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An analogue of the inverse scattering theory for the discrete Hill's equation is developed. 

A method consists of the introduction of abelian integrals and the solution of Jacobi's 

inversion problem. The equation of motion of the periodic Toda lattice is integrated exactly 

by means of Riemann theta functions. 

§ l. Introduction 

The purpose of the present paper is an integration of the equation of motion 

of the periodic Toda la ttice.n 

Simultaneously with the invention of his exponential lattice, Toda has constructed 

both of the infinite and periodic traveling wave solutions (soliton). The latter 

is expressed by elliptic function. Solutions showing the interaction of two solitons 

are also found by Toda21 for the infinite case. Hirota31 has found the explicit form 

of N-solitons for the infinite case. Flaschka41 has found Lax representation 51 for 

the Toda lattice and applied the inverse scattering theory to the discrete Sturm

Liouville equation with similar conclusion to the one obtained by Gardner, Greene, 

Kruskal and Miura6> on the Korteweg-de Vries (KdV) equation. These develop

ments of Toda lattice theory is summarized in Toda's review article. 71 Kac and 

Moerbeke81 studied a variant of the Toda lattice. They also consider the periodic 

problem (especially soliton sol uti on) from the standpoint of the spectral theory 

of the discrete Sturm-Liouville equation. 

Recently Dubrovin 91 ' 101 and Its-Matveev 111 developed an analogue of the in,-erse 

scattering theory for Hill's equation (Sturm-Liouville equation with periodic co

efficients) and have given an explicit form of the periodic potentials with the finite 

number of gaps in the spectrum. The KdV equation is exactly solved in that 

class of potentials leading to the effective construction of the periodic N-solitons. 10>' 111 

Main part of the present paper is devoted to the inverse scattering theory 

of the discrete Hill's equation wllich is also of its own interest. Principal method 

of Dubrovin, Its-Matveev and also of this paper is the introduction of abelian 

integrals and solution of Jacobi's im-ersion problem. This idea has been introduced 

into the study of Hill's equation and its discrete version by Akhiezer. 121 ' 13> 

In § 2 we describe the generalities on the spectral properties of the discrete 
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!Ell's equation. 

In § 3 hyperelliptic T~iemann surface is introduced so that the Bloch eigenfunc

tion is single-\'alued meromorphic function on the surface. Abelian integrals and 

Jacobi's inYersion problem for them are clescribed and the potentials are cxpressecl 

e':plicitlY hy theta hmctions. 

Section 4 concc~rns exact solutions for the equation of motion of the periodic 

Tocht lattice. 

Spectral properties of the discreh· Hill's equation 

Con sicler tb e discrete Hill's equation 

fAi=l.Ji, 

(2. J) 

We cleilne a fundamental system of solutions of (2·1), y(n). ::::(n). by tlw 

mitial conditions 

y(0)=1, 

z(O)=O, 

y(l) c=an- 1 (A-b 0 ); 

::::(1)cc=ao- 1 

rhen for n:C~O. y (n) is a polynomial of the form 

n---1 n--1 n-2 

y(n) =en a;)- 1 {A"- (l' b;)i,n-l-t- ( ~ bjbk--~ a/)An- 2 -' ···} 
J ,,. 0 J =f1 O~;<k~n 1 j =0 

ancl z (n) is a polynomial of the form 

n-1 n--l )1. ::! 

(2. 2) 

(2. 3) 

::::(n) =en aj)- 1 {J."-1 - (l' b;)J."-' ~ b;b~c--~a/)J."- 3 +···}. (2·4) 
J=O j=1 ]~:j<kS:.Jl·-1 j=-ol 

For n<O. similar expressions bold. 

By the periodicity of an, bn, we have 

ry (n + N)l ry(n) l 
, =M(A) ' 

_z(n-iN)_ z(n)~ 
ry(N) 

M(J) = 
,z(N) 

--aN-1Y(l~-J)l· (Z· S) 
-aN-J::::(N---1) 

Noting that clet Af is an analogue of \'V ronskian, we have clet 1"11 = 1 

Put 

J(X) =y(N) --av-I::::(N--1). 

The roots of the equation 

J(A) 2 -4=0 

are all real and are ordered as 

(2. 6) 
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The roots of 'the equation 

z(N) =0 

are real and distinct. If we order them by 

we have /f.; E [A2h A2;+ 1]. These properties are shown by the analogous arguments 
as in the continuous case.w' 15'' 16' 

Denote byy(k,n), z(k,n) the solutions of (2·1), (2·2) in which the co
efficients an, bn are replaced by an+k• bn+k· Then the relations 

hold. 

y(k, n) =ak-ly(k-1)z(k +n) -ak_1z(k-1)y(k+n), 

z(k, n) =y(k)z(k--t-n) -z(k)y(k+n) 

Using these relations we have 

y(N) -aN_1z(N-1) =y(k, N) -ak_1z(k, N-1). 

Therefore if we denote the roots of the equation 

z(k, N) =0 

(2·7) 

by /iJ(k)< · · · <11N-1(k), 11ik) belongs to [A2h A2;+ 1]. Accordingly if the interval to which 
/!1 (0) =!J.; belongs degenerates to a single point, we have 111 (k) =/1;(0) for all k. 

The coefficients of AN-• and ;.N-s of z (k, N) are calculated in two ways leading 
to 

(2 ·8) 

(2·9) 

Introducing the notations 

and applying the analogous argument to L1 (A)"- 4, we have 

(2-10) 

(2-11) 

We define the Bloch eigenfunction of (2 ·1) by 

x+ (n) = y (n) + -=-{_q_N-lz(1\f_~1L+_y(N_2}: :±: ~ (A)~=41~z(n). 
- 2z(N) 

By the direct calculation using (2 · 5), (2 · 7), we have 
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.L (k)x_ (k) =z(k, N) /z (N). (2 ·12) 

§ 3. Hyperclliptic abelian integrals and the solution of Jacobi's 
inversion problem 

In what follows, among roots of (2 · 6) simple roots play important roles. 
Assuming their number to be 2g + 2 and changing the numbering, we denote simple 
roots by 

il.1<il.,< ···<il.2gl2 

and double roots by Aw 1 =Jc,i, 2 (j=g+1, ... _N-1). We also change the number
ing for /).1 (k) so that the relations 

il.,j</1j(/~)<il.,j+1' j=1, .... g, 

/lj (k) = il.,j->1 = il.,j7z, j = g + 1, · · ·, N -1 

hold. 

We introduce the Riemann surface of the hyperelliptic curve17J 

2g·l :2 

;t'=R(X) =ITCX-A.j). 
jo-l 

This Riemann surface is realized by cross-connecting two copies of the it-planes 

which are cut along the intervals Uzj- 1 , il.,i), j = 1, · .. , g + 1. On this surface S 
we take a system of canonical cuts ah {3h j = 1, ···,g. For ai we take a closed 
contour which starts at il.,, goes on the upper sheet as far as il.,i+~> crosses to the 

lovver sheet and ends at il.,. For (3i we take a closed contour which surrounds 
the cut (i\2j, 1 , il.,i 12), j=1, ···, g on the upper sheet. For the point XES the cor
responding point on the other sheet is denoted by il.'. We mean by the upper sheet 

the sheet on which R (i\) 112 is positive on (i\ 2g, 2 , co). 
Bloch eigenfunctions x, (!<) and x_(k) can be regarded as the branch of the 

single-valued function x (k) on S. For sufficiently large },, we have 

x+ (k) =y(k) -z(N) 1aN_ 1z(k)z(N-1) + ... , 
x_(k) =z(N)- 1z(l~,N-k) + ... 

up to the terms of lower order in k Therefore by the above expresswns and 

(2 ·12)' X ( k) is a meromorphic function on S, has simple zeros at /lj u~)' has 
simple poles at /-lj (0), has zero of k-th order at co' (on the lower sheet) and has 
pole of k-th order at co (on the upper sheet), where },,i<Pi(O), /l.;(k)<il.,j7l> 
j=1, ... ,g. 

We want to know the dependence of /lj (k) on k. For this purpose we use 
the idea of Akhiezer.12l' 13l We denote a base of the abelian differentials17)' 18l of 

the first kind by 
g-1 

iOm = ~ CmjJcj R (X)- 11'd). , 
jc::-0 

Ill= 1, ... ' g, 
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normalized by 

Put 

f Wm=-niDJm, j, m=1,···,g, Jp, 

j, m=1, ... ,g. 

Then Cm,J are real and the matrix (t1m) is a real symmetric negative-definite matrix. 
Next we take the abelian differential of the third kind whose residues at 

p.1 (k) and 111 (0) are 1 and -1 respectively: 

w (111 (k), 111 (0)) =2- 1 [ ()..- 111 (k)) - 1 {R(A.) 112 + R (111 (k)) 112} 

- (A.- /li (0)) -1 {R (A.) 1/2 + R (111 (0)) 1/2} + PJ ()..)] R ()..) -112dA.' 

where p1 ()..) is a certain polynomial of at most (g -1) -th degree. Finally we take 
the abelian differential of the third kind whose residues at oo and oo' are -1 
and 1 respectively: 

where p()..) is a certain polynomial of at most (g-1)-th degree. These differentials 
are normalized so that all of {31 periods are zero. These conditions determine 
p1 ()..) and P ()..) uniquely. 

Consider 

w (k) =x (k) - 1 (dx (k) / dA.) d).. 

This is the abelian differential which has poles at 111 (k), 111 (0), oo, oo' and has 
residues 1, -1, - k, k respectively. Then w (k) is expressed as 

c1 being some complex numbers. Since x (k) is single-valued on S the relations 

f w(k)=2nmd, Ja, 

f w(k) =2nnd, jp, 

must hold for some integers m,, n,. 
c 1 = - 2ni> and from the first relation 

l=1, ... ,g 

Then from the second relation we have 

Using the relations among the periods of the normalized differentials, we have 

100 g st<;(k) g 
- 2k w, + 2 ~ w,- 2 ~ n 1t,1 = 2nmzi . 

=' J ~1 1-1;(0) J ~1 
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462 E. Date and S. Tanaka 

\V e rewrite this as 

(3 ·1) 

where ji0 is a fixed point on S. 
\Ve introduce Riemann theta function defined by 

00 g g 

fJ(u)= :E exp[22.:;mJur+ ~tJkm;mk], 
m 1, .. ·,m 17 =··-oo j=l j,k=1 

Solution of Jacobi's inversion problem17l,ls) permits us to express symmetric poly

nomials of ,111 (k) by the right-hand side of (3 ·1) as rational function of theta ftmc

tions. Follovving Its-Matveev1n vve write first of them as 

g 

- L cM_ 1DJ log(} (u ( oo) + (k + 1) c +d), (3. 2) 
J~l 

where 

and D1 denotes the partial differentiation vvith respect to the j-th variable. 

By (2 · 8) and (2 ·10), ~we h<we 

~g+2 

A * ~-2-1"' , 1 -- .L..; l.j . (3. 3) 
J =1 

vVith (3 · 2), this expresses bk by Riemann theta functions. 

By (2·9) and (2·11), a%_ 1 -+ak2 and, if N (the period) rs odd, even ak2 can 

be expressed (in a complicated way) by theta functions. Because we do not need 

these formulas for ak2 to integrate Toda lattice, -.ve do not write them. 

§ 4. Integration of the periodie Toda lattiee 

The equation of motion of Toda lattice has the form 

Q,=P,, 
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Analogue of Inverse Scattering Theory for the Discrete 1-Iill's Equation 463 

where the dot denotes the differentiation with respect to the time variable t. 
By putting 

these equations take the following forms: 

an =an(bn+1-bn), 

bn=2(an2 -a';_1 ). 

These equations are equivalent to the evolution equation of linear operators41 

L= [B, L] =BL-LB, 

where 

Uisng these expressions we have 

y(n) =--'any(n+l) + (bo-A.)y(n) --an-JY(n-1) +2aiv_1z(n), 

z(n) = -2y(n) +anz(n+1) + U.-bo)z(n) -an-lz(n-1). 

From these formulas, \Ve have 

ti(A) =0, 

(4·1) 

1.e., A.1 are independent of t. So the Riemann surface and the normalized differ
entials on it introduced in § 3 are also independent of t (namely, they are determined 
by the initial conditions). In the construction of § 3 dependency on t comes only 
through ;11 (0). We also note that 

N-1 

A= II a 1 
j=O 

IS independent of t. 

From (4·1) we have 

z(N) = -2y(N) -2(bo--A.)z(N) -2aN_1z(N-l). (4·2) 

Differentiating the relation 

with respect to t, we have 

Putting l=/11 (0) (j=1, .... g) in (4·2), we have 

If we consider ILJ (0) not as a number but as the point on S where Bloch 
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464 E. Date and S. Tanaka 

eigenfunction 

x(n) =y(n) +- {aN-Jz(N-=12__+~(N2} + (LI (A)~-:-4)_:'z(n) 
2z(N) 

has pole, it does not have pole at ,Lt1 (0) '. Therefore we have 

- {aN_,z (N -1) + y (N)} l 1 ~,,,w> =- {LI (~t1 (0) ') 2 - 4} 112 

= {LIC~tjco))'-4r1'. 

Thus we have 

(4·3) 

The corresponding differential equations for the case of the KdV equation have 

been derived by Marchenko,l9) Dubrovin-Novikov10> and Its-Matveev.w 

Put 

g 

1
~,co. t) 

~n(t)=L; Wn• 
j=l Po 

Differentiating with respect to t, we have 

0 g g-1 

~ n (t) = L..; ft1 (0, t) R (,lij (0, t) )-112 ,E C11 zft/ (0, t). 
j~l l~O 

Inserting ( 4 · 3), we have 

The right-hand side is simplified to -2cn.u- 1 by the Lagrange interpolation for

mula. Therefore in (3 · 2), d1 is replaced by 

d1 (t) =d1 (0) +2c1.u_ 1t. 

By (3 · 2) and (3 · 3), we have 

bn (t) =AI*- iT- 1i't r },()) j- 2-l (d/ dt) log ___f_(_zt_( 00 ) + nc + d_(t)l____' 
1~1 JP; (}(u(oo) + (n+l)c+d(t)) 

the right-hand side being determined by the initial conditions. Formulas for an(t), 

Pn(t) and Qn(t) are direct consequences of this formula. 
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