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Electromagnetic waves in layered superconductors are
known as Josephson plasma waves (JPWs). An important
property of JPWs is the gap in their energy spectrum:

JPWs can propagate if the frequency ω is above the Josephson
plasma frequency ωJ (refs 1,2), which being in the terahertz
(THz) range, is important for applications3. This feature is
fuelling a growing interest in studies of JPWs (see, for example,
refs 4–7). However, nonlinear (NL) JPWs have not yet been
studied. It is a challenge to understand nonlinearities around
the plasma frequency, where the interplay between the unusual
spectrum and the nonlinearity of the JPWs is most pronounced.
Here, we predict the propagation of NL JPWs with frequencies
below ωJ, which is unusual for plasma-like excitations. In
analogy to NL optics, these waves exhibit numerous remarkable
features, including the slowing down of light (when the group
velocity ∂ω/∂k ≈ 0), self-focusing effects and the pumping of
weaker waves by stronger ones. The nonlinearity for ω > ωJ can
potentially be used for transforming continuous THz radiation
into amplified pulses.

The nonlinear (NL) effects in optics are of both fundamental
and technological interest8. They arise from the electric, E, or
magnetic, H , field dependence of the refraction coefficient, n. The
nonlinearity in Josephson media is due to the NL dependence,
j ∝ sinϕ, of the tunnelling supercurrent j on the phase difference
ϕ, which determines the fields E and H .

This profound analogy between NL optics and NL JPW,
summarized in Table 1, could open new avenues in the study of
THz plasma waves in superconductors, providing a programme
for future research in this growing field. Additional comparisons
can be made with NL acoustics9, plasmas10 and NL spin waves11.
The control of THz radiation is important for applications
in astronomy, chemistry, biology and medicine, including THz
imaging, spectroscopy, tomography, medical diagnosis, health
monitoring and environmental control, as well as chemical and
biological identification.

Here, we predict (1) a propagating NL JPW below the Josephson
plasma frequency when the JPW amplitude exceeds a critical

value. Owing to damping related to the quasiparticle current, the
NL JPW decays in the sample bulk and approaches the critical
amplitude at which it cannot propagate. (2) At this amplitude,
the group velocity of the JPWs approaches zero if the damping
value r tends to zero (that is, ∂ω/∂k ∝ r). We also prove (3) that
a localized beam of NL THz radiation can propagate without
spatial spreading below ωJ. This phenomenon is an analogue
of the self-focusing effect in NL optics8. (4) A weak JPW that
cannot penetrate the sample when ω < ωJ can be assisted to
propagate there by a NL JPW, in analogy with the self-induced
transparency in NL optics8. (5) At frequencies above ωJ, the
nonlinearity produces a distortion of the resonance (which is due to
the commensurability of the sample size with the JPW half length),
including frequency hysteresis, in analogy with the resonance in
anharmonic oscillators12. Our analytical results are supported by
numerical simulations. Animations of these effects are available
online, at http://dml.riken.jp/THz/nonlinear/nonlinear.swf. The
considered NL phenomena in layered superconductors can be used
to design a new generation of THz devices, including lenses and
amplifiers. We also emphasize that our main equation (1) is not
found in traditional NL optics.

MODEL

The gauge-invariant phase difference ϕ in layered superconductors
is described by a set of coupled sine-Gordon equations (see, for
example, refs 13,14). So far, these equations have been studied for
describing either Josephson vortices or linear waves. Here we focus
on weakly NL (sinϕ ≈ ϕ − ϕ3/6) waves at frequencies around ωJ

that, in the long-wavelength (compared with the interlayer spacing)
limit, obey

(
1− ∂2

∂y2

)(
∂2ϕ

∂t2
+ r

∂ϕ

∂t
+ϕ− ϕ3

6

)
− ∂2ϕ

∂x2
= 0. (1)

Hereafter, we use dimensionless coordinates x and y, and time t ,
x → x/lc , y → y/lab, t → ωJt , ω → ω/ωJ, where lab and lc are the
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Table 1 Comparison between nonlinear (NL) electromagnetic waves (EMWs) in optics and NL Josephson plasma waves (JPWs).

NL JPWs Traditional NL optics

Nonlinearity Due to the NL current-phase relation j= jc sinϕ Due to, for example, NL refraction coefficient-electric
field relation n(E )= n0+ n2E2

Higher harmonic frequencies generated from the basic ω Only 3ω, 5ω, . . . 2ω, . . ., (could be 3ω, or 4ω) depending on the
nonlinearity

Wave rectification and mixing Yes Yes

Wave propagation below gap Propagation of plane waves with ω < ωJ —

Slowing down EMW THz wave can slow down significantly if ω < ωJ Light can be slowed down

Transparency due to nonlinearity Weak waves with ω < ωJ, which cannot originally propagate, Self-induced transparency

do propagate assisted by NL JPWs

NL pumping Weak wave grows when the NL JPW is attenuated Pumping of NL waves in plasma

Focusing Below ωJ, focused THz beam propagates Self-focusing due to nonlinearity of n(E )

Wave packet spreading Open problem Can propagate without spreading

Loading–unloading cycles due to nonlinearity Frequency hysteresis of NL geometric resonance converts NL optical bistable devices
continuous radiation to amplified pulses
(analogy with NL mechanical resonance)

London penetration depths across and along the layers. The axes x
and y are along and across the layers, whereas the z axis is along
the magnetic field of the NL JPWs. The dimensionless damping
r = 4πσclc/c � 1, where σc is the c axis quasiparticle conductivity,
is controlled by the sample temperature T , r ∝ exp(−Δ/T), and
can easily be reduced to negligibly small values, r � 1. As was
shown in refs 15,16, the intralayer quasiparticle conductivity, σab,
should also be included when ω is far enough from the plasma
frequency. The contribution of the in-plane conductivity into the
dissipation can easily be incorporated in our analysis. However,
for the frequency range considered here (close to ωJ, |1 − ω2| ≡
|1 − (ω/ωJ)

2| � 1), this contribution is strongly suppressed and
can safely be omitted because the relative value of the term with
σab is (1 − ω2)(σab/σc)(lab/lc)

2 ∼ 10−3 � 1. Here we used the
standard values σab/σc = 105, lc/lab = 500, for Bi2212 compounds
and consider 1−ω ∼ 10−3.

We study equation (1) using the asymptotic expansion

ϕ =
∞∑

n=0

a2n+1(x,y)sin
[
(2n+1)ωt −η2n+1(x,y)

]
, (2)

with spatially varying amplitude a2n+1 and phases η2n+1, to obtain
periodic solutions. For waves with amplitude a1 ∼ √|1−ω2| � 1,
the NL term ϕ3 in equation (1) is of the same order as the linear
one, ∂2ϕ/∂t2 + ϕ, and a weak nonlinearity plays a key role in the
wave propagation when the frequency ≈ωJ.

NL PLANE WAVE BELOW THE PLASMA FREQUENCY

For plane waves propagating along the x axis, the asymptotic
expansion of equation (1), with respect to 1 − ω2, produces a set
of ordinary differential equations for a1,3,... (x) and η1,3,... (x) (see
the Methods section, equation (6)). Owing to the nonlinearity,
also described in Table 1, the propagating JPW includes higher
harmonics with decreasing amplitudes a2n+1 ∝ |1 − ω2|n+1/2. At
r = 0, equation (6) has a solution with constant amplitudes and
wavevectors k. For the first harmonics we derive

η′
1 = k =

√
ω2 −1+a2

1/8. (3)

From equations (2) and (3), we conclude that the NL JPW
can propagate below ωJ, if its amplitude is strong enough:

a2
1 > a2

c = 8(1 − ω2). This result (confirmed by numerical
simulations, for example, in Fig. 1) is very unusual for any
conducting media, where plasma waves propagate only with
frequencies above the plasma resonance. Wave packets formed
by superpositions of NL JP plane waves exhibit weak spreading
if their frequency widths are much less than 1 − ω. Using the
Maxwell and Josephson equations, we find that, at a1 = ac ,
the amplitude of the magnetic field in the running wave is
H0c = H0a2

c ; where H0 = Φ0/2πslc , where s is the period of the
superconducting layered structure and Φ0 is the flux quantum. For
layered superconductors, H0 ∼ 20 Oe. Assuming 1−ω = 10−3, we
find H0c = 0.32 Oe. If the magnetic field amplitude of the incident
and running waves are of the same order, then the power necessary
to excite NL JPWs should be larger than 0.25 W cm−2. This power
entering the sample might be much lower than the incident power.

These NL waves can be excited by applying THz radiation
to the sample edge using the experimental setup described, for
example, in ref. 17. The propagation of NL JPW could be
detected by measuring the reflection coefficient or the shift of the
plasma resonance as a function of the applied amplitude of the
electromagnetic field.

SLOWING DOWN OF LIGHT

Dissipation (r �= 0) produces wave damping, and a1 decays with x.
At some x = x0, the amplitude a1(x) achieves the critical value ac .
At this point, the wavevector k and the group velocity vg = ∂ω/∂k ∝√

a1 −ac vanish according to equation (3). In other words, the
‘stopping-of-light’ phenomenon occurs. A more-detailed analysis
yields an estimation for the minimum vg: vmin

g ∼ r/
√

1−ω2,
if (1−ω2)2 � r � (1−ω2); vmin

g ∼ (1−ω2)3/2, if r � (1−ω2)2. For
example, at r = 10−6, 1−ω = 10−3, lc = 10−2 cm, ωJ = 1011 s−1, we
find that vmin

g ∼ 105 cm s−1. The stopping-of-light phenomenon has
possible applications for quantum information processing and the
artificial creation of ‘event horizons’18,19 in solids. Far from x = x0

(deeper in the sample), the nonlinearity becomes irrelevant and
the JPW decays on a scale ∼1/

√
1−ω2. The Josephson current is

cancelled by the displacement current at x ∼ x0, where the stop-
light phenomenon occurs. As a result, there is a standing wave
with small H compared with the electric field E in this part of the
sample. This standing wave can be observed by low-temperature
scanning (either electron20 or laser21) microscopy.
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Figure 1 Self-induced transparency and NL pumping. Numerically obtained self-induced transparency and pumping: the spatial dependence of the normalized time
average of ϕ2 (x, y= 0) for a single NL JPW with a1 (0) = 8

√
(1−ω2 ), r= 0.5 (blue line) and for a mixture (red line) of NL JPWs with the same parameters and a weaker

wave with amplitude 0.2cos(qy ) at the surface. Here, q= 0.4π (q= 4π) for the red line in the main panel (right top inset). Left top (bottom) inset shows a 2D contour plot
for the blue (red) line in the main panel.

SELF-INDUCED TRANSPARENCY

We show that the NL plane wave with ω < 1 is stable with respect
to small fluctuations δϕ ∝ exp (iqy + ipx − iωt): the dispersion
equation for p has only real solutions. For example, at r = 0,
p = ±√

(1+q2)[2(1−ω2)+3k2]− k2. This indicates that the NL
wave assists the propagation of linear waves of the same frequency
and wavevector p, which could not propagate by themselves
because ω < 1. This effect is the JPW analogue of the self-induced
transparency in NL optics (see Table 1).

NL PUMPING OF A WEAK WAVE BY A STRONG ONE

We have shown above that a running NL wave allows propagation
of weak waves below the plasma frequency ωJ. More interestingly,
we have shown that a decaying NL wave, with amplitude a1

below a critical value ac , pumps weak waves with large transverse
wavenumber q. This occurs (see the Methods section) if either the
amplitude of the NL wave drops below ac due to dissipation, or the
amplitude of the incident wave is below the propagating threshold.

NUMERICAL SIMULATIONS

To test the validity of our analytical results briefly summarized
above, we carry out numerical simulations of equation (1), shown
in Fig. 1, for: (1) JPWs propagating below ωJ, (2) self-induced
transparency and (3) pumping. NL JPWs with ω < 1 propagate
inside the sample, weakly decaying due to damping (blue line in
the main panel and 2D plot in the top left inset). A weak wave with
ω < 1 cannot propagate alone. However, the strong JPW assists the
propagation and pumps a weaker wave (red line in main panel, 2D
plot in the bottom left inset and top right inset). Stronger pumping
occurs for higher values of q.

We now describe a possible experiment to observe self-induced
transparency and NL pumping. We propose applying a continuous
weak electromagnetic wave (EMW) with k, q �= 0 to a sample
surface parallel to the ab plane, and also pulses of strong radiation
to a sample edge. Then sweeping the incident angle θ of the weak
signal, a significant change in the reflectivity and transmissivity
coefficients should be observed at a certain θ, when the strong wave
is switched on. This effect could be useful for THz filters.

LOCALIZED THz BEAM

Now we focus on ‘beam solutions’, ϕ = a1(y) sin(ωt − kx), of
equation (1) for NL waves with ω < 1, and a1 = 0 at y → ±∞. If
we neglect the dissipation (r = 0) and higher-harmonic generation,
the amplitude a1(y) satisfies

(
1− d2

dy2

)[
(1−ω2)a1 − a3

1

8

]
+ k2a1 = 0 (4)

with boundary conditions a1(±∞) = 0. This equation has an
analytical solution that has a beam structure, that is, localized in the
y direction. The magnetic field distribution in the beam is shown
in Fig. 2. This self-sustained solution is an analogue of the self-
focusing effect in NL optics. This beam could be directly excited
by applying, from the sample edge, magnetic field radiation with a
profile similar to that in Fig. 2.

NL GEOMETRIC RESONANCE

Now we consider an EMW, H = Hieik0 x−iωt + Hre−ik0 x−iωt , with
frequency above ωJ, incident from the vacuum on a slab
sample −l < x < l. Here Hi and Hr are the amplitudes of the
incident and reflected waves, respectively. In linear approximation
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Figure 2 Focused THz beam and NL surface wave. The normalized magnetic field,
h= H/H ,H = H0 (1−ω2 )3/2/k, versus the transverse coordinate y for different
wavenumbers: k (1−ω2 )−1/2 = 3 (red) or 10 (blue) lines. Inset: the normalized
magnetic field in the NL surface wave excited by a THz wave (shown by a red arrow)
incident on the large (∼1mm2) top surface parallel to the ab plane; same
parameters as for the localized THz beam shown by the blue line in the main panel.
The reflected wave (shown by the blue arrow) can be strongly suppressed because
of the resonant excitation (that is, Wood’s anomalies) of the NL surface waves.

theory, the incident EMW excites a wave in the sample
ϕ = a+eikx−iωt + a−e−ikx−iωt . To find the amplitudes a±, we use the
continuity of the magnetic field and the tangential component of
the electric field at the vacuum–sample interface. If a half length
of the EMW is commensurate with the sample length, kl = πn/2,
the reflected wave in the vacuum disappears, the sample becomes
completely transparent5, and the amplitudes of the EMW in the
sample increase. Near this resonance at small r � 1 and a± � 1
(when the expansion sinϕ ≈ ϕ−ϕ3/6 is valid), the amplitudes a±

are defined by

a+ = a− = Hi

H0

Q
√

εe−ik0 l

2ω(1+ iQlδk)
, (5)

where δk = k −πn/2l, k0 = ω/
√

ε, ε is the interlayer dielectric
constant, and Q = 2lk0/πn. According to equation (5), the energy
density stored in the sample near the resonance exceeds the EMW
energy density in vacuum by the factor K = ω2 l2/π2n2ε. Below we
consider only the case n = 1 and ω ≈ 1 (that is, close to plasma
frequency), where the effect is most pronounced. Taking, as an
estimate, the sample length 2llc = 2 cm, lc = 10−2 cm, and ε = 10,
we obtain K ≈ 100.

The influence of the nonlinearity on the resonance can
be analysed assuming the dependence of k on the wave
amplitude, in analogy to the well-known NL mechanical
resonance12. The dependence of k on the amplitudes a± is
similar to equation (3) when replacing a2

1/8 by 3|a+|2/8. Thus,
δk = 2l(3|a+|2/16 + 
ω)/π, where 
ω is the detuning of the
EMW frequency from the resonance value ωres = √

1−π2/4l2.
Substituting δk in equation (5), we derive a cubic equation for
|a+|2. Solving this equation we find the dependence of the wave
amplitude on the frequency near the resonance. For a small
amplitude of the incident wave, Hi, the resonance peak is slightly
distorted due to nonlinearity (Fig. 3). If Hi exceeds a threshold
value, Hthr ≈ 7.8H0ε

1/4/l5/2, two different stable solutions with
higher and lower amplitudes |a+| occur near the resonance. In
analogy with NL mechanical resonance12, this produces a hysteretic
behaviour of a+(ω) when slowly sweeping the frequency ω of
the incident wave (see Fig. 3 and Table 1). As a result, the abrupt
transitions between two solutions and, thus, an almost immediate
release of the accumulated energy, occurs at 
ω = ωc ≈ 4.3

√
ε/l3.

–10–4 0 10–4

Δω

Continuous

radiation

Radiation

pulses
Sample

10–3

10–2

a+

Figure 3 NL geometric resonance and THz wave amplification. The amplitude a+

of a wave inside the sample versus detuning frequency 
ω for different incident
wave amplitudes: the red dashed line corresponds to Hi/H0 = 10−5, the blue dotted
line to Hi/H0 = 10−4, and the green solid line to Hi/H0 = 2.5×10−4. Inset:
schematic diagram showing the conversion of continuous THz radiation into
amplified pulses.

Using the same parameters as above and s = 1.5 nm, we estimate
Hthr ≈ 3×10−3 Oe and 
ω ≈ 1.4×10−5ωJ.

We propose an experiment to observe this NL resonance. When
a continuous EMW with time-dependent frequency ω = ωres +
α cos(ω1t), with α,ω1 � ωres, is applied to the sample edge17,
an almost standing wave is excited in the layered superconductor.
When αcos(ω1tn)=ωc , this standing wave is periodically collapsed
producing strong pulses of THz waves, which could be measured.
Thus, such a device (inset in Fig. 3) could be used as an amplifier or
as a converter of continuous THz radiation into short THz pulses
(see also at http://dml.riken.jp/THz/nonlinear/nonlinear.swf).

COUPLING NL WAVES WITH THE THZ FIELD IN THE VACUUM

For anisotropic cuprate single crystals, the edge height along the
c axis direction is about 10–100 μm, whereas the THz wavelength
in the vacuum is about 300 μm. Thus, the focusing of incident THz
waves on the edge surface could be hard to achieve. Shining the top
of the sample, with a surface of several mm2, at a small incident
angle, avoids this problem. For instance, when the amplitude of the
incident wave is large enough (H0 > H0c), NL surface waves with a
localized beam profile similar to Fig. 2 can be excited. The inset of
Fig. 2 shows the field distribution in such a NL wave, obtained by
solving equation (4) and matching the impedance (Ex/H) on the
vacuum–superconductor interface.

METHODS

ASYMPTOTIC EXPANSION

Substituting (2) into equation (1) we obtain (in the particular case studied
above) the set of ordinary differential equations for harmonic amplitudes:

a′′
1 −[1−ω2 + (η′

1)
2]a1 +a3

1/8 = 0,

rωa1 +2a′
1η

′
1 +a1η

′′
1 = 0,

a′′
3 −[1−9ω2 + (η′

3)
2]a3 +a3

1 cos(η3 −3η1)/24 = 0,

3rωa1 +2a′
3η

′
3 +a3η

′′
3 +a3

1 sin(η3 −3η1)/24 = 0, (6)

used to derive a spectrum of NL plane waves.
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NL WAVE PUMPING

For a1 < ac =[8(1−ω2)]1/2, the strong wave, ϕ(x, t) ≈ a1(x)sinωt , decays on
a scale 1/

√
1−ω2. A weak wave, ϕq = aq(x)eiqy sin(ωt), interacting with the

strong one is described by the equation

a′′
q + (1+q2)

[
3a2

1(x)

8
−1+ω2

]
aq = 0, (7)

derived from equation (1). It is seen that at a2
1(x) > 8(1−ω2)/3, the last

equation describes a non-decaying wave. In the Wentzel–Kramers–Brillouin
approximation, for q � 1, we find from equation (7)

aq(x)

aq(0)
=

[
3a2

1(0)−8(1−ω2)

3a2
1(x)−8(1−ω2)

]1/2

cos

[√
1+q2

∫ x

0

dx′
√

ω2 −1+3a2
1(x′)/8

]
.

The amplitude of the weak wave increases as a1(x) approaches a ‘turning point’
x1, where a2

1(x1) = 8(1−ω2)/3. This indicates the pumping of weak waves
with short c axis wavelength.

ASYMPTOTIC BEHAVIOUR OF NL THz BEAM

The analytical solution for a localized beam when k2 � 1−ω2 behaves as:

a1 ∝ exp

(
− k|y|√

(1−ω2)

)
, |y| � y0,

a1 ∝
√

(1−ω2)

(
1− k2y2

2(1−ω2)

)
, |y| � y0,

where y0 = √
(1−ω2)/k. Far from the centre of the beam, |y| � y0, the

nonlinearity is not important but the wave is self-sustained because of its
positive curvature, d2a1/dy2 > 0. Indeed, the standard linear spectrum
following from equation (1) is k2 = −(1+q2)(1−ω2). If q2 > 0, the wave
cannot propagate because k2 < 0 when ω < 1; in contrast, for the beam,
q2 ≈ −1/(k2 +1−ω2) < 0, and the wavevector now satisfies the propagation
condition, k2 > 0, from the dispersion relation k(q,ω). Near the centre of the
beam, nonlinearity joins two peripheral symmetric solutions with positive
curvature allowing a self-sustained beam propagation. There are two points,
y ∼ ±y0, where the phase difference ϕ exhibits a jump, whereas the magnetic
field is continuous. As a result, the breaking of the charge neutrality occurs at
the phase jumps.
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