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ABSTRACT

In [6] it was shown that under standard conditions X,/m» — V > 0 with probability
one, where {X;} is a Galton-Watson process with immigration, and offspring mean
m > 1. The authors obtain convergence-rate results under additional conditions for
this asymptotic behavior in the form of analogues of the central limit theorem and the
law of the iterated logarithm, and similar results for the estimator X, +,/X,, which for
fixed ¥ > 1 approaches mr with probability one.

INTRODUCTION

The classical central limit theorem and the law of the iterated logarithm
may be regarded as convergence-rate results for the strong law of large
numbers. Recently, one of the authors has adopted this interpretation
with regard to the well-known relation Z,/m"*> W for the ordinary
Galton—Watson process {Z,} with offspring mean m >1, and proved
analogous convergence-rate theorems for this strong convergence result
[1, 2].

A similar strong convergence result is known for the supercritical
Galton—-Watson process with immigration {X,}; this has been derived
simply in an earlier article in this journal [6], to which we refer the reader
for a detailed description, and whose notation and assumptions we adopt.
(The result may also be eventually deduced from a general limit theorem
on an ordinary decomposable multitype Galton-Watson process, namely,
Theorem 2.1 of Kesten and Stigum [4].) Thus, our basic assumptions are
that the process is initiated by a single ancestor; and that the offspring and
immigration distributions {f;}, {b;}, generated respectively by the pro-
bability generating functions (pgf’s) F(s), B(s), s € [0, 1] satisfy:

l<F(l-)=m<oo; f*+1,j20;,0<i=B(-)< .
Mathematical Biosciences 11 (1971), 249-259

Copyright © 1971 by American Elsevier Publishing Company, Inc.
18

R. Maller et al. (eds.), Selected Works of C.C. Heyde, Selected Works in Probability and Statistics, 170
DOI 10.1007/978-1-4419-5823-5_27, © Springer Science+Business Media, LLC 2010



250 C. C. HEYDE AND E. SENETA

The theorem of [6] then implies that if Z j(logj)f; < o, {X,/m"} converges
almost surely to a proper random variable ¥ with finite mean EV, and such
that P(V = 0) = 0. One of the aims of this article is to indicate that for
the process with immigration also analogous convergence-rate results hold,
under further conditions, to be introduced as required.

We note also that the foregoing convergence result implies that for any
fixed integer r > 1, X,,,/X, — m" with probability one. It will be seen
from the representation (2), which follows, that this may be regarded as
an analogue of the strong law of large numbers for the estimator X, ,,/X,
of m". We give a parallel set of convergence-rate results for this relationship
also, which may have some statistical utility.

The overall treatment is relatively brief, because much of the approach
may be taken over directly from that for the ordinary supercritical Galton-
Watson case; in fact, the present situation is intrinsically simpler in that
X, > oo, a property not shared in general by the ordinary process.
Indeed, the main difficulty is to obtain for the present process an analogue
of the Berry-Esseen bound on the deviation from normality, which is
needed to prove the analogue of the iterated logarithm law. This is done
via Lemma 3.1, which may be of some independent interest, and two
further lemmas.

DESCRIPTION OF THE RESULTS

The keys to the limit results are representations for X, — m"V and
Xy — m'X, as sums of independent random variables.
In the first case, we have

X
X, — m"V = lim <X,, - m" m:::) a.s. n
Furthermore,
Xn+r = Zl('l) + -+ Zr('xn) + Yr,n (2)
where

T, = US4 oo UG

Here Z®, i = 1,2,..., X, each have the distribution of Z,, where {Z,}
is an ordinary Galton-Watson process generated by F(s); and UY), is
the number of direct descendants in the (n + r)th generation from im-
migration at the ith. Further, the Z¥, i=1,2,..., X, and U®,
i=n+1,...,n+ rare all independent, and Y, , has the same distribu-
tion for each n. Moreover, it has been shown in [6] that, for fixed n,
lim,,, mY,,=I® as. where I™ has the distribution of I =V — W.
From (1) and (2)
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VAS) Z(Xn) Y
m~mW=mmKL—g>+“.+O_ ”>_,ﬂ
r=> o0 m m m

— (1 _ W(l)) oo (1 _ W(Xn)) — ™
=T+ -+ Ty, —I™ as, 3
(say) where the components on the right-hand side are all independent

and are each distributed independently of X,,.
The representation for X,,, — m’X,, follows simply from (2):
Xpor =X, = (@0 =m) 4+ @ =) + Y, @
where again the components on the right-hand side are all independent,
and are independent of X,; and Y, , has the same distribution for each n.

Making use of (3) and (4) together with an adaptation of the techniques
of [2] and [3] yields the following results.

THEOREM 1. LetvarZ, = 6% < o0. Then

iim P(m? — m) 267X 2(m"V — X,) < x|X, > 0) = O(x)

and
lim P(o; ' X V3(X,,., — m"X,) < x|X, > 0) = ®(x)

where ®(x) is the distribution function of N(0, 1) and
o2 = varZ, = o*m'(m’ — 1) (m? — m)~L.

THEOREM 2. Let EZ3? < oo. Then there exists a 6, 0 < 6 < 1, such
that

sup |P(m?* — m)" 2671 X " 2(m"V ~ X,) < x|X, > 0) — ®(x)| = 0(5")
and

sup |P(6; ' X V2 X i, — m'X,) < x|X, > 0) — @(x)| = 0(5")
asn — oo.

(Explicit forms for the remainders may be found from Lemmas 2 and 3 of
the next section.)

THEOREM 3. Let EZ3 < 0. Then with probability one

"W X
lim sup ——; 2m —=" 7 = 1
n—+ o (20 (m _m) anogn)
mV -—X
im inf n = -1,
mint G m? — m) 1X, log m)'
X.. —mX X —m
limsup —mr ™ X g fimief S T X,

now (207X, logn)!/? e (207X, log n)'/?
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252 C. C. HEYDE AND E. SENETA

PROOFS

Proof of Theorem 1. Theorem 1 is very easily obtained from the

representations (3) and (4). Since X, 2: o0 as n — 00, we certainly have
X, '2I® and X, '/?Y,, converging in probability to zero on {X, > 0}
as n — oo. Then, noting that X, is independent of the summands in each
case, an appeal to the classical central limit theorem yields the result,
since from ordinary Galton-Watson theory the remaining (identically
and independently distributed) summands have zero mean. m

In order to prove Theorem 2 we need first to extend the lemma in
Section 4 of [3] so that the troublesome components 7® and Y, , in the
representations (3) and (4) can be accounted for.

LemMmA 1. Let &, i=1,2,..., be independent and identically dis-
tributed random variables with EE, =0, var &, = a2, and E|¢,|? < 0.
Let n,, with E|n,| < oo, be a random variable independent of {&;} and with
the same distribution for each n; and N, be a positive integer-valued random
variable that is independent of the {£;} and n,. Then for any sequence {¢,}
of positive constants with ¢, - 0 as n — w0

sup [P !Ny 12 + o+ Ly, + ) < %) = @)l
< CE(N; %) + o™ ey "Eln EN; V%) + 7

where C = Ka—>E|&,|3, K being the universal constant in the Berry-Esseen
bound.

Proof. Using the Berry—Esseen bound and since 5, is independent of {¢;},
—CE(N; '

=—C ) j7'?P(N, =)

j=1

——c 3 e[| aperyin, < P, = )

//\

i U PE TG A+ ) S x =) = Bx - )

AP, < y)]P(Nn =)
< CE(N,; 13,
But,

.if'l [_[oo PE™TVHE + &) S x = ) — Ox — )}

APy < ) [PV, = )
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= 3 PE T ) <)
—P(C + a2, < 1PV, = )
= 5 IPOT G+ ) <3N, =)

—P({ + o™y, < xIN, = DIP(N, = j)
= P INS (G + -+ Cy, H ) S %) = P+ a7 NP, < x)
where { has an N(0, 1) distribution and is independent of #,, so that
sup |[P(a™ !N, VA€ + -0 Ly, + 1) S X)

~P({ + a7 N, < %) < CE(N, ). &)

To this point, the argument is a straightforward generalization of the
lemma of [3].
Now, for any ¢, > 0,

P + a” N2, < x)
= P({ + a7 'N V2, < x, 07 ING 2| < 8)
+P( + a7 'N 2, < x, 07N 2| > )
S P({ < x + &) + P INS 2| > &), (6a)
and similarly
P({ + a7 !N 2n, > x) < P(C > x — ¢&,) + P(a™ "N, | > &),
or equivalently,
P+ a™'N; "0, < x) = P(( < x — &) — P(@a”'N;'?|n,| > ¢,). (6b)
Also, it is readily checked that

€
sup [P({ < x — &) = P(C < x)| < 2 (7a)
from, for example, the mean value theorem, whence
sup |P(C < x) — P({ < x +&,)| < % (7b)

Using the double inequality for P({ + «~'N, !/*n, < x) provided by (6a)
and (6b) in conjunction with (7a) and (7b)

supIP(C+<x”‘N 129, < x) — Ox)|

< P@ N7, > ) + 2

< oo (NG ) +
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254 C. C. HEYDE AND E. SENETA

by Markov’s inequality;

= a7 les (N VEI,] + ®)
by the independence of #, and N,. The result of the lemma then follows
from (5) and (8). m

LeMMA 2. Let EZ% < oo. Then for any sequence {&,} of positive con-
stants such that ¢, - 0 as n > ©

sup [P((m* — m)' 671X 12(m"V — X,) < x|X, > 0) — O(x)|
< Ko™ 3(m? — m)>2E|\W — 1PE(X;1?|X, > 0)

4o~ (m? — m)Y2%  LE(DE(XY|X, > 0) + % ©)
and
sup |[P(o, ' X, *(X,4, — m'X,) < x|X, > 0) — O(x)|

< Ko, ’E|Z, — m"|PE(X,Y?|X, > 0)
+o, e, YE(Y, DE(X, VX, > 0) + % (10)

where K(<0.82) is the universal constant in the Berry—Esseen bound.

Proof. The inequalities (9) and (10) follow respectively from the
representations (3) and (4), and application of Lemma 1, having noted
that all expectations occurring on the right-hand sides of (9) and (10) are
finite on account of the totality of conditions being assumed to be
satisfied. m

LemMMA 3. Let y be any positive number satisfying
1 > 92 > max(B(g), m™1).

Then

E(X; X, > 0) = 0(7") (11)
as n — . (An explicit, of somewhat inconvenient, form for the right-
hand side may be deduced from the body of the proof.)

Proof. Let us denote by P,(x) the pgf of X,, and write
P,(x) = F(x)P(x),

x €0, 1], where from [6], P,(x) = I72§ B{F{(x)}, n = 1, denotes the

pgf of the contribution to X, resulting from immigration since generation 1.
It is easily checked that

1 P(x) — PO
Dn = E[X"_lan > 0] = fO;{_(]._x)—-P—T(OL)]) dx,
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so that we proceed to the estimation of the right-hand integral. We assume
initially that g > 0, where ¢ is the unique root in [0, 1) of the equation
F(x) = x, and decompose the integral into components.

_ e Pn(x) - Pn(O) ! Pn(x) - Pn(O)
Pn = fo x{1 — P,(0)} bt L x{1 — P,(0)} ‘
= D,(1) + D,(2), say.

To estimate the first integral we note that

DD = (1= P} (5 POty = ) ax

— (L= PO} 3 TP, =

< {1 — P,0)}"P,(q)
= {1 — P,(0)} " "q(B(9))"
< Cy(B()y (2

(since P,(0) - 0 as n — o0), where C, is a positive constant.
To estimate D,(2) we first note that

1

mwscﬂ—m”jPMMx

q

where C, is a constant. If we now make the change of variable
x=q+ (1 — q)y, we get
1

mm<c4?mm+a—mww
1
<G, L P(q + (1 — q)y)dy.
Now, for j > 0
B{Fi(q + (1 — @)y)} = BXFi(»)}
where

Flg+0—-q)y) —q
1—-g¢

B*y) = B(g + (1 — q)y) and Fj(y) =

b

F}(y) being easily seen to be the jth functional iterate of Fi(y), which is
a pgf with mean m, and F}(0) = 0. Thus, forn > 1

Pq+1—q)y) = [] BXF}()} = PX),

j=0
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256 C. C. HEYDE AND E. SENETA

say, where P;(y) may itself be construed as the pgf of the nth generation
of a supercritical Galton—Watson process with immigration, with offspring
pef Fi(y) and immigration pgf B*(y), and no initial ancestor. Thus

Pi(y) = PP Fi(»)) (13)
for any integerk, 1 < k < n.
Let us note at this stage, for further use, that for any fixed y, € (0, 1),

P¥(yo) < {B*(yo)}* (14)

since in the present situation F¥(yo) < yo. Also, if we let H,(y), y €[0, 1],
denote the inverse function of Fp(y), y €[0, 1], then it is easily checked
that H,(y) is the nth functional iterate of H,(y), and that H,(y,) t 1 as
n — oo. In fact, since by the mean value theorem

1 — Hy(yo) = Hi(&){1 — H,_1(y0)}

where H, ;(y,) < &, < 1, and since H(y) | m~tasy 1 1, it follows that
for any fixed ¢ > O satisfying m~! + ¢ < 1, there exists a fixed r, =
ro(¥o, €) such that

1 — H(yo) <(m™" + &) {(m™" + &)™"(1 — H,(yo))}
forn = r,.
Then

DJ2) < C; j " PAy) dy (15)
(0]

Hy(yo) 1
= C, {L P¥y)dy + J P3(y) dy}

Hi(yo)
< C{H(yo)PE(H(yo))Pr_i(yo) + 1 — H(yo)}
providing 1 < k < n, by dominating by the maximum value of the
integrand in each case, and in the first part using (13);
< Co{Pr_i(yo) + 1 — H(yo)}

< C{(B*(yo)"™* + 1 — Hy(yo)}

on account of (14).
If we now choose k = [n/2] and choose » so large that [»#/2] > r,,

< Cz{(B*(J’o))"/z + p(e, yo)(m_1 + 3)"/2} (16)

where p > 0 does not depend on n.

Since initially both y, and & could have been chosen as close to zero
as desired and B*(y,) = B(g + (1 — q)y,), the assertion of the lemma
follows from (12) and (16).
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It remains only to estimate D, = D,(2) when g = 0. We have then
that P,(x) = F,(x)P,(x) = F,(x)P¥(x), with P,(0) = F,(0) = 0, F,(x) < x.
Thus

0

D"=flli@dx (17)
X

1
< j PX(x) dx
0

whence we may proceed as before from (15). m

Notes. (a) The technique for estimating the rate of geometric con-
vergence was suggested by a method of A. V. Nagaev [5] in a similar
situation in connection with the ordinary supercritical Galton-Watson
process. (There appear to be some imprecise steps in his development.)

(b) The rate of convergence in (17) may also be estimated with the
aid of the estimate in [3] for a similar ordinary supercritical Galton—
Watson process.

(c) Other choices of k, for example, k = [n], for a § fixed in (0, 1),
would give similar results. The optimal choice of such k, giving optimal
geometric rate at least within the context of the present proof, would
appear to depend on the absolute sizes of the two values B(g), 1/m.

PROOF OF THEOREM 2. We first note that, by a standard moment
inequality,
E(X;1?1x,>0) < E(X; X, > 0)'/2
The assertions of the theorem then follow from Lemmas 2 and 3 by
putting &, = y"/4, in which case § = y'/4. m

PROOF OF THEOREM 3. This follows exactly the pattern of that of [2].
There are two main points of difference for which some modification is
required:

(1) that 2, P(4,.4]X,, - - ., X1) = o0 a.s. when

A, = {X, - mX,; > (1 — 6)o(2X,_, log(n — 1))'/?}
forany 6,0 < 6 < 1;

(i1) that for any integer r > 1, {X,,}, n = 0,1, 2,.. ., also describes
a supercritical Galton—-Watson process with immigration; and we shall
confine ourselves to establishing the validity of these points.

(1) Using (4) we have, if X, > 0,
P(Ay 411Xy - - Xy)
=P2Z"P-my+- -+ ZF)—m)+ Y >0 - a(2X,logn)?X,)
where Y has the immigration distribution, and the Z{? are independent
Mathematical Biosciences 11 (1971), 249-259
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and identically distributed, each with the distribution of Z,, and are
independent of X, ..., X,and Y;andif X, = 0

P(A, 11X, ..., X1) =P(Y > 0).
In the former case '
P(Z®P —m)+ - 4+ (Z¢ —m) + Y > (1 — 8)a(2X, log n)'/?|X,)

> P(EZ®M —m) + -+ (ZF — m) > (1 — 8)o(2X, log m'*X,)
since Y > 0

> 1 — & — 6)Rlogn)t'?) — Cx, /?

using the Berry—Esseen bound. Now, with probability one, X, > 0 for n
sufficiently large, since X, — oo a.s. Hence the last inequality may be
used to show divergence with probability one of Xy P(4,.4|X,, . . ., X1)
as in [2].

(ii) Consideration of the structure of the process reveals that indeed
{X,,},n > 0, may be considered as a branching process with immigration,
the offspring distribution being F,(x) and the immigration distribution
IT;-¢ B{F(x)}. This last may also be easily confirmed from the fact that
X,, has the pgf P,,(x) and from the fundamental recursion for the Galton-
Watson process with immigration {X,}

Pnr(x) = B(x)Pnr—l(F(x))
whence, iterating back,
P, (x) = B(x)B(F(x)) - * * B(F,_1(x))Pn-1)/(F/(x)). m

SUPPLEMENTARY REMARKS

The results given above have been proved under conditions that are
convenient, but frequently more restrictive than necessary, and we now
briefly note how these can be relaxed.

Reference to [7] in conjunction with [6] reveals that Theorem 1 remains
valid if the condition 0 < A < c© on the immigration distribution is
replaced by the milder assumption that %, b; logj < co with by < 1.

In Theorems 2 and 3 the condition EZ3 < oo may be replaced by the
weaker one that EZ2+* < oo where 0 < k < 1, through the application of
generalized forms of Berry-Esseen bounds. In passing we also note the
Lemma 3 remains valid without any auxiliary moment conditions at all
(even m = oo is permissible). Finally, it may be possible to relax the
condition 0 < A < oo, which with the other conditions implies EI < o0
and EY,, < oo in (9) and (10), and replace EI and EY,, by something
correspondingly weaker. The reader wishing to pursue this interaction
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GALTON-WATSON PROCESS WITH IMMIGRATION 259

may begin by consulting Lemma 2.2 of [9] in conjunction with the represen-
tation (9) of [6].

Finally, we note that it is not difficult to verify the validity of the second
part of Theorem 1 even when m = 1, where ¢2 = var Z, = ro?, since
PX, =klX,>0)>0,k=1,2,...,a8n - o0 (see [8D).

Note added in proof : Subsequent research by C. C. Heyde and J. R.
Leslie has revealed that versions of Theorems 2 and 3 hold subject to only
the condition EZ? < oo (to appear in Bull. Austral. Math. Soc.).
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