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Abstract

A coupled piezoelectric-circuit finite element model (CPC-FEM) is proposed for the first time

to study the power output of a vibration-based piezoelectric vibration-based piezoelectric

energy harvesting devices (EHDs) that is directly connected to a resistive load. Special focus

is given to the effect of the resistive load value on the vibrational amplitude of the

piezoelectric EHDs, and thus on the current, voltage, and power generated by the EHDs. In

the literature, these outputs are widely assumed to be independent of the resistive load value

for the reduction in complexity of modelling and simulation. The presented CPC-FEM uses a

cantilever with sandwich structure and a seismic mass attached to the tip to study the

following load characteristics of the EHD as a result of changing the resistive load value: (1)

the electric outputs of the EHD: current through and voltage across the resistive load, (2) the

power dissipated by the resistive load, (3) the vibration amplitude of tip displacement of the

cantilever, and (4) the shift in resonant frequency of the cantilever. Investigation results

shows significant dependences of the vibration characteristics of the piezoelectric EHDs on

the externally connected resistive load are found, rather than independence as previously

assumed in most literature.

The CPC-FEM is capable of predicting the generated power output of the EHDs with

different resistive load value while simultaneously calculating the effect of the resistive load

value on the vibration amplitude. The CPC-FEM is invaluable for validating the performance
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of designed EHDs before fabrication and testing, thereby reducing the recurring costs

associated with repeat fabrication and trials. In addition, the proposed CPC-FEM is

potentially useful in device designs optimisations for maximal power generation.

Keywords: finite element method (FEM), vibration-based piezoelectric energy harvesting

devices (EHDs), coupled piezoelectric-circuit (CPC), load characteristics
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1 Introduction

With technology advancements over the last few decades, the vast reduction in size and

power consumption of complementary metal–oxide–semiconductor (CMOS) circuitry has led

to a great research effort toward energy harvesting devices (EHDs) for the development of

wireless sensors and ubiquitous wireless networks of communication nodes [1-5]. Significant

progress has been made and a large number of vibration-based EHDs have been proposed and

tested using various mechanisms, including electromagnetic, electro-static and piezoelectric

[2-6]. Piezoelectric EHDs have received special attention due to their self-contained power

without requiring an external voltage source, highest energy density, and good dynamic

responses, and ability to scavenge energy in the range of 1-200μW/cm3 from ambient

vibration energy sources [5, 7] (possibly higher in the nearby future once optimized design

and improved piezoelectric materials are available). This energy level is suitable for power

demand in the range of an average consumption of 100μW [8], hence particularly suitable for 

wireless sensors and communication nodes.

In particular, cantilever-based piezoelectric EHDs with a seismic mass and sandwich structure

are an attractive geometry for harvesting energy from vibration. This mainly owe to the fact

that such a structure is designed to work in the first bending mode with a lower stiffness,

offers a lower resonant frequency, which can be easily matched to the target ambient vibration

frequency for maximum power generation.

The power output of EHDs dictates device suitability for most applications. As such, the

evaluation of the power output of an EHD for a given excitation frequency and a given

amplitude of ambient vibration plays an important role in the design of EHDs. Availability of

a proper model that can be used to calculate the power output for designs is crucial.

According to modal analysis theory, the governing equations of piezoelectric EHDs can be

written as follows:
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where: , CM and K represent the effective mechanical mass, mechanical damping and

mechanical stiffness respectively;  represents the effective electromechanical coupling

coefficient of a piezoelectric structure; )(tV
p

and )(tQ
p

represent the voltage across the

piezoelectric electrodes and the electric charge generated on the electrodes due to the ambient

vibration, respectively; )(tz is the mechanical displacement of mass, relative to the fixed

point of the cantilever; )(ty is the acceleration at the fixed point of the device from the

ambient vibration environment; and
p

C is the electric capacitance of a piezoelectric structure.

Piezoelectric EHDs are often connected with an electric circuit to transform the harvested

electric energy into a usable form [9-12]. The circuit may include: a rectifier to convert AC to

DC, a super-capacitor to store harvested energy, an inductive load to boost the voltage output

of the transducer, or a resistive load to be used to characterize the capability of the designed

EHDs in power output. Most existing modelling techniques assume the vibration amplitude of

the EHDs to be independent of the connected circuit, however, the piezoelectric EHD’s

output voltage and current are greatly influenced by the circuit connected. The question to

address is: how does the connected circuit influences the vibration response, and in turn the

power output, of a piezoelectric EHD? At the present state of knowledge, this question is

unanswered in the literature for EHDs with an attached circuit. This paper therefore studies

the effect of the resistive load value on the power output of the piezoelectric EHDs.

General equations for the electric outputs of a piezoelectric EHD directly connected with a

electric resistor are

RtItV RR )()(  (3)

)()()( tItVtP RRR  (4)
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where: )(tVR represents the voltage across the resistive load; )(tI R
the current through the

resistive load; and )(tPR the power dissipated in the resistive load, which is a good indication

of the actual power generated by the piezoelectric EHD.

For the configuration where a piezoelectric EHD is directly connected with a load resistor, the

relationships between the output of the piezoelectric EHD and the input to the resistive load

are

)()( tVtV
Rp

 (5)

)()( tQtI
pR

 (6)

From (1)-(6), it is observed that ),(tz )(tVR and )(tIR (and therefore )(tPR ) are coupled

together through R and . This means that ),(tz )(tVR and )(tIR are all affected by R and .

The present paper proposes a coupled piezoelectric-circuit finite element model (CPC-FEM)

to study the power output, particularly focusing on the influence of the resistive load value on

the vibration amplitude (the mechanical displacement) of the beam, therefore electric outputs

of current, voltage, and power. The effects of electromechanical coupling on the vibration,

and electric current, voltage and power are all simulated using the developed CPC-FEM. The

purpose of this paper is to develop an understanding of how an externally connected electric

load affects the power related output. Firstly, existing modelling techniques are briefly

reviewed. A coupled piezoelectric-circuit FEM is then developed, in which piezoelectric

EHDs are directly connected with an external electric circuit to calculate the electric outputs

(current, voltage, and power), the tip displacement, and the resonant frequency shift. This is

the first time in the literature CPC-FEM has been developed to perform such calculations.

2 An overview of existing modelling methods

A variety of modelling approaches have been used to analyse the output of the piezoelectric
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EHDs. Among them, uncoupled analyses, equivalent electric circuit methods, and advanced

modelling methods have been proposed. In the followings, an overview of the existing

methods and their existing deficiencies is given followed by the justification for the need of

the proposed CPC-FEM.

2.1 Uncoupled analyses

Piezoelectric EHDs are complicated electromechanical dynamic systems. For simplicity, such

devices have frequently been modelled as a current source in parallel with the piezoelectric

capacitance
p

C [7-13]. The assumption made in the method is that the vibration amplitude of

the piezoelectric structure is independent of the impedance of the externally connected load.

This means that the externally connected load has no influence on the amplitude of the

vibration displacement. Reverting to the governing equations (1 and 2) of the piezoelectric

EHDs, it can be easily seen that the assumption has ignored the coupling term RV on the

right hand side of (1), reducing it to (7)

)()()()( tyMtKztzCtzM   (7)

Equation (7) represents an uncoupled system between electric and mechanical responses. This

assumption is fairly reasonable in the case of extremely low coupling for some sensor

analyses. However, piezoelectric EHDs use a high electromechanical coupling material to

convert mechanical energy to electric energy, so they are an exceptional case, and the

assumption is not valid. This is because the generated electric energy in turn influences

mechanical vibrations through the high electromechanical coupling term, ,RV on the right

hand side of (1). This means that the harvested electric energy (voltage across/current through

the resistor) from the ambient vibration will reduce the structural vibration when the devices

harvests energy, and this in turn reduces the harvested energy due to the reduced structural

vibration. The evaluation of the coupling effects on the electrical and mechanical output of a
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piezoelectric EHD is an important task that requires attention. This paper proposes CPC-FEM

to address this deficiency in coupled analyses methods.

2.2 Equivalent electric circuit methods

Stand alone piezoelectric sensors without connection to an external circuit are normally

modelled as a short circuit where current source is in parallel with the piezoelectric

capacitance
p

C , or as an open circuit where voltage source is in series with
p

C . The

modelling method is mainly based on piezoelectric constitutive equations:

33
EeScT

iiiji
 (8)

3333 ESeD S

ii  (9)

In these equations, ,iT ,iS and
ij

c denote in turn components of the stress and strain vectors,

and components of stiffness matrices measured at a constant electrical field; 3E and 3D are the

z-components of the electric field and displacement; and ie3 and S

3 the piezoelectric stress

coefficient and the z-component of dielectric coefficient measured at a constant strain. For the

calculation of the current source, it is assumed that 03 E in (8) and (9). One can then

calculate the electric charge generated in the electrode surfaces and the electric current

flowing through the electrodes based on ii SeD 33  . The vibration is calculated based on

iiji
ScT  as the case calculated is 03 E . For the calculation of a voltage source, a similar

approach as the current source is used, that is, it is assumed that 03 D in (9). One can then

calculate the electric voltage across piezoelectric electrodes based on
S

ii SeE 333 / . It is

obvious that the above calculations for charge or voltage are valid only in the case of 03 E

or 03 D . For piezoelectric EHDs connected with an external electric circuit, using the above

equivalent electric circuit theory to calculate currents or voltages of the devices is not very
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well suited, as the EHD is not in the case of 03 E or 03 D . Calculation of currents and

voltages by using the above methods would lead to an over-estimation in power.

2.3 Advanced modelling methods

A few advanced models to analyze piezoelectric EHDs have also been reported in the

literature. For example, Guyomar et al. [12] proposed a new approach for the case of high

coupling to estimate the average harvested power. In their approach, the assumption made

was that the external force )(tyM  and the velocity of the mass )(tz are in phase. This

assumption is fairly reasonable for non-piezoelectric mechanical structures operating around

resonance with low damping. Whether this assumption still hold for the case of high

electromechanical coupling is questionable and has not been addressed in Ref. [12] report.

Shu and Lien [7] developed an analytical model of power output for piezoelectric harvesting

systems focusing on AC-DC output. Their research concluded that the harvested power

depends on the input vibration characteristics (frequency and acceleration, the mass of

generator, the electric load, the natural frequency, the mechanical damping ratio and the

electromechanical coupling coefficient of system). Further analytical modelling and analysis

of micro piezoelectric power generators was reported by Lu [14] who focused on the

influence of load resistance on the output power of cantilevered piezoelectric bimorph.

It is not difficult to find that all the advanced modelling and simulation mentioned above are

reliant on the availability of parameters of M, K, C and . These parameters vary in different

structures; subtle changes in geometry and mass location will change the parameters.

Derivation of each individually designed structure would be a very time-consuming task. FEA

is an advanced and reliable numerical modelling method, which has already been used to

calculate sensors and actuators in numerous applications, and also used to calculate voltages

in the open circuit and currents in the short circuit for piezoelectric EHDs [14]. However,
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FEA has not been used to predict the power output of piezoelectric EHDs that are connected

to an external electric circuit, possibly because a suitable FEA model has not been put

forward to date due to the complexity in analyses. This paper will present a CPC-FEM to

study the effects of a resistive load on the vibration and also on the electric outputs: voltage,

current and power, of the EHD.

3 CPC-FEM Modelling and Simulations

Commercially available FEA software (ANSYS Inc. Canonsburg, PA) [15], is utilized to

develop the CPC numerical model of the piezoelectric EHD connected directly with a

resistive load. Special focus is given to the analysis of power related outputs and vibrational

characteristics, where the ‘power related outputs’ represents the current through and voltage

across the resistor and the power dissipated in it, and the ‘vibrational characteristics’

represents the tip displacement and the resonant frequency shift of the piezoelectric EHD.

3.1 Modelling Configuration

The modelled geometry of a piezoelectric cantilever beam with a seismic mass is shown in

Figure 1. The beam is a piezoelectric sandwich structure with a central brass substrate layer

and two piezoelectric material layers, one each bonded to the top and bottom of the brass

layer. The two piezoelectric layers can be wired in series so that their individual voltages add

together to feed into an externally connected circuit, as shown in Figure 2(a), or in parallel so

that their individual currents add together to feed into a connected resistor, as shown in Figure

2(b). In series, the two piezoelectric layers are oppositely polarized and the output terminals

are the outside electrodes of the piezoelectric layers. In this case, an electric potential (
p

V2 )

exists between the output terminals when the structure is subjected to a vibration at the fixed

end of the beam. In parallel, the two piezoelectric layers are polarized in the same direction,
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and the outside electrodes are joined together to make one terminal. The central layer

constitutes the other terminal. In this configuration, the same amount of charge exists on each

outside electrode when the structure is subjected to vibration at the fixed end. These two

configurations: parallel and series, were each studied for the comparison of the EHD outputs.

In the developed finite element models (FEMs), the direction of polarization of the

piezoelectric material is represented by the sign of the piezoelectric coefficients e31 and e33

[15]. For example, in series, the polarization of the bottom piezoelectric layer is opposite to

that of top piezoelectric layer, shown in Figure 2(a), so e31 and e33 have opposite signs in the

defined material property to the top piezoelectric material in the developed model. The

electrode connections have been made by using the ‘couple’ commands, creating two

common nodes for the piezoelectric EHD to fulfil the required connection. The external

connected circuit is then connected with these two common nodes in the model. The location

of the circuit with respect to the device can be arbitrary as it does not affect the analytical

results. As the adhesives between the substrate and piezoelectric layers are very thin, the

adhesive thicknesses are ignored in all simulations.

3.2 CPC-FEM

Figure 3 shows the developed CPC-FEM: a sandwich cantilever beam with piezoelectric

layers on the top and bottom, and a seismic mass attached to the tip, where the electrodes of

piezoelectric layers are connected to a load resistor. The 8-node, hexahedral, coupled-field

element SOLID5 is used for the piezoelectric material, and the 8-node, linear, structural

element SOLID45 for the non-piezoelectric material. To achieve this coupled piezoelectric-

circuit analysis, the piezoelectric circuit element (CIRCU94) is connected with the

piezoelectric element (SOLID5). CIRCU94 can model resistors, inductors, capacitors, current

sources, or voltage sources. In the model, CIRCU94 is used to model the load resistor to study
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the power related outputs and vibrational characteristics. The resistive load value is defined

by a real constant in the developed programme. The CIRCU94 resistor element is connected

to the EHD through defined coupled common nodes, and the detailed connections are based

on either the series or parallel configuration, shown in Figure 2(a) or (b).

The modelled geometric parameters and material properties are listed in Table 1, where all the

geometric dimensions are purposely fixed and the resistive load value is variable to enable a

focus of analyses on the effect of different resistive load value on the power related outputs

and vibrational characteristics. The piezoelectric material chosen is PSI-5H4E from Piezo

Systems, Inc. This material has a very high piezoelectric constant, and devices made with it

are able to convert energy from the ambient vibration environment into more electric energy

since the higher the piezoelectric constant, the higher the conversion of mechanical energy

into electric energy. In the model, dielectric material loss is ignored but the piezoelectric

material’s mechanical loss (based on the piezoelectric material quality factor) is introduced

into the model by use of the constant damping ratio ξp, which is the ratio between the actual

damping and critical damping, and is obtained from the relationship
pξ2

1
Q  (the Q value is

32 for the selected piezoelectric material). As the piezoelectric material data sheet gives the

compliances, the elastic stiffness constants required in the model are obtained from the

conversion of the compliances into the stiffness constants [17-19]. In the model, the substrate

is made of brass and the seismic mass is tungsten-alloy for generating more power due to the

higher density that is proportional to the generated power. For simulation, to simulate an

ambient vibration environment, a constant vibrational amplitude of displacement of 3.96μm is 

applied to the fixed end of the cantilever. Harmonic analyses are first performed with different

resistive load value. The electric current, voltage and power output of the EHD are extracted

from the output data of SOLID5 and CIRCU94. The tip-displacements and resonant

frequency shift are also extracted from the simulation results. The results are shown in
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Figures 4-7 and Tables 2-3.

4 Results and discussions

4.1 Frequency responses of configuration in parallel

Figure 4(a) shows the simulated frequency responses of the current and voltage outputs of the

EHD (piezoelectric layers in parallel configuration) with the following listed resistive load

values: (1) short circuit, where 2010R in the developed CPC-FEM as it is impossible to let

0R perform the calculation of
R

VI R
R  ; (2) open circuit, where 2010R , again, it is

impossible to let R ; and (3) a circuit connected with a resistor Ropt, where
pn

opt
C

R


1


( n being the resonant frequency of the EHD). It can be seen from Figure 4(a) that for

,0R the piezoelectric EHD is a current source and 0
R

V (not shown in Figure 4(a) as

0
R

V ). All the current generated stays in the piezoelectric capacitor
p

C , thus there is no

electric current feeding into the output terminals and so the output power from the EHD is 0,

i.e., .0outP Similarly, for ,R the piezoelectric EHD is a voltage source and 0PI (not

shown in Figure 4(a) as 0
R

I ), the output power from the EHD is 0, as ,0RI i.e.,

.0outP But, for
pn

opt
C

R


1
 , it can be seen that power is generated by the piezoelectric

EHD, as there is current flowing through, and voltage developed across, the connected load

resistor.

Figure 4(b) shows the simulated frequency responses of the dissipated power and tip-

displacement of the piezoelectric EHD with the same resistive load values as those for Figure

4(a). Here, the tip-displacement is greatly affected by the connected resistive load, as

for 
opt

RR 0 , the amplitude at the resonant frequency decreases from 169μm to 
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71μm and then increases to 178 μm; the resonant frequency shifts from 78.5Hz to 82 Hz, and 

then to 83Hz; and the power output at the resonant frequency  changes from 0μW to 60.6μW 

and then back to 0μW. The connected resistive load has an obvious damping effect on the 

vibrational amplitudes, but it is not the case that the larger the resistive load, the higher the

damping effect; it is more complicated than simple viscous damping. However, it can be

concluded that the connected resistor has a significant effect on the vibrational amplitude of

the piezoelectric EHD, and on the current, voltage and power in turn. Therefore, the coupling

effect of the connected resistive load on the vibration characteristics needs to be considered

for correct analysis of the piezoelectric EHD and its power output.

4.2 Frequency responses of the configuration in series

Figures 5(a) and (b) show the simulated frequency responses of the current and voltage,

dissipated power and tip-displacement of the EHD (piezoelectric layers in series

configuration) with similar but not same resistive load values as those for Figures 4(a) and (b)

due to different
p

C for series configuration (the details is given below). Similar conclusions

for piezoelectric layers in series can be obtained as for those in parallel.

Comparing Figure 4(a) with 5(a), and Figure 4(b) with 5(b), Tables 2 and 3 summarize the

characteristics of the EHDs of piezoelectric layers in parallel and in series configuration for

different resistive load value. It can be seen that for the parallel configuration, the electric

capacitance of the EHD is four times as high as for the series configuration as the equation of

the capacitance of the piezoelectric EHDs is

p

r
p

h

A
nC


0 where









.2:parallelin

;5.0:seriesin

n

n
(10)

where
p

h and A are the thickness and electrode area of piezoelectric layers. As the
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capacitances are different, these lead to
paralleloptseriesopt

RR


 4 as

pn

opt
C

R


1
 . (11)

It is worthwhile mentioning that here the optimised resistance is based on the assumption that

the vibrational amplitude is independent of the externally connected resistor [1].

It is interesting to find that the different configuration of piezoelectric layers does not change

the open and short circuit resonant frequencies ( ocf and scf ), and so the generalized

electromechanical coupling coefficient (
EDH

k
31 ) of the piezoelectric EHDs remains the same

for different configuration of piezoelectric layers as 31k is determined by the open and short

circuit resonant frequencies [20, 21]:

2

22

2

31

sc

scoc

EHD
f

ff
k


 (12)

where ocf and scf are the open circuit and short circuit resonant frequencies. For the designed

piezoelectric EHD, EDHk 31 =0.32, which is lower than 31k =0.44 of the piezoelectric material

itself. So it can be concluded that the introduced substrate has reduced EHDk 31 of the structure.

It should be borne in mind that
EDH

k
31 of the structure is not the same as 31k of the material

and readers need to distinguish them at the design stage.

Furthermore, it can be observed that there are clear relationships of the current, voltage and

output power between in parallel and in series configurations:

parallelseries

parallelseries

parallelRseries

parallelRseriesR

zz

PP

VI

VV

RR

R











 



2

1

2

(13)

It is also interesting to find that the different configuration changes the distribution of the

current and voltage at the output terminals but does not significantly affect the overall power
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output and vibrational amplitude.

4.3 Load characteristics

To further evaluate the effect of the connected resistive load value on the performance of the

piezoelectric EHDs, Figures 6(a), (b) and (c) show the currents through and voltages across

and dissipated powers by the resistor, the displacements at the tip of the beam, and the

resonant frequency shift versus a range of electric resistive load values for the parallel

configuration. The current and voltage at maximum power output versus resistive load value

are indicated in Figure 6(a) and the corresponding vibrational amplitude and power are also

indicated in Figure 6(b). Similar conclusions for the load characteristics can be obtained as

those for the simulated frequency responses, that is, (1) the current, voltage, and power

dissipated depend significantly on the value of the load resistance, and (2) the value of the

load resistance also significantly affects the vibrational characteristics of a piezoelectric EHD,

including the vibrational amplitude and the resonant frequency. Furthermore, from Figure

6(b), some important phenomena can be observed: (1) the maximum power output of

piezoelectric EHDs does not appear at the maximum vibrational displacement, and also (2)

the maximum power output does not appear at the ,
opt

R as normally presented in literature.

The reason for this is the possibly that the model proposed here has taken into account the

vibrational amplitude that is affected by the externally connected resistance while the

literature has to date ignored this crucial effect.

Figure 7(a) shows the relation of voltage versus current for the configuration of parallel

connection of piezoelectric layers of EHDs, with a range of resistive load values to further

describe the load characteristics of piezoelectric EHDs. The area with the hatched pattern in

Figure 7(a) represents the output power (as the output power is the product of electric current

and the electric voltage). The larger the area of the hatched pattern, the higher the power
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output. As the areas are 0 for R=0 and R=  at both ends of the curve, it is obvious that an

optimized electric resistance exists for maximum power generation. Figure 7(b) shows the

relation of power versus vibrational amplitude of the piezoelectric EHD for the resistive load

value as those for Figure 7(a). Figure 7(b) gives a better indication of the phenomena

observed from Figure 6(b).

5 Conclusions

A CPC-FEM is, for the first time, proposed to study the power output of a vibration-based

piezoelectric EHD that is directly connected to a resistive load. The effect of the resistive load

value on the vibration amplitude of the EHD, and therefore on the current, voltage and power

generated by the EHD, are investigated. These outputs are normally assumed to be

independent of the resistive load value for the reduction in complexity of modelling and

simulation. The studied CPC-FEM of the piezoelectric EHD is based on a cantilever with

sandwich structure and a mass attached at the tip. The load characteristics, including (1) the

electric current and voltage outputs, (2) the power dissipated by the connected resistive load,

(3) the tip vibration displacement amplitude, and (4) the resonant frequency shift of the

cantilever versus an externally connected resistive load, are all simulated using the developed

CPC-FEM. Significant dependences of the vibration characteristics of the piezoelectric EHDs

on the externally connected resistive load are found, rather than independence. One

interesting and important result found from the analyses is that the maximum power output of

piezoelectric EHDs does not appear at the maximum vibrational displacement, as the power is

determined by the product of electric current and electric voltage.

In addition, the configurations with series and parallel connections of piezoelectric layers

have been studied. It is found that the configurations can change the distribution of the

electric current and voltage at the output terminals but cannot significantly change the power
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output and vibrational amplitude when the structure is subjected to same excitations.

At present, the results are based on the finite element method and further work is underway to

experimentally support present FEA results. A testing bed will be built to verify

experimentally all of the numerical results in our group. Although the present model cannot

be completely confirmed by experimental results at the moment, the presented CPC-FEM has

indeed shown the ability to calculate the generated power output and responded vibration, and

frequency shift of vibration-based piezoelectric EHDs for a range of resistive load values. The

CPC-FEM is therefore invaluable for validating the performance of designed devices and

optimizing geometric parameters of piezoelectric EHDs before fabrication and testing,

reducing cost recurring at design and trial stages.

It is worthwhile to mention that although the presented work is based on a piezoelectric EHD

directly connected with a resistive load, the CPC-FEM is applicable to the analyses of

piezoelectric EHDs directly connected with inductors, or capacitors, or independent current

sources, or independent voltage sources and even their combinations.
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Table 1 Input geometric and material parameters used in the developed CPC-FEM

Substrate material: brass
Young’s modulus (GPa) 110
Poisson’s ratio μs 0.23
Density (kg/m3) 2330
Length*×width×thickness (mm)
* The total length of mass and
piezoelectric layer

28*×3.2×0.1016

Piezoelectric material: PSI-5H4E from Piezo Systems, Inc.
Young’s modulus (GPa)
E11

E33

Poission’s ratio
Elastic constants:(GPa)
C11

C12

C13

C33

C44

62
50
0.3

110.8
49.8
49.8
110.8
30.5

Density ρp(kg/m3) 7800
Piezoelectric constants (×10-12 m/volt)

d33

d31

650
-320

Coupling coefficients
k33

k31

0.75
0.44

Relative dielectric constant      ε33 3800
Mechanical quality factor Q 32
Length×width×thickness (mm) 10.7×3.2×0.278

Seismic mass: Tungsten
Young’s modulus (GPa) 400
Poisson’s ratio μs 0.28
Density (kg/m3) 17000
Length×width×thickness (mm) 17.3×3.6×7.7
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Table 2 Characteristics of piezoelectric layers in parallel and in series

Piezoelectric configuration In parallel In series

Inherent electric capacitance (nF):
p

C 8.287 2.071

Open circuit resonant frequency (Hz) : ocf 82.5 82.5

Short circuit resonant frequency (Hz): scf 78.5 78.5

Generalized electromechanical coupling
coefficient of the piezoelectric EHD:

2

31 EHDk  ( EHDk 31 )

0.1045 (0.3233) 0.1045 (0.3233)

Optimized resistance (k ): *

opt
R 234.2 936.8

* optimized resistance based on Ref. [1].
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Table 3 Comparison of the outputs for configurations in parallel and series

Resistances Outputs Piezoelectric layer configuration
In Parallel In series

0R
maxRI (μA) 140 70

maxRV (Volt) 0 0

maxRP (μW) 0 0

maxz (μm) 169 169

R
maxRI (μA) 0 0

maxRV (Volt) 15.77 31.6

maxRP (μW) 0 0

maxz (μm) 178 178

psc

opt
Cf

R
2

1*  maxRI (μA) 22.3 11.2

maxRV (Volt) 5.44 10.71

maxRP (μW) 60.6 60.2

maxz (μm) 71 70.4
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Figure 1 Modelled geometry of piezoelectric cantilever beam with a seismic mass
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(a)

I I

(b)

Figure 2 Configurations with (a) series connection of piezoelectric layers and (b) parallel
connection of piezoelectric layers, where “+” represents the plus charges and “-” the minus
charge.
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Figure 3 Developed CPC-FEM model of the cantilever beam of piezoelectric layers that are
directly connected with a resistive load.
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Figure 4 Simulated frequency responses of piezoelectric EHDs of parallel connection of
piezoelectric layers for the case of short circuit ( ),0R open circuit ( )R and circuit

connected with a resistance (R=234.2kΏ); (a) electric currents through and electric voltages 
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Figure 5 Simulated frequency responses of piezoelectric EHDs of series connection of
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resistance ( )k8.936 R ; (a) electric currents through and electric voltages across a resistor
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Figure 6 Electric and mechanical characteristics versus electric resistance connected to
piezoelectric EHDs of parallel connection of piezoelectric layers; (a) electric currents through
and voltages across a resistor, (b) dissipated powers by a resistor and tip vibrational
displacement amplitudes and (c) resonant frequency shift of the beam.
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Figure 7 (a) Relation of voltage versus current and (b) relation of dissipated powers by a
resistor versus tip vibrational displacement amplitudes of piezoelectric EHDs of parallel
connection of piezoelectric layers by use of data shown in Figure 6.
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