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Using a thermal sample of laser-cooled rubidium atoms, we have constructed a neutral-atom circuit
analogous to an electronic capacitor discharged through a resistor. The atoms are confined using what we
call a free-space atom chip, an optical dipole trap created using a generalized phase-contrast imaging
technique. We have also calculated theoretical values for the capacitance and resistance, which agree with
our experiments, as well as theoretical value for an atomic analog of electrical inductance. We show that
atomic capacitance is analogous to the quantum capacitance, the atomic resistance is analogous to the
ballistic, or Sharvin resistance, and the atomic inductance is analogous to kinetic inductance.

E
lectronics is based on the manipulation of electrons, possibly enhanced by exploiting internal structure
associated with spin (spintronics). Atomtronics seeks do the same with neutral atoms. The more complex
internal structure of atoms makes the possibilities of such an architecture far richer than its electronic

analog. Recently, persistent currents of superfluid neutral atoms have been created in ring circuits, which are close
analogs to superconducting circuits1. There have also been efforts towards developing analogs to active electronic
circuit elements such as diodes and transistors2. Any usable neutral atom circuit, however, will need analogs to the
most basic electronic elements – resistors (R), capacitors (C) and inductors (L). Using a two-dimensional (2D)
optical dipole potential3 to generate what we call free-space atom chips, we have created and characterized a
neutral-atom RLC circuit. We show that the resistance is analogous to ballistic (Sharvin4) resistance in metals, the
inductance is analogous to kinetic inductance in superconductors5, and the capacitance is analogous to the
quantum capacitance in nanoscale devices6,7.

A 2D neutral atom analog to an electronic RLC circuit can be realized with a classical ideal gas using two containers
of areas A1 and A2 connected by a channel. In an electronic capacitor, a charge imbalance (Q) between two
conductors produces a potential difference (DV). When a resistor connects the two conductors, electrons flow to
eliminate the charge imbalance, causing DV to vanish. In our system, a number imbalance (N) between the two
containers produces a chemical potential difference (Dm).When a channel connects the two containers, atoms flow to
eliminate the number imbalance, causing Dm to vanish. To complete this analogy, we define a chemical capacitance,

Cc~
N

Dm
, ð1Þ

with SI units of 1/J and with the same form as the electronic capacitance C 5 Q/DV.
The chemical potential of a 2D ideal gas is the change in free energy associated with changing the number of

particles in the system8,

m~kT ln n
h2

2pmkT
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, ð2Þ

where k is Boltzmann’s constant, h Planck’s constant,T the temperature, n the 2Dnumber density andm themass
of a particle in the gas. To determine the capacitance, we start by assuming the two chambers to be in equilibrium,
with equal temperatures and equal densities, N1e/A1 5 N2e/A2 5 ne. Moving a small number of particles N from
A1 to A2 leads to an imbalance in the densities so that n1 5 (N1e 2 N)/A1 and n2 5 (N2e 1 N)/A2. Subtracting
equation (2) with n1 from equation (2) with n2 leads to
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This linear approximation is valid for N= N1e and N2e. The experi-
ment we describe below is within this limit. Combining equations (1)
and (4) leads to an expression for the neutral-atom chemical capa-
citance,

Cc~
ne

kT

� 	 A1A2

A1zA2

� �

:

ne�A

2kT
~

ne�A

2eT
, ð5Þ

where �A is the harmonic mean of A1 and A2, and eT is the thermal
energy of the gas.
When a channel is opened between the chambers, it acts as a

resistor and an inductor. To determine the values of R and L, we
examine the flow dynamics of the system. In a 2D ideal gas, the
effusion rate F of atoms out of either container is given by

Fi~

ffiffiffiffiffiffiffiffiffi

kT

2pm

r

Ni

Ai
w, ð6Þ

whereAi is the area of the container andw is the width of the channel.
The total rate of change in atom number in container 1 can then be
written as

_N1 tzDtð Þ~{F1 tzDtð ÞzF2 tð Þ, ð7Þ

where the second term on the right hand side of the equation, repre-
senting the rate that atoms enter container 1 due to leaving container
2, is evaluated at a time Dt earlier. This delay is due to the finite
velocity of the atoms traversing the channel. We approximate this
delay time using the average transverse velocity of an atom in the
channel,

Dth i~ l

vxh i~l

ffiffiffiffiffiffiffiffiffi

2m

pkT

r

, ð8Þ

where l is the length of the channel. When we combine equations (5–
8), and linearly expand the terms in equation (7) involving Dt, the
result is analogous to Kirchhoff’s law applied to a series RLC circuit,

N

Cc
~{Rc

_N{Lc €N, ð9Þ

with chemical resistance and inductance given by

Rc~
2 p2Dh i
new

and Lc~
2ml

new
, ð10Þ

with SI units of J
?
s and J

?
s2 respectively. Here,

p2Dh i~
ffiffiffiffiffiffiffiffiffiffiffiffi

pmkT

2

r

ð11Þ

is the average 2D momentum of the particles in one container. We
dropped a second term in the resistance that is only significant when
the channel represents a large portion of the entire area of the system.
At this point the small N approximation breaks down, thus the
second term is negligible when equation (9) is valid.

The chemical capacitance, resistance and inductance each have
specific electronic analogs. Our capacitance results from the shift
in chemical potential due to transfer of particles, the same effect that
causes the quantum capacitance in nanostructures6,7. For 2D
quantum dots with areas A1 and A2, the quantum capacitance is
given by

Cq~
e2m�A

2p�h2
~

e2ne�A

2eF
, ð12Þ

where eF is the Fermi energy of the gas. This is similar to equation (5),
with an electrical factor of e2 and the thermal energy replaced by the
2D Fermi energy. It is interesting to note that taking�h?0 in equation
(12) does not yield the correct classical limit of the quantum capa-
citance, which is equation (5).
In electronics, a point junction smaller than the mean free path of

the electrons creates what is known as the Sharvin resistance. This
arises purely from the ballistic motion of the electrons because there
is no scattering of electrons in the point junction itself. For a 2D
electronic system the Sharvin resistance is given by9

RS~
p

2

pF

e2nw
, ð13Þ

where pF~�h
ffiffiffiffiffiffiffiffiffiffi

2pne
p

is the Fermimomentum. This has the same form
as our chemical resistance in equation (10), differing by a factor of e2

and a numerical factor because the Sharvin resistance is derived for a
2D, charged, T 5 0 Fermi gas, which has a different velocity distri-
bution than our neutral, classical gas.
There is an inductance in electronic systems, the kinetic induct-

ance5, that arises due to the kinetic energy associated with current
flow in a wire,

Lk~
ml

e2nw
: ð14Þ

Table 1 | Summary of chemical capacitances and resistances for
various systems. In the 2D systems, �A is the harmonic mean of the
two container areas, w is the cross-sectional width of the channel,
the average classical 2D momentum is p2Dh i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pmkT=2
p

, and
the 2D Fermi momentum is pF2D~�h

ffiffiffiffiffiffiffiffiffiffi

2pne
p

. In the 3D systems,
�V is the harmonic mean of the two container volumes, a is the
cross-sectional area of the channel, the average classical 3D
momentum is p3Dh i~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8mkT=p
p

, and the 3D Fermi momentum

is pF3D~�h
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Figure 1 | Capacitor Discharge. Images of a discharging atom capacitor

with a channel width of 340 mm. The atoms are loaded into the right

container and released from the MOT at t 5 0 ms. The images are

snapshots at 5 ms intervals, starting at t5 5 ms (viewed left to right, top to

bottom). Each frame is the average of eight individual experimental runs,

and is scaled independently of the other frames.
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Again, this shares the same form as our chemical inductance, differ-
ing by a factor of e2 and a numerical factor.
The methods that we used to calculate the capacitance and resist-

ance of classical ideal gas circuit elements can be extended to other
atomic systems such as degenerate Fermi gases and Bose-Einstein
condensates. To define the chemical capacitance, all that is needed is
the dependence of the chemical potential on atom number. The
momentum distribution of the sample determines the effusion rate,
which leads directly to the chemical resistance. Table 1 summarizes
these results for 2D and 3D non-interacting classical gases, non-
interacting degenerate Fermi gases, and BECs. The BEC cases are
derived using the Gross-Pitaevskii (GP) equations for hard-wall con-
tainers in the Thomas-Fermi limit. In this case it is not sufficient to
describe the system as consisting of point particles with classical
trajectories, which is needed to derive the resistance, thus this is
omitted. The 2D Fermi gas capacitance formula is exact. The classical
gas and the 3D Fermi gas capacitances are all the first-order terms in
Taylor series expansions.

Results
To realize a classical ideal gas neutral atom capacitor, we begin with a
sample of 87Rb atoms, cooled and confined using a magneto-optical
trap10 (MOT). This MOT is created inside of a free-space atom chip
that consists of two circular containers separated by a rectangular
channel. The method used for creating this potential is discussed in

the methods section. At time t5 0, the atoms are released from the
MOT after a final cooling stage, and allowed to flow between the
containers for a variable amount of time, after which a fluorescence
image is taken of the atoms. We directly image the gas flow between
the containers with this setup. The evolution of this system can be
seen in figure 1. We point out that the arrangement employed is
similar to that used in atom-optics billiards where a circular potential
is known to lead to ’’regular’’ dynamics, which would affect the
effusion rate in our experiment11. In our case however, the container
walls are not smooth, as discussed in themethods. Because of this the
atom-wall collisions are not always specular, leading to ergodic
dynamics, thus our use of equation (6) is valid. Figure 2 shows the
decay of the normalized number imbalance N/Ne as a function of
time for several channel widths, as well as the solution to the RLC
differential equation for the parameters used. The only fit parameter
for the RLC solution is the initial atom number imbalance.

Discussion
For channels up to approximately half the width of the containers,
the data and theory agree well. For channels that approach the width
of the containers (green plot in figure 2), the assumption of local
equilibrium is no longer valid, and good agreement is not expected,
and indeed is not seen. The nature of the disagreement appears to be
inductive, showing a significant overshoot. This however, is not the
inductance we derive, which is too small to account for this phenom-
enon.
We have experimentally demonstrated atomtronic capacitors and

resistors, and shown how to construct an atomtronic inductor, all on
a free-space atom chip defined using 2D optical dipole potentials.
These basic linear devices are necessary for biasing active devices,
and are also essential for constructing oscillators and filters. Inte-
gration into systems such as loops containing BECs1, atomtronic
Josephson junctions based on BECs, BEC analogs of SQUIDs12,
and atomtronic batteries, diodes and transistors2, is made much
more simple through the flexibility of our atom-chip technique.

Methods
To create the trap geometry that was necessary to carry out this experiment, we used
what we call free-space atom chips, which are a type of crossed optical dipole trap.We
use a sheet dipole trap to confine the atoms to a 2D plane. On top of this, we project an
arbitrary 2D optical dipole potential to create the geometry necessary for the
experiment. In this particular experiment, the sheet trap was a blue-detuned,
repulsive beam confining the atoms from below, with gravity confining them from
above.

In the plane, we create our arbitrary 2D pattern using a generalized phase contrast
approach13. This scheme is shown in figure 3 a). A phase pattern is imprinted onto an
input TEM00 beam and sent through a 4-f imaging system.We used a 2D spatial light
modulator (SLM) to imprint the pattern. At the Fourier plane, there is a phase-
contrast filter that shifts the phase of the lowest spatial frequencies, which exist near
the optical axis, byp relative to the remaining spatial frequencies of the beam. The two
parts of the beam interfere in the output plane to produce an intensity profile that
mirrors the input phase mask. This plane is imaged onto the sheet potential, effec-
tively etching the sheet to create our free-space atom chip. The intensity profile for
one of our capacitor potentials is shown in figure 3 b). Thismethod, with the use of the
computer-addressable SLM, allows us to create and easily modify the confining
potential used in the experiment. This ability was integral to this experiment as it

Figure 2 | Comparison of experimental data to analytic solution. The

points indicate the experimental data and the solid lines represent the

relevant RLC solution. The black line is for a channel width of 240 mm, the

red 384 mm, and the green 576 mm. From equations (5,10), the RC time

constant, t~

ffiffiffiffiffiffiffiffi

pm

2kT

r

�A

w
, can be calculated for each of these systems to be 34,

21 and 14 ms respectively. The diameter of each container is 600 mm. For

each experimental data point, 8 individual runs were averaged. The error

bars are the standard deviation of the mean.

Figure 3 | Phase-Contrast imaging system with typical output. a) A basic phase-contrast imaging system with input phase mask, phase-contrast filter,

and 4-f lens arrangement, and b) a typical output pattern used to create blue-detuned optical dipole potentials for an atom capacitor. The blue (white)

areas correspond to light (absence of light).
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allowed us to easily adjust the channel width. Because of the pixelazation of our SLM,
the walls of our containers are rough on the order of 10 mm.

In the experiment, the atoms start with a temperature of approximately 40 mK. The
potential height of the container walls is approximately 60 mK. Since there is a sig-
nificant population of atoms in the thermal distribution with an energy that can escape
the trap, there is a truncated velocity distribution in the sample. The number density of
the atoms in this experiment is not high enough for rethermalization to occur. Time-
of-flight expansion experiments have shown that the truncated distribution is well
approximated by a thermal distribution at a temperature of about 20 mK, which is the
temperature used in the analytical RLC plots in figure 3. The potential height of the
sheet below the atoms is approximately 500 mK, which is effectively infinite when
compared to our atom temperatures.

The images were taken by switching on the original near-resonant MOT light for
100 ms, and collecting the light scattered by the atoms using a single lens, one-to-one
imaging system with the image plane on the sensor of our camera. A background
image was then subtracted to obtain the final image for any one shot. Eight individual
runs were then averaged together for each frame of figure 1. To count the atom
number difference plotted in figure 2, each imaged was masked off to count the
number of atoms in either the left or right container. The error bars in this plot are the
standard deviation in the mean for this measurement for the eight runs. Each image
was taken after a short (2 ms) time-of-flight for technical reasons.
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