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Abstract. Trust is situation-specific and the trust judgment problem with which
the truster is confronted might be, in some ways, similar but not identical to some
problems the truster has previously encountered. The truster then may draw infor-
mation from these past experiences useful for the current situation. We present a
knowledge-intensive and model-based case-based reasoning framework that sup-
ports the truster to infer such information. The suggested method augments the
typically sparse trust information by inferring the missing information from other
situational conditions, and can better support situation-aware trust management.
Our framework can be coupled with existing trust management models to make
them situation-aware. It uses the underlying model of trust management to trans-
fer trust information between situations. We validate the proposed framework for
Subjective Logic trust management model and evaluate it by conducting experi-
ments on a large real dataset.

1 Introduction

This paper presents a context management framework (CMF) that employs case-based
reasoning [19] to analyze the correlation between trust information among various situ-
ations and help to bootstrap in unanticipated situations using trust information available
from similar situations. The case-based reasoning technique is particularly useful for
tasks that are experience-intensive, that involve plausible (i.e. not sound) reasoning and
have incomplete rules to apply.

The fundamental principle of the case-based reasoning technique is similar to that
of the human analogical reasoning process which employs solutions of past problems
to solve current ones. The reasoning process is generally composed of three stages:
remembering, reusing, and learning. Remembering is the case-retrieval process, which
retrieves relevant and useful past cases. In the reusing step, the case-based reasoning
system applies the cases that have been retrieved to find an effective solution to the
current problem. Learning is the process of casebase enhancement. At the end of each
problem-solving session the new case and problem-solving experiences incorporated
into the casebase [15].
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We present a universal mechanism (called CMF) that can be combined with existing
trust management models (TMM) to extend their capabilities towards efficient modeling
of the situation-aware trust by

• estimating the trust values based on similar situations, in unknown situations or for
unknown trustees when there is no information available. Therefore, CMF can help
TMM to bootstrap (Figure 1(a)).

• adjusting the output of TMM (trust value) based on the underlying situation, thus,
providing situation-awareness for TMM (Figure 1(b)).

In our approach TMM is implemented using the Subjective Logic [12]. One of our main
contributions is the extension of the Subjective Logic with a context-sensitive domain
model.
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Fig. 1. Scope and interconnection of context management framework (CMF) and trust manage-
ment model (TMM). a) Estimation of the trust value in unknown situations. b) Adjustment of the
output of TMM (trust value) based on the underlying situation.

The rest of this paper is organized as follows: In section 2, we briefly explain the
Subjective Logic as an example of the trust management model. Our proposed model
for trust inference is described in section 3. Next in section 4, we present the evalua-
tion plan and results. Section 5 provides an overview of the related research. Finally,
conclusion and some ideas for future work are given in section 6.

2 Subjective Logic Trust Management Model

In this section, we briefly explain the Subjective Logic fundamentals and give reasons
why it needs to be extended with a situation dimension. Subjective Logic [10] enables
the representation of a specific belief calculus in which trust is expressed by a belief
metric called opinion. An opinion is denoted by ωA

B = (b,d,u,a) expressing the belief
of a relying party A in the trustworthiness of another party B. The parameters b and d
represent the belief respectively. disbelief in B’s trustworthiness while u expresses the
uncertainty in A’s trust in B. All the three parameters are probability values between
0 and 1, and fulfill the constraint b + d + u = 1. The parameter a is called the base
rate and determines how uncertainty contributes to the opinion’s probability expected
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value which is calculated as E(ωA
x ) = b + au. The opinion space can be mapped into

the interior of an equal-sided triangle, where the three parameters b, d, and u determine
the position of the point in the triangle representing the opinion.

Based on the Subjective Logic, there are two different types of trust relations: func-
tional trust (FT A

B ) and referral trust (RT A
B ). The former concerns A’s direct trust in B

performing a specific task ,while the latter concerns A’s trust in B giving a recommen-
dation about someone else doing a task. In other words, it is the trust in the ability to
refer to a suitable third party. The simplest form of trust inference is trust transitivity
which is widely discussed in literature [4, 7, 23]. That is, if A trusts B who trusts C, then
A will also trusts in C. A valid transitive trust path requires that the last edge in the path
represents functional trust and that all other edges in the path represents referral trust.
Referral trust transitivity and parallel combination of trust paths are expressed as part
of the Subjective Logic model (figure 2) [12].

A

D
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E

FT
car mechanic

FT
car mechanic

RT
car mechanic RT

car mechanic

RT
car mechanic

RT
car mechanic

Fig. 2. Trust transitivity and parallel combination of trust paths. FT is functional trust and RT is
referral trust.

The discounting operator (⊗) [11] is used to derive trust from transitive trust paths,
and the consensus operator (⊕) allows to combine parallel transitive trust paths. The
trust network in figure 2 can then be expressed as

FT A
B = ((RT A

D ⊗RT D
C )⊕ (RTA

E ⊗RTE
C ))⊗FTC

B (1)

There are two reasons for extension of the Subjective Logic with situation represen-
tation. First, It has been shown [3] that trust is not always transitive in real life. For
example, the fact that A trusts B to fix her car and B trusts C to look after his child
does not imply that A trusts C for fixing the car, or for looking after her child. However,
under certain semantic constraints, trust can be transitive and a trust referral system
can be used to derive transitive trust. The semantic constraint in the Subjective Logic
is that the subject of trust should be the same along the entire path, for example all
trust subjects should be “to be a good car mechanic” (figure 2) or “looking after her
child”. On the other hand, this constraint is relaxed in our proposal by introducing the
notion of situation. We suggest that trust situations along a transitive trust path can be
different but similar to each other. For instance, trust situations can be “to be a good car
mechanic” or “to be a good motor mechanic” (figure 3). In this way, we are able to use
trust information from available similar situations (section 6 provides the details).
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Fig. 3. Trust transferability among similar situations

Second, Jøsang introduces three different versions of the consensus operator (de-
noted by ⊕, ⊕, ⊕̃ respectively) for fusion of independent, dependent, and partially
dependent trust opinions [14]. If A and B have simultaneously observed the same event
in the situation then their opinions are dependent. If A and B observed the same event
during two partially overlapping situations then their opinions are partially dependent
(e.g. A and B observed the same event of fire at the same time. A was in the place of fire,
while B saw it on TV). Jøsang assumes that fraction of the overlapping observations is
known and proposes formulas to estimate dependent and independent parts of the two
observations to define the consensus operator of partially dependent opinions (⊕̃). We
propose to calculate the fraction of overlapping observations as the similarity measure
between the two situations.

3 The Proposed Framework

We consider two approaches for the inference task among situations: rule-based in-
ference and similarity-based reasoning, depicted respectively as case-based reasoner
(CBR) and rule-based reasoner (RBR) modules in figure 4. The former provides the

Case base
Similarity
Measuers

Solution
Transformation

Ontology

CBR Knowledge Containers

MBR
(TMM)

RBR

CMF

TMM

Fig. 4. Knowledge containers in case-based reasoner (CBR). TMM: trust management model,
MBR: Model-based reasoner, RBR: rule-based reasoner, CMF: context management framework.
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first role (Figure 1(a)), estimation of the trust value in unanticipated situations and the
latter is responsible for the second role (Figure 1(b)) of CMF, adjustment of the trust
values based on underlying situation. The gray box in figure 4 shows the focus of this
paper.

3.1 Case-Based Reasoner Module

In the case-based reasoning approach, knowledge is distributed among the four knowl-
edge containers: ontology, casebase, similarity measures, and solution transformation.

• Ontology: We represent the situations in the pertinant domain in form of an on-
tology. A situation consists of set of contexts which are captured as nodes of the
ontology. Figure 5 depicts the ontology related to user-movie ratings. In this exam-
ple, a situation has two main contexts: User and Movie. Demographic information
for the users (age, occupation, sex, and zip code) are local contexts for the User
context and movie genres are local contexts for the Movie context.

Rating

User

age

sex
zip code

occupation

Movie

genre
Release

date

title

value

Fig. 5. The ontology example for user-movie ratings

• Casebase: The characterizations of the previous experiences and the recommen-
dations (trust information including truster, trustee, trust value, and situation) are
stored as elements of cases in the casebase. Cases are represented as attribute-value
pairs.

• Similarity1: The similarity between situations is a weighted sum of the similarity
between their contexts. Similarity between contexts, in turn, are computed as the
wighted sum of the similarity between the underlying local contexts. According to
the Tverskys formula [30], the similarity between two concepts A and B can be
determined in the following way:

S(A,B) =
|U(A)∩U(B)|

|U(A)∩U(B)|+ α |U(A)\U(B)|+(1−α) |U(B)\U(A)| (2)

U(A) and U(B) are the sets of properties of concepts A and B, respectively. The
function U takes into account the depth of compared concepts in the ontology hier-
archy. α is a value in the range [0,0.5]. The value of 0 implies that the differences of
A with respect to B are not sufficient to conclude that they are similar, and the value
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of 0.5 means that the differences are necessary and sufficient to conclude such an
assumption. Figure 6 illustrates an example of the similarity calculation.

In our approach, equation (2) is used to compare the attributes with each other,
while the comparison between the values of an attribute is performed using the
following general comparasion guidelines:

– Categorical: values in the same category are similar (e.g., weather).
– Continuous: closer values are alike (e.g., time).
– Hierarchical: values in the same hierarchy are similar (e.g., location).

Attributes which do not have these characteristics may require a custom comparator
to be defined for them.

• Solution transformation: The model-based reasoner (MBR) is responsible for adap-
tation or transformation of a solution (trust value) from previous experiences to the
current problem of trust judgment. It uses TMM to estimate trust value for the
current situation based on trust values of the similar situations (see figure 4). In
section 3.2.1, we consider the Subjective Logic model as TMM and provide details
for the solution transformation module.

3.2 Processes

CMF is generally composed of three processes: Remembering, Reusing, and Learning.

• Remembering: The query (the current trust assessment question) is compared to
cases (past trust assessment experiences) in the casebase and N most similar cases
are retrieved (N nearest neighbors). This process uses the ontology to measure the
similarity between the query and each case in the casebase.

• Reusing: A trust value is predicted for the query using the solution transformation
module.

• Learning: A new case is built from the query and the predicted value and is added
to the casebase for future uses.

1 In [27] we provide a comprehensive set of similarity measurement algorithms.
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In following, we explain the details for solution transformation module considering
the Subjective Logic as TMM.

3.2.1 Solution Transformation in Case of the Subjective Logic
We explain the functionality of the model-based reasoner through extension of the Sub-
jective Logic model as TMM. If A has functional trust in B in situation C1, then A can
infer its functional trust to B in situation C2 which is a similar situation. For example, if
A trusts B as a good car mechanic then A will probably trust B in repairing motorcycles
since there is a large similarity between the domains of repairing cars and motorcycles.

Similarly to Jøsang’s way to define opinions, we use triples to describe similarity
which enables us to use the Subjective Logic operators.

Definition 1. The similarity opinion SC2
C1

from C1 towards C2 is the triple2 (similarity,
non-similarity, uncertainty) and fulfills the constraints that the sum of all three values
is equal to 1. If C1 = C2, the similarity opinion is defined to be (1,0,0). Otherwise, it
is calculated based on the measure of similarity (S(C1,C2)) between the two situations
C1 and C2 and the depth of concepts in the ontology (see (2)):

SC2
C1

= (
S(C1,C2) ·UN(C1,C2)

k +UN(C1,C2)
,
(1−S(C1,C2)) ·UN(C1,C2)

k +UN(C1,C2)
,

k
k +UN(C1,C2)

) (3)

Here, k is a constant and UN(C1,C2) = |U(C1)∪U(C2)| defining the number of prop-
erties in play at all. In general, the higher the similarity value is, the less uncertain we
are, and the uncertainty will be lower as more details (UN(C1,C2)) are available in
comparison of the two situations C1 and C2.

Our similarity opinion is a special form of referral trust. It reflects that the akin situations
of C1 and C2 is a kind of recommendation (reminding) to A to treat in situations C1

and C2 similarly. Thus, we see the consensus operator ⊗ as the correct mechanism to
combine the similarity opinion between C1 and C2 with the functional trust of A in B in
order to infer the functional trust of A in B:

FT A
B,C1

= SC2
C1
⊗FT A

B,C2
(4)

FT A
B,X is extended notation for A’s functional trust to B which considers the under-

lying situation X. The higher the similarity between C1 and C2 is, the closer the trust
of A to B in situation C1 will be equal to that of between A and B in situation C2. The
lower this similarity is, the more uncertain A will be about whether to trust B or not in
the second situation.

The same conversion formula can be used for Referral Trust.

RT A
B,C1

= SC2
C1
⊗RT A

B,C2
(5)

2 This metric is inferred from a metric for the trust value computation [13] by Jøsang and
Knapskog.
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4 Evaluation

We chose MovieLens data3 in view of the fact that we needed a context-enriched data to
evaluate our work. The MovieLens data has been collected by the GroupLens Research
Project at the University of Minnesota4. The data consists of 100,000 ratings from 943
users on 1682 movies with every user having at least 20 ratings and simple demographic
information for the users is included. Figure 5 depicts the ontology which corresponds
to the MovieLens data.

User attributes are age, sex and 19 occupation categories5, zipcode, and movie at-
tributes are 19 film genres6. Much richer movie content can be obtained from the In-
ternet Movie Database (IMDB)7. We consider user and movie concepts as contexts and
user and movie attributes as local contexts to form the situation for each rating.

4.1 Data Setup

There are 5 datasets which are 80%/20% splits of the data into training and test data
(training set of 80,000 ratings, and the test set of 20,000 ratings). Each of these datasets
have disjoint test sets; this is for 5 fold cross validation (where we repeat our experi-
ment with each training and test set and average the results). The test sets are used as
references for the accuracy of the predictions.

In the MovieLens data, rating values 1 and 2 represent negative ratings, 4 and 5 repre-
sent positive ratings, and 3 indicates ambivalence (we consider them as -2,-1,0,+1,+2).
In order to convert these rating values to the Subjective Logic opinions (the triple
(b,d,u),b + d + u = 1) we can use the following conversion method:

b =

n
∑

i=2
(i−1) · f (i)

c +(n−1) ·
n
∑
i=1

f (i)
, d =

n−1
∑

i=1
(n− i) · f (i)

c +(n−1) ·
n
∑
i=1

f (i)
, u =

c

c +(n−1) ·
n
∑
i=1

f (i)
(6)

where the number of ratings at level i is described by function f (i) and c is a constant.

4.2 Experimental Setup

The casebase is built up from the ratings in the training set. Each case is composed
of four parts: user identifier, movie identifier, rating value, and situation including user
and movie information. Ratings in the test set forms queries to CMF and each query is
composed of three parts: user identifier, movie identifier, and the situation (the rating

3 http://www.grouplens.org/node/73
4 http://www.cs.umn.edu/Research/GroupLens/data/
5 Occupation list: administrator, artist, doctor, educator, engineer, entertainment, executive,

healthcare, homemaker, lawyer, librarian, marketing, none, other, programmer, retired, sales-
man, scientist, student, technician, writer.

6 Film genres: unknown, action, adventure, animation, children, comedy, crime, documentary,
drama, fantasy, film-noir, horror, musical, mystery, romance, sci-fi, thriller, war, western.

7 http://us.imdb.com
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value is removed). The rating value in the query is predicted by CMF using the casebase,
and then consequently compared with the removed value in the test set.

Four types of evaluation criteria are used in this paper:

• Coverage: measure of the percentage of movies in the test dataset that can be pre-
dicted.

• FCP: fraction of correct predictions.
• MAE (Mean Absolute Error) : average of the prediction error (difference between

probability expected values of predicted and real opinions) over all queries.
• RMSE (root mean squared error) : root mean of the average of the squared predic-

tion error. RMSE tends to emphasize large errors.

The evaluation is described as a pseudo-code in algorithm 1. First, the casebase and
the set of queries are built from training and test sets, respectively. Second, the Remem-
ber procedure is called for each query computes the similarity between each case in the
casebase and the query. Cases with a similarity less than a threshold are ignored and the
ten most similar cases among the remainings are retrieved. Next, by calling the Reuse
procedure, a rating value is predicted for the query (Rq) based on the rating values of
the retrieved cases (Ri, i = 1..10) and their similarity measures (Si) which are calculated
by the Similarity procedure.

Rq = (S1⊗R1)⊕ (S2⊗R2)⊕ . . .⊕ (S10⊗R10) (7)

Then, a new case is built which contains user and movie information of the query
and the predicted rating value is added to the casebase by calling the Learn procedure.
The predicted ratings form the predicted set. Finally, the test and predicted sets are
compared according to the four metrics (Coverage, FCP, MAE, and RSME) by calling
the Evaluate procedure.

The Similarity procedure (see algorithm 2) calculates weighted average of similarity
measures of local contexts (age, sex, occupation, and zipcode for users and genres for
movies) to determine the similarity between situations. In our implementation these
weights are 0.2, 0.15, 0.1, 0.05, 0.5 respectively and are determined based on the fact
that how much the local context can affect the rating decision. The comparator for each
local context are:

• Age: Closer values are more similar.
• Sex: The similarity value is 1 for identical sex values and 0 otherwise.
• Occupation: The similarity is calculated according to (2) for similarity measure-

ment on the ontology.
• Zipcode: ZIP codes are numbered with the first digit representing a certain group

of U.S. states, the second and third digits together representing a region in that
group (or perhaps a large city) and the fourth and fifth digits representing a group
of delivery addresses within that region. We assign similarity values of 1, 0.75, 0.5
to the same delivery address, region, and state group respectively.

• Movie genre: The similarity is calculated using (2) to measure similarity on the
ontology.
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Our baseline is the Pearson algorithm [17] which relies on Pearson correlation co-
efficient to produce a correlation metric between users. This correlation is then used to
weigh the rating of each relevant user. The Pearson correlation between users A and B
is defined as:

PA,B =
∑m

i=1 (RA,i− R̄A)× (RB,i− R̄B)
σA×σB

(8)

Algorithm 1. CONTEXT MANAGEMENT FRAMEWORK(test set,training set)

main
global casebase,similarity
comment: Build “casebase” from the training set and “queries” from the test set

similarity[1..size(casebase)]← 0
comment: “similarity” array stores similarity measures between the query and the cases

for each query ∈ queries

do

⎧
⎪⎪⎨

⎪⎪⎩

neighbors← REMEMBER(query,casebase)
predicted rating← REUSE(neighbors)
LEARN(query, predicted rating)
predicted set← predicted set ∪ predicted rating

EVALUATE(test set, predicted set)

procedure REMEMBER(query)
for each case ∈ casebase

do

⎧
⎨

⎩

sim← SIMILARITY(query,case)
if sim >= T HRESHOLD

then similarity[case]← sim
return (ten most similar cases)

procedure REUSE(neighbors)
predicated opinion← (0,0,1)
for each ncase ∈ neighbors

do

⎧
⎨

⎩

similarity opinion← (similarity[ncase],0,1− similarity[ncase])
new opinion← similarity opinion⊗ncase.rating
predicted opinion← predicted opinion⊕new opinion

return (predicted opinion)

procedure LEARN(query, predicted rating)
new case← query.user∪query.movie∪ predicted rating
casebase← casebase∪new case

procedure EVALUATE(test set, predicted set)
coverage← fraction of predicted ratings
f cp← fraction of correct predictions
mae←mean absolute error of predictions
rmse← root mean squared error of predictions
output (coverage, f cp,mae,rmse)
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Algorithm 2. SIMILARITY(query,case)

procedure SIMILARITY(query,case)
userq← query.user
userc← case.user
age sim← 1− ageq−agec

agemax−agemin

if sexq == sexc

then sex sim← 1
else sex sim← 0

occupation sim← ONTOLOGYSIM(occupationq,occupationc)
comment: “OntologySim” calculates contextual similarity according to (2)

if zipcodeq(1) == zipecodec(1)

then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if zipcodeq(2,3) == zipecodec(2,3)

then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if zipcodeq(4,5) == zipecodec(4,5)

then

{
zipcode sim← 1
comment: the same delivery address

else

{
zipcode sim← 0.75
comment: the same region

else

{
zipcode sim← 0.5
comment: the same state group

else zipcode sim← 0
movie sim← ONTOLOGYSIM(movieq.genre,moviec.genre)
total sim← 0.2 ·age sim+0.15 · sex sim+0.1 ·occupation sim
+0.05 · zipcode sim+0.5 ·movie sim
return (total sim)

where m is the number of movies that both users rated. RA,i is the rating, user A gave
to movie i. R̄A is the average rating user A gave to all movies, and σA is the standard
deviation of those ratings. Once the Pearson correlation between a user and all other
users is obtained, the predicted movie rating is calculated as:

RA,i = R̄A +
∑n

U=1 (RU,i− R̄U)×PA,U

∑n
u=1 |PA,U | (9)

Use of the Pearson correlation coefficient is quite common in the field of collabo-
rative filtering, and results obtained with this method will be used to gauge the per-
formance of other algorithms. Moreover, the Pearson algorithm uses only the rating
information while our method use situational information to do the prediction.

4.3 Discussion of the Obtained Results

In table 1, we present the final results of the evaluation. We start by commenting the
row “Coverage”. The coverage becomes an important issue on a very sparse dataset
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Table 1. Final evaluation results

Metric Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Average Pearson
CC

Coverage (%) 43.82 43.88 44.94 45.42 45.06 44.62 99.83
FCP 0.3629 0.3497 0.3299 0.3345 0.3417 0.3437 0.1993
MAE 0.1605 0.1600 0.1656 0.1648 0.1626 0.1627 0.3049
RMSE 0.2742 0.2717 0.2757 0.2739 0.2724 0.2736 0.3804

that contains a large portion of cold-start users since many trust values become hardly
predictable [18]. The results (Coverage ≈ 0.45%) indicate that our model is able to
predicate approximately one rating from each two ratings. For the Pearson algorithm
the coverage is not perfect merely because not all movies in the test dataset have a rating
in the training dataset. The second important result is the fraction of correct predictions
(FCP) is 0.34 which shows that from each 10 predicted ratings between 3 and 4 ratings
are predicted with exact values. Further, the prediction errors (MAE and RMSE) for
the other ratings that are not predicted exactly (between 6 and 7 ratings from each 10
predicted ratings) are small in comparison with the Pearson method (MAE ≈ 0.12 &
RMSE ≈ 0.20).

All-in-all, the results of the evaluation lead to the expectation that our approach pro-
vides an improvement over the Pearson algorithm and this implies that situational in-
formation is useful in making predictions.

5 Related Research

CMF is a knowledge-intensive CBR which is designed to extend situational inference
capabilities of trust management models. More precisely, the aim is to reuse the avail-
able trust information (direct experiences and recommendations) in similar situations
for the current problem and we use semantic (ontology-based) similarity measures.
Although CBR techniques are extensively used for recommender systems [1, 24] and
there are some works which use CBR to build more trust through providing explana-
tions [16, 21, 22], to the best of our knowledge this proposal is quite new. In this section,
we briefly explain the related researches which are based on context-aware trust man-
agement and thus more closely resemble our goal.

According to the literature, the extension of a trust model with context represen-
tation can reduce complexity in the management of trust relationships [20], improve
the recommendation process [20], help to infer trust information in context hierarchies
[9], improve performance [25], help to learn policies/norms at runtime [25, 29], and
provide protection against changes of identity and first time offenders [25]. Context
related information has been represented as Context-aware domains [20], Intensional
Programming [31], Multi-dimensional goals [8], Clustering [25], and Ontologies [29].

[26] provides a survey of different approaches to model context for ubiquitous com-
puting. In particular, numerous approaches are reviewed, classified relative to their core
elements and evaluated with respect to their appropriateness for ubiquitous computing.
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The authors conclude that the most promising assets for context modeling of ubiqui-
tous computing environments can be found in the ontology category in comparison
with other approaches like key-value models, mark-up scheme models, graphical mod-
els, object-oriented models, and logic based models. This selection is based on the six
requirements dominant in pervasive environments: distributed composition, partial val-
idation, richness and quality of information, incompleteness and ambiguity, level of
formality, and applicability to existing environments.

We present a state-of-the-art survey of context representation for trust management in
[28]. In the rest of this section ontology-based approaches to this problem are examined
in more details.

Golbeck et al. [6] propose an ontology for trust. In [5] the authors consider a model
using context-specific reputation by assigning numeric ratings to different types of con-
nections based on context of the analysis. In [29] rules to describe how certain context-
sensitive information (trust factors) reduces or enhances the trust value have been spec-
ified for this trust ontology.

In [29] contextual information (i.e., context attributes) is used to adjust the output
of a trust determination process. Each attribute can adjust the trust value positively or
negatively according to a specified weight. As an illustration, if t is the trust value and ω
is the weight of the context property then the adjusting function can be tω for decrease
or ω√t for increase. A context ontology connects the context attributes with each other
in an appropriate manner, enabling the utilization of context attributes which do not
exactly match the query, but are “close enough” to it.

In [2], cases where a truster does not have enough information to produce a trust
value for a given task, but she knows instead the previous partner behavior performing
similar tasks, are considered. This model estimates trust using the information about
similar tasks. The similarity between two tasks is obtained from the comparison of the
task attributes.

6 Conclusion and Future Directions

To sum up, we propose a framework based on the case-based reasoning paradigm
and the representation of deep knowledge to make existing trust management models
situation-aware. This framework has been validated for the Subjective Logic trust man-
agement model as an example and evaluated using a real large-scale dataset. It can also
be considered as an inference mechanism which deals with the sparsity and cold-start
problems of a web of trust.

The original Subjective Logic can be applied to determine transitivity only if the
subject of the trust relations along the entire path is the same. However, trust relations
with the same subject are not always available. Our proposal opens up the possibility
to draw transitivity also when the subject (situation) of the available trust relations are
not the same but are similar. First, the trust relations with similar situations with the
current problem are retrieved from the casebase using the ontology and the similarity
measurement algorithm (remembering past similar trust experiences). Next, they are
converted (using (4) and (5)) to equivalent trust relations in the current problem by so-
lution transformation module (reusing the trust information from the past similar trust
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experiences). Then, the transitive trust path is formed and final trust is calculated ac-
cording to the Subjective Logic (1). Solution of the current problem is stored as a new
case in the casebase (the learning process of CBR).

In the future, we aim to add a Risk Management Module to this framework. Risk
evaluation becomes important in inferring trust values among situations especially when
the trustworthiness of some principal is completely unknown and no recommendation
information is available. The intuitive idea behind such a risk assessment can be to
look up the in the casebase to see if there are any similar previous interactions, i.e., if
we have previously encountered an entity with similar trust attributes and similar risk
attributes in the same situation. The ontology part should be able to describe the level
of situational risk, whereby the higher the risk of negative outcome, the higher the level
of precision that must be captured.
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