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Quantum computers hold the promise to provide outstanding computational speed ups in chemical
problems, like the determination of the electronic ground state energy of molecules. Here, we
demonstrate that the same goal can be achieved with an analog quantum simulator which combines
two well-established technologies, namely, ultra-cold atoms in optical lattices and cavity QED. In
the proposed simulator, fermionic atoms hopping in an optical potential play the role of electrons,
additional optical potentials provide the nuclear attraction, while a single spin excitation over a
Mott insulator mediates the electronic Coulomb repulsion. We analyze the impact of discretization
and finite size effects of the lattice, and provide the working conditions required for the precise
determination of the electronic energy of simple molecules.

Quantum computers are expected to have an enormous
impact in several areas of science, as they could tackle
problems which are unsolvable with classical devices.
Particularly relevant are quantum many-body problems
involving several systems interacting with each other ac-
cording to the rules of Quantum Physics [1]. Among the
most timely and significant ones are the so-called quan-
tum chemistry problems, which generally imply obtain-
ing the ground state energy of many electrons interact-
ing with both the nuclei and among themselves through
Coulomb interactions. The potential impact in fields like
catalysis or drug industry has put the development and
implementation of efficient algorithms at the forefront of
quantum technology research [2–6].
While full-fledged quantum computers may be built in

the future, the next generations will be limited in size and
by the presence of errors [7]. An alternative way to ad-
dress quantum many-body problems is analog quantum
simulation [8]. The idea is to use a well-controlled quan-
tum system (the simulator) and engineer its interactions
according to the Hamiltonian under investigation. This
approach has already yielded results beyond what can be
achieved in classical computers [9, 10]. The key feature is
that their interactions are either local or short-range, be-
ing ideally suited for the existing simulators. On the con-
trary, analog simulation of quantum chemistry requires
engineering long-range (Coulomb) interactions between
fermionic particles, and no system has been identified so
far fulfilling such requirement. This is why current efforts
concentrate in digital simulation [11–13].
In this work we show how to build an analog simu-

lator for quantum chemistry problems by bridging two
paradigmatic systems, namely, ultra-cold atoms in opti-
cal lattices [14–16] and cavity QED [17–21]. Fermionic
atoms trapped in a periodic 3D optical potential play
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the role of electrons and are subject to additional op-
tical potentials emulating their interaction with the nu-
clei. The key ingredient of the scheme is to trap another
atomic species in the Mott insulator regime, with several
internal states such that its spin excitations mediate ef-
fective forces between the simulated electrons. We show
that even though the interaction is local, one can in-
duce Coulomb-like forces among the fermionic atoms in
a scalable manner. While the setup is discrete and finite,
we show that precise results can be obtained for simple
molecules with moderate lattice sizes. Apart from the
standard advantages of analog simulation over quantum
computing regarding the required control [8], the present
scheme does not rely on a judicious choice of molecular
orbitals [22], but directly operates in real space improv-
ing convergence to the exact result as the system size
increases.
One of the main goals of Quantum Chemistry is to ob-

tain the low energy behavior of Ne electrons and several
nuclei when the positions, rn, of the nuclei are fixed. Us-
ing a cubic discretization in real space of N×N×N sites,
the electronic Hamiltonian to solve contains three terms,
Hqc = Hkin +Hnuc +He−e, (using ~ = 1, and dropping
the spin index)

Hkin = −tF
∑

〈i, j〉

f†i fj , (1)

Hnuc = −
∑

n, j

ZnV (‖j− rn‖) f†j fj (2)

He−e =
∑

i, j

V (‖i− j‖) f†i fif
†
j fj , (3)

where fi are annihilation operators of electrons at site i

fulfilling {fi, f†j } = δi,j, and 〈i, j〉 denote nearest neigh-
bour sites. Hkin describes the electrons hopping at a rate
tF , Hnuc represents the nuclear attraction when the nu-
clei are at positions rn, while He−e accounts for electron-
electron repulsion. In both cases, the attractive/repulsive
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FIG. 1. Schematic representation of the analog simulator. (A) Fermionic atoms, playing the role of electrons, are
trapped in a periodic 3D cubic potential. Their hopping simulates the kinetic energy term of the electrons. Furthermore,
they are subject to additional optical potentials which emulate the nuclear interaction. (B) Coulomb repulsion among the
fermions is mediated by a spin excitation of a Mott insulator with two internal levels. One of the states allows the excitation to
propagate through spin exchange interactions with rate J (lower D). The other level experiences a strong repulsive interaction
with the fermions and interacts with a cavity mode. Both levels are coupled either through a microwave or a two-photon
Raman transition (upper D). (C) Illustration of the complete simulator for the H2 molecule. While a bidimensional lattice is
pictured, the experimental proposal presented here refers to a three-dimensional optical lattice.

potential has the standard Coulomb form, V (r) = V0/r.
The connection of the length/energy scales of the discrete
Hamiltonian Hqc and the continuum one is given by:

a0/a = 2tF /V0 and Ry = V 2
0 /(4tF ) , (4)

where a0, a and Ry are the Bohr radius, lattice spacing,
and Rydberg energy, respectively. Thus, we work in a
regime,

(a) 1 ≪ 2tF /V0 ≪ N/N1/3
e ,

such that the first inequality prevents discretization ef-
fects, and the second guarantees the molecule fits in the
volume of the simulator.
Our simulator then requires three ingredients (see

Fig. 1A): i) cold spin-polarized fermionic atoms hopping
in a 3D optical potential with a tunable tunneling rate,

JF , to play the role of electrons [14, 23]. ii) Additional
potentials to emulate the nuclei attraction. Since this is
a single-particle Hamiltonian, it can be created through
optical Stark-Shifts with an adequate spatial modulation,
e.g., using holographic techniques [24, 25]. iii) The most
difficult part is to simulate He−e, since it involves repul-
sive interactions between the fermions with a 1/r depen-
dence. Inspired by how virtual photons mediate Coulomb
interactions in QED, we use a spin excitation of another
atomic species forming a Mott insulator to mediate the
Coulomb forces between fermions (see Fig. 1B). It is com-
posed of N3

M atoms trapped in an optical potential with
the same spacing as the fermions, and with two additional
internal atomic states, a and b, which describe spin ex-
citations. Spin excitations in a state interact repulsively
and locally with the fermionic atoms, with strength U ,
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FIG. 2. Atomic spectrum dependence on the

effective Bohr radius. (A) Lower part of the
spectrum of the atomic Hamiltonian Hqc for a cu-
bic lattice of N = 100. Dashed lines indicate the
position of the 3 first atomic levels associated to
the continuum Hamiltonian. In the colored region,
tF /V0 < 0.5, the Bohr radius is smaller than the
lattice spacing and energies are highly affected by
the cut-off of the nuclear potential. As the hopping
parameter tF /V0 increases, the system is effectively
zoomed-in, as we show in the panels for the elec-
tron density of the second-lowest energy orbital.
This includes more lattice sites in the simulation,
reducing systematic deviations as (tF /V0)

−2, as we
show in the inset for the state associated to the
lowest energy state. At higher values of tF /V0, so-
lutions suffer from finite-size effects.(B) Axial cut
in the central positions of the lattice is represented
for the first 9 eigenstates of Hqc for tF /V0 = 2,
N = 150. (C) Appropriately choosing the Bohr
radius, we show how the same orbital can be ob-
tained with N = 1000 (up, tF /V0 = 150) or N = 20
(down, tF /V0 = 3), where the discretization of the
system is more noticeable.

and propagate through the long-range couplings induced
by a cavity mode, with rate Jc [17–21]. The b internal
state is subject to a different optical potential, such that
its itinerant spin excitation propagates through standard
nearest-neighbor exchange, at rate J . Furthermore, an
external field (Raman laser or a RF field) drives the a−b
transition with coupling strength g, and detuning ∆. The
complete simulator Hamiltonian after the elimination of
the cavity mode reads Hsim = Hkin +Hnuc +HM , with

HM = ∆
∑

j

b†j bj + J
∑

〈i,j〉

b†i bj + Jc/N
3
M

∑

i,j

a†i aj

+ U
∑

j

a†jajf
†
j fj + g

∑

j

(
a†j bj + b†jaj

)
,

(5)

being aj/bj are annihilation operators for a a/b-spin ex-
citation in site j [26]. Intuitively, the on-site interac-
tion U localizes the a/b excitations around the fermions,
renormalizing their tunneling rates and creating an ef-
fective interaction. Mathematically, one can adiabati-
cally eliminate the Mott insulator excitations and derive
the effective dynamics for the fermions. The fermionic
part of the simulator Hamiltonian Hsym ≈ Hqc, with
tF = JF (Ne − 1)/Ne, where the electron-electron poten-
tial follows a Yukawa form [27] with a constant energy
shift:

V (r) ≈ C +
V0
r/a

e−r/L , (6)

where L/a =
√
J/(U +∆+ ρMJc − 6J) is the localiza-

tion length, which can be tuned with ∆, and V0 = g2

2πJNe

the strength of the potential repulsion. Here ρM =

Ne/N
3
M . This mapping between Hsym and Hqc holds

as long as,

(b) Jc ≪ U , (c) JF , V0 ≪ Jc · ρM /N1/2
e ,

(d) V0N
7/3
e ≪ J (aN/L)2 .

(7)

Condition (b) enforces that the a excitation localizes
symmetrically only around the position of the fermions;
(c) guarantees that neither the tunneling of the fermions
nor the interaction with the b-excitations spoils the effec-
tive interaction; (d) ensures that the Yukawa potential
does not depend on the fermionic positions. Further-
more, to obtain a truly Coulomb repulsion, the length L
must be larger than the fermionic lattice N , but smaller
than the Mott insulator size, that is:

(e) N ≪ L/a < NM .

When all (a-e) inequalities are satisfied, the exact so-
lution in the continuum limit is recovered in the limit
NM > N → ∞. Thus, the finite size of the simulator is
what ultimately limits the precision of the simulation.
We now benchmark our simulator for moderate system

sizes using numerical simulations. In Fig. 2 we solve the
Hydrogen problem in a lattice to explore discretization
and finite size effects by comparing the energies of the low
excited states with that of the continuum. We show that
an error of 0.3% with respect to the exact energy can be
obtained for systems of N = 100. In Fig. 3 we analyze
the accuracy for the simplest molecule, H2. First, we
compute exactly the energy of the spin excitation that
mediates the fermionic repulsion, as a function of the
interfermionic separation (Fig. 3A). We show that it re-
produces the 1/r behavior over a wide range of values of



4

A B

C D

r /a

r /a

(V
 -

 C
) 

/J

E
 /
 R

y
E

 /
 R

y

FIG. 3. Molecular potential and effective interaction mediated by the Mott insulator. (A) Energy of the excited
bound state of Hamiltonian (5) with two fixed fermions as a function of their separation, r. We choose ∆ = 2J, NM =
200, Jc = J , such that (a-e) inequalities are satisfied. The Yukawa potential of Eq. (6) corresponding to each configuration of
parameters is plotted with dashed lines. (B) We use this effective interaction to calculate the molecular potential associated
to an analog simulator of size N = 75. For each internuclear separation, we choose tF /V0 giving optimal accuracy (see SM for
details), ranging from tF /V0 = 4.2 to tF /V0 = 2.3 in the dissociation limit (dotted line). Molecular orbitals are included in the
projective basis until convergence is observed. For a Coulomb potential (blue dots), the result agrees with an accurate solution
in the nonrelativistic regime [28, 29] (dashed line). As L decreases, the exponential decay in the Yukawa potential prevails,
underestimating Coulomb repulsion and lowering the molecular potential. (C) This underestimation of the repulsive potential
is stressed when violating N ≪ L/a (see inset). (D) Changing the ratio, F between the electronic and nuclear potential, one
can explore artificial repulsive interactions that form pseudomolecules in more relaxed experimental conditions. The dotted
line represents the limit of zero-repulsion in the absence of a mediating excitation.

g/J and L. In Fig. 3B we compute the molecular poten-
tial with N = 75 by using a Yukawa electronic potential
with different lengths L. We observe excellent qualita-
tive agreement for all L’s considered in the figure, and a
quantitative matching when L≫ aN . Remarkably, even
if L <∼ aN , valuable information can still be extracted
by adjusting other experimental parameters. In Fig. 3D,
we illustrate how one can increase the V0 of the electron
repulsion to compensate the underestimation of the po-
tential at long distances, and obtain a pseudomolecular
potential that is qualitatively similar to the one expected
with Coulomb interactions.
In conclusion, we demonstrate how to simulate quan-

tum chemistry problems using cold atoms in optical lat-
tices embedded in a cavity. We analyze the required
conditions, and perform numerical simulations with the

simplest atom and molecule models to assess the accu-
racy of the simulator, which is ultimately determined by
the size of the lattice. Some of the elements and con-
ditions required in this proposal are beyond the state of
the art. However, the rapid progress of analog quan-
tum simulation may well lead to the realization of the
present ideas in the near future, motivated by its enor-
mous potential impact in the determination of chemical
structures, the understanding of reaction mechanisms, or
the development of molecular electronics. Furthermore,
with judicious changes in the implementation, e.g., dif-
ferent potential geometries, conditions (b-d) may be re-
laxed. We believe our proposal is a serious alternative
to the fault-tolerant quantum computer required to solve
the same problems. Furthermore, proof-of-principle ver-
sions of our setup, like in one or two dimensions, or with
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non Coulomb like potentials, can also be very valuable to
benchmark different numerical techniques, develop new
theoretical methods, or to reach a deeper understanding
of the problems that appear in chemistry. The possibility
of analog quantum simulations of quantum chemistry-like
problems will strongly stimulate both theoretical and ex-
perimental research.
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SUPPLEMENTARY MATERIAL

Here we provide details about the results and scalings
stated in the main text. It is structured as follows: in
Section A we describe the main effect of solving the quan-
tum chemistry problem in a discrete lattice system rather
than the continuum. We both explain the origin of the
inequality (a) and give the details on how to plot Fig. 2
of the main text. In Section B we explain how the effec-
tive Coulomb repulsion between fermions emerge in our
simulator, and discuss the origin of the inequalities (b-e)
in the main text. Finally, in Section C, we discuss both
how to optimally choose the simulator parameters to ac-
curately obtain the H2 molecular potential of Fig. 3, and
the numerical method employed to obtain the data in
the figure. Finally, in Section D we comment on possible
experimental imperfections that may affect the expected
behaviour of the simulator.

Appendix A: Discretization and finite size effects in

atomic Hamiltonian

In this Section we focus on the effects emerging from
both discretization and finite size effects of our simulator.
Since we discuss in detail the effect of the fermionic re-
pulsion in sections B and C, here we restrict to the single
particle Hamiltonian, that is:

Hkin +Hnuc = −tF
∑

〈i, j〉

f†i fj −
∑

n, j

ZnV (‖j− rn‖) f†j fj .

(A1)
The mapping of the typical length/energy scales of the

atomic problem, that are the Bohr radius (a0)/Rydberg
energy (Ry) is given in Eq. (4) of the main text. Since
this is a quadratic Hamiltonian, we can use exact diag-
onalization to obtain the lowest part of the spectrum of
a single electron and a single nucleus, i.e., an Hydrogen
atom. This is what we do in Fig. 2 of the main text for
several ratios of tF /V0, i.e., for several expected atomic
sizes. To avoid the divergence of the nuclear potential, we
chose its central point as (m,m+1/2,m), which induces
a natural cut-off of the divergence. We also use open
boundary conditions in all the figures of the manuscript.
To appropriately compare the energies with the contin-
uum limit, we shift the extracted energies by 6tF and
finally divide by Ry to express the result in atomic units.
As the Bohr radius increases, we observe that the nu-

merical result approaches the analytical value in the re-

gion 1 < a0/a < N/N
1/3
e , that is, the (a) inequality

of the main text for a single electron. The first limit
stems from the fact that more than one lattice site is
required to properly describe an atomic orbital. The
upper-bound of the inequality guarantees that the or-
bitals fit into the simulator volume to prevent finite-size
effects, where we have assumed that the orbital size scales

as N
1/3
e , based on the radial electronic density of alkali

atoms. Within this range of parameters, deviations from

B

C D

A

a
0

 /
a

FIG. S1. Validity of atomic units in finite systems.(B)
Radial density of sates associated the ground state of Hqc

in a cubic lattice with 80 sites per side for different values
of tF /V0 (in A we show an axial cut for tF /V0 = 5). Af-
ter normalizing by the central density, log scale reveals the
exponential radial decay e−r/a0 characteristic of 1s orbitals
before finite-size effects appear. A linear fit of the first 30 val-
ues provide the decay parameter 1/a0. In (C), we plot this
extracted Bohr radius for different sizes of the lattice and
compare it to the scaling in the continuum, a0/a = 2tF /V0

(dashed line). The critical Bohr radius at which finite-size ef-
fects conspire with the scaling increase linearly with N . This
is observation is also appreciated in (D) when we compare
the energy of this ground state to the dependence in the con-
tinuum, Ry = V 2

0 /(4tF ) (dashed line).

the analytical value come from the discretization of the
lattice. Analytically comparing for Slater wavefunctions,
ψ(r) = 2e−r/a0/(a0)

3/2, the integral in the continuum,∫
drψ(r)2V (r) to the Riemann sum that we are effec-

tively computing, we obtain that the deviation should de-
crease with the simulator parameter as (tF /V0)

−2, which
we numerically confirm for the studied orbitals as shown
in the inset of Fig. 2A or the more systematic bench-
marking of Fig. S1. We observe that deviations smaller
than 0.3% can be obtained for a lattice size N = 100 and
tF /V0 < 5.

Appendix B: Effective fermionic repulsion

Obtaining Coloumb repulsion between fermionic atoms
is the crucial ingredient of our proposal. In this section,
we give full details on how this effective potential emerge,
and the conditions (b-e), given in the main text, that
need to be satisfied to obtain it.
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1. Complete simulator Hamiltonian and analysis

procedure

As described in the main text, the complete simula-
tor Hamiltonian is composed by three terms: Hsim =
Hkin+Hnuc+HM , namely, the kinetic energy terms given
by hopping of the fermionic atoms to nearest neighbour
sites with rate JF , the nuclear potential attraction of
Hnuc, and the HM , given in Eq. (5) of the main text,
which contains both the Mott insulator dynamics and
the interaction between the fermionic and Mott insula-
tor atoms.
The way we analyze the problem is to use a Born-

Oppenheimer approximation for the fermionic atoms,
that is, assuming their timescales are much slower than
the Mott insulator atoms dynamics. Like this, we
can first solve the Mott-insulator Hamiltonian for each
fermionic configuration, and then, self-consistently find
both the effect of the Mott-insulator in the fermion
dynamics and the conditions under which this Born-
Oppenheimer approximation is valid.
Thus, for a given configuration of the fermionic atoms,

denoted as, {j} = j1, . . . , jNe
, we make the follow-

ing decomposition of the Mott-insulator Hamiltonian
HM ({j}) = H0 +H1, where each term reads:

H0 = U
∑

{j}

a†jaj +∆
∑

j

a†jaj + J
∑

〈i,j〉

b†i bj , (B1)

H1 = Jc/N
3
M

∑

i, j

a†i aj + g
∑

j

(
a†j bj + b†jaj

)
, (B2)

Notice that HM ({j}) conserves the total number of

excitations,
∑

j

(
a†jaj + b†j bj

)
. Thus, if we initialize our

simulator with a single excitation in Mott-insulator, the
dynamics will be restricted to the single-excitation sub-

space formed by A/B = {a†j/b
†
j |0〉}j, where |0〉 is the

state with no excitations in the A/B atomic states. The
intuition is that the the on-site potential provided by the
fermions at positions {j} localizes the Mott-insulator ex-
citations around them forming a bound state. As we will
show, the energy of this bound state will depend on the
particular fermion configuration, {j}, in the same way
than the Coulomb potential appearing in chemistry.

To show it, let us first analyze the structure of
H0 in the single-excitation subspace: on the one
hand, it contains two degenerate subspaces with
Ne

[
N∗

M ≡ N3
M −Ne

]
a-states of energy ∆ + U [∆] that

we denote as AU [A \ AU ], respectively. On the other
hand, the subspace B formed by the b-excitations can be
diagonalized if we impose periodic boundary conditions

and define the operators b†k = (1/
√
N3

M )
∑

j e
−ik·jb†j ,

which give rise to the energy dispersion: ωk =
2J(cos(kx) + cos(ky) + cos(kz)).

Now, we treat H1 as a perturbation of H0, focusing on
the AU subspace which is the one coupled directly to the
fermions. Since this is a degenerate subspace, we must
apply degenerate perturbation theory [30]. This theory

assumes that the perturbation, H1 in our case, breaks the
degeneracy in H0, and starts by choosing an appropriate
basis compatible with these new eigenstates. In our case,
it is convenient to choose a basis for A privileging the
symmetric combinations of excitations in the AU and
A \ AU subspaces, that can be generally written as:

∣∣∣ϕ(0)
X

〉
=

1√
dim(X)

∑

j∈X

a†j |0〉 . (B3)

where X is the subspace AU or A \ AU and dim(X)
the dimension of this subspace. In particular, we are
interested in the corrections to the symmetric state in

AU ,
∣∣∣ϕ(0)

AU

〉
, which is the one that mediates the correct

repulsive potential between the fermions. Thus, we need
to calculate:

Es,AU
= E

(0)
s,AU

+ E
(1)
s,AU

+ E
(2)
s,AU

+ . . . ,

|ϕAU
〉 =

∣∣∣ϕ(0)
AU

〉
+
∣∣∣ϕ(1)

AU

〉
+
∣∣∣ϕ(2)

AU

〉
+ . . . . (B4)

As we will show afterwards Es,AU
will translate into

an effective potential between the fermions, while ε =

1 − |〈ϕ(0)
AU

|ϕAU
〉|2 will be a measure on how much we

deviate from the ideal dynamics. Thus, we will impose
ε≪ 1 to derive the conditions (b-c) on the main text.

2. Breaking the symmetric state degeneracy with

cavity coupling

As prescribed by degenerate perturbation theory, we
calculate the perturbed energies/wavefunctions in two
steps by separating the contribution of the cavity Hamil-

tonian H1,c = Jc/N
3
M

∑
i,j a

†
i aj, from the rest of the

perturbation H1,g = H1 − H1,c. The cavity Hamilto-
nian is enough to break the degeneracy of the symmetric
states of AU [A\AU ], giving them an extra energy ρMJc
[(1−ρM )Jc], respectively. Here, we define ρM ≡ Ne/N

3
M .

However, apart from breaking the degeneracy it also cou-
ples both symmetric states with strength:

〈
ϕ
(0)
A\AU

∣∣∣H1,c

∣∣∣ϕ(0)
AU

〉
=

√
ρM (1− ρM )Jc ≈

√
ρMJc

(B5)
where in the last approximation we use Ne ≪ N3

M . Thus,
in order to keep the mixing between symmetric states
small, we must impose U ≫ Jc, that is inequality (b) of
the main text. This guarantees that:

E
(1,c)
s,AU

≈ ρMJc , (B6)

and that the first correction to the eigenstate is:

∣∣∣ϕ(1,c)
AU

〉
≈ Jc

√
ρM

U

∣∣∣ϕ(1,c)
A\AU

〉
(B7)

Notice, that since ρM ≪ 1, the inequality (b) of the
main text already guarantees that Jc

√
ρM/U ≪ 1 and

bounds higher order correction in E
(c)
s,AU

.
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3. Non-degenerate perturbation theory with H1,g

Once H1,c breaks the degeneracy, we can apply non-
degenerate perturbation theory for the rest of the per-
turbation H1,g. To second order, we find:

E
(2,g)
s,AU

=
g2

Ne

1

N3
M

∑

k

∣∣eikj1 + . . .+ eikjNe

∣∣2

U +∆+ ρMJc − ωk

. (B8)

In the continuum limit, that is, when NM ≫ 1, we can
transform the sum into an integral and find:

g2

Ne

1

N3
M

∑

k

eikr

U +∆+ ρMJc − ωk

≈ V0
2r
e−r/L ,

g2

N3
M

∑

k

1

U +∆+ ρMJc − ωk

≈ 0.25g2/J − aNeV0
2L

.

(B9)

where L/a =
√
J/(U +∆+ ρMJc − 6J) is the effective

length of the Yukawa-type interaction that appears in

E
(2)
s,AU

. This length can be controlled by the effective
detuning between the symmetric state energy U + ∆ +
ρMJc, and the upper band-edge of ωk at 6J . Notice,
that we define V0 = g2/(2πNeJ) as the effective repulsion
strength.
Before proceeding to compute the correction to the

wavefunction, let us compare the result of the pertur-
bative expansion of the energy with the exact solution
of Es,AU

. The latter can be obtained in our prob-
lem by solving directly Schrödinger equation, (H0 +
H1) |Ψs〉 = Es |Ψs〉 just imposing that |Ψs〉 lies in the
single-excitation subspace of A+ B. In the conditions of
the text, the result is given in the following closed equa-
tion:

Es,AU
≈ U+∆+ρMJc+

g2

Ne

1

N3
M

∑

k

∣∣eikj1 + . . .+ eikjNe

∣∣2

Es,AU
− ωk

.

(B10)
By comparing both expression, we see that the sec-

ond order correction introduced by coupling to the b-
atomic states must be smaller that U + ∆ + ρMJc −
6J , which requires the following inequality: N

7/3
e V0 ≪

J(aN/L)2. In this estimation, we are using a simpli-
fied formula for electron-electron repulsion [31], Ve−e ≈
V0(a/a0) (Ne − 1)

2/3 ∑
j ρ

4/3(j) , and approximate an ho-

mogeneous electron density, ρ(j) ≈ ρ, for the optimal sit-
uation in which molecular orbitals fully occupy the lat-
tice. This gives the (d) inequality given in the main text.
Finally, let us estimate how much the wavefunction∣∣∣ϕ(0)
s,AU

〉
get perturbed by H1,g. To first order:

∣∣∣ϕ(1,g)
s,AU

〉
=

∑

k

βk b
†
k |0〉 , (B11)

whose norm is given by,
∑

k |βk|2, which can be explicitly
computed:

∑

k

∣∣∣∣∣
〈0|bkH1,g|ϕAU

s 〉
E

(0)
sAU

− ωk

∣∣∣∣∣

2

=
g2

Ne

1

N3
M

∑

k

∣∣eikj1 + . . .+ eikjNe

∣∣2

(U +∆+ ρMJc − ωk)
2 .

(B12)
This sum can be calculated taking energy derivatives in

(B9), and one obtain the condition, N
7/3
e V0 ≪ aJN2/L,

which is already guaranteed by imposing the most re-
strictive condition (d) that we derived by calculating the
exact energy of the bound state.
Second order perturbation inH1,g for the wavefunction

leads to two type of contributions:
∣∣∣ϕ(2,g)

s,AU

〉
=

∑

s⊥AU

δs⊥AU

∣∣∣ϕ(0)

s⊥AU

〉
+

∑

s⊥A\AU

ηs⊥AU

∣∣∣ϕ(0)

s⊥A\AU

〉
,

(B13)
namely, the ones that the symmetric state to the anti-
symmetric ones in the AU and A\AU subspaces passing
by b-states. The norm of the former,

∑
s⊥AU

|δs⊥AU
|2,

can be approximately upper bounded by:

∑

s⊥

∣∣∣∣∣∣

∑

k

〈ϕs⊥,AU
|H1b

†
k|0〉〈0|bkH1|ϕs,AU

〉(
E

(0)
s,AU

− ωk

)(
E

(0)
s,AU

− E
(0)

s⊥,AU

)

∣∣∣∣∣∣

2

< (1− 1/Ne)
V 2
0 Ne

ρ2MJ
2
c

. (B14)

Thus, by imposing it is small we obtain one of the
conditions (c) of the main text, i.e., V0 ≪ ρMJc/

√
Ne.

The contribution of the antisymmetric state of A \ AU ,
that is,

∑
s⊥A\AU

|ηs⊥AU
|2 is already small provided that

the previous inequalities are satisfied, such that it does
not introduce any new condition.

4. Effects on the fermionic dynamics

Once we have calculated the energy of the bound state
for each fermionic configuration, {j} now we have to
project the fermionic Hamiltonian:

Hf = −JF
∑

〈i, j〉

f†i fj +Hnuc + U
∑

{j}

a†jajf
†
j fj , (B15)

into the basis that combines the Ne fermions, with the
symmetric spin excitation which mediates the atomic po-
tential, that is:

||j1 , . . . jNe
〉〉 =

(
f†j1 . . . f

†
jNe

)
|0〉 ⊗

∣∣ϕs,j1...jNe

〉
, (B16)

for j1 , . . . jNe
any configuration for the position of the Ne

fermions. To lowest order one obtains:

H̃f ≈ −tF
∑

〈i, j〉

f†i fj +Hnuc +He−e , (B17)

where one gets both the electron repulsion Hamiltonian,
with a Yukawa potential He−e and a kinetic energy term
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with a reduction of the tunnelling rate, JF , given by the
Frank-Condon overlap:

tF = JF 〈ϕj1+1...jNe

s |ϕj1...jNe

s 〉 ≈ JF
Ne − 1

Ne
(B18)

To self-consistently check the validity of the Born-
Oppenheimer approach, one must certify that Hf does
not efficiently populate states which are not in the ba-
sis (B16) we use to project, since Hf can take us out
from the symmetric spin excitation, To first order in Hf ,
the perturbation to our basis states ||j1 , . . . jNe

〉〉 has the
form

||j1 , . . . j(1)Ne
〉〉 =

∑

s⊥

φ
j1...jNe

s⊥
j1...jNe

|j1 , . . . jNe
〉 ⊗

∣∣∣ϕs⊥

j1...jNe

〉
,

(B19)
We can upper bound the perturbation by summing up

over the different configurations to arrive to:

∑

{j}

∑

s⊥

|φj1...jNe

s⊥
j1...jNe

|2 < 2J2
FNe

ρ2MJ
2
c

, (B20)

Imposing that this correction is small, we obtain the
other inequality (c) of the main text, that is, JF ≪
ρMJc/

√
Ne.

Finally, there are two additional inequalities related
to obtaining a truly Coloumb repulsion rather than a
Yukawa. On the one hand, the length of the bound state
has to ideally be larger than the fermionic lattice, L ≫
aN , while being smaller than Mott insulator lattice L <
aNM such that the bound state does not feel the border.
Combining both inequalities, we arrive to the condition
(e) of the main text.

Appendix C: Obtaining molecular potentials.

In this section, we first give more details on how we
choose the simulator parameters to plot the figures of
the manuscript, and explain the numerical methods em-
ployed for the two-electron wavefunction calculation.

1. Choice of simulator parameters

In Figure 3A we show how the energy of the bound
state of the spin excitation as a function on the inter-
fermionic separation. We use exact diagonalization of
HM ({j}) for two fermions at positions (m−⌈d/2⌉ ,m,m)
and (m + ⌊d/2⌋ ,m,m). Here ⌊·⌋ and ⌈·⌉ represent
the floor and ceiling functions respectively, and m =
⌊NM/2⌋. To make the figures be placed in a similar
scale, we also obtain the energy of the spin excitation
bound state when a single fermion is placed at position
(m,m,m), and subtract this energy to the two fermions
and plot it. In this Figure, we choose the parameters
such that the inequalities (a− e) are satisfied and obtain
Coulomb repulsion between fermions for NM = 200.

To plot the molecular potential of Fig. 3B, that is,
calculate the electronic energy, E(d) as a function of
the internuclear distance d, we center the nuclear po-
tential in positions r1 = (m − ⌈d/2⌉ ,m + 1/2,m) and
r2 = (m + ⌊d/2⌋ ,m + 1/2,m) and obtain the ground
state energy using numerical methods that we explain
in the next Section. Since two electrons are involved,
the extracted energy is now shifted by 12tF , and finally
written in atomic units. Notice also, that since we use
spinless fermions, we have to restrict to the symmetric
subspace of the electronic problem so that we can com-
pare the results to those of the H2 molecule, which is
formed for two spins of opposite sign.
As it happens in the atomic case, accuracy increases

with the Bohr radius up to a critical value at which finite-
size effects are relevant. However, the optimal choice
of the Bohr radius now depends on the number of lat-
tice sites that separate the nuclei. To identify this crit-
ical Bohr radius at which the finiteness of the lattice
N = 75 compromises the accuracy, we use the follow-
ing procedure. First, for a given internuclear separa-
tion d/a0 we solve the electronic structure for nuclear
potentials separated a number of lattice sites d/a rang-
ing between 1 and 30, increasing the Bohr radius accord-
ingly, tF /V0 = (d/a)/(2d/a0). The same calculation is
repeated for a bigger system size, N = 100. Both lat-
tices provide compatible results as long as finite-size ef-
fects are not important. The point where both curves
deviate corresponds to an approximate optimal tF /V0,
that provides maximum accuracy for the lattice size con-
sidered, e.g., N = 75 in our case. In practice, we choose
the point at which finite-size energy deviations are one
order of magnitude smaller than the discretization error
(see Fig. S2). Fitting these values for each internuclear
separation d/a, we choose tF /V0 = 4.2−d/a·0.065, i.e., as
the nuclei are more separated, the border of the system
linearly approaches, needing to reduce the Bohr radius
accordingly.

2. Numerical methods to deal with two-electron

problem.

Another important difference with respect to the single
electron problem is that exact diagonalization strategy is
out of reach for our computational resources. To prevent
this situation, we artificially reduce the degrees of free-
dom by projecting the Hamiltonian on a single fermion
basis, {φi}ni=1. This projected Hamiltonian reads as,

HP =

n∑

i,j,r,s=1

hijrs |φi φj〉 〈φr φs| (C1)

where |φi φj〉 denotes the product state |φi〉 ⊗ |φj〉 and
hijrs = 〈φi φj |Heff |φr φs〉 .
The success of this strategy depends on how accurately

the orbitals in this set can describe the interactions in
the Hamiltonian. We then choose a basis composed by
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critical  

Bohr radius

A B

FIG. S2. Calculation of the critical Bohr radius for

H2. (A) For each internuclear separation d/a0, we benchmark
separations on the lattice d/a ranging from 1 to 25 sites, tun-
ing the Bohr radius accordingly. In the figure, d = 1.4a0,
close to the equilibrium distance. Similarly to what hap-
pened in the atomic case (see Figure 2A), the calculated po-
tential polynomially approaches the exact solution (dashed
line) as the Bohr radius increases, up to the point in which
finite size effects appear. To calculate this optimal tF /V0,
we repeat the calculation for a bigger system, and detect the
point where both curves depart. (B) To identify this point,
we fit the energy of the largest lattice to a universal scaling
m (tF /V0)

−2 + n, (dashed line). For N = 75 and a nuclear
separation of 1.4a0, the critical point (indicated by the arrow)
corresponds to tF /V0 ≈ 3.5, providing an expected precision
of 10−2Ry in the energy of the minimum potential at this
given distance.

single-fermion states of H+
2 calculated with exact diag-

onalization, together with more orbitals obtained using
a Hartree-Fock approximation [22]. Then, starting with
the ground state obtained for a single fermion, we iterate
the equation,

(H0 |φ〉)i +
∑

j

(
φj
)2
V12(‖j− i‖)φi = λφi , (C2)

until convergence is reached. These orbitals then inter-
act with a mean charge induced by the rest of fermionic
atoms in the lattice, while we neglect the exchange inter-
action.
Once we build an approximated basis, we need to

project the Hamiltonian Hqc into the basis. The terms
associated to the kinetic energy and nuclear interac-
tions are easily projected, as they only depend on single
fermionic orbitals, 〈φi φj |H0 |φr φs〉 = δjs 〈φi|H0 |φr〉 +
δir 〈φj |H0 |φs〉. The main difficulty comes from calculat-
ing terms associated to e-e interactions, Hee. At a first
glimpse, they involve a sum of N6 coordinates,

∑

r1,r2

V (r1 − r2)φi(r1)φr(r1)φj(r2)φs(r2) , (C3)

where, V (r) = V0/ ‖r‖ and the lattice imposes a natural
cutoff (B9), V (0) ≈ πV0. In the reciprocal space, this
sum simplifies as

〈φi φj |Hee |φr φs〉 =
∑

k

Ṽ (k)· ˜(φi · φr)(k)· ˜(φj · φs)(−k) ,

(C4)

and only N3 terms are involved, speeding-up the calcula-
tion1. In principle, this induces periodic boundary con-
ditions in the system, which are undesirable as fermions
would interact along the minimum distance measured on
the periodic lattice, overestimating e-e interactions. To
solve this issue, we double the size of the system before
calculating the Fourier transform, and impose null prob-
ability of occupying these artificial positions. Fourier
Transforms are obtained using a Discrete Fast Fourier
Algorithm.
This last calculation is the bottleneck from the compu-

tational time perspective and, at the expense of memory,
we initially store the FFT for each of the n(n + 1)/2
product of pairs of molecular orbitals, so that the trans-
formation is not unnecessarily repeated. It is also useful
to note that not every term hijrs needs to be calculated,
due to the symmetries of the Hamiltonian. For example,
h1123 = h1132 = h2311 = h3211. In practice, this reduces
the calculated terms from n4 to n2(n2 + 3)/4 indepen-
dent terms, where n is the number of molecular orbitals
in the projected basis. For Figure 3B, we observed that
convergence was reached for 15 Hartree-Fock orbitals and
15 low-energy H+

2 states. This corresponds to n = 30,
203175 independent terms, and approximately 8h of total
computational time in a 2.20GHz CPU.
The mean charge interaction in the Hartree Fock cal-

culation can also been rewritten as,

∑

j

(
φj
)2
V12(‖i− j‖) · φi = 〈φ|F−1

(
Ṽ (k) · φ̃2(−k)

)
〉 ,

(C5)
where F−1 denotes the inverse Fourier transform. We
should emphasize that this projection on a single-particle
basis is just a numerical trick that enables us to numer-
ically benchmark the model, but does not have any im-
pact on the experimental implementation of our proposed
analog simulator.

Appendix D: Experimental considerations

Along the manuscript, we derive a set of inequalities
(a-e) that our simulator, described by Eq. (5) of the main
text, needs to satisfy to reliably simulate the quantum
chemistry Hamiltonian. We are, however, aware that
there will be other experimental imperfections that may
impose extra conditions and that will have to be analyzed
in detail to optimize the performance of the simulation.
Among the more relevant ones are:

• Initialization. The preparation of the initial state
has to be carefully designed for the experiment
one wants to perform. If one is interested in the

1 f̃ denotes the Fourier transform of function f .
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ground state properties corresponding to the elec-
tronic configuration at a given position of the nu-
clei, one needs to start in a situation where nuclear
potentials are far away from each other and then
adiabatically change them to their final position.
Furthermore, one should start with parameters in
which the Bohr radius is very small, so that the
atoms representing the electrons are at fixed posi-
tions and then increase their size adiabatically. In
any case, the initial state of the spin wave excita-
tion needs to be in a superposition of being at the
positions of the electrons. Failing in preparing such
state will lead to an unsuccessful simulation.

• Finite temperature leads to thermal fluctuations
which may spoil the simulation. Thus, these fluctu-
ations will lead to defects in the Mott insulator (see
below), an may also influence the internal states of
the atoms. The latter, however, can typically be
very well controlled in atomic systems as we just
need the atoms to be initially in a polarized state,
which is reasonably easy to prepare.

• Dephasing can be originated by fluctuations in the
transitions or due to magnetic fields (as internal
levels are being used). This would spoil the poten-
tial of the system as a quantum simulator. How-
ever, the first effect is small in the case of microwave
or Raman transitions, and the second can be con-
trolled in the conditions already used for condensed
matter simulations [9, 10].

• Inexact fermionic filling. Since fermions play the
role of electrons, an inexact number of fermionic
atoms hopping in the lattice translates into an er-
roneous effective charge in the simulated molecule.
These errors can be possibly post-selected by mea-
suring the number of electrons after the simulation
is performed.

• Defects in the Mott insulator. The absence of Mott
particles in a given lattice site will locally mod-
ify the effective fermion potential. Fermions hop-
ping to this site cannot mediate its repulsive in-
teraction through spin-excitations, perturbing the
simulated molecular orbital around this position.
Importantly, the defects will not affect the poten-
tial far from the fermion such that the final perfor-
mance of the simulation will scale with the density
of defects rather than their number.

• Spatial inhomogeneities of cavity coupling. In the
simulator Hamiltonian of Eq. (5) of the main text,
we have assumed that the a-atoms couple homo-
geneously to the cavity mode. In general, there
might be some inhomogeneities that translates in a
Hamiltonian:

Jc
N3

M

∑

i,j

fi,ja
†
i aj , (D1)

The fluctuations of fi,j around 1 will induce an ex-
tra decoherence timescale, Γc,inh, that must as well
be smaller than our simulator parameters.

• Cavity & atom losses. Even though the cavity-
mediated interactions are mediated by a virtual
population of photons, the cavity decay introduces
extra decoherence into the system due to the emis-
sion of these virtual photons. Moreover, the atomic
excited states, also virtually populated, may as well
decay to free space introducing losses. Thus, the
cooperativity of the cavity QED system must be
large to avoid both type of losses.

• Three-body losses. Since we have fermions and
there can be at most one atom per lattice site, these
type of losses should be small.

From these qualitative arguments, we see that most
of the possible errors of the simulation are either already
under control in current experiments [9, 10] or scale in an
intensive way. A quantitative analysis will be presented
elsewhere.
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