAN baseline translating between
A ′ and B while using the depth information. It is observed
that the translated real, foggy weather image with Cycle-
GAN baseline is highly affected by the translated synthetic
style. In order to improve CycleGAN baseline for AIT task,
we also trained the model to translate from A to A′ while
testing on B. This result in the reduction of the synthetic ef-
fect. From the comparison between Fig. 3b and Fig. 5d, it
can be seen that the CycleGAN baseline’s performance is
improved, when T is eliminated during training. Neverthe-
less, these results are not yet satisfactory.

One can also think of using multi-stage translation strat-
egy. A typical case could follow B → A → A′, This
multi-stage translation is bound to have synthetic effect
at the end, because the final domain, i.e. A′, is still syn-
thetic. In essence, DAI2I (Chen, Xu, and Jia 2020) combines
the aforementioned multi-stage translation strategy with the
analogical perceptual similarity measurement, whose results
are shown in Fig. 3c. Though image analogy spirit through
the perceptual similarity is adopted in DAI2I, the gist is still
not exploited. Fig. 3c shows that DAI2I cannot deal with
synthetic artifacts purely relying on the analogical percep-
tual similarity for fog generation, without exploiting gist.
Contrastively, by explicitly disentangling gist from S and

Ladv X X X X X

Lcyc X X X X X

Lpercep X X X X

Ldep X X X X

mIoU 34.6 32.8 42.0 41.7 41.9 40.8 42.3

Table 1: Full model and ablations comparison for SFSU,
tested on the Foggy Zurich dataset based on RefineNet with
ResNet-101 backbone. The results are reported on mIoU
over 19 classes. The best result is denoted in bold.

transferring to T , our AnalogicalGAN eliminates the syn-
thetic artifacts. The qualitative results in Fig. 3c show a clear
distinction between DAI2I and AnalogicalGAN. We choose
not to conduct further analysis of DAI2I results, as they are
clearly inferior in qualitative measure. The artifacts on the
reported images are consistent across test set (more images
can be found in the appendix).

(a) Clear

(b) CycleGAN

w/ depth

(c) DAI2I

Figure 3: Qualitative translation results of CycleGAN en-
coding depth and DAI2I (Chen, Xu, and Jia 2020). (a) is
real, clear weather image, while (b), (c) are translated real,
foggy weather image with CycleGAN model encoding depth
and DAI2I, respectively. Both of CycleGAN and DAI2I in-
troduce high synthetic artifacts to the translated images.

Quantitative Results. In order to validate the effective-
ness of our AnalogicalGAN for the AIT task, a user study
on Amazon Mechanical Turk (AMT) is conducted to com-
pare the translation results of our AnalogicalGAN with the
state-of-the-art traditional image translation methods Cycle-
GAN (Zhu et al. 2017) and MUNIT (Huang et al. 2018).
Each individual task completed by the participants, referred
to as Human Intelligence Task (HIT), comprises two image
pairs to be compared: ours vs. CycleGAN and ours vs. MU-
NIT. In total, 100 HITs were used, each is completed by
three annotators and the results are averaged. For each im-
age pair, the users were asked to select the image that looks
more like a real foggy image. In Table 3, the user study re-
sults are listed. From the table, one can see that users prefer
our translation results compared to CycleGAN (61.0% v.s.
39.0%) and MUNIT (66.7% v.s. 33.3%).

Qualitative Results. Furthermore, we show the qualita-
tive comparison in Fig. 5. From Fig. 5, it is observed that the
standard image translation models CycleGAN (refer to Fig.
5d) and MUNIT (refer to Fig. 5(e)) suffer from inheriting
synthetic features from the Virtual KITTI (refer to Fig. 5(b))
such as the color of the car, the lines on the road and the
skin of the people. Besides, though the translated foggy part
tends to be in gray, it loses the correct sense that fog changes
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Virtual KITTI→ Cityscapes

Fine-tuning
Testing

FZ FD
R B R B

Cityscapes(Hahner et al. 2019) 34.6 16.1 44.3 27.2
FC(Hahner et al. 2019) 36.9 25.0 46.1 30.3

CycleGAN(Zhu et al. 2017) 40.5 27.1 47.7 30.0
MUNIT(Huang et al. 2018) 39.1 26.0 47.8 30.5

AC(ours) 42.3 28.4 47.5 30.8

(a)

Virtual KITTI→ Synscapes

Fine-tuning
Testing

FZ FD
R B R B

Cityscapes(Hahner et al. 2019) 34.6 16.1 44.3 27.2
FS(Hahner et al. 2019) 40.3 27.8 48.4 30.9

CycleGAN(Zhu et al. 2017) 41.6 30.9 47.8 33.1
MUNIT(Huang et al. 2018) 40.5 27.5 48.3 32.8

AS(ours) 41.8 31.5 49.8 34.2

(b)

Table 2: Results of semantic segmentation on the Foggy Zurich and Foggy Driving dataset. The reported results are pretrained
on Cityscapes, fine-tuned on different simulated foggy images, and tested on Foggy Zurich (FZ) and Foggy Driving (FD)
datasets. The columns represent different semantic segmentation architectures, RefineNet (R) with ResNet-101 backbone and
BiseNet (B) with ResNet-18 backbone. The results are reported on mIoU over 19 categories. The best results are denoted in
bold. ”FC”, ”FS”, ”AC”, ”AS”, ”FD”, ”FZ” represent ”Foggy Cityscapes”, ”Foggy Synscapes”, ”AnalogicalGAN Cityscapes”,
”AnalogicalGAN Synscapes”, ”Foggy Driving”, ”Foggy Zurich”, respectively.

CycleGAN/Ours MUNIT/Ours

user preference 39.0%/61.0% 33.3%/66.7%

Table 3: User study results for fog generation. It is observed
that more users prefer the translation results of our Analogi-
calGAN compared to that of CycleGAN and MUNIT.

with depth. In contrast, our AnalogicalGAN, the analogical
image translation framework, preserves the real feature of
the objects in the scene, generates realistic foggy images and
yields the right sense that fog changes with the depth of the
scene as shown in Fig. 5(f).

Ablation Study. Fig. 4 gives an qualitative ablation study
of each module in our AnalogicalGAN. More qualitative ab-
lation study results are put into Appendix due to space limi-
tation.

(b) w/o (c) w/o (d) w/o

(f) w/o (g) Ours

(a) clear

(e) w/o

Figure 4: Qualitative ablation study of AnalogicalGAN for
fog generation. It is observed that each module is effective
for the analogical image translation (AIT) task.

Semantic Foggy Scene Understanding

Experiments Setup In this section, we validate the use-
fulness of our translated images for the downstream task
semantic foggy scene understanding. Specifically, follow-
ing the paradigm in (Sakaridis, Dai, and Van Gool 2018;
Hahner et al. 2019), the pretrained semantic segmentation
model on the real clear weather images, Cityscapes, is fine-
tuned on the synthesized foggy images. Then the fine-tuned

Fine-tuning
Foggy Zurich Foggy Driving

R B R B

FC+FS(Hahner et al. 2019) 41.4 30.9 50.7 35.2
AC+FS (ours) 43.8 32.9 50.3 39.9

Table 4: Results of semantic segmentation on the Foggy
Zurich (FZ) and Foggy Driving (FD) dataset. The reported
results are pretrained on Cityscapes, fine-tuned on Foggy
Cityscape (FC)/AnalogicalGAN Cityscapes(AC) and Foggy
Synscape (FS), and tested on FZ and FD datasets. The
columns represent different semantic segmentation archi-
tectures, RefineNet (R) with ResNet-101 backbone and
BiseNet (B) with ResNet-18 backbone. The results are re-
ported on mIoU over 19 categories, and best results are bold.

model is tested on two real foggy image datasets: Foggy
Zurich(Dai et al. 2019) and Foggy Driving (Sakaridis, Dai,
and Van Gool 2018). We compare the semantic foggy scene
understanding performance of our AnalogicalGAN transla-
tion results with the state-of-the-art physics-based foggy im-
age synthesis results, Foggy Cityscapes(Sakaridis, Dai, and
Van Gool 2018), and the translation results of the traditional
image translation methods CycleGAN and MUNIT. In ad-
dition to the setting Virtual KITTI to Cityscapes, we further
evaluate all methods in another setting Virtual KITTI to Syn-
scapes. The performance of foggy scene understanding of
all methods are reported for both of the two settings.

Synscapes is a synthetic dataset consisting of 25,000
clear weather images imitating the content and structure of
Cityscapes dataset. Pixel-wise ground-truth semantic labels
and depth maps are given in the dataest.

Foggy Zurich consists of 3,808 foggy scene images taken
from Zurich City, 40 of which are densely labeled. We use
them as test data in our experiment.

Foggy Driving is a dataset containing 101 coarsely anno-
tated real foggy images, collected in various areas of Zurich
and from the Internet.

As shown in (Dai et al. 2019), the fog density of the
synthesized foggy image highly affects the semantic foggy
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(c) Clear Cityscapes(b) Foggy VKITTI (d) CycleGAN (e) MUNIT (f) Ours(a) Clear VKITTI

Figure 5: Comparison of the analogical translation results of our AnalogicalGAN (column (f)) with the traditional image
translation methods (column (d) and column (e)). The column (a), column (b) and column (c) shows the synthetic clear weather
image (Clear Virtual KITTI), the synthetic foggy weather image (Foggy Virtual KITTI) and the real clear weather image
(Cityscapes), respectively. The analogical translation is described as, column (a) : column (b) :: column (c) : column (d),
column (e), column (f).

scene understanding performance. Our AnalogicalGAN can
control the density of the synthesized fog via the domain-
ness variable z. In order to generate the foggy image with
the appropriate fog density, during testing stage, the domain-
ness variable z is set to 0.88 and 0.9 for Cityscapes and Syn-
scapes, respectively. For semantic segmentation, we follow
the paradigm and fine-tuning details in (Sakaridis, Dai, and
Van Gool 2018) and (Hahner et al. 2019). The RefineNet
(Lin et al. 2017) with ResNet-101 backbone (He et al. 2016)
and the BiseNet (Yu et al. 2018) with ResNet-18 backbone
(He et al. 2016) are utilized as the segmentation networks.

Experiments Results The results of semantic foggy scene
understanding based on the synthesized foggy images from
Cityscapes and Synscapes are shown in Table 2a and Ta-
ble 2b, respectively. In Table 2a and Table 2b, while using
Cityscapes and Synscapes as real clear weather images, it
is shown that our AnalogicalGAN outperforms the physics-
based foggy image synthesis methods ”Foggy Cityscapes”
and ”Foggy Synscapes”. The improvement is consistent on
both Foggy Zurich and Foggy Driving, and with RefineNet
and with BiseNet segmentatin networks. When compared
to the traditional image translation methods, our ”Analogi-
calGAN” outperforms both ”CycleGAN” and ”MUNIT” on
both test sets and for both segmentation networks, except for
one case (when utilizing the RefineNet and testing on Foggy
Driving) in which our method reaches comparable perfor-
mance with MUNIT (47.5% v.s. 47.8%).

Moreover, following (Hahner et al. 2019), by mixing the
”Foggy Synscapes” with ”AnalogicalGAN Cityscapes”, i.e.
Cityscapes translated with ”AnalogicalGAN” model, the
performance can be further improved. From Table 4, it is
shown that the mixture of ”AnalogicalGAN Cityscapes”
and ”Foggy Synscapes” improves the performance of the
state-of-the-art methods, mixture of ”Foggy Citysacpes” and

”Foggy Synscapes” by 2.4% and 2.0% on Foggy Zurich
with RefineNet and BiseNet, while improving by 4.7% on
Foggy Driving with BiseNet and reaching comparable per-
formance, 50.3% v.s. 50.7%, on Foggy Driving with Re-
fineNet. The semantic foggy scene understanding perfor-
mance and comparison demonstrate the effectiveness of our
AnalogicalGAN for synthesizing fog effects to real im-
ages. The results also shows the advantage of our proposed
method over the physics-based fog synthesis methods and
the traditional image translation methods. More detailed re-
sults on each classes are listed in the Appendix due to the
space limitation.

Ablation Study. In Table 1, we compare our model with
the ablations of the full objective for the semantic foggy
scene understanding, i.e. quantitative ablation study results.
It is shown that each module of our AnalogicalGAN con-
tributes to the semantic foggy scene understanding.

Conclusion

In this work, we have presented AnalogicalGAN, a novel
analogical image translation (AIT) framework. Different
from the traditional image translation, analogical image
translation is able to achieve zero-shot image translation ca-
pability via analogy. Compared with previous image analogy
works, our AnalogicalGAN explicitly disentangles gist and
transfers gist, which is proven to be necessary and beneficial
for the AIT task. Applying our AnalogicalGAN to the fog
generation task, the realistic fog effects is synthesized into
real clear-weather images, even though no real foggy im-
age is ever seen. Further experiments prove the effectiveness
of our AnalogicalGAN. While some choices in Analogical-
GAN are made specifically for fog generation, the method
itself has the potential to be used for other AIT tasks.
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In this paper, we propose the ”AnalogicalGAN” model, a
kind of analogical image translation framework. It can be
seen as the zero-shot generalization of existing image-to-
image translation framework.

The analogical image translation framework has the po-
tential to highly reduce the gathering and labeling difficulty
of the data. Benefiting from the transferred data scale and
diversity, the deep model is expected to be more robust, re-
liable and effective under different even extreme conditions,
which is able to promote and accelerate the launch of deep-
based system such as the medical computer-assisted system
and autonomous driving system.

The easy availability of the transferred labeled data and
the launch of the more reliable and effective deep-based sys-
tems likely have complex social impacts. (i) On one hand,
transferred labeled data will save much cost on the data gath-
ering and labeling and avoid the wasteful duplication of la-
bor. More and more deep-based artificial intelligent systems
will become part of the people’s life, bringing convenience,
wealth and prosperity. (ii) On the other hand, the transferred
labeled data might induce the unemployment for the peo-
ple who are engaged in gathering and labeling the dataset.
Meanwhile, the launch of artificial intelligent systems may
also cause the job loss. Besides, another concern is that the
techniques for synthesizing the image is possible to be used
for the illegal purpose of forgery and deception.

We would encourage further work on the detection of the
forgery and deception of the image even though the detec-
tion will become harder and harder as the image synthesis
techniques develop. From the view of long-term develop-
ment, in order to mitigate the risks of image synthesis, more
regulations and guidance on tracking and stopping the harm-
ful and dangerous synthesized images should be made.
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