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Abstract 

Despite the dramatic underrepresentation of non-European populations in human genetics 

studies, researchers continue to exclude participants of non-European ancestry, even when 

these data are available. This practice perpetuates existing research disparities and can lead to 

important and large effect size associations being missed. Here, we conducted genome-wide 

association studies (GWAS) of 31 serum and urine biomarker quantitative traits in African 

(n=9354), East Asian (n=2559) and South Asian (n=9823) UK Biobank participants ancestry.  

We adjusted for all known GWAS catalog variants for each trait, as well as novel signals 

identified in European ancestry UK Biobank participants alone. We identify 12 novel signals in 

African ancestry and 3 novel signals in South Asian participants (p<1.61 x 10-10). Many of these 

signals are highly plausible and rare in Europeans (1% or lower minor allele frequency), 

including cis pQTLs for the genes encoding serum biomarkers like gamma-glutamyl transferase 

and apolipoprotein A, PIEZ01 and G6PD variants with impacts on HbA1c through likely 

erythocytic mechanisms, and a coding variant in GPLD1, a gene which cleaves GPI-anchors, 

associated with normally GPI-anchored protein alkaline phosphatase in serum. This work 

illustrates the importance of using the genetic data we already have in diverse populations, with 

many novel discoveries possible in even modest sample sizes.   
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Introduction 

Lack of representation of diverse global populations is a major problem in human 

genetics research. As recently reviewed, 78% of genome-wide association study (GWAS) 

participants are of European ancestry, with an additional 9% East Asian participants[1]. All other 

populations (as well as multi-ethnic studies) make up less than 13% of subjects, but account for 

38% of significant associations in the GWAS catalog, demonstrating the scientific importance of 

inclusion of diverse populations for understanding the biology of complex traits. For example, 

only 2.4% of GWAS participants are of predominantly African ancestry, but 7% of GWAS 

catalog associations were found in these participants. Inclusion of diverse populations is also 

essential for risk prediction; polygenic risk score instruments often perform poorly when trained 

using European only summary statistics and then applied to non-European populations.[2] As 

polygenic risk prediction moves into clinical use, this lack of representation risks perpetuating 

existing health disparities. Lack of inclusion of diverse populations could also lead to us missing 

many of the important insights into disease biology possible through human genetics. 

However, as recently reviewed [3], we are failing to even use the data we have in 

ancestrally diverse populations.   Even when data are available, many researchers focus only 

on large European sample sizes, and do not perform trans-ethnic or stratified analyses in those 

with non-European genetic ancestry. For example, the UK Biobank data, which is widely used 

due to its large sample size, broad data availability for qualified researchers, and variety of 

measured phenotypes and electronic health record data, includes >20,000 participants with 

non-European genetic ancestry. However, all 29 of the first papers indexed on the GWAS 

catalog that include UK Biobank participants included only the European ancestry sample 

(>400,000 individuals), likely for reasons of analytical convenience. Publicly posted summary 

statistics for many UK Biobank phenotypes, including serum and urine biomarkers, have 

recently been made available in non-European ancestry UK Biobank participants on the Pan-UK 

Biobank website, which provides a valuable resource for researchers [4]. However, little detailed 

examination of phenotypes in non-European ancestry UK Biobank participants has currently 

been performed.  

Existing studies support the value of including even small numbers of non-European 

ancestry participants, especially for biomarkers and endophenotypes for which a larger 

percentage of variance is often explained by a small number of genetic signals. Notably, in 

recent trans-ethnic analyses of blood cell traits including the UK Biobank data and other cohorts 

(total N= 746,667), an IL7 coding variant associated with lymphocyte counts was identified in 

South Asian UK Biobank participants only (N= 8189)[5]. The lymphocyte increasing allele of this 

variant was found to increase secretion of IL7 by 83% in follow-up in vitro analyses. We here 

assess the genetic contributors to the UK Biobank serum biomarker panel, chosen as model 

quantitative traits with a higher probability of previously undetected large effect size loci versus 

dichotomous disease endpoints. Initial analyses of these serum biomarkers have, similar to 

many other analyses in the UK Biobank, focused on European ancestry individuals alone[6]. 

This work has revealed important relationships, such as improved prediction of disease in the 

independent FinnGenn cohort for multi-biomarker polygenic risk scores versus single-disease 

PRS, particularly for liver and renal disease, and novel signals, for example a number of low 

frequency coding variants with impacts on kidney biomarkers and outcomes. However, we 

hypothesized that important novel variants were missed by the focus on European ancestry 
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samples alone. Mendelian randomization analyses suggest causal roles for a number of these 

biomarkers, including IGF-1[7], urine albumin[8], urate[9],  so such ancestry specific variants 

may have important health consequences, as well as point to key genes and biological 

mechanisms relevant across populations.  

 

Results 

All genome-wide significant variants are displayed in Table 1, Figure S2 (LocusZoom[10] 

plots), and Table S5. We assessed at each locus whether any genome-wide significant signals 

remained after adjusting for the sentinel variant in Table S5. We identify 3 novel findings in 

South Asians (n=9823), two findings for HbA1c (a non-coding variant near PIEZ01 and a G6PD 

missense variant) and a noncoding variant near LPAL2 associated with Lp(a). We identify 12 

novel findings in African ancestry individuals (N=9354), again including a number of coding 

variants (for example, FUT6, GPLD1, and CD36 coding variants with ALP) and cis pQTLs (rare 

African specific noncoding variant rs541102880 with APOA, at the APOA gene cluster, 

rs57719575 at GGT1 for liver enzyme gamma-glutamyl transferase (GGT), rs201082887 at 

GPT, also known as ALT, for alanine aminotransferase). We do not identify any novel findings in 

East Asians (N=2559), the smallest of the three samples. As shown in Table S5, all novel 

variants are rare or low frequency in Europeans. After conditioning on the sentinel variants in 

Table S5, additional signals were identified for several traits: at the GPLD1 locus with alkaline 

phosphatase in African ancestry participants and at LPA in African ancestry participants and 

South Asian ancestry participants (Table S6, Figure S3).  

 

Discussion  

Even in the relatively small number of African and South Asian ancestry individuals in 

UK Biobank, we identified novel and clinically relevant associations. These novel findings 

highlight the importance of X chromosome analysis and identify highly plausible ancestry 

differentiated cis pQTLs and coding variants.  

The X chromosome is left out of the majority of GWAS analyses, with only around a third 

of papers including chromosome X in analysis [3, 11]. We here identify a strong association of 

G6PD coding variants with total and direct bilirubin, which has not yet been reported in the 

GWAS catalog despite the strong effect size. Direct bilirubin assesses bilirubin conjugated with 

glucuronic acid, which is secreted into bile. Indirect bilirubin (unconjugated) in plasma is usually 

low in healthy individuals, as this conjugation process is quite efficient, but can be elevated in 

many forms of hyperbilirubinemia, such as those caused by hemolysis, Gilbert syndrome, or in 

response to some medications[12]. This G6PD signal is also associated with indirect bilirubin 

(calculated as total minus direct bilirubin, β=0.22, p= 1.39e-16, females, β=0. 58, p=3.57e-24 

males, β=0.29, p=1.71E-32 meta-analysis), concordant with the known risk of hemolytic anemia 

in those with G6PD deficiency. This association is concordant with existing literature 

demonstrating that males with G6PD deficiency (including deficiency caused by lead G6PD 

variant rs1050828 here) are known to be at elevated risk of neonatal hyperbilirubinemia and 

jaundice[13], though the strong association with bilirubin in adults and in females as well as in 

males is less expected. Bilirubin is commonly measured in clinical settings to assess liver 

function or diagnose hemolytic anemia (which can occur upon exposure to triggers such as 

oxidative drugs or acute infections in individuals with G6PD deficiency); if used to assess liver 
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function, it is possible that variation at G6PD, as well as recently reported bilirubin associations 

with alpha thalassemia copy number variation,[14] could interfere with accurate clinical 

inference. We also identify a different G6PD coding variant strongly associated with HbA1c in 

South Asians (rs5030868, 1.1% MAF in UK Biobank South Asians, noted in ClinVar for G6PD 

deficiency, known as the G6PD Mediterranean variant in previous literature). Unlike the G6PD 

deficiency variant common in African Americans (rs1050828, reported here for bilirubin), which 

has been reported to strongly influence HbA1c in this population,[15] this variant is not 

previously reported in the GWAS catalog. Other G6PD coding variants (rs76723693 in African 

Americans,[16] rs72554665 and rs72554664 in East Asians[17]) have also been reported to 

influence HbA1c. Our results are concordant with this previous literature, and add to concerns 

that use of HbA1c as a laboratory test in populations with a high prevalence of G6PD deficiency 

may lead to underdiagnosis of diabetes and poor management and prevention of complications 

in those with diagnosed diabetes.[18] There is some literature to suggest that G6PD-deficient 

patients may have an increased risk of diabetes[19] and its complications[20]; more study is 

needed to disentangle impacts of G6PD deficiency on diabetes diagnosis and monitoring (due 

to use of HbA1c) from potential impacts on disease pathogenesis, which could be influenced by 

inadequate monitoring of glycemic control.  

Our results in many cases point to highly plausible loci and include clinically relevant 

variants, for example an additional novel signal for HbA1c which likely impedes accurate 

assessment of glycemic control in South Asians. Along with the G6PD variant discussed above, 

a conserved noncoding variant near PIEZ01 (rs556126054, CADD score 9.72) more common in 

South Asian populations (4.7% in 1000G South Asians versus 0.8% in Europeans and 0.6% in 

admixed Americans, not found East Asian or African populations) was associated with HbA1c. 

PIEZ01 encodes an erythrocyte membrane protein, and African specific variants in this protein 

have been associated with red blood cell dehydration and lower malaria infection risk[21]. In 

recent analyses of UK Biobank blood cell trait data[5], there is a strong signal in South Asians 

for PIEZ01 missense variant rs563555492 (p.Leu2277Met) for higher hematocrit (p=6.09E-14), 

hemoglobin (p=4.69E-22), and red blood cell count (p=1.50E-11), suggesting this variant acts 

through an erythrocytic pathway on HbA1c. This variant is also significant in our results 

(p=3.63e-21, LD r2=0.25 in UKBB South Asians) for HbA1c. Like the G6PD coding variants 

discussed above, this noncoding signal also likely acts through erythrocytic mechanisms and 

will interfere with how accurately HbA1c assess glycemic control, potentially leading to 

disparities in diabetes diagnosis and treatment.  

We identified multiple coding variants common in African ancestry individuals for the 

serum biomarker alkaline phosphatase (ALP), suggesting this biomarker may be particularly 

susceptible to ancestry specific genetic factors. First, FUT6 coding variant rs17855739 

(p.Glu274Lys), previously identified as associated with inflammatory biomarker E-selectin in 

African Americans[22], was identified as associated as ALP. Other variants in FUT2/FUT6 locus 

(but not this FUT6 coding variant) have also been associated with other serum biomarker traits, 

such as cancer biomarkers CEA and CA19-9[23, 24].  ALP is also used as a cancer biomarker, 

among other uses. We also identified an association with ALP with African ancestry specific 

CD36 nonsense variant rs3211938, which has been previously associated with HDL cholesterol 

levels[25, 26], ECG traits[27], red cell distribution width[28], platelet count[29], and C-reactive 

protein[30]. This locus is under selective pressure[31], potentially from malaria, though 
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relationships are unclear, with this nonsense variant associated with risk of cerebral malaria and 

higher overall malaria incidence, but lower risk of severe anemia[32]. Finally, a rare, highly 

conserved coding variant at glycosylphosphatidylinositol specific phospholipase D1 (GPLD1) 

(rs146351134,p.Trp182Cys) was also associated with ALP in African ancestry individuals. This 

variant is quite rare across global populations, but is found at 0.4% in gnomAD v2.1.1 

participants of African ancestry (with no copies found in European ancestry participants).  Few 

genetic associations with GPLD1 are known, but this protein hydrolyzes the inositol phosphate 

linkage in proteins (such as many blood cell surface proteins) anchored by phosphatidylinositol 

glycans (GPI-anchor). ALP is one of many important GPI-anchored proteins[33], and further 

study of this coding variant’s effects on other GPI-anchored proteins is warranted.  

Finally, our results include a number of cis pQTL signals, or pQTLs in known key genes 

for our serum biomarkers. For example, we identified a coding variant in Insulin Like Growth 

Factor Binding Protein Acid Labile Subunit (IGFLAS), which seems likely to be a true positive as 

it is an African specific variant impacting a key IGF binding protein, with noncoding signals 

already identified in analyses in Europeans from UK Biobank identified noncoding signals at the 

IGFALS locus.[34] We also further extend the literature linking sickle cell trait (or rs334) to 

kidney function[35, 36], including albumin to creatinine ratio in urine, with strong associations 

observed for urine potassium, sodium, and creatinine. These associations are robust to 

adjustment for hemoglobin and estimated glomerular filtration rate (eGFR).  A noncoding variant 

(rs112902560) in LD with rs334 was also newly identified as associated with cystatin C, another 

kidney function measure. We identified an association of an African ancestry specific PCSK9 

stop variant already known to be associated with LDL and total cholesterol[14, 25] with 

apolipoprotein B, an unsurprising extension of the existing literature. Our results also include 

identification of multiple novel signals at the LPA locus for lipoprotein A, adding to the already 

extensive evidence of multiple distinct cis pQTL signals at this locus[37-39]. We were not able to 

adjust for KIV2-CN (copy number) in the Lp(a) region with our imputed single nucleotide variant 

data, which makes these distinct signals somewhat difficult to interpret. Local ancestry has also 

been shown to be an important covariate at the LPA locus in analyses of African Americans and 

may be a confounder of results at this locus[38]. However, in total, these highly interpretable 

and biologically relevant cis pQTL signals echo the results from recent focused analyses of 

urate, IGF-1, and testosterone in European populations.[34] Many lead signals for these serum 

biomarkers were near genes involved in biosynthesis, transport, or signaling pathways relevant 

to the target trait, in contrast to the often difficult to interpret lead association signals for more 

complex phenotypes.  

Some of our novel findings would not have been possible without TOPMed imputation, 

which has been demonstrated in previous analyses to have dramatically improved imputation 

quality for rare variants, particularly in Hispanic/Latino and African ancestry individuals[40], 

including for identification of rare variant association signals in African[40] and European 

ancestry[41] UK Biobank participants. For many of our identified signals, imputation quality was 

similar to the Haplotype Reference Consortium (HRC) and UK10K haplotype imputation 

provided by UK Biobank. However, for some novel signals variants were absent from this 

previously used reference panel (for example GPLD1 coding variant rs146351134) or were 

imputed with an info score <0.3 (G6PD coding variant rs5030868). We do note that due to 
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stringent variant filtering in TOPMed some important known signals (like sickle cell trait) were 

not included in the reference panel; this is an important limitation for users of this reference. 

Given the very large sample size now available for all of these biomarkers through 

unpublished analyses in European ancestry individuals in UK Biobank, as well as in many cases 

other large GWAS meta-analyses, it is striking that a number of functionally plausible and novel 

signals could be identified in analyses of <10,000 African and South Asian individuals, a sample 

size much smaller than most current GWAS analyses. Our results highlight the potential impact 

of ancestry-differentiated results on the accuracy of clinical biomarker measures. Issues with the 

use of HbA1c in non-European populations due to G6PD variants, sickle cell trait, and other 

ancestry differentiated variants are recognized, but other clinical assays are also likely 

influenced by ancestry differentiated variants unrelated to disease risk. This bias may cause 

even more systematic problems as novel biomarkers and large-scale proteomics panels move 

into clinical risk prediction, as the largest training datasets for risk prediction and determination 

of reference ranges are composed of European ancestry individuals. A major limitation of our 

results is our failure to provide replication for some of our putative novel findings, due to a lack 

of readily available replication datasets, especially for less frequently measured serum 

biomarkers (for example IGF-1, where the largest existing GWAS analysis (other than UK 

Biobank Europeans) includes only 10,280 European ancestry individuals[42]). However, the 

number of variants identified with strong functional annotation near relevant genes suggests that 

these preliminary results include a number of findings worthy of future exploration in larger 

datasets of diverse ancestry background, and clearly demonstrate the value of using genetic 

data from UK Biobank non-European ancestry participants.  

 

Materials and Methods  

The UK Biobank resource includes genetic and phenotypic data on nearly 500,000 

individuals aged 40-69 at time of recruitment (2006-2010).[43] The UK Biobank recently 

released data on 34 serum and urine biomarkers, chosen to reflect a wide range of diseases 

based on their role as established risk factors or diagnostic measures, with an emphasis on 

renal and liver health.[44] We excluded three biomarkers with a high percentage of values 

below the reportable range (oestradiol, microalbumin in urine, and rheumatoid factor, with 

missingness>70%) and assessed inverse normalized values for all other biomarker traits, 

leaving 31 biomarkers for genetic analysis (Table S1).  

We used a combination of self-reported ancestry and k-means clustering of genetic 

principal components to derive lists of individuals to include in the African, South Asian, and 

East Asian clusters.  First, we calculated principal components (PC) and their loadings for all 

488,377 genotyped UKBB participants using high quality variants in the UK Biobank data set 

that overlapped with the participants in the 1000G Phase 3 v5 (1KG) reference panel (Figure 

S1). Reference ancestries used included 504 European (EUR), 347 American Admixed (AMR), 

661 African (AFR), 504 East Asian (EAS), and 489 South Asian (SAS) samples (overall 2504). 

We projected the 1KG reference panel dataset on the calculated PC loadings from UKBB. We 

then used k-means clustering with 4 dimensions, defined by the first 4 PCs, to identify the 

individuals that clustered with the majority of 1KG reference panels in each ancestry (PC1, PC2, 

PC3, and PC4 are displayed in the figure below, those who are not in any kmeans cluster 

(UKBB_other) are shown in grey).   
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We used self-reported ancestry/ethnicity (variable “ethnic_background”), in some 

circumstances, to adjust these groups (for example to include admixed individuals who fell 

outside of the 1000G clusters, but still had substantial non-European ancestry). For the African 

ancestry subset used in our analysis, we included all individuals that cluster with the 1KG AFR 

samples by k-means clustering, except n=7 individuals self-reported as follows in variable 

Ethnic background (variable 21000-0.0), at baseline visit (due to the possibility of a sample 

swap): White, British, Irish, Any other White background, Indian, Pakistani, Bangladeshi, Any 

other Asian background, or Chinese. We also added to our African ancestry cluster those that 

did not cluster in a group using k-means, but self-reported White and Black Caribbean, White 

and Black African, Black or Black British, Caribbean, African, or Any other Black background 

(n=660). For the South Asian subset used in our analysis, we included all individuals that cluster 

with the 1KG SAS samples by k-means clustering, except n=117 individuals that self-reported 

as follows: White, British, Irish, Any other White background, White and Black Caribbean, White 

and Black African, Black or Black British, Black Caribbean, African, Any other Black 

background, or Chinese.  We added individuals that did not cluster in a group using k-means, 

but self-reported Indian, Pakistani, Bangladeshi (n=55). Finally, our East Asian ancestry subset 

is comprised of individuals that cluster with the most 1KG East Asians (EAS) by k-means 

clustering, removing n=8 individuals that self-report White, British, Irish, Any other White 

background, White and Black Caribbean, White and Black African, Indian, Pakistani, 

Bangladeshi, Black or Black British, Black Caribbean, African, or Any other Black background. 

We also added those that fell among those that did not cluster in a group using k-means, but 

self-reported Chinese (n=19). After clustering and exclusion of extreme outliers/potential sample 

swaps, we included n=9354 African, n=2559 East Asian, and n=9823 South Asian ancestry 

participants. For ease of comparison to reference allele frequencies, we stratified analyses by 

ancestry group.  

Imputation was performed using 97,256 deeply sequenced reference genomes from 

diverse populations from the National Heart, Lung, and Blood Institute’s Trans-Omics for 

Precision Medicine Initiative (https://imputation.biodatacatalyst.nhlbi.nih.gov/#!), in order to 

better capture ancestry-specific rare variation (particularly in African ancestry populations) 

versus the UK10K panel used for the public UK Biobank release. We filtered to individuals and 

SNPs with a call rate >90% prior to imputation. For our analyses, we assessed common 

variants (MAF > 0.5%) with estimated r2 > 0.3 and rare variants (MAF < 0.5%) with estimated r2 

> 0.8. Association analyses were performed using EPACTS 3.3.0 using the EMMAX test, which 

accounts for population structure. Genotyped variants with MAF>1% and missing rate < 1% 

were used in kinship matrix derivation. We removed variants with an estimated minor allele 

count < 5 when running EPACTS to improve model stability. X chromosome analyses were 

conducted stratified by sex and then meta-analyzed using GWAMA, alleviating problems with 

inflation for some sex-differentiated biomarkers and allowing us to assess evidence of 

heterogeneity by sex. We assessed testosterone in a sex stratified fashion for all chromosomes 

due to the dramatically different distribution in males and females (see Table S1). For subjects 

on lipid medications, we divided total cholesterol by 0.8 to approximate pre-medication values, 

and we divided directly assessed LDL by 0.7, as previously recommended.[45] For analysis of 

both diabetes related traits, we excluded individuals with diabetes diagnosed by a doctor (field 

2443-0.0), those taking insulin (field 6153-0.0), HbA1c >=48 mmol/mol, or glucose >=7 mmol/L.  
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For our analysis of serum and urine biomarkers, we first regressed out covariates (age, 

sex, 10 PCs (provided by UK Biobank), genotyping array, centers), then inverse normalized 

residuals. In our EPACTS models, we included known variants from the GWAS catalog 

(accessed Spring 2020) as covariates (any variant previously identified on each tested 

chromosome, Table S2), as our primary aim was to identify novel signals missed in previous 

predominantly European analyses. For identified signals, we evaluated if analyses in Europeans 

from UK Biobank alone (as described in [6] and accessed using PheWas browser at 

https://biobankengine.stanford.edu[46] (variants not yet available in the GWAS catalog, Table 

S3)) had identified genome-wide significant variants (p<5x10-8) within 1MB of our sentinel 

signal. We then included these nearby variants as covariates, if any were reported, in final 

conditional analyses reported here, to see whether our sentinel variants from non-European 

ancestry focused analyses were still genome-wide significant. Chromosome X was not included 

in previous European focused analyses, so this does not apply to those variants.  

We did not observe evidence of significant genome-wide inflation (Table S4). We 

adopted a significance threshold of 5 x 10-9/31 traits, or p<1.61 x 10-10, based on reasonable 

estimates of the number of independent tests for testing all common and low frequency variants 

genome-wide[47]. Our initial analyses identified several putative novel signals at the HBB locus; 

however, these results were difficult to interpret as known sickle cell trait variant rs334, which is 

known to have impacts on numerous traits including kidney function[36] and HbA1c[48] was 

excluded from the TOPMed freeze 8 reference panel. We extracted this variant from UK10K 

imputation provided by UK Biobank (imputation info score 0.899) for additional conditional 

analyses at these loci. This variant was the lead novel signal at HBB after its inclusion for urine 

creatinine, potassium, and sodium (Table 1 and Table S5).  
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Table 1: Novel Association Signals in African and South Asian Ancestry Participants in UK Biobank. All biomarkers are measured in serum, except 

creatinine, potassium, and sodium, which were measured in urine. EAF, effect allele frequency, APOA, apolipoprotein A, APOB, apolipoprotein B, 

ALP, alkaline phosphatase, ALT, alanine aminotransferase, BRB, bilirubin, CysC, cystatin C, GGT, gamma glutamyltransferase, HbA1c, glycated 

hemoglobin, IGF-1, Insulin-like growth factor 1, LPA, Lipoprotein-A 

 

     Unconditioned 
Results 

Conditional 
Analysis 

  

rsID Effect allele Trait Cohort EAF p-value  β p-value  β Nearest Gene Annotation 

rs541102880 A APOA AFR 0.1% 2.88E-11 1.56 1.36E-11 1.64 APOA1/4/5 noncoding 

rs28362286 A APOB AFR 0.9% 3.14E-20 -0.75 1.28E-20 -0.80 PCSK9 coding, 
p.Cys679Ter 

rs146351134 A ALP AFR 0.3% 4.64E-12 -0.91 8.66E-13 -0.95 GPLD1 coding, 
p.Trp182Cys 

rs3211938 G ALP AFR 10.3% 9.80E-15 -0.20 8.00E-15 -0.20 CD36 coding, 
p.Tyr325Ter 

rs17855739 T ALP AFR 30.1% 1.67E-19 0.15 5.87E-11 0.18 FUT6 coding, 
p.Glu247Lys 

rs201082887 G ALT AFR 9.4% 3.17E-25 -0.27 1.37E-14 -0.33 GPT noncoding 

rs1050828 T BRB total AFR female 14.4% 4.19E-38 0.31 1.61E-33 0.30 G6PD coding, 
p.Val98Met AFR male 7.6% 3.91E-33 0.65 8.85E-32 0.66 

AFR meta 11.5% 3.16E-63 0.36 8.52E-57 0.36 

BRB 
direct 

AFR female 14.4% 8.04E-19 0.24 4.13E-15 0.21 

AFR male 7.6% 4.86E-20 0.50 3.31E-20 0.53 

AFR meta 11.5% 5.76E-33 0.38 2.28E-28 0.27 

rs334 A Creatinine  AFR 6.3% 2.62E-38 -0.43 2.62E-38 -0.43 HBB coding, 
p.Glu7Ala 

Potassium  AFR 2.84E-32 -0.39 2.84E-32 -0.39 

Sodium AFR 5.43E-36 -0.42 5.43E-36 -0.42 

rs112902560 T CysC AFR 4.7% 1.92E-11 0.25 1.92E-11 0.25 MMP26/HBB noncoding 

rs57719575 C GGT AFR 14.9% 3.97E-38 -0.28 5.81E-25 -0.25 GGT1 noncoding 

rs556126054 G HbA1c SAS 2.4% 1.02E-27 -0.59 2.19E-25 -0.59 PIEZO1 noncoding 

rs5030868 A HbA1c SAS female 1.7% 6.98E-22 -0.82 1.56E-21 -0.82 G6PD coding, 
p.Ser218Phe SAS male 0.7% 1.09E-33 -1.77 8.79E-34 -1.77 
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SAS meta 1.2% 7.51E-48 -1.06 1.9E-47 -1.06 

rs34680334 A IGF-1 AFR 24.8% 2.65E-15 -0.14 2.24E-17 -0.16 IGFALS coding, 
p.His27Tyr 

rs41270996 T LPA AFR 1.2% 5.78E-18 0.66 1.52E-19 0.77 LPA noncoding 

rs73785605 C 5.78E-18 0.66 noncoding 

rs374112269 T LPA SAS 0.7% 1.83E-16 0.74 1.13E-14 0.68 LPAL2 noncoding 

 

The conditional analysis p-value for our novel signals displayed is, along with GWAS catalog variants, adjusted for any variants within 1MB on each 

side of the sentinel variant which were genome-wide significant in analyses of serum and urine biomarkers in UK Biobank Europeans[6], to ensure 

the signals we identify could not be found in European ancestry participants alone.  
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