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Abstract

The power of genetic association analyses is often compromised by missing genotypic data which contributes to lack of
significant findings, e.g., in in silico replication studies. One solution is to impute untyped SNPs from typed flanking markers,
based on known linkage disequilibrium (LD) relationships. Several imputation methods are available and their usefulness in
association studies has been demonstrated, but factors affecting their relative performance in accuracy have not been
systematically investigated. Therefore, we investigated and compared the performance of five popular genotype imputation
methods, MACH, IMPUTE, fastPHASE, PLINK and Beagle, to assess and compare the effects of factors that affect imputation
accuracy rates (ARs). Our results showed that a stronger LD and a lower MAF for an untyped marker produced better ARs for
all the five methods. We also observed that a greater number of haplotypes in the reference sample resulted in higher ARs
for MACH, IMPUTE, PLINK and Beagle, but had little influence on the ARs for fastPHASE. In general, MACH and IMPUTE
produced similar results and these two methods consistently outperformed fastPHASE, PLINK and Beagle. Our study is
helpful in guiding application of imputation methods in association analyses when genotype data are missing.
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Introduction

Technological advances in genotyping have increased the ability

to detect dense single nucleotide polymorphisms (SNPs) in the

human genome. To date, over three million SNPs have been

documented by the HapMap Project [1,2]. The availability of

high-throughput genotyping has benefited biological researchers in

several ways, including, improved power for genetic association

analyses [3,4]. However, challenges exist currently. For example,

although the popular Affymetrix 500K Array Set contains

approximately 500,000 SNPs, this only represents one sixth of

the approximately three million SNPs detected by the HapMap

project. Furthermore, many of these 500,000 SNPs may not be

available for use in association analyses due to low call rates,

deviations from Hardy-Weinberg equilibrium, rare alleles, and etc.

As a result, genotype data is often missing, and this missing data

results in a power loss in association studies [5]. Additionally,

different platforms usually contain distinct sets of SNPs, making it

difficult to replicate significant findings or to perform follow-up

meta-analysis [6].

Imputation methods, used to infer missing or untyped SNP

genotypes based on known information (e.g. linkage disequilibrium

between missing or untyped SNPs and their flanking typed SNPs)

can provide partial solutions for recovering missing or untyped

genotype data [7,8,9,10,11]. Several imputation methods using

various statistical models such as the haplotype-clustering

algorithm [12], the hidden Markov model (HMM) [5], and the

Markov Chain model [13], have been proposed. Imputed

genotypes, generated with these methods, have been used,

successfully, to improve power in association analyses

[5,14,15,16,17,18,19], to facilitate meta-analyses, and to replicate

significant findings in follow-up studies [6].

As new methods for genotype imputation are developed, the

relative performance of these methods must be assessed. Yu and

Schaid [20] compared the performance of eight genotype

imputation methods [12,21,22,23,24,25,26] under different LD

levels using real data from the HapMap project. In their study, 5%

of observed genotypes were randomly set to be missing, various

imputation methods were used to impute the ‘‘missing’’ genotypes,

and the imputation error rates for the various methods were then

compared. The authors concluded that fastPHASE generally had

the highest accuracy among the methods tested. However, as the

methodology development and use of genotype imputation

continues to evolve, it has become apparent that the study of Yu

et al. has significant limitations which may affect the general

applicability of their conclusions, for the following reasons. First,

the authors assumed that all markers were typed and that only a

small fraction, (e.g., 5%), among them was missing due to

genotyping failure. As imputation has evolved to the current level

of resolution in which inferences can be made about genotypes at

totally untyped markers, missing genotypes will account for a

much larger proportion than utilized in their study; under these

circumstances, their conclusions may not be applicable. Second,

several additional highly effective statistical methods have been
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proposed for genotype imputation since the study of Yu et al., and

knowledge on the relative performance of these methods, and the

impact on the conclusions of the study of Yu at al., are largely

unknown. Third, the authors only considered the effect of LD on

imputation efficiency. Though the success of imputation is largely

determined by the patterns of LD, some additional properties of

the sample, such as marker density and minor allele frequency

(MAF), may also influence the imputation process and perfor-

mance and thus need to be investigated as we did in our study.

Finally, in circumstances where markers are totally untyped,

external information, (e.g., reference samples from the HapMap

project), is required. Reference samples may play a central role in

the success of imputation and, consequently, it is necessary to

assess its effect on the imputation process, as we did in the current

study.

Several additional comparisons of imputation methods have

been conducted in the context of new methods being described

and compared to alternative methods [7,10,12]. In general,

however, these comparisons are fairly limited in scope and not

comprehensive. Consequently, we perceived a substantial need to

perform a comprehensive comparison of recently developed,

sophisticated methods for imputation.

In this study, to evaluate the factors potentially affecting

imputation accuracy rates (ARs), we used both simulated and real

data sets to investigate the effects of LD, MAF of untyped loci,

marker density, and reference sample size on the performance of

five popular imputation methods: MACH, IMPUTE, fastPHASE,

PLINK and Beagle. We also compared their relative performance

under various conditions.

Results

Analyses of Simulated Data
Figure 1, which illustrates the effects of LD level on the

performance of various methods, shows that ARs increased

remarkably as LD levels became stronger. For example, when

the reference sample size was 90, the AR for MACH was 62.8% at

the low LD level, increased to 75.9% at the medium LD level, and

reached 95.1% at the high LD level. When comparing the

different methods, MACH and IMPUTE performed similarly, and

both produced higher ARs than alternative methods under all LD

levels simulated, with the exception of fastPHASE at low LD

levels. Although fastPHASE performed similarly to MACH and

IMPUTE at low LD levels, it showed lower ARs at medium and

high LD levels, with AR differences of about 4% and 6%,

respectively. The performance of PLINK and Beagle was inferior

to MACH and IMPUTE under all LD levels. Further, Beagle was

inferior to fastPHASE at low and medium LD levels, but slightly

superior at a high LD level. PLINK was inferior to fastPHASE

under all LD levels and inferior to Beagle at low and high LD

levels, but slightly superior to Beagle at the medium LD level.

Clearly, the LD level is a major determinant for imputation ARs

for all methods.

As shown in Figure 2, ARs decreased as MAF of untyped

markers increased, particularly at low to intermediate LD levels.

The influence of MAF on ARs was reduced at higher LD levels.

For example, when the MAF interval increased from 0.05 to 0.45,

ARs for MACH decreased from 85.4% to 46.4%, from 88.3% to

63.0%, and from 97.3% to 93.3%, under low, medium, and high

LD levels, respectively. Similar trends were also seen for the other

methods. When comparing the different methods, ARs achieved

with MACH and IMPUTE were similar to one another at all LD

and MAF conditions tested. ARs achieved with MACH and

IMPUTE were generally superior to those achieved with

fastPHASE, PLINK or Beagle, but the extent of these differences

varied with different MAF and LD levels. Difference between

MACH/IMPUTE vs. fastPHASE, PLINK and Beagle were

greatest for medium LD levels.

Figure 1. Effects of LD level on accuracy rates. The results are
based on 90 reference haplotypes and a medium marker density (one
SNP per 6 kb).
doi:10.1371/journal.pone.0003551.g001

Figure 2. Effects of MAF of untyped SNPs on accuracy rates. The
results are based on 90 reference haplotypes and the medium marker
density (1 SNP per 6 kb). (a) Low LD level; (b) Medium LD level; (c) High
LD level.
doi:10.1371/journal.pone.0003551.g002

Imputation Methods Comparisons
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As expected, higher marker density led to better performances

for imputation, as shown in Figure 3. For MACH, under a

medium LD level with one SNP per 3 kb, the AR was 83.1%;

when the density decreased to one SNP per 6 kb and one SNP per

10 kb, the ARs decreased to 75.9% and 72.4%, respectively. ARs

attained with MACH and IMPUTE were again similar to one

another, though ARs for IMPUTE were ,1% below those of

MACH. ARs attained with MACH were approximately 2–5%, 6–

12% and 8–12% higher than those attained with fastPHASE,

PLINK and Beagle, respectively.

Figure 4 demonstrates the influence of the size of reference

samples on ARs. For four of the five methods (MACH, IMPUTE,

PLINK and Beagle), ARs increased as the size of reference

haplotypes increased, while ARs for fastPHASE remained

relatively constant. Again, MACH consistently had the highest

AR, though the differences between MACH and some of the other

methods were relatively minor under certain conditions. The

difference between MACH and IMPUTE was greatest under the

condition of low LD level and high marker density; differences

between MACH and IMPUTE were barely discernible under

other conditions. Beagle performed similarly to MACH and

IMPUTE and better than fastPHASE and PLINK under a high

LD level, but was markedly inferior to MACH and IMPUTE

under medium and low LD levels. MACH and IMPUTE

performed better than fastPHASE and PLINK under all

conditions tested. The difference between MACH/IMPUTE

and fastPHASE increased as the size of reference haplotypes

increased because ARs for MACH and IMPUTE increased with

increasing sample sizes, while ARs for fastPHASE remained nearly

constant. fastPHASE performed better than Beagle under a low

LD level and under a medium LD level when the size of reference

haplotypes was below 270. With increasing size of reference

haplotypes under a medium LD, however, ARs for Beagle

increased while ARs for fastPHASE remained at approximately

72%. Consequently, when the reference sample size exceeded 270,

Beagle’s performance was superior to fastPHASE, with greater

improvement as the reference sample size increased. PLINK

performed better than Beagle under a low LD level and under a

medium LD level when the size of reference haplotypes was below

270, but worse than Beagle under the other conditions. PLINK’s

performance was inferior to fastPHASE under low and medium

LD level, but was superior to fastPHASE under high LD level.

Analyses of Real Data
For the real data sets, LD and marker density influenced ARs in

a similar manner to that attained with simulated data. For

example, Figure 5 displays the rising trend of ARs with stronger

LD levels and denser markers, and it is apparent that, in general,

MACH and IMPUTE performed better than fastPHASE, Beagle

and PLINK. Figure 6 shows the influence of MAF of untyped

markers. Generally, MAF had little influence on accuracy in all the

real regions. This pattern was similar to that for ‘‘high’’ LD regions

in simulated data sets, illustrating that each of the considered real

regions has an average LD level that is similar to or higher than

those for the simulated regions with highest levels of LD; this was

confirmed by calculating average r2 and D9 across the regions. We

also noticed an exceptional point under the low LD level

(Figure 6A), where the AR under the 0.25 MAF interval was

lower than that under MAF intervals of 0.35 or higher. We

examined the data and found that the average values of r2 and D9

under the 0.25 MAF were 0.40 and 0.86, while they were 0.47 and

0.94 under the 0.35 interval, and 0.46 and 0.94 under the 0.45

Figure 3. Effects of marker density on accuracy rates. The results
are based on 90 reference haplotypes at the medium LD level. X-axis
represents marker density: low marker density: one SNP per 10 kb;
medium marker density: one SNP per 6 kb and high marker density:
one SNP per 3 kb.
doi:10.1371/journal.pone.0003551.g003

Figure 4. Effects of sample size of reference samples on
accuracy rates under various conditions. (a) Low LD level and high
marker density (one SNP per 3 kb); (b) Medium LD level and medium
marker density (one SNP per 6 kb); (c) High LD level and low marker
density (one SNP per 10 kb).
doi:10.1371/journal.pone.0003551.g004
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interval. This further analysis confirmed that the influence of MAF

was ultimately largely caused by the patterns of LD.

Among the methods, MACH and IMPUTE yielded approxi-

mately equal accuracy rates, both of which performed better than

fastPHASE, Beagle and PLINK.

Running Time
All running times were obtained on a Linux cluster with 4

computation nodes, each having two Intel Xeon Quad-core

processors and 7GB RAM. Times for imputing all missing

genotypes for a sample of 100 individuals were recorded and

converted to that on a single processor with a single core. All five

methods completed a single imputation within 25 minutes.

Running time was mostly influenced by sizes of the reference

samples, with longer running times as reference sample sizes

increased. Under a medium LD level and medium marker density

as size of reference samples increased from 90 to 540, for example,

the running time for MACH, IMPUTE, fastPHASE, PLINK and

Beagle increased from 0.6 min to 15.5 min, from 0.50 min to

13.2 min, from 1.6 min to 6.5 min, from 0.15 min to 0.2 min and

from 0.6 min to 0.7 min, respectively.

Discussion

In this study, we investigated and compared the performance of

five popular genotype imputation methods: MACH, IMPUTE,

fastPHASE, PLINK and Beagle, under various conditions. Using

both simulated and real data sets, we determined that factors such

as LD level, MAF of untyped SNPs, marker density and size of

reference haplotypes have varying effects on imputation accuracy

rates. Specifically, stronger LD, lower MAF, or higher marker

density lead to better ARs; greater size of haplotypes in the

reference sample resulted in higher ARs for MACH, IMPUTE,

PLINK and Beagle, but had little influence on ARs for

fastPHASE. In comparing the different methods to one another,

MACH and IMPUTE produced similar results that were generally

better than fastPHASE, PLINK and Beagle. In addition, MACH

performed better than IMPUTE under low LD levels and high

marker densities.

One reason that missing genotypes can be imputed is that

unrelated individuals from common ancestors usually share an

extended haplotype over short regions [7,12]. The approach by

which haplotype sharing is captured differs for the five methods. In

the following discussion, we did not summarize the model

underlying PLINK since it was not accessible and not available

at the time this study was performed. The remaining four methods

all infer individual genotypes as mosaics from the set of

background haplotypes by an HMM process [5,7,12,27]. Despite

their conceptual similarities, implemental distinctions between

these methods have produced some differences in relative

performance. fastPHASE relies on a fixed number of haplotype

clusters to form underlying hidden states in the Markov Chain

[12]. Provided that this number is correctly specified, fastPHASE

should give an acceptably good performance. However the cluster

number is usually restricted to a small value in real applications as

a trade-off against computation cost, which makes this approach

slightly inferior to the alternative approaches, under most

conditions. Beagle uses a similar haplotype clustering approach

to fastPHASE, but it allows the cluster number to dynamically

change to better fit localized LD patterns exhibited by the data [7].

Nonetheless, empirical estimates of parameters in Beagle may bias

specification of the model to some extent, particularly when the

sequence exhibits a low average LD level. Both MACH and

IMPUTE directly model genotypes on the set of haplotypes

without clustering, and both of these methods appear to

outperform fastPHASE and Beagle, which adopt haplotype

clustering strategies [5,27]. This improvement is probably

Figure 5. Performance of the imputation methods under
various conditions using real data sets. Each label along x-axis
represents a specific combination of LD level and marker density.
Within each label, ‘‘L’’, ‘‘M’’, and ‘‘H’’ refer to, respectively, low, medium
and high LD level when they are the first letter or marker density when
they are the second letter.
doi:10.1371/journal.pone.0003551.g005

Figure 6. Effects of MAF of untyped SNPs on accuracy rates in
real datasets. The results are based on the medium marker density (1
SNP per 6 kb). (a) Low LD level; (b) Medium LD level; (c) High LD level.
doi:10.1371/journal.pone.0003551.g006
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attributable to their capacity to capture more information on

haplotypic variation without clustering. IMPUTE explicitly

specifies a set of reference haplotypes (e.g., haplotypes from the

HapMap project), as the pool of hidden states of the Markov

Chain, and infers haplotypes and missing genotypes in test samples

according to these hidden states [5]. In contrast, MACH implicitly

combines both reference and test samples together to estimate

parameters and to update haplotypes for all individuals in turn by

the Monte-Carlo procedure [27]. Generally, the two approaches

have approximately equal performance. However, MACH

performs a little better than IMPUTE under certain conditions

as we show in the study, probably because it can make better use

of the data by combining reference and test samples together to

train model parameters.

Among various factors influencing imputation AR, the level of

LD plays a central role for all methods. Stronger background LD

patterns will improve imputation AR. The effects of marker

density are essentially transformed into that of LD by the fact that

denser markers usually cause stronger patterns of local LD. Thus,

denser markers will also help improve imputation AR. The

influence of MAF on imputation AR can be interpreted as

ultimately caused by the level of LD. Our results demonstrated

that a decrease in the MAF of untyped variants resulted in an

increase in imputation AR. A lower MAF usually corresponds to a

‘‘younger’’ ancestral mutation, or a stronger LD with nearby

markers, provided recombination plays a primary role in LD

decay. To confirm this, we calculated average values of r2 between

typed and untyped markers under different MAF interval settings,

for different LD regions in our simulation data. However, we did

not find obvious relationship between r2 and ARs. For example, in

one of the simulated low LD region, average values of r2 changed

slightly around 0.006 regardless of MAF intervals. Nonetheless,

when the level of LD was measured by D9, the trends in D9 change

confirmed our explanations. For example, in the same region as

above, average values of D9 decreased from 0.33 to 0.15 as MAF

interval increased from 0.05 to 0.45. The discordance between r2

and D9 was likely caused by the fact that calculation of r2 was less

sensitive to MAF than that of D9.

An interesting observation from our simulations is that MAF

influences imputation AR in different patterns for regions with

different LD levels. The influence of MAF was relatively minor for

high LD regions, while it was considerably larger for low LD

regions. One potential explanation for these findings is that in high

LD regions the imputing AR is determined primarily by the high

levels of LD between markers; the capacity for MAF to influence

AR is greatly diminished under these circumstances. In low LD

regions, on the other hand, markers with low MAF likely exhibit

locally high levels of LD with nearby markers though the overall

LD level across the entire region was low. The locally elevated LD

level caused by the low MAF in low LD regions, results in much

higher imputation AR than that attained with high MAF. In our

simulations, D9 decreased from 0.71 to 0.41 as the MAF interval

increased from 0.05 to 0.45 in high LD regions, whereas it

decreased from 0.33 to 0.15 in low LD regions.

Larger samples will introduce extra information and will also

produce more consistent estimates of measured parameters,

resulting in generally improved AR for various methods. However,

for fastPHASE, we observed that the number of reference

haplotypes had little influence on imputation AR. One potential

explanation for fastPHASE’s insensitivity to reference sample sizes

maybe its fixed small number of clusters. With low cluster

numbers, increasing reference samples can only change parameter

estimates within each cluster, but may not be able to capture the

added haplotypic variation. Consequently, increasing reference

samples has only a limited capacity to improve imputation AR.

Increasing cluster number may resolve this issue, but that will be

time-consuming and our simulations showed that the increase in

the AR was not significant even when the cluster number

increased from 20 to 100 (Data not shown). An alternative choice,

that appears to improve AR, is to let the cluster number be

determined dynamically by the data itself from the local context of

sequence. This is the approach that Beagle adopted and, under

these conditions, increasing the number of reference haplotypes

improved imputation AR to a remarkable extent.

In the current study, test data and reference data were sampled

from the same population, which is the basic assumption for most

of the methods studied here. However, for many practical studies,

these conditions do not apply; investigators often obtain their

reference data from HapMap, which contains high-resolution

haplotype information for a small number of relatively homoge-

nous human populations. Importantly, several previous studies

have demonstrated the feasibility of using homogeneous samples

for reference data. For example, Marchini et al., imputed

genotypes for a UK sample using CEU HapMap haplotypes,

and the imputation AR was high [5]. Additionally, a worldwide

survey of haplotype variation and LD patterns in 52 different

populations demonstrated that there is considerable sharing of

haplotype structure across groups and that locations of inferred

recombination hotspots generally match across groups [28]. These

studies support the conclusion that imputation can still be accurate

even when there is mild heterogeneity between test samples and

reference data.

In the current study, phases of the reference haplotype are

assumed to be known, even though this is usually not true for real

data. Inferring haplotypes from genotypes can introduce addi-

tional errors, with a consequent decrease in ARs for imputation

using real data. Fortunately, it has been previously demonstrated

that current haplotype inference programs (e.g. PHASE) can infer

phasing information with high accuracy, thereby minimizing

errors in subsequent imputation attributable to these inferred

haplotypes [10,11,29].

One remaining issue related to imputed genotypes is how to

apply imputed genotypes in subsequent analyses. In this study, the

most likely genotypes were set as the imputed genotypes, but it is

also possible to infer imputed genotypes from a posterior

distribution provided by certain methods (such as the one based

on HMM, IMPUTE) [5]. Both strategies, selecting the most likely

genotype and selecting the posterior distribution of all possible

genotypes, have demonstrated the capacity to improve power in

follow-up association analysis [5,6,16]. However, comprehensive

analyses appear to be warranted to better evaluate this issue.

Materials and Methods

Data Simulations
Haplotypes covering a 250 kb chromosomal region were

simulated with uniformly distributed recombination rates across

the region using the software Cosi [30] which is implemented

under a coalescent model. From the pool of simulated haplotypes,

a diploid individual was generated by combining two randomly

selected haplotypes and a total of 100 individuals were sampled.

SNPs with MAF less than 0.05 were excluded from further

analyses. Two-hundred and fifty approximately equally spaced

SNPs, corresponding to a density of one SNP per kb were selected

as the base SNP set on which all subsequent analyses were based.

Two types of samples were generated. The first type was a

reference sample in which genotypes were known for all the 250

SNPs. A second sample was a test sample in which genotypes were

Imputation Methods Comparisons
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known for only a proportion of these 250 SNPs. The number of

SNPs with known (referred to as typed) genotypes in the test

sample was determined by the marker density, and these SNPs

were selected to be approximately equally spaced. The remaining

SNPs in the based set were referred to as untyped SNPs and their

genotypes would be inferred by imputation methods. The

performance of a particular method was measured by imputation

AR, which was defined as the number of correctly imputed

genotypes divided by the total number of untyped genotypes.

Different parameter values were used to cover various biological

conditions. Three recombination rates (between neighboring sites

per generation): 1.0e-7, 1.0e-8 and 1.0e-9 were used to represent

low, medium and high levels of LD, respectively, consistent with

previous studies [31]. To make the definition of LD levels clearer,

we calculated the average r2 and D9 values between adjacent SNPs

across the whole 250 kb sequence, which were 0.03 and 0.46, 0.15

and 0.83, 0.31 and 0.98 for regions with low, medium and high

levels of LD, respectively. To select typed SNPs, three marker

densities: one SNP per 3 kb, per 6 kb, and per 10 kb, were

assumed, corresponding to approximate 83, 41 and 25 typed

SNPs, respectively, in the study region. To mimic the practical

situation where external information is available, such as known

phased haplotype data sets from the HapMap project, we

generated reference samples with different sample sizes (90, 180,

270, 360, 450 and 540) with all the 250 SNPs typed in simulations.

In addition, effects of MAF were studied by binning untyped SNPs

into one of five equal-width intervals between 0.0 and 0.5 (0.05,

0.15, 0.25, 0.35 and 0.45). For each parameter setting, 1000

replications were performed and the average AR was reported.

Real Data Sets
Phased haplotype data for individuals in the HapMap CEU

sample were downloaded (HapMap rel#21) from the website

http://www.hapmap.org/downloads/phasing/2006-07_phaseII/

phased/. Monomorphic SNPs were deleted. Although there were

30 trios genotyped, we only selected 60 unrelated parents to form a

sample of 120 haplotypes. Based on estimated recombination rates

given on the HapMap website, three 250 kb chromosomal regions

on chromosome 22 (35109556,35341653, 22246455,22505676,

30809496,31058109), with average recombination rates of

6.55 cM/Mb, 1.09 cM/Mb, and 0.24 cM/Mb, were selected,

corresponding to regions with low, medium and high levels of LD,

respectively. These regions contained 250, 242 and 250 SNPs,

respectively. We also calculated the average r2 and D9 values

between adjacent SNPs across the whole 250 kb sequence, which

were 0.42 and 0.93, 0.38 and 0.97, 0.69 and 0.98 for regions with

low, medium and high levels of LD, respectively. To obtain the

reference samples, we adopted a cross-validation procedure, in

which 100 of 120 haplotypes were randomly selected, and the

remaining 20 haplotypes were assigned into the test samples. In

addition, for the test samples, we used the same scheme as for the

simulated data and selected typed SNPs based on three marker

densities (one SNP per 3 kb, per 6 kb and per 10 kb). 1000

iterations were then performed for each setting and average ARs

were reported.

Genotype Imputation Methods
Five popular imputation methods were investigated in this

study: MACH, IMPUTE, fastPHASE, PLINK and Beagle. These

methods are briefly described below.

MACH. MACH v 1.0.10 implements a Markov Chain based

algorithm [13,27] to infer possible pairs of haplotypes for each

individual’s genotypes (including untyped genotypes). It defines a

series of indicators (S) to denote unobserved states underlying

unphased genotypes and models S as a Markov Chain. The

algorithm begins by randomly assigning a pair of haplotypes to

each individual that is consistent with the observed genotypes. For

untyped sites, alleles are assigned according to their population

frequencies. Then it updates haplotype configurations by using the

current set of haplotype estimates for all individuals as templates,

and sampling S using the Markov Chain. It repeats the update

procedure a number of times and counts how often a genotype is

sampled at a particular position. In this study we used the

command mach –d sample.dat –p sample.ped –h sample.hap –s

sample.snps -–rounds 50 -–greedy -–geno -–profix filename to impute

untyped genotypes. Under this standard setting, MACH can work

with very high accuracy at the cost of intensive computation.

Alternatively, it can run faster without much loss of accuracy by

using a two-stage process (using a single set of estimates for the

crossover and error rate map and, conditional on these, to find the

most likely genotypes). However, as both simulated and real data

sets had moderate sizes in our study, we ran MACH with the

standard option to get the highest AR. The most likely genotype is

the one that is sampled most frequently. In this study, the number

of iterations of the Markov Chain was set to 50 to assure a reliable

result. MACH is available at http://www.sph.umich.edu/csg/

abecasis/MACH/download/.

IMPUTE. IMPUTE v 0.2.1 is a hidden Markov Model based

algorithm [5]. It treats the sequence of pairs of known haplotypes as

hidden states and models the sequence of hidden state change along

the sequence with switching rates depending upon a recombination

map estimated from the reference data. Then based on known

haplotypes, it predicts untyped genotypes. IMPUTE was run with

default command impute –h sample.hap –l sample.legend –m sample.map –g

sample.geno –Ne 11000 –o output –i filename to impute untyped

genotypes. As IMPUTE outputs posterior probability of each

potential genotype, to facilitate the comparison, the imputed

genotype was defined as the one that had the highest posterior

probability. This program is available at http://www.stats.ox.ac.

uk/,marchini/software/gwas/impute.html.

fastPHASE. fastPHASE v 1.2.3 is a haplotype clustering

algorithm [12]. It assumes that haplotypes in a population cluster

into groups over a short region and allows cluster memberships to

change continuously along the chromosome based on a HMM.

First, missing genotypes are sampled based on allele frequencies

estimated from reference haplotypes, and then an Expectation-

Maximization (EM) algorithm is used to estimate parameter

values. Based on estimated parameters, missing genotypes are

inferred. In this study, the number of clusters was set to 20, and

haplotype estimation was turned off by using option -H-4 to save

time. The command we used was fastPHASE –K20 –T20 –C25 –H-

4 –Z –ooutput –n –brefname geno. Also fastPHASE can determine the

number of clusters via cross-validation procedure, but this added

considerably to the running time. fastPHASE is available at

http://depts.washington.edu/ventures/UW_Technology/Express_

Licenses/-fastPHASE.php.

PLINK. PLINK v 1.03 is essentially based around the concept

of multi-marker tagging [32]. The detailed description of the

algorithm implemented in PLINK was not available when we

prepared this manuscript. We just used the default parameter

setting to output the posterior probabilities of each genotype and

the command was: plink -–bfile filename -–all -–proxy-impute all -–

proxy-verbose -–make-bed -–out outname. We defined the imputed

genotype as the one that had the highest posterior probability.

PLINK is available at http://pngu.mgh.harvard.edu/,purcell/

plink/download.shtml.

Beagle. Beagle v 2.1.3 is a haplotype clustering based

algorithm [7]. First it uses the localized haplotype cluster model
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to cluster haplotypes at each marker and then defines an HMM to

find the most likely haplotype pairs based on the individual’s

known genotypes. Then the most likely genotype at untyped loci

can be generated from final haplotype pairs. Both Beagle and

fastPHASE use an HMM approach to cluster haplotypes, but they

have some slight differences. First, fastPHASE uses an EM

algorithm to estimate parameters for cluster configurations, while

Beagle uses empirical frequencies as parameters. Second,

fastPHASE fixed the number of clusters in the model while

Beagle can vary the number of clusters at each locus to model the

data. As recommended by the authors, nsamples (s) (the number of

haplotype pairs to sample for each individual) was set to a value so

that the product of ‘‘nsamples’’ and the number of individuals is

between 2000 and 4000. The command we used was Java –jar

beagle.jar unphased = geno missing = x nsample = s out = output. This

algorithm is available at http://www.stat.auckland.ac.nz/

,browning/beagle/beagle.html.
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