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ABSTRACT
ANALYSES OF QUASI-ISOTROPIC COMPOSITE PLATES UNDER QUASI-STATIC
POINT LOADS SIMULATING LOW-VELOCITY IMPACT PHENOMENA

Ajit Dhundiraj Kelkar
01d Dominion University, 1985
Director: Dr. Ram Prabhakaran
Co-Director: Dr. W. Elber

Composite laminates have high strength to density ratios that make
them attractive for use in aircraft structures. However, the damage
tolerance of these materials is limited because they have very Tow
ultimate strains, no plastic deformation range, and no usable strength
in the thickness direction. These Tlimitations are very obvious when
laminates are subjected to impact loads. Due to these impact loads,
Taminates suffer visible and invisible damage. To improve the material
performance in impact requires a better understanding of the deformation

and damage mechanics under impact type loads.

In thin composite 1laminates, the first level of visible damage
occurs on the back face and is called "back face spalling.” A plate-
membrane coupling model, and a finite element model to analyze the large
deformation behavior of eight-ply quasi-isotropic circular composite
plates under impact type point loads are developed. The back face
spalling phenomenon in thin composite plates is explained by using the
plate-membrane coupling model and the finite element model in

conjunction with the fracture mechanics principles. The experimental
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results verifying these models are presented. The study resulted in the

following conclusions:

1.

The large deformation behavior of circular isotropic membranes
subjected to arbitrary axisymmetric loading can be obtained by
solving a single nonlinear governing equation 1in terms of a
radial stress.

Accurate large deflection behavior of circular quasi-isotropic
T300/5208 1laminates can be obtained by using a simple plate-
membrane coupling model.

The functional form of deformed shape of the plate undergoing
large deformations is different from the small deflection plate
solution.

The back face spalling action in thin composite laminates is a
spontaneous action and can be predicted by using the fracture
mechanics principles.

Mixed mode (I and II) type deformations probably occur during
back face spalling, however, mode I appears to govern the
delamination growth during the spalling action.
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Chapter 1
INTRODUCTION
1.1 Motivation

Composite materials are being used increasingly in aircraft
structures due to their high specific strength and stiffnesses, and the
resultant weight savings. Traditionally, use of graphite fiber
composites have been confined to secondary structures. However,
requirements for reduced structural weight, improved aircraft
performance, and efficiency are making composite materials increasingly
competitive for expanded usage in primary, load carrying structures. In
comparison to conventional metals, an understanding of the complex
behavior of composites 1is still 1in dits preliminary stage, and
applications are based on knowledge gained through extensive
experimental programs. Past experiences and experiments have confirmed
that graphite fiber composite laminates have very low ultimate strains,
no plastic deformation range, and no usable strength in the thickness
direction. These Tlimitations are very obvious when Tlaminates are
subjected to impact loads. Therefore the stddy of .impact damage

susceptibility of these composite Taminates is increasingly important.

Resin matrix composites are basically brittle materials, and the
damage caused by impact differs from the damage on ductile metal
structures. The ductile metals tend to develop indentations which are

normally visible. On the other hand brittle materials like composites
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tend to have both visible and invisible damage. Such damage is usually
in the form of delaminations, matrix cracks and possible broken
fibers. It can cause significant strength losses in composite materials
[1-7].* The potential severity of visible and invisible damage has
instigated numerous 1investigations into the impact behavior of

composites.

Past studies [8-12] indicate that in thin composite laminates first
level of visible damage occurs on the back face of the Taminate and is
called as "back face spalling.” A typical back face spalled laminate is
shown in Fig. 1.1. Elber [8] conducted a series of tests on circular
composite plates. He identified the sequence in which damage occurs in
thin 8 ply T300/5208 quasi-isotropic graphite/epoxy circular plates
subjected to center point loads. He showed that, first visible damage
occurs in the lowest ply (8th ply) in the form of a matrix cracking
parallel to the fibers. Further increase in the load levels results
into the two dominant cracks in the eighth ply and delaminations between
plies 7 and 8 surrounds these two cracks. Additional increase in the
load levels cause these delaminations and cracking to propagate unstably
in the bottom ply in the fiber direction. This unstable growth of
delaminations and propagation of the two dominant cracks result in the
massive back face spalling action. During the back face spalling
action, curved trajectory of the 8th ply center strip (formed by the two
dominant cracks in the 8th ply) running under the Tload point in the

fiber direction changes virtually to a straight line between the 7load

x*. . . .
The number in brackets indicate references.
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Back Face Spalling

1.1



point and the support (Fig. 1.1). Several dinvestigators [9-12] have
also reported back face spalling damages in composite laminates under
low velocity impact type point loads. While considerable experimental
observations have been made on the back face spalling, a theoretical
understanding of the deformation mechanics and the back face spalling
phenomenon 1is not fully known. The present study was undertaken to
develop analytical models, to understand the deformation mechanics, and
to explain the back face spalling phenomenon, 1in thin composite
laminates. These models will be particularly helpful to quantify the
impact mechanics and to produce composites with improved resistance to

the back face spalling and impact damage.
1.2 Scope and Objectives
Impact events are characterized into three velocity domains:

1. High velocity or ballistic impact where the velocity, v > 600

m/sec.

2. Intermediate velocity impact (30 m/sec < v < 600 m/sec), such
as foreign object damage (F.0.D.) impact on turbine fan blades,

ground debris thrown up by wheels, etc.

3. Low velocity impacts (v < 30 m/sec) are represented by handling

damage such as dropping tools, foot steps and similar events.

In this study, the effect of low velocity impact on composites is
addressed. Many low velocity dimpact situations that an aircraft
component is exposed to include: dropped tools, runway stones, tire

blow out debris, ground collisions, etc. Due to low velocity impact,
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composite laminates suffer both visible and invisible damage. To
improve the material performance in impact requires a better
understanding of the deformation and damage mechanics under low velocity
type impact Toading. Therefore, the specific objectives of this study

are:

1. To develop an analytical model to understand the deformation
mechanics in thin composite Taminates under Tow velocity type

impact loading.

2. To develop an analytical model to explain the back face
spalling phenomenon in thin composite laminates under Tow

velocity type impact loading.

3. To verify these analytical models by conducting experiments on

thin composite laminates.

For both the analytical and the experimental purpose quasi-
isotropic laminates of T300/5208 graphite/epoxy material with stacking

sequence of [45/0/-45/90]g are considered in this study.

1.3 Review of Earlier Work

The subject of impact related phenomena has been studied by many
investigators utilizing many different approaches. Some of this work
has been related to ballistic type impact, and hence, is not applicable
here. The past studies 1indicate that considerable experimental
investigations have been made to understand the low velocity impact
problem in composite laminates. Literature review also indicates that
theoretical investigations of the low velocity impact in composites are

1imi ted.
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1.3.1 Experimental Studies

McQuillen and Gause [13] first studied the response of composite
structural elements to low speed, transverse impact. They conducted
series of experiments on graphite/epoxy composite laminates 76 mm wide,
with a span 152 mm and with thickness of 2.13 mm. The laminates had
(£ 45/02/7e45)S stacking sequences and were simply supported on two
edges. McQuillen and Gause concluded that inplane stress wave effects
in the low velocity regime are negligible. They observed that .the
dynamic failure mechanism is identical to the static failure
mechanism. Rhodes et al. [12] investigated the effect of low velocity
impact damage on the compressive strength of graphite/epoxy panels.
They conc]uded‘ that the compressive strength of graphite-epoxy
components can be reduced significantly by the effects of Tow velocity
impact damage. Similar observations were made by Gause and Huang
[14]. They observed significant reduction in the static strength of
graphite/epoxy panels, when panels were subjected to low velocity impact
loads. They examined the damage mechanisms in graphite/epoxy panels
under dynamic and static loading. They concluded that in graphite/epoxy
panels the static and dynamic damage mechanisms are identical. Card and
Rhodes [15] studied the effects of low velocity impact on the compres-
sive strength of graphite/epoxy structures. They conducted extensive
tests on sandwich beams, laminated plates and stiffened panels. Théy
studied the damage patterns and suggested possible sequence for laminate
damage due to low velocity impact and found that, there was no visible
damage on the impact surface, however, the side opposite to impact
surface suffered a visible damage in the form of back face spalling.

Their observations were similar to the earlier observations made by
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Cristescu et al. [16] with the 0-90° ply fiberglass/epoxy composite

plates.

Gause [17] performed low speed, hard object impact on thick
graphite/epoxy plates. He concluded that inpiane wave effects are not
important in low velocity impact on thick graphite/epoxy plates. He
found that in thick composite plates the dominant damage mode is shear
failure mode. He performed quasi-static tests on thick laminates and
found that the damage mechanics in impact and quasi-static loading are
identical. Gause et al. [18] studied the effect of Tlow-velocity impact
damage on the composte wing box. They identified that the first visible
damage in composite skins occurs on the back surface (surface opposite
to the impact point) in the form of spalling. Similar observations were

made by Ramkumar [5], Bhatia [10], Hertzberg et al. [11].

1.3.2 Theoretical Studies

As pointed out earlier only a few theoretical investigations were
made. Some of the earlier work is discussed here. A theoretical model
to study the damage and deformation mechanics due to low velocity impact
problem 1in composites was developed by Lloren [19]. He developed a
theoretical model for a rectangular composite plate subjected to a
quasi-static load equivalent to the impact load. Dobyns and Porter [20]
and Dobyns [21] and Hayes and Rybicki [22] perfo}med similar analysis
for simply supported composite plates and Greszczuk [23] performed a
quasi-static analysis for circular composite plates. However, all these

analyses were based on the linear plate bending theory.

Recent studies by Bostaph and Elber [24], Elber [8], Lal [25] and

Shivakumar el al. [26], have shown that the laminates undergo large
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deformation when the 1impact occurs at Tow velocity. Hence, it 1is
necessary to develop a more general analysis that includes 1large
deflection effects. These types of analyses will help to predict
accurately the deformations and failures in composite p1q;es sub jected

to Tow velocity type impact Toading.

Bostaph and Elber [24] performed quasi-static impact tests on thin
composite laminates. They used superposition approach to match the
plate bending solution and a membrane solution under the load points.
By wusing this superposition approach they obtained load-deflection
behavior of circular composite plates undergoing large deformations.
Shivakumar et al. [26] analyzed the impact damage problem using the Ritz
technique and the large deformation theory for the circular thin quasi-
isotropic laminates. The classical solution method used by Shivakumar
et al. [26], Timoshenko [27], Washizu [28], to obtain the 1large
deformation solutions of thin plates under the point Tloads is based on
the Ritz technique, and only represents a membrane correction to the
plate stiffness. Further the classical solution assumes that the
functional form of the deformed shape of the plate is identical to the
functional form of the deformed shape of the plate determined by the
small deflection solution. The functional form of the deformed shape of
the plate, however, is not identical for different load levels. Because
at higher load levels the plate undergoes large deformations and the
external load 1is partly equilibrated by the membrane action, the

deformed shape of the plate can not be identical at all load levels.

Accurate prediction of the deformed shapes are necessary to obtain
accurate stresses in the plate. The piate analysis based on the

classical solution, which assumes the functional form of the deformed
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shape to be identical for all load levels, would incorrectly predict the
stresses. One of the objectives, therefore, was to develop simple
analytical models to predict the accurate large deformation shapes of
thin circular Taminates under quasi-static point loads. To obtain
accurate large deformation shapes of these thin circular laminates, a
finite difference and a finite element model 1is proposed in this
thesis. As discussed earlier, several investigators have shown that the
damages in thin composite laminates due to Tow velocity impact loads are
similiar to the damages due to equivalent quasi-static loads, therefore
in both the models proposed here, low velocity impact loads are replaced
by equivalent quasi-static loads. These models are briefly discussed in

the following section.

1.4 Proposed Methods of Analyses

In the present work an attempt was made to obtain simple analytical
models for the large deflection analysis of thin circular quasi-
isotropic laminates under the quasi-static point loads. The first model
proposed here is a plate-membrane coupling model. This model does not
have the constraining assumption that the deformed shape of the plate
should be identical to the deformed shape of the plate determined by the
small deflection plate solution. The plate-membrane coupling model
proposed here assumes that the effect of flexural anisotropy of the
axially quasi-isotropic Tlaminates is small and the plate behaves

flexurally isotropic.

1.4.1 Plate-Membrane Coupling Model

A thin plate undergoing large deformations can be decomposed into

two problems: first, a plate with shear and flexural stiffnesses but no
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mid-plane extensional stiffness, second, a plate with extensional
stiffness, but no shear and flexural stiffnesses (membrane). Solutions
of these two problems when coupled together will yield complete
knowledge of displacements in quasi-isotropic laminates undergoing large

deformations.

Solution of the first problem is the well known small deflection
plate analysis [27]. The second problem which is the analysis of
circular membrane subjected to axisymmetric loading is more complex in
nature, as it 1involves geometrical nonlinearity. The problem of
circular membrane subjected to surface and edge loads has been studied
by many investigators. Hencky [29], Dickey [30], and Shaw and Perrone
[31] determined the deflections of a wuniformly loaded membrane.
Goldberg and Pifko [32] and Weinitschke [33,34] employed power series
approaches to obtain the solutions of annular membranes. In addition to
power series method Weinitschke [33,34] presented an integral equation
approach to the solution of annular membranes subjected to surface and
edge Toads. Callegari and Reiss [35] studied the axisymmetric
deformations of circular membranes subjected to uniform normal pressure
by using the shooting method. The literature review indicates that
Timited numerical solutions are available for the nonlinear membrane
problems. Furthermore these solutions are Tlimited to the circular

membranes subjected to uniform load.

In the present work a more general formulation for the analysis of
circular isotropic membranes subjected to arbitrary axisymmetric loading
is presented. In this formulation a single nonlinear governing equation
in terms of radial stress is used. The nonlinear governing differential

equation is replaced by a set of nonlinear algebraic equations using
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finite difference technique. These nonlinear algebraic equations are

numerically solved to obtain stresses and displacements.

By using the small deflection plate solution and the Tlarge
deformation membrane solution in conjunction with the plate-membrane
coupling model, the large deformation solution of the clamped circular
quasi-isotropic plate subjected to quasi-static center point Tload is

obtained.

The plate-membrane coupling model wuses a finite difference
technique. A second analytical model is proposed in this work, to
obtain the large deformation solutions of circular laminates uses a
finite element method. The finite element formulation presented here is
based on an appropriate linearization of strain displacement relations
and uses an iterative method of solution. The formulation includes the

effects of geometric nonlinearity.

To study the geometric nonlinear problems many investigators [36-
447, used the energy approach, in which the nonlinear strain displace-
ment relation 1is linearized by equivalent Tlinearization technique.
However, earlier dinvestigators have ignored the effects of inplane
displacements in the formulation. This discrepancy was pointed out by
Prathap and Vardan [45], Sarma and Vardan [46], Prathap and Bashyam
[47], and Prathap [48]. However, so far no attempt has been made to
include the inplane displacements in the finite element formulation of
the circular plate subjected to a center point load and undergoing the

large deformations.

The reason for ignoring the effects of mid-plane displacements by

earlier investigators may have been due to complexity of the nonlinear
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finite element formulation. In the present finite element formulation
the discrepancy of ignoring inplane displacements 1is removed and a
complete finite element formulation which includes inplane displacements
is presented. The 1large deformation solutions of clamped circular
plates subjected to central point loads obtained by using the plate-
membrane coupling model, and the finite element model, are compared.
Experimental verification of the plate-membrane coupling model and the

finite element model is also presented.

The second objective of this research is to develop a theoretical
model to study the back face spalling phenomenon in thin composite
laminates under 1low-velocity impact type point Tloads. Eiber [8]
conducted series of tests on thin eight ply T300/5208 quaéi-isotropic
graphite/epoxy laminates. He showed that the damage mode, in actual
impact tests at velocities around 5 m/s, was very similar to the damage
made in the static tests. He postulated that the massive back face
spalling which often is the first visible sign of damage in laminates is
related to the low peel-mode fracture toughness in brittle resins and
that it 1is trackable by static analysis. In the present work, this
phenomenon of the back face spalling is explained by developing a simple
analytical model based on the quasi-static analysis. The model uses the
large deformation shapes of the circular laminates in conjunction with
the fracture mechanics principles. This model is verified by conducting

the back face spalling experiments on thin composite laminates.

1.5 Layout of Presentation

In Chap. 1, the problem of low velocity impact in graphite/epoxy

composites is discussed. The phenomenological aspects of the problem,
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such as the large deformation behavior, the back face spalling etc. are
introduced. The relevant literature on the study of the low veiocity
impact problem emphasizing the deformation mechanics and the back face
spalling phenomenon, is reviewed. Against this background the present
methods of analyses to study the deformation mechanics and the back face
spalling phenomenon in thin composite laminates under quasi-static point

Toads are proposed.

Chapter 2 presents a small deflection plate analysis for a clamped
circular quasi-isotropic plate. A method for modeling flexurally
anisotropic quasi-isotropi¢c plate as an isotropic plate having the
flexural stiffness components equivalent to the flexural stiffness
components of the quasi-isotropic plate is presented. A finite
difference method for computing displacements is described. The
numerical results for the plate deformations, obtained by using the

finite difference method are compared with the exact solution.

In Chap. 3, a general analysis of circular isotropic membranes with
clamped peripheral edges, subjected to arbitrary axisymmetric loading is
presented. A single governing equation in terms of radial stress is
derived. The solution of this nonlinear governing equation is presented
by using the finite difference method in conjunction with Newton-Raphson

me thod.

Chapter 4 presents the plate-membrane coupling model to study the
large deformation behavior of clamped circular plates. The model uses
the plate solution (Chap. 2) and the membrane solution (Chap. 3}, in
conjunction with a coupling principle. The numerical results obtained

by using the plate-membrane coupling model for clamped circular
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laminates undergoing the 1large deformations are presented. These

numerical results are compared with the classical solution.

In Chap. 5, a finite element model which uses appropriate
linearization of strain-displacement relations is presented. The model
is based on a variational technique and uses the principle of minimum
potential energy. The finite element model is then used to obtain the
large deformation solution of clamped circular laminates subjected to
central point loads. The sclutions obtained by the finite element model

and the plate-membrane coupling model are compared.

In Chap. 6, plate mechanics experiments are described. The
experimentally obtained large deformation shapes and the load-deflection
curves of thin quasi-isotropic clampled circular laminates are compared
with those obtained by using the plate-membrane coupling model (Chap. 4)

and the finite element model (Chap. 5).

Chapter 7 presents the back face spalling model. The back face
spalling model is developed by using the large deformation shapes of
thin circular Tlaminates 1in conjunction with fracture mechanics
principles. The analytical back face spalling model 1is verified by
conducting back face spalling experiments on thin composite laminates.
Several alternative approaches to reduce the back face spalling in

composite plates are discussed.

Finally, in Chap. 8, a summary of the highlights of the present
work and some possible directions for further study of low velocity

impact in composites are presented.
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Chapter 2
SMALL DEFLECTION PLATE ANALYSIS
2.1 Introduction

In Chap. 1, a plate-membrane coupling model was introduced to
obtain the large deformation behavior of quasi-isotropic laminates. The
plate-membrane coupling model requires a small deflection plate solution
and a large deflection membrane solution. In this chapter the small
deflection plate analysis for a clamped circular quasi-isotropic plate
is presented. To develop a simple one dimensional analytical model,
quasi-isotropic plate is modeled as an isotropic plate with the flexural
stiffness components equivalent to the flexural stiffness components of
the quasi-isotropic plate. A finite difference method for computing
displacements 1is described. A study to establish the convergence
characteristics of the finite difference method is then presented. The
numerical results for the plate deformations, obtained by using the

finite difference method are compared with the exact solution.

2.2 Plate Configuration

Figure 2.1 shows an axisymmetrically loaded clamped circular plate,
with thickness h and radius a. The plate was a quasi-isotropic
laminate of T300/5208 graphite/epoxy material with stacking sequence
[45/0/-45/90]g. The material properties of the laminate are given in

Table 2.1.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) circular plate

Y 7\74”7 YYY

YYVYYY rl 'Vvvvﬂrvm 12
4

Yz w |
(b) loading and deformation

Fig. 2.1 Plate Configuration
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2.3 Assumptions

The small deflection plate theory, generally attributed to

Kirchhoff and Love [49], is used here with the following assumptions:

1. The plate is initially flat, i.e. the plate has no initial

curvature,

2. The thickness of the plate is small compared to its other

dimensions.

3. The deflections are small compared to the plated thickness.,
(Maximum deflection-to-plate thickness ratios of 1/15 to 1/10

are considered small)

4. The slopes of the deflected middle surface are small compared

to unity. (This follows from the assumption 3 above)

5. The deformations are such that, straight Tlines initially normal
to the middle surface, remain straight and normal to the middle

surface. (i.e. transverse shear strains are not permitted)

6. The material has the same elastic modulus in tension and in

compression.

7. The component of stress normal to the midsurface, %, is

negligible.

8. The strains in the middle surface, produced by inplane forces,

are negliected.

9. The plate is assumed to be flexurally isotropic, even though a

quasi-isotropic plate is anisotropic in flexure.
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2.4 The Governing Differential Equation

In this section the governing differential equation for axisym-
metrical bending of a clamped circular plate subjected to arbitrary

axisymmetric loading and undergoing small deformation is presented.

Figure 2.2 shows an infinitisimal element abcd cut out from the
plate by two cylindrical sections ab and cd and by two radial sections
ad and bc. Consider the equilibrium of an element abcd. The couple

acting on the side cd of the element is
Mr r de (2.1)

where M. is the radial moment per unit length. The corresponding couple

on the side ab is
M.

(M, + g—dr) (r +dr) d8 (2.2)

Couples on the sides ad and bc of the element are each Me dr

where Mg is the tangential moment per unit length. The components of

these couples in plane rz are each Me dr sin (gg) and for small

de, sin (920 ='g% . Therefore, these couples give a resultant couple

in the plane rz equal to
Me dr d6 (2.3)

Denoting Q(r) as the shearing force per unit length of the
cylindrical section of radius r, the total shearing force acting on the
side cd of the element is Q (r) r d8, and the corresponding force on
the side ab is [Q (r) + Eﬂé;l dr] (r + dr) d8, these forces give a

couple in the rz plane equal to
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Q(r) +dQ(r) dr
dr
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o

Fig. 2.2 Equilibrium of the Plate Element
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dr dQ(r) dr
Qr) r dé = + (Q (r) + i ) (r +dr) 6 = (2.4)
Neglecting the third and higher order terms in Eq. (2.4) the

resultant couple in the rz plane equal to
Q (r) r dé dr (2.5)

Summing up the moments, the equation of equilibrium of the element
abcd:

er
(Mr t dr) (r+dr) de - Mr r de - Me dr d6 + Q(r) rdédr =0 (2.6)
neglecting the third and higher order terms, one has,

dM,.

Mr+a—r—Y‘-Me+Q(l")r‘=0 (2.7)

Relations between curvatures and moments for pure bending, in

cylindrical co-ordinate system are given by [27],

2
~.nrdw _ vdw
8 ¥ dr arl )

where D is a flexural modulus of the isotropic plate and is given by
3
D = Eh

e (2.10)
12 (1-v%)

where E is the Young's Modulus and v is the Poisson's ratio of the
isotropic plate.

Substituting Egs. (2.8) and (2.9) intc Eq. (2.7), the governing
differential equation for the circular plate subjected to axisymmetric

loading is
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3 2
Sw 1w 1dw_ Qr)

L1 dw - (2.11)
ars T gl p2d D

Equation (2.11) is a governing differential equation for the
circular isotropic plate with the flexural modulus D and subjected to
arbitrary axisymmetric loading. Denoting Deq as a flexural modulus of
the quasi-isotropic circular plate the governing differential Eq. (2.11)

for the quasi-isotropic circular plate was written as:

v, 1d%w _ _1dw_Qlr) (2.12)
d—r'3r r'd_f rza- Deq

where Q(r) is a shear force per unit length at any radius r and can be

obtained as (Fig. 2.3)
2nrQr) = [T27Ep (8) dg (2.13)

where p(E) s the intensity of loading at any radius E. Deq in Eq.
(2.12), 1is an equivalent flexural modulus for the quasi-isotropic
laminate. The equivalent modulus Deq’ can be obtained by equating
bending energy of the quasi-isotropic laminate and an equivalent
isotropic plate. A detail derivation to determine the equivalent

flexural modulus Deq’ is presented in the next section.

2.5 Derivation of the Equivalent Flexural Modulus Deq

Laminate extensional, coupling, and bending stiffnesses were
calculated by using classical laminate plate theory [50] for a [45/0/-
45/90]S quasi-isotropic laminate with elastic properties given in Table
2.1. The extensional stiffness is independent of the polar angle ©
(see Fig. 2.1) and 1is constant over the entire plate domain. This
indicates that the laminate behaves perfectly isotropic for membrane and

inplane loadings.

12
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Since the laminate is symmetric, the coefficients of the coupling
stiffness are found to be zero. The laminate bending stiffness depends
on 6. However, an equivalent bending stiffness which is independent
of © can be determined by equating the flexural strain energies of the
clamped circular quasi-isotropic Tlaminate and an equivalent circular

isotropic plate.

For a circular quasi-isotropic laminate the total strain energy in

bending is
_1 2= T
U, =5 I3 £ w3y i<} r dr do (2.14)
where
Mr‘ Kp
M} = Mg and {k} = Kg
Mpo Kro
Mp s Me, and Mr.e are moments and Kpo Kgs and Keng are the

corresponding curvatures. For the quasi-isotropic laminate the moments

and curvatures are related as

{M} = [D] {«k} (2.15)
where
D33 Dy Dig
[0l = | Dy Do Dog (2.16)
D61 Ds2 Dg6

substitution of Eq. (2.15) into Eq. (2.14) yields,
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U, =1 fg“ £ Y [0 {x} r dr do (2.17)

Equation (2.17) can be expanded as

L
!

_ 21ra
b f Lt r Dyg * 2 kp kg Dyp * 2 K kg Dyg

2
2 Kng Kg DZ6+ KeD

+

22

+

ie 66] r dr de (2.18)

The coefficients Dy;, Dip, Djg» Dyg, and Dgg in the Eq. (2.18) are’
all known functions of 6 [50]. Assuming that the curvatures are
functions of r alone, then the integration over 8 1in Eq. (2.18) can be

carried out and Eq. (2.18) can be written as

_2n 1 1
Uy =% Jg [ Kp 11 * 2k kg D1y + 2 kg kg Dy
1, 2ol
* 2 kg Kg Do + kg D5y
+ Kie Déej r dr (2.19)

where

1 _ 1 2= P
Dis = =% fo D;5 d8; ,j =1, 2, and 6

The bending energy of an isotropic plate with a flexural modulus
Deq’ a Poisson's ratio of veq and curvatures, Kps Kgs and Kpng (same
as that of the quasi-isotropic laminates) can be written as
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. . _1 @ 2n 2
U, (isotropic plate) = 5 fo fo [x; Doq + 2 p Kg Veq Deq

1-v

2 2 eq
+ K Deq * Ko (_2_) Deq] rdr do  (2.20)
The flexural modulus Deq and the Poisson's ratio Veq are

independent of 6. Hence integrations on 6 can be carried out and

Eq. (2.20) can be written as,

2) v+ 2« x

. . _ 27 a
Uy (isotropic plate) = = -fo [k eq r %o Veq Deq

2 2 17Veq
K'e Deq + Kre (—-2—) Deq] r dr (2.21)

+
For the same arbitrary curvatures, Kps Kgs and Kng ON the composite
laminate and the isotropic plate, the bending strain energies must be
the same because of the assumed energy equivalence. Hence comparing
curvature coefficient of Egs. (2.19) and (2.21) equivalent bending

stiffness Deq and v Poisson's ratio can be determined as,

eq

Doq =25 Ja© Dyq @8 (2.22)
Veq Deg © -2% ff)" D, 0 (2.23)
Deq =75 Jo" Dy 48 (2.24)
2 D = & 2% 0gg a0 (2.25
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If circular quasi-isotropic laminates were flexurally disotropic,

then integrals
= js" D,s 40 and » fg" Dyg 40 (2.26)

would be equal to zero. However, in the circular quasi-isotropic
laminate under consideration, integrals represented by Eq. (2.26) were
nonzero; However, for the material properties presented in Table 2.1,
integrals were found to be about 2.5 percent of ?% fg“ D11 d® and

hence neglected in this analysis.

Equations (2.22) through (2.25) represent four equations, with two

unknowns, D and v__ . The first two equations, E£gs. (2.22) and
eq eq

(2.23), are sufficient to evaluate the two unknowns Deq and v__ . The

eq

third equation, Eq. (2.24), is essentially the same as Eq. (2.22)
because of symmetries. For the material properties in Table 2.1, the
value of Deq and veq were found to be 5.688 N-m, and 0.31,

respectively. These values of Deq and v when substituted into

eq ’
the last equation, Eq. (2.25), satisfied the equation exactly.

For those ply properties mentioned in Table 2.1, the value of
equivalent Young's modulus Eeq was obtained from an equivalent flexural

modulus Deq as

E =9 eq (2.27)

and was found to be 53.3 GPa. This value of Eeq is exactly the same as
the inplane Young's modulus of the laminate obtained by using the ply

properties in Table 2.1 and the classical laminate theory.
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2.6 Solution Method

The solution of the clamped circular plate problem via the
classical method [27], is 1limited to relatively simple plate load
conditions. In simple loading cases shear force Q (r) can be directly
expressed as a function of r and since the governing equation, Eq. 2.12
is Euler equation, it can be solved to obtain a closed form solution for
the transverse displacement w. However, if loading conditions are more
complex, the analysis becomes increasingly tedious. In such cases
numerical methods are used to obtain the solution of the problem. Among
the numerical techniques presently available, the finite difference
method and the finite element method are most commonly used. In the
present analysis the finite difference method is used. The solution of
the plate problem using the finite element method is described later in
Chap. 5. In the finite difference method, the derivatives in the
governing differential equation are replaced by difference quantities at
selected points, called nodes. The details of the finite difference

method are as follows:

The basic finite difference expressions follow logically from the
fundamental rules of calculus [51]. For a continuous function w = f(r)
(Fig. 2.4), the first, second and third derivatives of the displacement

at any node n can be written by using the central difference method

[52] as:
& (n) = winrl) - uinl) (2.28)
2
d“w . w(n+l) = 2 w(n) + w(n-1)
(n) = (2.29)
E:Z (Ar)2
3
d w w(n+2) = 2 w(n+l) + 2 w(n-1) - w(n-2)
(n) = (2.30)
E;? 2 - (Ar)3
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The governing differential equation is then transformed to an
algebraic equ&tion, by substituting the appropriate finite difference
expressions. The solution of the differential equation thus reduces to
the simultaneous solution of a set of 1linear, algebraic equations,
written for every nodal point.

2.6.1 Application of the Finite Difference Method for the Solution of
Arbitrarily Loaded Clamped Circular Plate

To solve the governing Eq. (2.12), the solution domain was
discretized into m regions and (m + 1) nodes. Denoting w(n), %; (n),
3
g—% (n), and E—% {(n) as the first, second, and third derivatives of
dr dr
the displacement at the n node, the governing Eq. (2.12) was written as,

at any node n:

2 2
d™w 1 dw 1 dw
— (n) 4-__.._.1y (n) - - & (n)
dr3 ™n dr ™ r

_ (Mnople) g de
s

r
n ‘eq

(2.31)

First, second, and third derivatives of the transverse displacement
w from the governing Eq. (2.31), were replaced by finite difference

quantities given by Eqs. (2.28), (2.29), and (2.30).

To simplify the evaluation of the integral in the above equation
the following assumption was made. Consider an ith region with
rjopg Sre<rs. Although the applied load varies within the region
ri_q <r< ris the load will be assumed to be uniform in this region

with a value p;. The magnitude of p; is assumed to be equal to the

value of the 1load at the mid-point of this region, i.e., at
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r=(r; + r;_1)/2. As the number of regions in the model become large, the
size of each region decreases and hence the variation of the load within
each region becomes insignificant. With this assumption the governing

Eq. (2.31), reduces to

n 2 2
Cu oy L8 () L vy 1’ N (2.32)
E:§ "n dr2 rﬁ r 2 "n Deq

2.6.2 Boundary Conditions

For the circular plate with axisymmetric loading the boundary

conditions were

(a) Both the transverse displacement w and the slope dw/dr equal zero

at the clamped edge (r = a).

(b) The slope dw/dr equal zero at the center (r = 0).

Using the governing Eq. (2.32) in the form of finite difference
quantities at each node and transforming the above boundary conditions
into finite difference quantities, a set of simultaneous algebraic
equations were obtained. This set contained numbers of unknowns that
are equal to number of nodes in the solution domain. These algebraic
equations were solved simultaneously, to obtain the transverse
displacement at each node. To illustrate the method, a very simple 4
region idealization was chosen. The details of the method are presented

in the followng section, for this simple idealization.
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2.7 ITlustrative Example

Consider a clamped circular quasi-isotropic plate with radius a
and thickness h., The plate is subjected to a uniform loadirg over the
region 0< §-< 0.5. The objective is to obtain the plate

displacements using the finite difference method.

2.7.1 Problem Formulation

The solution domain O < §-< 1.0 1is discretized into 4 regions and
5 nodes (see Fig. 2.5). At the node 0, the boundary condition is slope
%¥ = 0. These conditions can be transformed 1into the finite

difference form as follows:

By using Taylor's series expansion, the displacements at the nodes

(1) and (2) can be written as

Ar dw 2 d2w
W(l) = W(O) '*"I—a— (0) ‘*‘T——Z (0) ..... (2.33)
*dr
2 2
w(2) = e (2ar)” d7¥ (g) (2.34)

2
From the Eqs. (2.33) and (2.34) by eliminating terms SL%; (0) and using
dr
boundary condition, the slope %¥- equal zero atr = 0 or H‘ (0) =0,

Eq. (2.34) is written as:
4 w(l) - w(2) -3 w(0) =0 (2.35)

The governing differential equation at any node n for the quasi-

isotropic plate is (Eq. (2.32))

3 2 n p. (r - r )
d’w 1 d°w 1 dw i-1
—T(n)+—-——(n)-7-d—(n)= P
dr n dr2 ™ r i=1 2 ™n Deq
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For the node no. 1 the first and second derivatives can be
expressed in the finite difference form, by using central difference

Eqs. (2.28) and (2.29) as:

dw (1) w(2) :Xr(~0) (2.36)
2
d"w w(2) - 2 w(l) + w(0)
(1) = (2.37)
arl (ar)?
3

The third derivative i.e. ‘—g (1) can be obtained as follows:

By using Taylor's series expansion the displacements at the nodes

(2) and (3) are written as

2 .2 3.3
_ Ar dw Ar® d™w ArT d7w
W(2) = wl) - p g () + 5y S (1) + 2 = (1) (2.38)
2 .2
2Ar d 24 d 2A
wi3) =w(n) + 2 M () ( 2{’ ¥ (1) +4 3’,") Y (2.39)

dr dr

Eliminating 'H— (1) from the Eqgs. (2.38) and (2.39) the following

equation is obtained

2 3
2 w(2) - w(3) = wl) - (a2 L5 (1) - (ar)’® d—-§ (1) (2.40)
dr
But from the Eq. (2.37)
Pw (1) - M(2) = 2 w(1) +w(0)
ar? (8r)?
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3
Substituting Eq. (2.37) into Eq. (2.40), equation for 51%% (1) s
) dr

obtained as follows:

-3 wl(2) + wi3) + 3 w(l) - wl0) _ dw 0
- 3

3 (2.41)
(ar) dr

Using Egs. (2.36), (2.37), and (2.41) in Eq. (2.32), at node no. 1, the

governing Eq. (2.32) is

1 1 1 2 3
w_ [ + - ]+ w, [- +
° 2l e n? e T e en® (en)®
2 2
p (ri - 1r7)
+ W, [- 21 + 1 > = 3 3] + Wy 1 3] = 1 O (2.42)
2 ry (ar)  ry (ar) (ar) (ar) 2r Deq

Using the central differences (Egs. (2.28)-(2.30)), at the node no.

2, the governing Eq. (2.32) is,

1 1 1 1 2

Wy [-———] +w; [ + + 1+w, [-——]
0 [ 2 (ar) ] 1 2 ré (Ar) r, (Ar)2 (Ar)3 2 rs (ar)
2 2
p (r; = r?Y)
+ g [ zl + — 2 - 31+ ¥ - 3l =3 z 5
2 r5 (ar) v, (ar)° (ar) 2 (Ar) T2 Yeq

(2.43)

and at the node no. 3, using Egs. (2.28)-(2.30), the governing Eq.

(2.32) is,
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1 1 1 1 -2
Wy [ ——==l+w, [ + + T+ wy [—=]
1 2 (ar) 2 2 (r3)2 Arrg (Ar-)2 (Ar)3 3 rs (ar)
1 1 1 1
sy [- . - LT 1]
4 2 rg (ar) rs (Ar')2 (Ar)3 5 2(Ar)

p (rg - rﬁ)
= — (2.44)
2 ra Deq

wg in the Eq. (2.44) is a displacement at fictitious node 5 (Fig.
2.5). The boundary conditions at r =a are, (g%) =0 and w = 0 and

can be expressed in the finite difference form as

dw _w(5) - w(3) _
F @ = =0 (2.45)

or
w(5) = w(3) (2.46)

By using the Eq. (2.46), Eq. (2.44) is written as

1 1 1 1
w [ =Ll +w, [ + .
1 0an) 27265 (o) vy (an)? (ar)’
2 1 1 1 1
+w, [- + +w, [ + -
3 orpen? 2 2l ey (0% (ar)°
=7-YT—_D— (2.47)
3 “eq
Lastly at the node no. 4 the displacement w = 0. Therefore
w(4) =0 (2.48)

Thus Egs. (2.35), (2.42), (2.43), (2.47), and (2.48) contains five
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unknowns, w(0), w(1l), w(2), w(3), and w(4) and can be solved
simultaneously to obtain the unknown displacements. A simple example

problem is presented here to illustrate the above method.

Consider a clamped circluar plate of radius 25.4 mm and thickness
1.05 mm. Let flexural modulus Deq’ of the plate is 5.688 N.m. The
displacements in the plate under uniform loading of intensity 100,000

N/m2 over the region 0 < r < 12.7 mm can be obtained as follows:

Since the plate radius is 25.4 mm Ar 1is (25.4/4) = 6.35 mm. Also
rys rp, r3, and rgq are 6.35 mm, 12.70 mm, 19.05 mm, and 25.4 mm
respectively.  Substitution of these values in Egs. (2.35), (2.42),
(2.43), (2.47), and (2.48), gives five simultaneous equations, which can

be expressed in the matrix form as

-3 4 1 0 0 w(0) 4 0

1 2 -5 2 0 w(l) "~ p(ar) 1

-4 13 -8 -5 4 w(2) = 8

0 -9 25 -3 -13 w(3) eq 12

0 0 0 0 1 w(4) 0
(2.49)

or in concise form

[A] {w} = [F] ' (2.50)

where
p = 100,000 N/m?

Ar = 6.35 mm, and Deq = 5.688 N-m

From equation (2.50) {w} is
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w} = [A17L [F] (2.51)

Solving equation (2.51) for {w}, the nodal displacement are found to
be: w(0) = 0.076226 mm, w(l) = 0.06677 mm, w(2) = 0.038410 mm, w(3) =
0.005434 mm, and w(4) = 0.0 mm.

2.8 Convergence Study

To study the convergence of this method, the circular plate was
idealized 1into m number of regions with (m + 1) nodes. A systematic
convergence study was then made by doubling the number of regions. The
number of regions m, used in this convergence study were 4, 8, 16, 32,
60, and 64. Figures 2.6 and 2.7 present the relative errors in the
maximum deflections normalized with respect to the exact central
displacement, for the two different cases: case (i) uniformly loaded
plate and case (ii) a plate 1loaded uniformly over the regions
0 < §-< 0.5. The analysis indicated that about 60 regions were
necessary for a plate loaded uniformly over the region 0 < £-< 0.5 and
for a uniformly loaded zlate to yield a solution which is within 0.1

percent of the exact solution.

2.9 Results and Discussion

In this section the central displacements obtained by using the
finite difference method are compared with the exact solution. Next
deflected shapes of the plate obtained by using the finite difference

method, are compared with the exact solution.

The comparison of the central displacements obtained by using the
finite difference method and the exact solution is shown in Table 2.2.

The percentage errors in the central displacements obtained by using the
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Fig. 2.6 Convergence Study for the Uniformly Loaded Plate
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finite difference method relative to the exact solution were found to be
0.055 percent and 0.072 percent for the uniformly loaded plate and for a
plate loaded uniformly over the region 0 < §-< 0.5 respectively.
Figures 2.8 and 2.9 show the percentage relative errors in the deflected
shapes obtained by using the finite difference method and the exact
solution, for the uniformly loaded plate and the plate loaded uniformly
over the region 0 < £-< 0.5. In both the cases maximum percentage
error is within 0.1 percent of the exact solution and occur at the

center of the plate.

2.10 Concluding Remarks

In this chapter a numerical solution method to obtain the small
deflection plate solution for a clamped circular quasi-isotropic plate
was developed. The quasi-isotropic plate was modeled as an isotropic
plate having the flexural stiffness components equivalent to those of a
quasi-isotropic plate. By using a finite difference method, the plate
governing differential equation was replaced by a set of algebraic
equations. These algebraic equations were solved simultaneously to
obtain the transverse displacements for arbitrarily axisymmetrically
loaded clamped circular quasi-isotropic Tlaminates. The numerical
solution was found to be within 0.1 percent of the exact solution for a
uniformly loaded plate and for a plate loaded uniformly over the region

0 < £-< 0.5 by using 60 region idealization.

In order to study the large deformation behavior of the quasi-
isotropic plate, membrane effects should be incorporated in the small
deformation solution. The following chapter presents the large

deflection membrane analysis.
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Using the Finite Difference Method and the Exact
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Table 2.1 - Elastic Properties of the Plate

43

Modulus GPa

Material Ell E22 G12 Poisson ratio

Gr/Ep lamina 131.0 13.0 6.4 0.34

Number of plies = 8
Laminate thickness = 1.05 mm
Stacking sequence: [45/0/-/45/90]

(Subscripts 11 and 22 correspond to the longitudinal and transverse
direction of fiber)
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Table 2.2 - Comparison of Maximum Center Displacements for
Uniformly Loaded Plate and ﬁor a Plate Uniformly

Loaded Over the Region 0 < 7 < 0.5

Central transverse displacement w,

Type of
loading

*
Present
solution

Exact
solution
(ref. 27)

Uniform loading

Uniform load over the
region 0 < §.< 0.5

4
0.015633 T‘;i—
eq

4

0.009994 %i-

eq

*Obtained by using 60 regions idealization

4
0.015625 -BE—
eq

4

0.609987 %—a—

eq
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Chapter 3
LARGE DEFLECTION MEMBRANE ANALYSIS
3.1 Introduction

In Chap. 1, a plate-membrane coupling model was proposed to obtain
the large deformation behavior of quasi-isotropic laminates under point
loads simulating low-velocity impact. This model requires a small
deflection plate solution and a large deflection membrane solution. In
the previous chapter a numerical method to obtain a small deformation
solution for a clamped circular quasi-isotropic plate, subjected to
arbitrary axisymmetric Tloading was developed. In this chapter a
numerical method is developed to obtain a 1large deflection membrane
solution. Again a quasi-isotropic circular laminate is considered in
the membrane analysis. This quasi-isotropic laminate has only
extensional stiffness but no shear and flexural stiffnesses. As pointed
out 1in the previous chapter, quasi-isotropic T300/5208 circular
laminates with the stacking sequence of [45/0/-45/90]¢ are axially
isotropic, i.e., extensional stiffness of these laminates is independent
of the polar angle (Fig. 3.1). Hence, these circular laminates, with
only extensional stiffness, can be modeled as circular isotropic
membranes. In this chapter, a general analysis of circular isotropic
membranes with clamped peripheral edges, subjected to arbitrary
axisymmetric loading is presented. A single governing equation in terms

of radial stress is developed. The solution of this nonlinear governing

45
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equation 1is presented by using the finite difference method in
conjuncation with Newton-Raphson method. Three loading cases namely (a)
uniformly loaded membrane, (b) a membrane with uniform load over an
inner portion, and (c) a membrane with ring load are analyzed and the

results are compared with the classical solution.

3.2 Membrane Configuration and Strain-Displacement Relations

Figure 3.1(a) shows an axisymmetrically loaded clamped membrane
with thickness h and radius a. Since the deflection surface is
axisymmetrical, the displacement can be resolved into two components:
(1) a component u 1in the radial direction, and (2) a component w
perpendicular to the plane of the membrane. From large deflection
theory [27], strain-displacement relations for an isotropic membrane are

obtained as follows:

Consider an element AB of length dr as shown in Fig. 3.2. The

radial strain €. from Fig. 3.2 can be expressed as

=‘“"a"d” 4 ds - dr

5. T T (3.1)

but

ds - dr _ dw, 2 _

S Y1+ (H?) -2- ('d'_) (3.2)
Substituting Eq. (3.2) into Eq. (3.1)

du (dw)Z

& =qr 7 g (3.3)

The tangential strain €9 from the Fig. 3.3 is
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Fig. 3.2 Radial Strain Due to Large Deflections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

=f{r+u) dd-rdé_u

o rde

(3.4)

]

By using Egs. (3.3) and (3.4), the radial and tangential stresses

are: £
- eq du 2 u
(1-v_9)
eq
E v
- eq u du eq (dwy2
eq
where Eeq and veq are the equivalent Young's modulus and Poisson's

ratio of the disotropic membrane and were calculated by using the

technique presented in Chap. 2.

Note that the assumption of large deflection but with small strains

is made in this formulation.

3.2.1 Equilibrium Equations

The equation of equilibrium in the radial direction is obtained as

follows:

Consider stresses on an infinitesimal element abcd of unit
thickness as shown in Fig. 3.3. Summing the forces in the radial

direction along the radial line (© +,Q§) one has

dcr deé
(c} + dr) (r + dr) de - c.r d6 - g, dr sin =

dog 4o
- (ce + 5 de) dr sin~—§-= 0 (3.7)

Since d® 1is small, sin ng) may be replaced by ( ) By

neglecting higher order terms the equation of equilibrium in radial

direction is
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do

ro_
cr-59+r-a?—-0 (3.8)

The equation of equilibrium in the direction perpendicular to the
plane of the membrane, with general axisymmetric Jloading p(r) is

obtained as follows:

Consider a stretched circular membrane element with general
axisymmetric loading p(r) as shown in the Fig. 3.4. Consider the free
body equilibrium of the deflected membrane, i.e. the vertical component

of the reaction must equal the total load. Therefore from Fig. 3.4

2mrho sina- [ p(e) 2nEdE=0 (3.9)
- _ _ dw
For small o, sin ¢ = tan « = ar

Therefore the equation of equilibrium 1in the direction per-
pendicular to the plane of the membrtane with general axisymmetric

loading p(r) is
dw _ r _
2nrho g fop(§)21t§d§-—0 (3.10)

The stress and strain displacement relations (Egs. (3.3)-(3.6)) and
equilibriun (Eqs. (3.8) and (3.10)) when combined form four nonlinear

partial differential equations with four unknowns o., o5, u, and w.

To obtain a numerical solution of these governing equations the
conventional approach is to reduce these four nonlinear equations to two
equations containing only u and w displacements. This conventional
approach is applicable when u and w displacements are of the same order

of magnitude, for example, a case of uniformly loaded membrane as shown
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by Shaw and Perrone [31], and Kao and Perrone [53]. However, the
numerical solution of arbitrary axisymmetrically loaded membranes cannot
be obtained by using the conventional approach because of the large
difference§ in magnitudes of u and w displacements. Due to these large
differences the two governing equations invoiving u and w displacements
are difficult to satisfy. Hence an alternate formulation of the

membrane problem is presented below.

3.2.2 Derivation of a Governing Equation

Using the stress and strain displacement relations (Egs. (3.3)-

(3.6)), the radial displacement u was expressed as
U= p— (cre -v _a) (3.11)

The term %; was obtained by differentiating the radial displace-

ment u, with respect to r.

do do
du _ 1 _ r 0 _ r
T E.e; (ce veq or) +E; (ar_ veq —JF) (3.12)

The strain in the radial direction €. was expressed in terms of

the radial and tangential stresses and by using the strain-displacement

relations (Egs. (3.3) and (3.4)),

- 1 _ _rdu , 1 (dwy2
€, = E;a.(cr Veq o) = [HF + 2.(3F) ] (3.13)

By using %; from Eq. (3.12) 1in equation (3.13) the following

relationship was obtained:

1 +v che do

eq r r 1 dw
6 = o) ( Eeq )+ E;q [dr Veq Eﬁr'] * ?'(HF

2 =0 (3.14)

(o

From the equation of equilibrium in radial direction (Eq. (3.8)),
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c
(HFE) was written as

do} 1
HF— :F (o‘r - o’e) (3-15)

Substituting Eq. (3.15) in Eq. (3.14) and rearranging the terms the

following relationship was obtained:

do do

r e r 1 (dwy2 _
gﬂwﬁwm?%)w (3.16)
dce
Further, o was obtained by differentiating the equation of

equilibrium (Eq. (3.8)) in radial direction with respect to r, as

dce dcr dzcr
a?—=23?—+r? (3-17)

do
Substituting this value of (EFE) in governing Eq. (3.16), the

following relationship was obtained:

2
do d crr_

1 (dwy2
(3 +r J+x (=)=0 (3.18)
l:eq drz Z \ar

By using equation of equilibrium (Eq. (3.10)) in the direction
2
)

ar was written as

perpendicular to the plane of membrane,

r. 2
(dw% _JoptEr2mede
dar anhcr

(3.19)

Substituting this value of (%;)2 in the governing equation, Eq.

(3.18) gives
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do,  d®a. foop(e) Ear ?

r r r -
Eeq (3 ar +r drz ) +2- [—r—ra;.—] =0 (3.20)

Equation (3.20) is a nonlinear differential equation in terms of
the radial stress that governs the large deflection response of the
membrane with arbitrary axisymmetric loading. Several investigators
obtained the governing equation in terms of the radial stress Gps
similar to Eq. (3.20). Dickey [30] and Weinitschke [33] presented the
differential equation for uniformly distributed load. Callegari and

Reiss [35] obtained the differential equation for a membrane with an

arbitrary axisymmetric loading.

3.3 Solution Method

To solve the governing equation (3.20) for the radial stress,
Dickey [30] used integral equation method, Weinitschke [33] used
integral equation and power series approaches and Callegari and Reiss
[35] used the shooting method. In contrast, here a numerical method of
solution is proposed. The nonlinear differential equation was replaced
by a set of nonlinear algebraic equations using difference quotients.
Then using the Newton-Raphson method [52], these nonlinear algebraic
equations were solved numerically to obtain the stresses and

displacements. The details of the solution method are as follows:

The solution domain was discretized into m regions and (m + 1)
nodes. Denoting Ur(") as the radial stress at the nth node, the
governing equation, Eq. (3.20) was rewritten as, at any node n:

,
r do_ ds ™ ple) € dE 2

n r 1l =
%[337 (n) +rnd—rz——(n)] +?[ rn 1 o,n(n) ] =0 (3.21)
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To simplify the evaluation of the integral in the above equation,
the same assumption as discussed in previous chapter will be made.

..  Although the applied load

Consider an ith region with riop» ST STy

varies within the region rig ST <1y, the load will be assumed to be
uniform in this region with a value of p;. The magnitude of p; is
assumed equal to the value of the Toad at the midpoint of this region,
i.e., at r = (rj + rj_1)/2. As the number of regions in the model
become large, the size of each region reduces and hence the variation of
the load within each region also becomes insignificant. With this

assumption the governing equation, Eq. (3.21), reduces to

rn [ dcr (n) d °r ( )]
3 n) +r n

Feg T TTGT

+.é [r i ; p. (r - r2_1)]2 =0 (3.22)
n r N =) 1 )

First and second derivatives of the radial stress from the
governing Eq. (3.22) were vreplaced by using the central finite

differences as:

ESE (n) - % {n+l) - o {n-1)
dr 2(4r)
and
2 -
d S, (n) - % (n+l) - 2 o, (n) + S, (n-1)
dar? (Ar)z
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3.3.1 Boundary Conditions

For the circular isotropic membrane with axisymmetric loading the

boundary conditions were:

1. Both the radial displacement u and the transverse displacement

w equal zero at the fixed edge (r = a).

2. The radial displacement u and the slope %; equal zero at the

center (r = 0).

Since the governing equation, Eq. (3.20) was derived in terms of
the radial stress, the transformation of boundary conditions was done by
using stress and strain-displacement relations (Egs. (3.3)-(3.6)) and
equilibrium equations, Eqs. (3.8) and (3.10). When u = 0 and r = a are
substituted into equation (3.11) for radial displacement, the boundary

condition no. 1 above can be transformed to

Og = Veq Op» LT =2 (3.23)
Using this boundary condition in the equilibrium equation in the radial
diraction (Eq. (3.8)), Eq. (3.23), was further transformed to
do

O (1=vgg) + =0, atr=a (3.24)
The boundary condition (2) above is a statement of symmetry about r = 0,
the center of the membrane. This symmetry condition can be expressed in
terms of the radial stresses,

dcrr

v 0, atr =20 (3.25)

Using the governing equation, Eq. (3.22),
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rn [ dcr( ) dzcr ( ) ] l { n pi (r§ - r?‘l) 2
3 n) +r n)j + z =0
Eeq dr N grl 8 2y T, ho.dn)

and boundary conditions (Egs. (3.24) and (3.25)) in the form of finite
difference quotients at each node, m + 1, nonlinear algebraic equations
were obtained. These algebraic equations contained m + 1 unknowns,
viz., 6,(0) ... o.(m) . By using the Newton-Raphson technique as
described in Appendix A, these (m+l) equations were solved to obtain the
radial stress at each node.

dcr

Once the radial stresses were known, at each node, the T at

each node was calculated by using the finite difference method. Using
these values of o, and ;;t in Eq. (3.8), the tangential stress o
at each node was obtained. By using Eq. (3.11), the radial displacement
u at each node, was obtained. The slope %; at any node was obtained

using Eq. (3.19). Then using the boundary conditions,

dw _ _
a - 0 at r =0,

and the finite difference representation of the slope, %¥ s at each
node, (m + 1) simultaneous equations with w(0) . . . .w(m) unknowns,
were obtained. These (m + 1) equations were then solved to obtain
transverse displacement w at each node. The details for a simple four
region idealization to obtain radial stresses at each node are presented

next:
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3.3.2 Illustrative Example

Consider a clamped circular membrane with radius a and thickness h.
The membrane is subjected to a uniform Tloading over the region
0 < £-< 0.5. The objective is to obtain the membrane displacements

using the finite difference method.

The solution domain O < §-< 1.0 1is discretized into 4 regions and

do
5 nodes (Fig. 3.5). At the node 0, the boundary condition is E?E =0
(Eq. (3.25)). This boundary condition can be written in the finite

difference form using Eq. (2.35) as
4 cr(l) -3 cr(O) - cr(Z) =0 (3.26)

The governing differential equation at any node n for the membrane

is (Eq. (3.22))

L s dzcr - dzcrr (] 1 [ nop; (r? - r?_l)}2 0
L, n) +r n + z =
Feq dr N 4l 8 Y2, T, hodn)

For the nodes 1, 2 and 3 the first and second derivatives can be
expressed in the finite difference form, and by using central difference
equations, Egs. (2.28) and (2.29), Eq. (3.22) is

At the node 1:

p
- 0.5 6,(0) Z(1) - 2 31 + 2.5 o (2) A= - ——=F  (3.27)

At the node 2:
2 3 2
cr(l) cr(Z) -8 of(Z) +7 cr(3) Gr(Z)

2 .2
p- a Eeq

32 1o

(3.28)
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Fig. 3.5 Four Region Idealization for the Membrane
"Uniformly Loaded Over the Region 0 < r/a < 0.5
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At the node 3:
1.5 o (2) F(3) - 6 S(3) +4.5 0. (4) () (3.29)

2 .2
-_p a Eeq

216 hE

At the node 4, the boundary condition (Eq. 3.24) needs to be

satisfied. This condition is

do

r =
c,.(4) (l-veq) tr,—— (4 =0 (3.30)
dor
The o= (4) in the Eq. (3.30) can be obtained as follows:

Using the Taylor's series expansion Gr(3) and cr(Z) can be

written as:

2
do 2 d°¢
_ _{ar) T7r (Ar) r
O'r(3) = O'r(4) T I (4) +—7!— ?— (4) (3.31)
o (2) = o () - 200 3% (g, (20m)° ‘o (4) (3.32)
r T or 1T dr —2r d—rz_ .
dzcr
By eliminating 5 (4) terms from the Eqs. (3.31) and (3.32) and
dcf dr dok
solving for —— (4), the T (4) is obtained as follows:

-4 csr_(3) + cr(Z) + 3 cr(4) _ do,.

Substituting Eq. (3.33) into Eq. (3.30) the equation at the node 4 is
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2 cr(Z) -8 Of(3) + °r(4) (6 + (1 - veq)) =0 (3.34)

Equation (3.26), (3.27), (3.28), (3.29), and (3.34) are the five
nonlinear algebraic equations and they contain five unknowns c}(O),
Ur(l)’ °r(2)’ cr(3), and o+(4). These nonlinear algebraic equations
are solved by using Newton-Raphson's method (see Appendix A) to obtain
the unknown radial stress at each node. As discussed earlier, once the
radial stresses were known at each node, the equation of equilibrium in
the radial direction (Eq. (3.8)), was used to obtain the tangential
stress, Tg» at each node. The radial displacement, u, and the slope,
%g-, at any node were obtained by using Egs. (3.11) and (3.18),

respectively, and the Sy, and S values at that node. Then using the

boundary conditions,
w=0 at r =a,
T 0 at r=20

and the finite difference representation of the slope, g;-, at all the

nodes, the transverse displacements, w, were determined.

3.4 Convergence Study

In this section, first a convergence study for the above outlined
method is presented. Then, the present method is illustrated for

circular membranes with different loadings, shown in Fig. 3.6.
1. Uniformly loaded circular membrane.

2. A membrane with uniformly distributed 1load over the inner

portion.
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Fig. 3.6 Types of Loading on the Membrane
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3. A membrane with a ring load.

The stresses and displacements were expressed in dimensionless

forms, using Hencky's normalized formulation as,

u = 53 W = T2
2 ()7 2 (273
eq eq
- °r = %
[} O, =
r p2a2 Eeq 173 e p2a2 Eeq 173
= =

To study the convergence of the present method, the circular
membrane was idealized into m number of regions with (m + 1) nodes,
(where nodes are numbered from the center to the outside). The number
of regions, m, used in this convergence study were 8, 16, 32, 60, and
64. Figures 3.7(a) and 3.7(b) present the relative errors in the
normalized maximum deflections and stresses, for a uniformly loaded
membrane and for a membrane loaded uniformly over the region
0 <%< 0.5. The solution shows rapid convergence and about 60
regions were found to be necessary for a membrane loaded uniformly over
the region O <£—< 0.5, to yield a solution which is within 0.001
percent of the converged solution. In contrast much fewer than 60
regions were necessary for the uniformly loaded membrane. However, a 60
region idealization is used in the analysis and all the results are

presented for this idealization.

The Newton-Raphson method used here needs initial Er values for
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Fig. 3.7 Convergence Study for the Membrane
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the iterative process. The sensitivity of the present method to these
initial values was studied. Table 3.1 presents the number of iterations
needed to achieve convergence for a range of initial 5} values for the
three configurations studied. The initial Er values were as low as
three orders of magnitude smaller than the maximum converged value of
3+ and as high as three orders of magnitude higher. For the uniformly
loaded membrane with each of these initial values the present method
converged to the same solution. The other two configurations showed
similar convergenc;, thus showing insensitivity to the initial E}

values. When the initial 3} values were farther away from the
converged values the number of iterations needed were around 40 compared
to about 8 when the initial 5} values were closer to the converged

s ues.
" values

3.4.1 Uniformly Loaded Circular Membrane

The first problem analyzed was that of a uniformly loaded circular
membrane, for which classical solution [29] exists. The uniform loading
was represented by setting the magnitude of loading terms p; through pgq
equal to unit values. Using these values in Eg. (3.22), the governing
equation for the membrane was solved by using the procedure outlined

earlier. The values of u and w displacements and stresses 3} and

oy are presented in Figs. 3.8 and 3.9, respectiVe]y. A comparison of
the present solution with Hencky's classical solution [29] and Kao and
Perrone [53] nonlinear relaxation method solution is shown in Table
3.2. The central displacement as well as central and edge radial
stresses obtained by the present method are in excellent agreement with

the earlier reported results as shown in Table 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without pérmission.



68

t'fi'ifi‘lli ’r
a—>

7

G BY

7

w Displacement

1.0

ria
1501
5
=
S
: §.075 —
2
13
0 1 | ! |
0 2 a6 8 10
r/a

Fig. 3.8 Normalized Displacements for Uniformly
Loaded Membrane

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

/

Normalized stress, o
/

&
|
/

r/a

Fig. 3.9 Normalized Stresses for Uniformly Loaded Membrane

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

3.4.2 A Membrane With Uniformly Distributed Load Over the Inner Portion

The second example is that of a membrane with uniformly distributed
load over an inner portion. A particular case of Tloading over the
region 0 < £.< 0.1 was analyzed. In the corresponding solution, this
loading was represented by setting the magnitude of loading terms p;
through pg equal to unit values and terms py; through pgqg equal to
zero. Again using the governing Eq. (3.22) with the Tloading terms
discussed before, the solution was obtained for stresses and displace-
ments at each node. The corresponding values of u and W displace-

ments and Er and o, stresses are shown in Figs. 3.10 and 3.11

respectively.

3.4.3 A Membrane With a Ring Load

The last problem considered here is one where the membrane carried
a uniformly distributed ring load. As a specific case the ring load was
assumed to be spread over the region 0.5 < §-< 0.6. Since loading was
considered over the region 0.5 < §-< 0.6 in the corresponding
solution, this loading was represented by setting the magnitude of
loading terms p; through p3g equal to zero, p3; through p3g equal to
unit values; and p3; through pgg equal to zero. Using these values in
Eq. (3.22), the governing equation for the membrane with the ring load

was solved by using the procedure outlined earlier.

The corresponding values of u and W displacements are presented
in Fig. 3.12 and stresses E+ and 36 are presented in Fig. 3.13.
Figure 3.12 shows that the transverse displacement w is constant up to
the ring load and then starts decreasing and becomes zero at the clamped

edge. In contrast, the radial displacement u is zero at the center,
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increases gradually until it reaches the peak value in the Tloading
region and then starts decreasing and becomes zero at the fixed edge.
On the other hand, the normalized stresses Br_ and 39 are of the
identical magnitude in the unloaded region 0 <£< 0.5 and then

decrease for larger values of r.

3.5 Discussion

As pointed out earlier, when inplane and transverse displacements
differ by Tlarge amounts a simultaneous method of solution presents
difficulties. As the present method does not use U and W as
parameters, rather uses a single parameter 3r_ these difficulties are
avoided. Therefore, it is interesting to compare the differences in
magnitudes of u and W values for various problems analyzed. For a
membrane with uniformly distributed load u and w are of the same
magnitude (Fig. 3.8), whereas in the case of membrane loaded over an
inner portion and for the ring loaded membrane, the displacements differ
by two (Fig. 3.10) and one (Fig. 3.12) order of magnitude, respectively.
Because u and w do not differ by large amounts in the case of
uniformly loaded membrane, one would expect the simultaneous solution to
be efficient and feasible. Indeed, it is so as demonstrated by Kao and
Perrone [53]. Because u and w differ by large amounts for the
arbitrarily loaded membranes, one would expeét difficulties with
simultaneous solution method. This may be the reason for the limited
numerical solutions for these two loading cases. The present method on
the other hand avoided these problems by using a governing equation in a

single parameter, the radial stress. The present method shows good

convergence characteristics for all the problems studied and converges
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to the correct solution even when the initial values are unrealistically
large or small. Therefore, the nonlinear governing equation in terms of
the radial stress and the Newton-Raphson technique appear to be the
ideal choice for 1large deflection problems of arbitrarily Tloaded

membranes.

3.6 Concluding Remarks

In this chapter the quasi-isotropic circular Iaminafe with only
extensional stiffness but no shear and flexural stiffnesses were modeled
as circular isotropic membranes. A single nonlinear differential
equation which governs the response of these circular clamped isotropic
membranes under arbitrary axisymmetric loading was developed. This
nonlinear equation was solved by using the finite difference method in
conjunction with Newton-Raphson method. The numerical studies on the
large deflection membrane analysis show that the present method of
analysis yields accurate solutions for inplane and transverse
deflections and stresses for the arbitrarily axisymmetrically loaded

circular membranes.

In the next chapter a plate-membrane coupling model, which uses the
small deflection plate solution obtained in Chap. 2 and the 1large
deflection membrane solution obtained in this chapter, is presented to
predict the large deformation behavior of thin circular quasi-isotropic

laminates under point loads.
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Table 3.1 - Sensitivity of the Prgsgnt Method of the Initial
Values of Ur

Number of iterations required for convergence

Unitorm loading over the region

%:15;?lesb 0<L<1 0 <L <0.l 0.5 < L < 0.6
0.0001 25 22 23
0.001 20 16 17
0.01 14 10 11
0.1 8 8 | 5
1.0 9 18 15
10.0 20 27 26

100.0 31 41 37

Eonverged 0.4310 0.1104 0.1237
o, (r =0) '

gonverged 0.3329 0.0235 ' 0.0971
o, (r = a)

3Membrane idealized with 60 regions
BConstant radial stress Br was assumed at all 61 nodes.
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Table 3.2 - Comparison of Normalized Displacements and Stresses
for Uniformly Loaded Membrane

Central transverse Central radial Edge Radial
deflection _ stress _ Stress
watr =20 c atr=20 c.at r=a

r r

Hencky* 0.6536 0.4310 0.3280
(ref. 29)

Kao and 0.6541 0.4289 0.3306
Perrone

(ref. 53)

Present 0.6534 0.4310 0.3329
Resuits

*Values taken from reference 53.
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Chapter 4
PLATE-MEMBRANE COUPLING MODEL
4.1 Introduction

In Chapters 2 and 3, numerical solution methods to analyze the
small deformation behavior of circular quasi-isotropic plates and the
large deflection behavior of c¢ircular isotropic membranes are
described. In this chapter, a plate-membrane coupling model to study
the large deformation behavior of clamped circular plates is
developed. The model developed herein uses the plate and membrane
solutions in conjunction with a coupling principle. A numerical
solution method to analyze the clamped circular quasi-isotropic
laminates under point load, using plate-membrane coupling model is

presented.

4.2 Analysis

In the plate-membrane coupling model two different plate problems
are analyzed. First, a thin plate with shear and flexural stiffnesses
but no mid-plane extensional stiffness under point load is considered.
The deflected shape of the plate is then obtained by using the classical
small deformation theory. Second, a plate with mid-plane extensional
stiffness, but no shear and flexural stiffnesses, i.e., a membrane is
considered. The deformed plate shape obtained in the plate problem is
used in the membrane problem. For this deformed shape membrane loads
are calculated by using a nonlinear membrane theory. Large deformation

79
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solutions of thin plates are then obtained by coupling these solutions
of plate and membrane problems. The details of the plate-membrane

coupling model are given below:

4,2,1 Plate Configuration

Consider' a clamped circular plate of thickness h and radius a,
subjected to a central point load P as shown in Fig. 4.1. The plate is
a quasi-isotropic laminate of T300/5208 graphite/epoxy material with
stacking sequence [45/0/-45/90]¢ and material properties given in Table
2.1,

To analyze this quasi-isotropic clamped circular plate for large
deformation behavior, first a circular plate with a prescribed central
deflection w, 1is considered. The objective of the analysis is to
determine the large deformation shape of the plate w(r) and the

central concentrated load P.

This problem as mentioned earlier, can be decomposed into two
component problems: problem-1 is a plate with shear and flexural
stiffnesses but no mid-plane extensional stiffness, problem-2 is a plate
with mid-plane extensional stiffness but no shear and flexural

stiffnesses, i.e., a membrane.

4.2.2 Problem-1l: Plate Problem

In problem-1 the plate was assumed to be flexurally isotropic even
though a quasi-isotropic plate 1is anisotropic in flexure. (This
assumption was experimentally verified and will be discussed in detail

in Chap. 6.)

from Chap. 2, the governing differential equation for
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axisymmetrical bending of a clamped circular plate subjected to

arbitrary axisymmetric loading and undergoing small deformation is (Eq.

(2.12))
w1 dw _ _1dw _ Q(r) a1
ard TaZ 20 D

where Q(r) is a shear force at any radius r and is given by (Eq. (2.13))
2mrQlr) = [T 2% Ep(E) dE (4.2)

where p(Z) ds the intensity of loading at any radius E&.

In equation (4.1), D., is an equivalent flexural modulus for the

eq
quasi-isotropic Tlaminate. As discussed in Chap. 2, the equivalent
modulus Deq was obtained by equating bending energies of the quasi-
isotropic laminates and an equivalent isotropic plate. Equation (4.1)

can be solved to obtain the deformed shape of the plate for a given

intensity of load pl(r).

4,2.3 Problem-2: Membrane Problem

In problem-2, a plate with mid-plane extensional stiffness but no
shear and flexural stiffness, i.e., a membrane is analyzed. Since the
quasi-isotropic laminates are axially isotropic, the governing
differential equations for these laminates are essentially the same as
that for a circular isotropic membrane. From Chap. 3, the governing
equations for the 1large deflections of circular isotropic membranes

subjected to arbitrary axisymmetric loading are (Egs. (3.18) and (3.19))

2

do d- o
2r [ r r dwy2
3 +r 1+ (55)¢=0 (4.3)
Eeq dr dr2 dr
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and an  JEpee) gag?
(-d'F) = —r-ﬁT] (4.4)

where Op is the radial stress. If the displacement w is known, the

rotation (%¥J is known and hence the radial stress can be determined
by integrating Eq. (4.3). With this radial stress S, distribution,

the loading p(r) on the membrane can be determined by using equation

(4.4).

4.2.4 Coupling of the Two Problems

The large deformation solution for quasi-isotropic clamped circular
laminate with the prescribed central point deflection w, can be obtained
by using the governing equations, (Egs. (4.1)-(4.4)) and by the
appropriate coupling of plate and membrane problems as shown in a flow
chart of the Fig. 4.2. This procedure is outlined in Fig. 4.3, and is

as follows:

The central point load P and the deformed shape w(r) for a
clamped circular plate were obtained by using the prescribed central
deflection w, and the governing equation, Eq. (4.1) (steps 1 and 2 in
Figs. 4.2 and 4.3). This deformed shape w(r) was used in the membrane
problem, to determine the membrane loads p{r) {(step 3 in Figs. 4.2 and
4,3). The loads which are equal in magnitude to p(r) but opposite in
direction, and the point load P were applied to the plate problem (step
4 in Figs. 4.2 and 4.3). For this new loading the new deformed shape
w'(r) of the clamped circular plate was obtained by solving the plate
problem (step 5 in Figs. 4.2 and 4.3). Since the membrane loads p(r)
were applied in the opposite direction, this caused reduction of the

central deflection of the plate by an amount A Wy (step 6 in Fig. 4.2).
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STEP 1:

= STEP 2:

STEP 3:

STEP 4:
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4 STEP 6:

STEP 7:
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—<& STEP 9:

START
Y

USING LINEAR PLATE THEORY OBTAIN
A POINT LOAD P AT r = 0 SUCH THAT
THE DEFLECTION AT THE CENTER (r =
0} IS wy SET P' =P

-

USING LINEAR PLATE THEORY OBTAIN
A DEFLECTED SHAPE, w(r) FOR THE
CENTER DEFLECTION OF w,

Y

USING NONLINEAR MEMBRANE THEORY
AND w(r), OBTAINED IN STEP 2,
OBTAIN MEMBRANE LOADS, p(r)

¥

IN ADDITION TO QUASI POINT LOAD
P*, APPLY LOADS P(r), WHICH ARE
EQUAL IN MAGNITUDE TO p(r), BUT
ARE OPPOSITE IN DIRECTION

¥

USING LINEAR PLATE THEORY OBTAIN
A NEW DEFLECTED SHAPE w'(r) FOR

THE LOAD SYSTEM OF STEP 4. LET

w'(r=o}=w,'

¥

COMPUTE THE DIFFERENCE IN DEFLEC-
TIONS OBTAINED IN STEP 2 AND STEP
5 AT EACH RADIUS. PERCENT DIFFER-
ENCE =ABS [(w(r)-w’(r})/w,] x 100

v
IS THE THE DEFLECTED
PERCENT YES [SHAPE OF THE
DIFFERENCE | ——— 3l PLATE AND MEM-
<0.01? BRANE ARE

MATCHED.
NO
Y

COMPUTE awg AS
Awn=[w°-w0 ]. 4
USING LINEAR PLATE A
THEQRY COMPUTE STOP

CENTRAL INCREMENTAL
LOAD aP TO DEFLECT
THE PLATE BY awg.

Y

APPLY LOADS P'=P+aP AT r=0 AND
THE LOADS WHICH ARE EQUAL IN
MAGNITUDE, TO p(r) OBTAINED IN
STEP 3 BUT OPPOSITE IN DIRECTION.
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Fig. 4.3 Flow Chart for the Plate-Membrane Coupling Model
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An incremental load AP 1is necessary to nullify the reduction of
the central deflection, A L The magnitude of the incremental load
AP, is calculated by using Eq. (4.1) (step 8 of Fig. 4.3). This
incremental load AP, together with the original point load P and the
membrane loads which are equal in magnitude to p(r) but opposite in the
direction were applied to the plate problem (step 9 of Figs. 4.2 and
4.3). This load system yields a central deflection equal to w,, the
original value. However, the new deflected shape w(r), determined from
Eq. (4.1) is in general different from the original deflection shape.
This jterative procedure is repeated until the deflected shapes obtained
in any two consecutive iterations are almost identical, i.e. step 7 in

Fig. 4.3 is satisfied.

A complete solution can now be obtained by coupling the plate-
membrane solutions. The coupled plate and the membrane are analogous to
two coupled parallel springs, one with linear ‘(plate) stiffness and
other with a nonlinear (membrane) stiffness. If these springs undergo
the same deflection w, then the unknown load P applied to this spring
system is the sum of the loads carried in the two springs. Similarly in
the present coupling model the deflected shapes of the plate and the

membrane are identical and therefore the loads are additive.

When the deflected shapes obtained in .any +two consecutive
iterations are nearly identical the plate carries a central point load
and a distributive interactive load (-p(r)) and the matched membrane
carries the opposite of distributive interactive loads p(r). When the
plate and membrane are coupled, interactive 7loads on the plate and
membrane nullify each other and the total Tload is simply a single

central point load on the plate. The complete plate-membrane solution
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thus yields the large deflection shape of the plate and the magnitude of

the central concentrated load, for a prescribed central deflection Wy-

Instead of prescribing a central deflection w,, one could formulate
the problem for a prescribed central point load P. The analysis
procedure for this case is straight forward with minor differences and

is as follows:

The problem as before, 1is also decomposed into two component
problems. By using the center point load P in the plate problem,
deflected shape w(r) and the central deflection w, is obtained by using
Eq. (4.1). Then steps 2 through 6 (Figs. 4.2 and 4.3) are repeated as
done earlier. Since in step 4, the membrane load p(r) is applied in the
opposite direction, this causes a reduction in central deflection by

A W, (step 6 of Fig. 4.3). At this stage instead of incrementing the
center point load P, the new membrane loads p(r) are calculated by
using the deformed shape w'(r) obtained in step 5'(step 3 of Fig. 4.3).
This procedure is repeated until the deflected shapes obtained in any

two consecutive iterations are almost identical.

A complete solution can now be obtained by coupling the plate-
membrane solutions. When the final plate and membrane solutions are
coupled as before, the interactive Tloads on the plate and membrane
nullify each other and the original prescribed central point load is
left on the plate. The corresponding matched central deflection w,, and
the deflection shape w(r), are the large deformation solutions of the

clamped circular plate subjected to a prescribed central point load.

The above procedure, although presented for a central concentrated

load, can be applied in a similar manner to obtain the large deformation
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solutions for arbitrarily axisymmetrically loaded clamped circular
plates. If, on the other hand, the large deformation shape of the plate
is known, it can be used in the linear plate theory to calculate the
' plate loads, and in the nonlinear membrane theory to calculate the
membrane loads. The sum of these two loads gives the complete large

deformation solution.

4.3 Solution Method

The plate governing equation, Eq. (4.1) for the deflecton w, was
solved by using finite difference method as described in Chap. 2. The
ordinary differential Eq. (4.1), was replaced by a set of Jlinear
algebraic equations using finite difference quantities. These linear
algebraic equations were solved numerically, to obtain rotations and
displacements. The nonlinear governing equations, Egs. (4.2) and (4.3)
were replaced by a set of nonlinear algebraic eguations using finite
difference quantitﬁes. These nonlinear equations were solved by using a
Newton-Raphson method in conjunction with the finite difference method,

as described in Chap.3.

Using these plate and membrane solutions in conjunction with the
plate-membrane coupling model discussed before, the large deformation

shapes for the clamped circular quasi-isotropic laminates were obtained.

From the plate-membrane coupling model it was observed that as
plate central deflection to plate thickness ratio increases, the number
of diterations required to obtain the 1large deformation solution
increases. Table 4.1 presents the number of iterations required to
obtain the large deformation solution of the clamped circular quasi-

W
isotropic laminates under point loads for (—%J ratios ranging from 0.5
to 2.0.
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4.4 Results and Discussion

In this section analytical deflected shapes obtained with the
plate-membrane coupling model, for the central deflection to plate
thickness ratios (E%H ranging from 0.5 to 2.0 are presented. These
analytical deflected shapes obtained by using the plate- membrane
coupling model are compared with the deflected shapes obtained by using
the classical solution [27]. Load-displacement curve obtained by using
the plate-membrane coupling model 1is compared with the classical
solution [27]. Figures 4.4 and 4.5 show the analytical deflected shapes
obtained by using the plate-membrane coupling model; for (E%) ratios
of 0.5 to 1.0, and 1.5 and 2.0. Figures 4.4 and 4.5 indicate that the
functional form of the deformed shapes of the plate is different for

%o
various (—Tﬂ ratios.

To compare the plate-membrane coupling analysis, the classical
solution [27] based on the energy method was coﬁsidered. Appendix B
presents the large deformation classical solution based on the energy
method for a clamped circular plate subjected to the center point load
P. The classical solution assumes that the functional form of the
deformed shape of the plate is identical to the functional form of the
deformed shape of the plate determined by the small deflection
solution. Thus as per the classical solution [27], the large deformed

shape of a clamped circular plate under center point load is given as:

2 2
wir) =w, [1- (E?J + 2 (r?J 2n (gj] (4.5)
a a

The transverse displacements w obtained by using the plate-

membrane coupling model and the classical solution (Eq. (4.5)) for
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various (2%) ratios ranging from 0.5 to 2.0 are presented in Table
4.2. The results obtained by using the plate-membrane coupling model
show that the functional form of the deflected shapes for various (105)

ratios is different. In contrast, as mentioned earlier the classical
solution [27] based on energy method, assumes that the functional form
of the deflected shape of the plate is identical for all (z%) ratios.
The deflected shapes obtained by using the plate-membrane coupling model

are compared with those obtained by using the classical solution [27].

Figure 4.6 presents the percentage errors, in the deflected shape
of the classical solution relative to the present solution, at various
radii for (E%) ratio of 2.0. It is observed that the maximum error is
about 4 percent and occurs at (g) = 0.233. Although relative errors
in the displacements are small, these errors get magnified if the
curvatures obtained by the plate-membrane coupling model and the
classical solution are compared. Figure 4.7 compares the curvatures
obtained with the plate-membrane coupling model and the classical
solution, for (z%J ratio of 2.0. Figure 4.7 shows that the plate-
membrane coupling model predicts higher values of curvatures than those

obtained by using the classical solution up to (g) ratio of 0.4 and

beyond (EJ 0.9.  However, in the range 0.4 < §-< 0.9, the
classical solution predicts higher values of curvatures. Since stresses
are proportional to the curvatures even small differences in the
curvature result in significant errors in stress predictions in the

plate undergoing large deformation.

In the plate-membrane coupling model, another important point that
was noticed was the movement of the radius of inflection (radius at

which curvature is zero), as a function of the central deflection to the
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plate thickness ratios (ioh-) . The classical solution [27], assumes
that the functional form of the deformed shape is identical f-or all
(i%) ratios, hence the radius of inflection shows no movement with the
change in ratios and is located at (%) = 0.3678. (The detail
derivation for the radius of inflection is presented in Appendix C).
The plate-membrane coupling model on the other hand does not make any
assumption on the deformed shape of the plate and hence on the radius of
inflection. The deformed shape and the radius of inflection are
obtained as part of the solutions. Figure 4.8 shows the movement of the
radius of inflection with the change in the central deflection to the
plate thickness ratios (1%) . The symbols in Fig. 4.8 show the
position of the point of inflection for different values of (i%) . For
increasing central deflection the point of inflection moves toward the
center of the plate (r = 0). The inward movement of the point of
inflection with increasing (1%) ratio occurs, since, as (2%) ratio
increases, the plate behaves more like a membrane than a flexural plate.
That is as (—v-l-oﬁ) ratio increases, the external load is equilibrated

more and more in membrane action than in flexural action.

Figure 4.9 presents a comparison between the load-displacement
curves obtained by using the plate-membrane coupling model and the
classical solution [27]. This figure 1indicates that the classical
solution based on the energy method predicts the load-displacement
behavior accurately up to (i%) ratio of 1.0. However for higher
values of (Y-%) ratios the classical solution yields Tower

displacements than the plate-membrane coupling solution.
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4.5 Concluding Remarks

In this chapter circular quasi-isotropic composite plates were
analyzed to study the large deformation behavior under point loads. A
plate-membrane coupling model was formulated and solved numerically to
obtain the 1large deformation shapes for thin circular composite
laminates under the point loads. These large deformation shapes were
compared with the large deformation shapes obtained by using the
classical solution [27] which assumes that the functional form of the
deformed shape of the plate is identical to the functional form of the
deformed shape of the plate determined by the small deflection plate
solution. The comparison shows that the functional form of the deformed
shape of the plate undergoing large deformations is different from the
small deflection plate solution in that the deformed shape is a function
of the center point displacements and thus is different for different
load levels. The classical solution and the plate membrane coupling
solution are in good agreement up to the central deflection-to-plate
thickness ratio of 1.0. For higher values of the center deflection-to-
plate thickness ratios the classical solution yields lower displacements
than the plate-membrane coupling solution. This plate membrane coupling

model is experimentally verified in Chap. 6.
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Table 4.1 - Number of Iterations to Obtain Large Deflection

Solution of a Clamped Circular Plate Under Central
Concentrated Load Using the Plate-Membrane Coupling

Model.

Plate center def1ect§on Number of
to thickness ratio (-ép iterations
0.5 9
1.0 11
1.5 14
2.0 21
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Table 4.2(a) - Comparison of the Transverse Displacements w

Obtained by Using the Plate-Membrane Model and the
Classical Solution for L—%J Ratios cf 0.5 and 1.0.

100

r/a Classical Plate~Membrane
Solution Coupling Model

WO

(‘Tﬂ = 0.5 0.0 0.50000 0.50000
0.1 0.47197 0.46764
0.2 0.41562 0.40842

i 0.3 0.34664 0.33791

0.4 0.27339 0.26484
0.5 0.20171 0.20311
0.6 0.13610 0.13506
0.7 0.08023 0.07762
0.8 0.03719 0.03828
0.9 0.00966 0.01001
1.0 0.00000 0.00000

W

(_%J = 1.0 0.0 1.00000 1.00000
0.1 0.94394 0.93050
0.2 0.83124 0.80831
0.3 0.69328 0.66745
0.4 0.54678 0.52491
0.5 0.40342 0.39392
0.6 0.27220 0.27028
0.7 0.16046 0.16570
0.8 0.07438 0.07719
0.9 0.01932 0.02074
1.0 0.00000 0.00000
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Table 4.2(b) - Comparison of the Transverse Displacements w
Obtained by Using the P]ate-Membrane Model and the

Classical Solution for (—%) Ratios of 1.5 and 2.0.

r/a Classical Plate-Membrane
Solution Coupling Model

wo

('Tﬁ =1.5 0.0 1.50000 1.50000
0.1 1.41592 1.38595
0.2 1.24686 1.19548
0.3 1.03992 0.98512
0.4 0.82018 0.78421
0.5 0.60513 0.58841
0.6 0.40830 0.40245
0.7 0.24068 0.25309
0.8 0.11156 0.12140
0.9 0.02897 0.03286
1.0 0.00000 0.00000

w

(_%J =2.0 0.0 2.00000 2.00000
0.1 1.88789 1.83399
0.2 1.66248 1.57111
0.3 1.38656 . 1.29297
0.4 1.09357 1.02026
0.5 0.80685 0.77129
0.6 0.54441 0.53813
0.7 0.32091 0.34512
0.8 0.14875 0.16870
0.9 0.03863 0.04561
1.0 0.00000 0.00000
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Chapter §
FINITE ELEMENT MODEL
5.1 Introduction

In the previous chapter, a plate-membrane coupling model was
presented to obtain the large deformation behavior of circular quasi-
isotropic laminates under point loads. To verify the plate-membrane
coupling model, a finite element formulation, which uses appropriate
Tinearization of strain-displacement relations [36] is developed and
presented in this chapter. The formulation is based on a variational
technique and uses the principle of minimum potential energy [28]. As
pointed out in Chap. 1, several investigators [36-44] used a lineariza-
tion technique, to study the geometrically nonlinear circular plate
problems. However, earlier investigators ignored the membrane effects
due to mid plane stretching. In this chapter, the membrane effects due
to the mid-plane stretching are dincorporated in the finite element
model. This model is used to analyze the large deformation behavior of
the circular quasi-isotropic laminates under point loads. The results
from this model are compared with the results from the plate-membrane

coupling model.

5.2 Finite Element Method

The basis of the finite element is the representation of a body or

structure by an assemblage of subdivisions (finite elements). Simple
functions are then chosen to approximate the distribution or variation

102
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of the actual displacements over each element. These functions are
usually referred to as shape functions. A variational principle, such
as the principle of minimum potential energy, is then employed to obtain
the set of equilibrium equations for each element. The equilibrium
equations for the entire body are then obtained by combining the
equations of the individual elements. The equations are modified for
the given force or displacement boundary conditions and then solved to

obtain the unknown displacements.

Mathematically, the finite element representation of continuum
strongly resembles the Ritz method [28], in which the displacements of
the plate are approximated by the sum of the functions, each multiplied
by an unknown constant. These unknowns are determined from the minimum
potential energy theorem. While using the Ritz method, the assumed
series expression describes the total displacement field of the entire
plate, in the finite element method individual displacement patterns for
each element are assumed. The entire displacement field of the plate
can be approximated piecewise. The total potential of the plate,
obtained from the sum of the total potentials of the individual
elements, has a stationary value when the node points are in
equilibrium, This condition leads to minimization of the total
potential of the structural system, which, 1in turn, yields the

displacement field corresponding to its equilibrium condition.

The application of the finite element method to obtain the large
deformation solution for the quasi-isotropic circular plates under point

Toads is presented in following sections.
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5.3 Plate Configuration

As before the plate configuration used was that of a quasi-
isotropic circular plate with a concentrated load at the center. The
plate 1is assumed flexurally isotropic and the equivalent flexural
modulus Deq of the plate is computed as described in Chap. 2. With this
assumption of the flexural isotropy the problem of a circular quasi-
isotropic plate subjected to a central point load reduces to an
axisymmetric problem. This problem is then analyzed by the finite

element method as shown in the following sections.

5.3.1 Strain-Displacement Relations

For the axisymmetrically loaded circular plate the deflection
surface is axisymmetrical. Due to the symmetry the shearing stresses
T.g are zero. Also from the basic assumptions of the plate theory

(Chap. 2), shearing stresses Ty and normal stresses c, are zero.

For the circular plate undergoing large deformations, the radial

and tangential bending strains at any distance z from the middle surface

are,
_dA
€ 2 €
r - dr _ r
tee - z 1 dw =z €g (5.1)
bending r dr b
and the membrane strain-displacement matrix is (Egs. (3.3) and (3.4))
du , 1 (dw,2 :
€ u £ °
membrane r m
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Therefore the total radial and tangential strain-displacement

matrix is

€ g €
r - r r
. = z * . + $ c (5.3)
¢} °]
b m
or in concise form
{e} =z {sb} + {em} (5.4)

The stresses and strains are related by a material properties

matrix, [H], forming the following constitutive equation

{o} = [H] {&} (5.5)
where
[H] = --Eeq—z t :eq (5.6)
(l-veq) eq
where Eeq and veq are the equivalent Young's modulus and Poisson's

ratio for the quasi-isotropic plate and were calculated by using the

technique presented in Chap. 2.

5.4 The Axisymmetric Finite Element

An axisymmetric finite element in the form of a ring of constant
cross section is shown in Fig. 5.1. The node points of such an element
are in fact nodal circles, and the volume of such an element is
dependent on both its cross-sectional area and the radii of these nodal

circles.
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A convenient approach for derivation of the finite element
governing expressions is based on the principle of minimum potentiai
energy. Consider a circular plate discretized into n number of
axisymmetric elements. Each element is of a constant thickness h, with
r; and r, as inner and outer radii (Fig. 5.1). Let U, be the strain
energy of the axisymmetric element and A represents the surface area
of the element. The total potential energy Ty of an element is the

total strain energy of the element minus the total work done and can be

expressed as

"=V - lJ {s}7 (£} dA (5.7)
where {S} is a vector of nodal displacement and {f} is the
corresponding load vector containing inplane loads I, the transverse
loads p and the applied moments M at all nodes on the element. Ue in
the Eq. (5.7) is the strain energy of the axisymmetric element and is

given by

1 T
U =% J {o} {e} d (vol) (5.8)
e 1Zvo]

vol in Eq. (5.8) 1is the volume of the éxisymmetric element.
Substituting Eq. (5.5) into Eq. (5.8) strain energy for the element was

written as

1 T
u J {e} [H] {e} d (vol) (5.9)
€ ?'vo1
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where [H] 1is the constitutive matrix given by Eq. (5.6). For a plate
under combined bending and stretching the strain-displacement relation
ijs given by Eq. (5.4). Substituting Eq. (5.4) into equation (5.9),

strain energy U, is:

U ==xC jr° (e ¥ [Q]{e}rd (5.10)
o = eq ’r, & e} rdr .

r.o T
+ T Deq Iri {e,} [Q] {g}rdr

C and D4 in Eq. (5.10) are called the membrane and the bending

eq q
stiffness coefficients respectively and are given by

Egq h E, h3
C, =.___92__ and D, =---9-7—- (5.11)
4 (1-v¢) 9 12 (1-v4)
eq eq
and
1 v
[Q1 = . &d (5.12)
eq 1

Substituting Eg. (5.10) into Eq. (5.7), the total potential energy

of the element is:

A
It

"o T :
[= Ceq f,.i {Em} [Q] {e } r dr

o+

r
0 T
o Deq fr-]. {g }' [Q] {ab} r dr

.
2x f° (S} {F} r dr] (5.13)
1
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By using the principle of minimum potential energy, the element
stiffness matrix was obtained as follows:
5.5. Stiffness Matrix of an Axisymmetric Element

A cubic displacement in w and a 1linear displacement in u were

assumed in the plate element as

2 3
A+ ar +art +agr (5.14)

b
"

=
n

bo + blr (5.15)

These displacement functions ensure the continuity of displacements
between adjacent elements. Thus these displacement functions satisfy
the compatability requirements, which state that at element interfaces
the field variables u, w and any of its partial derivatives up to one
order less than the highest order derivative appearing in the energy

expressions np must be continuous.

In the plate problems, the bending strains are defined by second
derivatives of the transverse displacements. Therefore a cubic function
in w will give a constant strain in an element. Similarly the membrane
strains are defined by first derivatives of the radial displacements and
thus a linear function in u will give a constant strain in an element.
Therefore a cubic displacement function in w and a linear displacement
function in u meets the constant strain condition in the eiement and
thus satisfies the convergence criteria 1in the finite element.
Equations (5.14) and (5.15) contains six unknowns a,, aj, ap, a3, Dg»

and by and the axisymmetric plate element has two nodes, therefore each
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node was assumed to have three degrees of freedom, the radial displace-
ment u, the transverse displacement w, and the rotation g; . These 3
degrees of freedom satisfy the compatability requirements discussed
earlier, which requires that the u, w, and %¥ should be continuous at

element interfaces.

For any axisymmetric element with radius r;j and ry, nodal displace~

ments can be expressed in terms of generalized displacements as:

) B — )
u1 0 g g 1 ri ao
Wy 1 rs r; r3 0 0 3
dw _ 2
<(HF)1. = 0 ar.  3rg 0 0 < 2, >
Uy 0 0 0 0 1 o ag (5.16)
W 1 ro o ro 0 0 b0
dw 2
(HF)0 0 1 ar, 3y 0 0 b,
- L. J . ./

where subscripts 1 and o represent inner and outer nodes. Equation

(5.16) was expressed in the concise form as follows:
{6}e = [A] {a} (5.17)

where {6}e = the nodal displacement vector. From the foregoing, the

solution for the unknown constant is
() = (AT (o) (5.18)

Now consider the total potential energy equation (Eq. (5.13)). Applying

the principle of the minimum potential energy, the variation in the
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total potential energy should be equal to zero. Therefore the variation

in the potential energy from Eq. (5.13) is

r
0

st = [270D {5} [0] (g} rar

eq Iri

r
0 T
+ 2% Ceq Iri {ae }' [Q] {e } r dr

Yo T _
2% jr. {as}' {f}rdr]l =0 (5.19)
1

The bending strains {eb} in Eq. (5.19) are (Eq. (5.1))

2
Using the shape functions (Eq. (5.14)), (%;) and (g—g) can be
dr

written as
g; =ay +2a,r+3 a3r2 (5.20)
and
2
g—% = 2 a, + 6 agr (5.21)
dr

Using Eqs. (5.20) and {5.21), {e,} can be expressed in matrix form as
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S
a5
3
0 0 -2 -6r 0 0 a
{sb} = _ 2
0 7 -2 -3r 0 0 a3P
by (5.22)
by
or concisely as, - /
{sb} = [R] {a} (5.23)
= [R] [AT! (8}, (5.24)
Using Eq. (5.24), {Aeb} can be written as
(ae,} = [R] (A1 {as), (5.25)

5.5.1 Nonlinear Terms: - Linearization Procedure

Consider the membrane strains {em} in the equation (5.19). They

are:

dr , 1 (dw,2
e} = Tz
m u
2
Since the vector {c} contains a nonlinear term - (42
m Z ‘@r

Tinearization technique [36] needs to be used. The linearization

procedure used 1is as follows:

Consider a nonlinear term %-(%¥J2 in the membrane strains {gn} .
1dw _
Let i B (5.26)
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where B is called as a linearization constant. Using this definition

the membrane strains can be written as,

_ r r
{em} = u (5.27)
r
Using Eq. (5.15) du and < can be written as
I [ r
du _
and
b
u_ o
F=—*b (5.29)

Using Egs. (5.20), (5.28) and (5.29), {em} can be expressed in matrix

form as
T
aO
a
O B 28 382 0 1 al
{em} = 1 < 2
c 0 0 0 ¥ 1 a3 (5.30)
b
0
by
-« -/
or concisely as,
{em} = [T] {a} (5.31)
= 7] (a7} (8}, (5.32)
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The next step is to evaluate the variation of the membrane strains,
{Aem} . This is achieved as follows:

The membrane strains {sm} can be represented as the sum of the two

vectors, one containing only the linear terms, whereas the other

containing the nonlinear terms. Therefore,

{sm} = {EL} + {ENL} (5.33)
where
%g
_ r
{eL} = " (5.34)
v
3 (G2
_ r
{ENL} f 0 (5.35)

The variation of {sm}, then is

{Aam} = {AeL} + {AENL} (5.36)

or

{Asm} (5.37)

. ; a 5 (@92
A (o)

or

. o o QW dw
72 g

{Asm} (5.38)
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The Tlinearization constant B is then used in Eq. (5.38) and {Aem} is

rewritten as,

du dw
A (=) 2B A ()
(re} = dr dr (5.39)
m 5 () 4 (o)

Using the shape functions for u and w the variation of membrane strains

can be expressed in the matrix form as,

/Y
3
a1
0 0 0 0 0 17 Ja
toey=odly o o o 1r 11 2 J
3
go
\ 11
7
a4
a1
2
0 2B 4B 6 3r 0 O a
+a{lyg %90 o 0 0 ol a2 }
3 (5.40)
by
by
. 7/

or in concise form as,

-1 -1
{ae } =& [[Y,;1 [AT {8}, + [Y,] [A] (81,1  (5.41)

-1
Y, + Y,1 [AT7F 6}, (5.42)

Lastly consider a generalized displacement vector {S}
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u
{s} = }w (5.43)
dw
a’F

Using Egs. (5.14), (5.15) and (5.20), a generalized displacement vector

can be expressed in the matrix form as

)
3
0 0 0 0O a
{St}=11 r rz r3 0 < a > (5.44)
0 1 2r 3r? 0 a3
go
1
or in concise form
{S} = [N] {a} (5.45)

By using Eq. (5.18) for {a}, 1in Eq. (5.45), Eq. k5.45) was written as
(st = [N] AT {63, (5.46)

and
(as} = [N] [ATF {6}, (5.47)

In summary the matrices obtained so far are,

{e. }

it
il

(R (A1) (8}, {ae,} = [R] [AT™) (a8},

[}
1

-1 -1
{e } = [T] A7 {8}, {ac } = [Y; + Y] [AT™" {a8},

1
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(st = [N [A1Y {6} {as) = [N] [ATD (a8,

The variation in the potential energy of the element (4 “E) of

Eq.(5.19) is then,

_ Yo T (rpe-117 T -1
Aw_ = 2= Deq jri {n8} [[AT*]' [R]' [Ql [R] [A] {8}, rdr

+

r - -
2% Coq Jor tae}] [0aT1]7 1y, + v,07 101 73 (a1t tey, v ar

.
2 [0 (a8}] [CA1H T MDY AF) = 0 (5.48)
1

Since Eq. (5.48) should be valid for arbitrary values of {Aé}e, Eq.

(5.48) reduces to
{Tk 3, + [k 1} 8}, = {F}, (5.49)

where [k 1, and [ky; 1, are called the bending and the membrane stiffness
matrix for the element and {F}e is the corresponding load vector and

are given by
r - -
Tk g = 27 D /2 [LA) 1T tr1" rad RY A1 ¢ ar (5.50)

"o -1 T -1
Cky Jg = 27 Cyg fri [CA1™" LY, + ¥,0 [Q1 [TD LAY r dr (5.51)
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.
tF, = 2x [ ° [TATH]T INTT 46D ¢ ar (5.52)
1

Assembling the element stiffnesses and nodal loads, global stiffness
matrix and total load vector can be obtained and Eg. (5.49) can be

written as:
[K] {8} = {F} (5.53)

where [K] dis a global stiffness matrix and is given by

n
(K] = i {[kL]e + [kNLJe} (5.54)
and
n
{F} =z {F} (5.55)
1 ® '

5.5.2 Boundary Conditions

For the clamped circular quasi-isotropic plate with axisymmetric

loading, boundary conditions are

1. The radial displacement u and the rotation (g;) equal zero at

the center (r = 0).

2. The radial displacement u, the transverse displacement w, and

the rotation (%‘;,i) equal zero at the clamped edge (r = a).
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5.6 Solution Procedure

To solve the governing Eq. (5.53) for the nodal displacements
{8}, the solution domain was discretized into n axisymmetric elements
and (n+l) nodes. Each node had three degrees of freedom, the radial
displacement u, the transverse displacement w, and the rotation (g;) .
In Eq. (5.53), [K] is a global stiffness matrix and is given by the Eq.
(5.54) as:

[kl =

(VR

Tk Jg + Dky 3}

In order to evaluate the global stiffness matrix [K], it is
required to obtain the bending stiffness matrix [kL]e and the membrane
stiffrness [ky 1o for each element. However, the membrane stiffness
matrix [ky Jo (Eq. {5.51)) contains the linearizing function "B" and as
the function "B" was not known a priori, an iterative scheme was adopted
in the present solution. The details of the iterative scheme are given

below and presented in the flow chart of Fig. 5.2.

The linear bending stiffness [k; ], and the load vector {F}e were
computed by using Egs. (5.50) and (5.52) (step 3, Fig. 5.2). Since the
linearizing function B, was not known a priori, it was assumed zero and
hence the membrane stiffness [ky 1, was a null .matrix (step 4, Fig.
5.2). Using Egs. (5.54) and (5.55), the global stiffness matrix [K] and
the Toad vector {F} were computed (step 6, Fig. 5.2). Equation
(5.53) was then solved to obtain the linear displacement solution {&}
(step 7, Fig. 5.2). By using the Tinear displacements and the rotations

at each node, the linearizing function "B" and the membrane stiffness
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[ky Je were computed (step 10, Fig. 5.2). The total stiffness matrix of
the element [k], is then the sum of the linear bending stiffness [k Iq
and current membrane stiffness [ky lqo. The global stiffness matrix [K]
was then formed and the new displacements were computed. Using the new
displacements a new [ky Jo matrix is computed. This iterative procedure
was continued until there was no significant difference in displacements

between the successive iterations.

5.7 Convergence Study

To study the convergence of the present method, the circular plate
was discretized into n axisymmetric elements and (n+l) nodes. A
systematic convergence study was made by increasing the number of
elements in the idealizations. The number of elements used in this
convergence study were 2; 4, 8, 16, 32, 40, and 48. For the centrally
loaded clamped circular plate with center deflection to plate thickness
ratio of 2.0, a 48 element idealization was found to obtain a converged
nonlinear solution. Figure 5.3 presents the relative errors in the
maximum deflections normalized with respect to the converged maximum
center deflections. The solution shows a rapid convergence and about 32
regions were found to be necessary to yield a solution which is with

0.01 percent of the converged solution.

By using the 48 element idealization, the clamped quasi-isotropic
circular plate was analyzed to obtain the large deformation solutions
for various center deflection-to-plate thickness ratios. As the center
deflection-to-plate thickness ratio increases, the number of iterations
required to obtain the large deformation solution increased. Table 5.1

presents the number of iterations required to obtain the Jlarge
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deformation solution of the clamped circular quasi-isotropic laminates
under point 1loads for central deflection-to-plate thickness ratios

ranging from 3.5 to 2.0.

5.8 Results and Discussion

In this section, the deflected shapes obtained with the finite
element model for the central defection to plate thickness ratios
ranging from 0.5 to 2.0 are compared with the deflected shapes obtained
by using the plate-membrane coupling model. Next the load-displacement
curve obtained by using the finite element model 1is compared with the
load-displacement curve obtained earlier by using the plate-membrane

coupling model.

The transverse displacements w obtained by using the finite element
model and the plate-membrane coupling model (Chap. 4) for various
central deflection to plate thickness ratios ranging from 0.5 to 2.0 are
presented in Table 5.2. The results obtained by the finite element
model are in excellent agreement with those obtained earlier by using

the plate-membrane coupling model.

Figure 5.4 presents a comparison between the load-displacement
curves obtained by using the finite element model and the plate-membrane
coupling model. Figure 5.4 indicates that the results obtained by using
the finite element model compare well with those obtained by using the
plate-membrane coupling model. Figure 5.4 also shows the effect of
nonlinearity on the plate deflection. For any given load the nonlinear

.

displacement is much smaller than the linear dispiacement.

As pointed out in the introduction, in the current finite element

formulation, the membrane effects due to the mid-plane stretching are
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considered. So it is interesting to compare the radial displacements
obtained by using the finite element model, with those obtained by using
the classical solution (Appendix B). Figures 5.5 and 5.6 show a com-
parison of the radial displacements for the central deflection to plate
thickness ratios of 0.5 to 2.0. The functional form of the radial
displacement curve obtained by using the classical solution is identical
for the central deflection to plate thickness ratios of 0.5 and 2.0. On
the other hand, the functional form of the radial displacement curve
obtained by using the finite element model and the plate-membrane
coupling model dis different for the central deflection to plate

thickness ratios of 0.5 and 2.0.

Figures 5.5 and 5.6 also show that the magnitudes of the radial
displacements are three orders less as compared to the magnitudes of the
transverse displacements. Although the radial displacements are much
smaller in comparison with the transverse displacéments, their contri-
bution to the membrane radial strains, and the tangential strains is
significant. These membrane strains are particularly important for
strain energy calculations in the back face spalling modei. Thus for
accurate predictions of stresses and strains in the plate, the radial
displacements should be incorporated into the finite element formula-

tion.

Figure 5.6 indicates that, for the central deflection to plate
thickness ratio of 2.0, radial displacements obtained by using the
classical solution are in good agreement with those obtained by using
the finite element solution and the plate-membrane coupling model
solution. On the other hand, Fig. 5.5 shows that, for the center

deflection to plate thickness ratio of 0.5, radial displacements
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obtained by using the classical solution differ considerably from the
corresponding finite element solution and the plate-membrane coupling
model solution. Therefore the functional form of the radial displace-
ments assumed in the classical solution would predict correct radial
displacements only for higher values of the center-deflection to plate
thickness ratios, while for Tlower values of the center deflection to
plate thickness ratios, the functional form of the radial diép]acements
assumed in the classical solution would predict incorrect values of the

radial displacements.

5.9 Concluding Remarks

In this chapter, circular quasi-isotropic composite plates were
analyzed to study the large deformation behavior under point loads. A
finite element model was formulated to study the large deformation
behavior of these plates. A finite element model, in contrast to those
in the literature, considers both radial and transverse displacements in
its formulation. This model uses a linearization technique with an
iterative procedure to obtain the 1large deformation shapes for thin

composite laminates under the point loads.

The deformation shapes obtained by using the finite element model
agreed very well with the deformation shapes obtained by using the
plate-membrane coupling model. The load-deflection curve was obtained
using the finite element model and compared with the load-deflection
curve obtained by using the plate-membrane coupling model. Excellent
agreement was observed between the two results. The classical solution
[27], based on the energy method, assumes that the functional form of

the radial displacements curve is identical for the various values of
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the central displacements to plate thickness ratios, whereas the finite
element model indicates that the functional form of the radial displace-
ments curve is different for the various values of the central displace-
ments to plate thickness ratios. The radial displacements are found to
be about three orders of magnitude less, as compared to the ‘transverse
displacements. The radial displacements obtained by using the finite
element solution compares well with the classical solution for the
central deflection to plate thickness ratio of 2.0, but they are
significantly different from the classical solution for the center

deflection to plate thickness ratio of 0.5.
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Table 5.1 -~ Number of Iterations Required to Obtain Large
Deformation Solution of a Clamped Circular Plate
Under Central Point Load

130

Plate center deﬂect@on Number of

to thickness ratio (—%) jterations
0.5 4
1.0 9
1.5 17
2.0 29
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Table 5.2(a) - Comparison of the Transverse Displacements w
Obtained by Using the Finite Element Mogel and

the Plate-Membrane Coupling Model for C—%) Ratios

of 0.5 and 1.0.
r/a Finite Element Plate-Membrane
Model Coupling Model

W0

(_ﬁ) =0.5 0.0 0.50000 0.50000
0.1 0.46810 0.46764
0.2 0.40963 0.40842
0.3 0.34011 0.33791
0.4 0.26712 0.26484
0.5 0.20418 0.20311
0.6 0.13558 0.13506
0.7 0.07916 0.07762
0.8 0.03763 0.03828
0.9 0.00983 0.01001
1.0 0.00000 0.00000

W

() = 1.0 0.0 1.00000 1.00000
0.1 0.93167 0.93050
0.2 0.81098 0.80831
0.3 0.67184 ' 0.66745
0.4 0.53024 0.52491
0.5 0.39756 0.39392
0.6 0.27246 0.27028
0.7 0.16224 0.16570
0.8 0.07546 0.07719
0.9 0.02024 0.02074
1.0 0.00000 0.00000
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Table 5.2(b) - Comparison of the Transverse Displacements w
Obtained by Using the Finite Element Mo$e1 and

the Plate-Membrane Coupling Model for (—%J Ratios
of 1.5 and 2.0.

r/a Finite Element Plate-Membrane
Model Coupling Model

w0

(_ﬁJ = 1.5 0.0 1.50000 1.50000
0.1 1.38780 1.38595
0.2 1.19976 1.19548
0.3 0.99214 0.98512
0.4 0.79318 0.78421
0.5 0.59440 0.53841
0.6 0.40648 0.40245
0.7 0.24651 0.25309
0.8 0.11811 0.12140
0.9 0.03186 0.03286
1.0 0.00000 0.00000

w

(—%J =2.0 0.y 2.00000 2.00000
0.1 1.83683 1.83399
0.2 1.57758 1.57111
0.3 1.30415 _ 1.29297
0.4 1.03569 1.02026
0.5 0.78009 0.77129
0.6 0.54370 0.53813
0.7 0.33418 0.34512
0.8 0.16317 0.16870
0.9 0.04395 0.04561
1.0 0.00000 0.00000
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Chapter 6
PLATE MECHANICS EXPERIMENTS
6.1 Introduction

In Chaps. 4 and 5, the plate-membrane coupling model and the finite
element model were developed to study the large deformation behavior of
circular quasi-isotropic plates. Both of these models assume that the
quasi-isotropic T300/5208 graphite/epoxy laminates with stacking
sequence [45/0/-45/90]¢, are flexurally isotropic. In this chapter this

assumption of flexural isotropy is experimentally verified.

The large deformation shapes and the load-displacement curves for
the circular quasi-isotropic plates under central point loads were
obtained by conducting series of tests on the circular quasi-isotropic
laminates. First, the experimentally obtained deflected shapes are
compared with the analytical deflected shapes obtained by using the
plate-membrane coupling model and the finite element model. Then, the
experimental load-displacement curve is compared with those of the

plate-membrane coupling model and the finite element model.

6.2 Test Set-up

To study the large deformation behavior of circular plates under
central point loads, a torque bolt arrangement and a servo-hydraulic
testing machine were used. The torque bolt arrangement was used to

obtain the large deformation shapes of the circular plates under central

133
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point loads and the servo-hydraulic testing machine was used to obtain
the 1oad-disp1acemeht behavior of the circular plates under central
point loads. For both tests, quasi-isotropic graphite/epoxy laminates,
with the stacking sequence of [45/0/-45/90]g and the material properties
given in Table 2.1 were used. Circular laminates with 76.2 mm (3
inches) or 101.6 mm (4 inches) diameters were bolted between two steel
annular plates as shown in Fig. 6.1. These steel plates provided
clamped boundary conditions for the specimens. A torque bolt
arrangement was used to push a 25.4 mm diameter steel ball against the
laminate, to provide the desired static loading (Fig. 6.2). Although
the ball diameter was 25.4 mm, the contact radius between the ball and
the plate was very small (of the order of 1 mm) and thus pushing the

steel ball simulated the desired static point Toad conditions.

A traversing horizontal direct current differential transducer
(DCDT) and a vertical DCDT were used to measure the deflected shapes of

the clamped circular quasi-isotropic laminates as shown in Fig. 6.1.

To obtain a 1oad-def1eétion curve, the static loading tests were
conducted in a servo-hydraulic testing machine. The test specimens were
clamped to a platform, shown in Fig. 6.3, which was mounted on the
hydraulic ram, and load was applied to the center of the specimen by
means of a punch, tipped with a 25.4 mm diameter steel ball. A DCDT
displacement gauge was attached to the indenter to measure plate deflec-
tion as the load was applied. The electric signals from the load cell
and the displacement gauge were given as an input to the x-y plotter to

allow direct load-displacement plotting.
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6.3 Test Data

Circular quasi-isotropic plates of two sizes with diameters 76.2 mm
and 101.6 mm were tested. By using the torque bolt arrangement, the
76.2 mm diameter plate was loaded til1l the desired center deflection was
obtained. This center displacement was measured by using the vertical
DCDT. Once the desired center displacement was obtained, the first set
of observations were made along the fiber direction (8 = 0°) of the
eighth ply (farthermost ply from the point of load application). The
second and third set of observations were made on a line perpendicular
to the fiber direction of the eighth ply, (6 = 909) and on a Tine 45°

(6 = 459) to the fiber direction of the eighth ply, respectively.
These three sets of observations were recorded for central deflection-
to-plate-thickness ratio (i%) of 0.5, 1.0, 1.5, and 2.0. Similar

observations were made for 101.4 mm diameter plate.

The Tload-displacement data were obtained Sy using the servo-
hydraulic machine. The 76.2 mm diameter and the 101.4 mm diameter
plates were Toaded and the corresponding central deflections were
recorded till the central deflection was about two times the plate

thickness.

6.4 Results and Discussion

In this section, first the validity of flexural isotropy in
circular quasi-isotropic Tlaminate is discussed. Then the measured
deflected shapes are compared with the plate-membrane coupling model and

the finite element model.

To verify the flexural isotropy in the circular quasi-isotropic

Taminates, experimental measurements made along three diametral lines at
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6=09 ©=45% and o6 =900 for various values of the central
deflection-to-plate thickness ratios ranging from 0.5 to 2.0 were
compared. Figure 6.4 presents the typical deflected shapes for (ﬁ%)
ratios of 0.5 and 1.5 along 6 =00 and 90° radial 1lines. The
deflected shapes for ratios of 1.0 and 2.0 showed similar trends and
hence are not shown. The experimental observations showed that the
deflected shapes along 6 = 459 were bounded by the shapes along
6=0° and 6 =909 The maximum differences between the © 0° and
90° observations occurred near (g) = 0.4 and were about six percent of
the maximum center deflections. Thus the experimental observations
indicate that clamped circular quasi-isotropic laminates, subjected to

axisymmetric loading, exhibit near flexural isotropy and show nearly

axisymmetric bending behavior.

Figures 6.5 and 6.6 present the measured deflected shapes at
6 =00 and the analytical deflected shapes obtained with the plate-
membrane coupling model for (i%) ratios ranging from 0.5 to 2.0.
Since the deflected shapes obtained by using the finite element model
are almost identical to those obtained by using the plate-membrane
coupling model (Table 4.1), only the plate-membrane coupling model
results are compared with the experimental data. In Figs. 6.5 and 6.6
the experimental results are shown as circular symbols and solid lines
represent the results of the plate-membrane coupling model. Figures 6.5
and 6.6 show excellent agreement between analytical and experimental

results.

Figure 6.7 presents the measured Tload-deflection curve and the
analytical load-deflection curve obtained by using the plate-membrane

coupling model and the finite element model. The analytical results
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were found to be within six percent of the experimental results. These
differences Between the analytical and experimental results are probably
due to experimental errors which might have been introduced while

practically simulating the clamped boundary conditions.

6.5 Concluding Remarks

Eight ply T300/5208 quasi-isotropic circular plates were tested to
verify the assumption of flexural disotropy and to study the 1large
deformation behavior under central point Tloads. The experimental
observations indicate that clamped circular quasi-isotropic laminates,
subjected to a central point loading, behave as if they are almost

flexurally isotropic and they show nearly axisymmetric bending behavior.

The experimentally obtained large deformation shapes and the load-
displacement curves were compared with those obtained with the plate-
membrane coupling model and the finite element solution. The experi-
mental results are in good agreement with the analytical results
obtained by using the plate-membrane coupling model and the finite

element model.

In the next chapter, the large deformation shapes of the quasi-
isotropic circular plate obtained by using the plate-membrane coupling
mode1 and the finite element model are used in conjunction with the
fracture mechanics approach to describe the back face spalling

phenomenon in thin quasi-isotropic circular laminates.
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Chapter 7
BACK FACE SPALLING MODEL
7.1 Introduction

In Chaps. 4 and 5, the plate-membrane coupling model and the finite
element model were developed to study the large deformation behavior of
clamped circular quasi-isotropic laminates under static point Tloads.
These models were verified by conducting tests on the clamped circular
laminates. In this chapter a simple analytical model is developed to
describe the back face spalling phenomenon 1in thin quasi-isotropic
laminates. The model is based on the fracture mechanics principles and
uses the large deformation shapes of the plates obtained earlier by
using the plate-membrane coupling model. .This analytical model is
verified by conducting the experiments on thin quasi-isotropic T300/5208

circular plates.

7.2 Back Face Spalling Mechanism

As discussed in Chap. 1, for quasi-isotropic laminates under the
central point loads, first visible damage occurs in the farthest ply
from the load (i.e. 8th ply). The damage is in the form of a matrix
cracking parallel to the fibers. Further increase in load level results
in two dominant cracks in the 8th ply and surrounding these two cracks
delaminations form between 7th and 8th plies. Additional increase in
load causes these delaminations and cracking to propagate ustably in the

fiber direction of the bottom ply. This unstable growth of
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delaminations and the propagation of the two dominant cracks is known as
the back face spalling phenomenon, During the back face spalling
action, curved trajectory of the 8th ply center strip (formed by the two
dominant cracks in the 8th ply) running under the load point in the
fiber direction changes virtually to a straight line between the load
point and the support (Fig. 7.1). A large fraction of strain energy
from this 8th ply center strip is shed during this spalling action.
This mechanism of the back face spalling is modeled by using the

concepts of fracture mechanics in the following sections.

7.3 Fracture Mechanics Concepts

Any general deformation of a cracked body can be described by
combination of three independent modes of deformation (Fig. 7.2). The
three independent modes are: opening mode, sliding mode and tearing
mode. Normal stresses give rise to the opening mode denoted as mode
I. Inplane shear results in mode II or sliding mode. The tearing mode

or mode III is caused by out-of-plane shear.

7.3.1 The Griffith Criterion

One of the basic criterion for fracture was established in 1921 by
Griffith [54]. The Griffith energy criterion for fracture can be stated
as "crack growth can occur if the energy required to form additional

crack surfaces can be delivered by the system."”

For example, consider a cracked plate of thickness B under a load
P, as shown in Fig. 7.3. For a crack of size a the Tlinear load-
displacement relationship can be represented by line 0A in Fig. 7.4.

Similarly for a crack of size a+da the load-displacement relation can
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Fig. 7.2 Three Modes of Fracture
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be represented by the line OE (the 1ine OE has a lower slope than the
line OA because of reduced stiffness of the plate). If the ends of the
plate are fixed and if crack extension takes place from a to a+da at a
load Py, the displacement remains constant and the load drops from point
A to point B (Fig. 7.4). During this process elastic energy, repre-

sented by the area of triangle O0AB, is released, which is -% A P.Y.

If crack extension takes place at constant load the displacement
increases from point A to point E, i.e. by an amount 4V (Fig. 7.4).

Therefore the work done W, by the load is
. AV (7.1)
The increase in the elastic energy of the plate is

area (QEF) - area (0AC) = Py+(v+av) = 3 PV =5 P ooV (7.2)

This increase in energy has to be provided by the load. The energy

provided by the load is area (AEFC)

area (AEFC) = P, « AV (7.3)

1

Equations (7.2) and (7.3) indicate that there remains an amount of

energy equal to area (OAE). Area (OAE) can be expressed as

area (OAE) =% P, AV =% APeV +,_}_, APeAV (7.4)
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In Eq. (7.4) %-AP°AV is the second order term and hence can be

neglected. Thus it follows that area (0AB) = (OAE). This means that
energy available for crack growth is the same in fixed grip and constant

Toad case.

As seen earlier in the case of fixed grips the elastic energy is
released as the crack grows from a to a+da. This elastic energy
released per unit crack extension is called "elastic energy release
rate" and is denoted by G. Since elastic energy is proportional to the
strain energy, G is usually expressed in terms of the strain energy and

is called "strain energy release rate."

7.3.2 Critical Strain Energy Release Rate G

Griffith [54] postulated that the crack growth occurs only when the
strain energy release rate G exceeds certain critical values. This
critical value is called a "critical strain energy release rate” and is
denoted by G. This quantity Gc is a material property like the yield

stress, Young's modulus and is different from material to material.

7.4 Back Face Spalling Model

As discussed earlier in the section 7.2, in quasi-isotropic
laminates under the point loads, first visible damage occurs in the
lowest ply in the form of two dominant cracks and'surrounding these two
cracks delaminations form between the 7th and 8th plies. With further
increase in load at a certain plate center deflection W,, massive back
face spalling occurs. During this spalling action the 8th ply center
strip (formed by the two dominant cracks in the 8th ply) which is

previously deformed in the same shape as that of a circular plate
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changes virtually to a straight Tline between the load point and the
support. This failure mechanism suggests that the complete back face
spalling event can be explained by modeling the center strip in the 8th

ply.

The center strip model developed here to describe the back face

spalling phenomenon is based on the following assumpticns:

1. Before the back face spalling occurs, the center strip in the
8th ply has the same deformed shape as that of a quasi-isotropic
plate under the point load. Thus the radial displacements (u),
the transverse displacements (w), and the rotations (%;), in
the center strip can be obtained by performing the large deflec-
tion analysis of the quasi-isotropic circular plate under point

Toads.

2. The 1initial delamination between the 7th ply and the center
strip in the 8th ply 1is assumed to exist at the radius of

inflection (the radius at which curvature in the strip is zero).

3. The change in stiffness of the plate due to the back face
spalling action 1is assumed negligible and hence 1is not

considered in the center strip model.

4. The effects of internal damage in the circular plate on the

deformed shape of the plate are assumed to be negligible.

5. The center displacement of the plate is held constant and it

does not change during the back face spalling action.

With these assumptions the center strip model was formulated and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

solved to compute the strain energy release rates during the back face

spalling action.

Consider a center strip in the 3th ply. The deformed shape of the
strip is the same as that of the circular plate. The strip has a width
b and the thickness t (t = one ply thickness). This center strip was
discretized into m number of elements with (m+l) nodes. The radial
displacement (u), the transverse displacement (w), the rotation G%;) .
and the curvature at each node were calculated by using the plate-
membrane coupling anlysis as described in Chap. 4. An initial
delamination was assumed to exist between the center strip (of the 8th
ply) and the 7th ply at the radius of inflection as shown in Fig. 7.5.
This initial delamination was assumed to have a length equal to BD as
shown in Fig. 7.5 where nodes B and D are the nodes adjucent to the node
at the radius of inflection. Due to the presence of this initial
delamination, the original deformed shape of the center strip ABCDEF as
shown in Fig. 7.5 changed to the new deformed shape ABC'DEF. The
center strip initially deformed between the nodes BD as BCD became
straight as BC'D. Due to this change the original displacements,
rotation and curvature at the node C have changed. The new displace~

ments, rotation and curvature at the node C' were calculated as follows:

The radial displacement at the node C' equal to

(up = up)
Ucl =-——2—TZFT ® (Ar) + UB (7.5)

The transverse displacement at the node C' equal to

(wy = wg)
=_0 B_. (Ar) + w

WC| < (AT (7.6)

B
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The rotation at the node C' equal to
(wy = wg)

dwy
(Fe = =17 (7.7)

The curvature at the node C' using finite difference approximation at C'

is

2 Won~ 2w, +W
d"w D c B
() = . (7.8)

5 =0 (7.9)

Thus with an initial delamination the center strip had the same
nodal dispiacements, rotations, and the curvatures as that of a plate,
except at the node C' where the displacements and rotation are given by
Eqs. (7.5)-(7.8). The curvatura at the node C', however, is zero. By
using these values of displacements, rotations and curvatures strain

energy of the center strip was calculated as follows:
The strain energy U of a body in terms of stress (o) and strain

(e) is given by:

U=3 J oedlvol) (7.10)
vol
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Only the transverse displacements (w) and the radial (axial) displace-
ments (u) were assumed to be present in the strip. With these
assumptions, the strip was modeled as a beam and hence only one stress
o, exists in the center strip. The strain energy of the strip
idealized as a beam is,

2

_rr
U=— f e. d (vol) (7.11)
vol
where vol is the volume of the center strip and Err = E11 is the

elastic modulus of the strip in the fiber direction.

In Eq. (7.11) €. is the radial (axial) strain and is the sum of

the membrane strains and the bending strains:

2

W2 d w A
e, ( ) -z— (7.12)
dr

where z in the Eq. (7.12) was measured with respect to the plate

coordinate system.

A substitution of Eq. (7.12) in Eq. (7.11), gives the total strain

energy of the strip U as

d2w 2
U--T f ( ?( )2 . d—rz) d (vol) (7.13)

Since z was measured with respect to the plate coodinate system,
the limits of integration for the 8th ply center strip in z direction

are (3h/8) to (h/2), therefore
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E 2
11 s Ih/z( N AL (7.14)
?‘

In order to evaluate the integral in Eq. (7.14), the center strip
was discretized into m number of elements. The nodal displacements,
the rotation, and the curvatures were computed by using the plate-
membrane coupling model. These displacements, rotation and curvature
were modified at the node C' (Fig. 7.5) by using Egs. (7.5)-(7.9).
Using these modified nodal displacements, Eq. (7.14) was numerically
integrated to obtain a strain energy U of the center strip of the 8th
ply. This procedure was repeated for various values of m, where number
of elements m, were chosen as multiples of 10. About 60 elements and 90
elements were found necessary for a 25.4 mm and 38.1 mm length center
strip respectively, to yield a converged solution for the strain energy
U. Once the strain energy U was computed a delamination of one element
size was allowed to grow in the outward direction as shown in Fig. 7.5.
Due to this growth of delamination the deformed shape of the strip
ABC'DEF changed into a new deformed shape ABC''D'EF as shown in Fig.
7.5. Thus due to growth of delamination the deformed shape of the strip
between the nodes B and E is a continuous straight line. The new
displacements, rotation and the curvatures at nodes C'', D' were calcu-

Jated as follows:

The radial displacements of the nodes C'' and D' are

(uE - uB)

Uclu = W e Ar + UB (7.15)
(uo = uy,)

Upr = E, ArB « 2(ar) + ug (7.16)
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The transverse displacements at the nodes C'' and D' are

(wE - WB)

chl =3—;—(-A—F)—- ® (AY') + WB (7.17)
(we = wp)

My = e 2 (0r) +wg (7.18)

The rotations at the nodes C'' and D' are

(we = wp)
dw _ rdw _ E B
(e = @ =71y (7.19)

Since the deformed shape of the strip between the nodes B and E was

straight, the curvatures at the nodes C'' and D' were zero. Therefore

2 2 '
) L) R (7.20)
awlc't darlp

Thus for the new deformed shape ABC''D'EF except at the nodes C''
and D' the nodal displacements, rotations, and curvatures of the center
strip are the same as those obtained by using the plate-membrane
coupling model. For the nodes C'', D', the displacements, rotations,
and curvatures are given by Egs. (7.15)-(7.20). .Using these values of
nodal displacements, rotations, and curvatures into equation (7.14), the
new strain energy Ul of the center strip with the deformation shape

ABC''D'EF was calculated.

This strain energy Ul corresponding to the deformed shape ABC''D'EF

was found Tless than the strain energy U corresponding to the deformed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16Q

shape ABC'DEF. Thus during the delamination growth from BD to BE (Fig.

7.5), the amount of strain energy released AU 1is given by

AU=U-Ul (7.21)

Expressing the strain energy released AU in terms of strain

energy release rate G, one has

6=~ (7.22)
where
AA=bx A, (7.23)
b = width of the strip
Ado = length of the delamination growth

This G corresponds to a delamination length of do + Ado.

By using the above procedure, the strain energy release rates were

calculated by 1incrementing the delamination outward by one element

Tength each time, until the delamination reached the clamped edge (node

F, Fig. 7.5). This strain energy release rate analysis was repeated for
W

several (—%J ratios and for two plate sizes with radii 25.4 mm and

38.1 mm.

7.5 Strain Energy Release Rate Results

In this section the strain energy release rates obtained by using
the center strip model are presented for two plate sizes with radii 25.4

mm and 38.1 mm. For each plate size strain energy release rates were
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determined for each delamination length. Figures 7.6 and 7.7 present G
as a function of delamination length for various values of plate center
deflection wy. For all delamination lengths, Fig. 7.6 shows that larger
values of center deflection w, gave larger values of the strain energy
release rates. Figure 7.6 also indicates that beyond delamination
Tength of 15 mm, the strain energy release rates reach a constant value

and do not depend on the delamination length.

Figure 7.7 presents the strain energy release rate variation with
delamination length for a plate radius of 38.1 mm, for various values of

center deflection. This figure shows similar trends as Fiq. 7.6.

7.6 Discussion of the Back Face Spalling Phenomenon

As pointed out earlier, the back face spalling phenomenon occurs
spontaneously (i.e. a center strip from the 8th ply peels off unstably).
This unstable peeling action suggests that, during delamination growth
between the 7th ply and the center strip from the 8th ply, the strain
energy release rate G must exceed the critical strain energy release
rate for delamination growth. Assuming that the spalling occurs due to
the peeling action alone, i.e. only mode I is present, then by using the
critical strain energy release rate value of the T300/5208
graphite/epoxy material in the opening mode (Gj)., the back face

spalling damage can be predicted by using the center strip model.

Consider a 25.4 mm radius plate. The critical strain energy
release rate value (Gy)., for the T300/5208 graphite/epoxy material is
0.1 KJ/m? [55]. Figure 7.6 shows that for the plate center deflections
of 1.60 mm or less, the calculated G values to grow initial delamination

length BC'D to new delamination length BC''D'E (Fig. 7.5), are less than
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0.1 KJ/m? or (GI)c value. This indicates that for the plate center
deflections of 1.60 mm or less, the initial delamination between the
center strip and the 7th ply will not grow. However, for the plate
center deflections of 1.70 mm or more, Fig. 7.6 shows that the
calculated G values to grow the initial delamination length BC'D to new
delamination length BC''D'E (Fig. 7.5), exceed (G1). value. Therefore,
for plate center deflections equal to or greater than 1.7 mm the initial
deTamination between the center strip and the 7th ply will grow unstabiy
and the center strip will peel off, thus resulting into the back face
spalling action. Figure 7.6 also indicates that if the iJnitial
delamination lengths are large, the back face spalling action will occur
at lower values of central deflection w,. For example consider an
intitial delamination length of 5 mm. From Fig. 7.6 the calculated G
value required for growth in the initial delamination length of 5 mm
exceeds 0.1 Kd/m? or (G7)¢ value when wy is 1.60 mm. That means even at
the center deflection of 1.60 mm, the initial delamination of 5 mm

Tength will grow unstably resulting in the back face spalling action.

Next consider the larger plate of 38.1 mm radius. Figure 7.7 shows
that for the plate center deflection of 2.6 mm or more, the calculated &
values to grow an inital delamination length BC'D to new delamination
length BC''D'E (Fig. 7.5), exceeds (Gy). value. Therefore, for plate
center deflections equal to or greater than 2.6 mm the initial delamina-
tion between the center strip and the 7th ply will grow unstably and the
center strip will peel off, thus resulting into the back face spalling
action. Figure 7.7 also indicates that if the delamination lengths are
large, the back face spalling action will occur at lower values of

center deflections Woe
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7.7 Back Face Spalling Experiments

To verify the back face spalling model, experiments were performed
on clamped <circular quasi-isotropic plates. Quasi-isotropic
graphite/epoxy 1amihates, with the stacking sequence of [45/0/-45/90]¢
and the material properties given in Table 2.1 were used for the tests.
Circular laminates with 25.4 mm and 38.1 mm radii were bolted between
two annular steel plates. By using the torque-bolt arrangement (similar
to the one described earlier in Chap. 6), a 25.4 mm diameter steel ball
was pushed against the laminate. Although the ball diameter was 25.4
mm, which was half the size of the plate diameter, the contact radius
between the ball and the plate was very small (of the order of 1 mm) and
thus pushing of the steel ball simulated the desired static point load
conditions. A vertical DCDT was used to measure the center deflection
Wo. The static load on the plate was gradually increased by using the
torque bolt, till the back face spalling occurred. At this instant the
center deflection w, of the plate was measured. From the experiments it
was observed that for 25.4 mm radius plate, the back face spalling
occurred within the center deflections, ranging from 1.80 mm to 1.90 mm.
For 38.1 mm radius plate the back face spalling occurred at higher

center deflections, with the values ranging form 3.00 mm to 3.1 mm.

The back face spalling experiments show that for the two plate
sizes studied, a plate with 25.4 mm radius failed at a mean center
deflection of 1.85 mm. The critical strain energy release rate (Gc),
corresponding to the center deflection w, = 1.85 mm from Fig. 7.6 is
about 0.14 KJ/mZ. In the case of 38.1 mm radius plate back face
spalling occurred at a mean center deflection of 3.05 mm. The critical

strain energy release rate Gc, corresponding to the center deflection
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Wy = 3.05 mm form Fig.7.7 is 0.147 KJ/mZ. Thus the experimentally
obtained critical strain energy release rates G., are about 0.14-0.15
KJ/mz. Comparing these values with the opening mode c¢ritical strain
energy release rate (Gp). [55], G. is somewhat higher than (G;).. This
may be due to the presence of shear sliding mode (mode II) in addition

to the opening mode (mode I) during the back face spallirg action.

Earlier investigators [56,57] have shown that for brittle systems
Tike T300/5208 graphite/epoxy material under the mixed mode situations
(opening mode and shear sliding mode), the failure is predominantly
governed by the critical strain energy release rate in the opening mode.
The present experimental values of G, are very close to (GI)c- Hence,
even though in the back face spalling phenomenon a mixed mode (mode I +
mode II) situation may exist, the critical strain energy release rate in
the opening mode (Gp)., probably governs the back face spallng mechanism

in thin composite laminates.

7.8 Prevention of Back Face Spalling in Thin Composite Laminates

The analytical and experimental results form the back face spalling
model suggest that, the composite laminates with higher (GI)c values
than T300/5208, will have better resistance to the back face spalling.
For example consider composites AS1/3501-6 made by Hercules. Russel and
Street [58] obtained the (Gp). value of AS1/3501-6 as 0.15 Kd/m2. This
value 1is fifty percent higher than that for T300/5208 composites.
Therefore AS1/3501-6 composites may have better resistance to the back
face spallng when compared to T300/5208 composites. Recently consider-
able attention is focused on the development of tough resins. The tough

systems of composites usually have higher (Gj). values than brittle
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system of composites [56]. Mall and Johnson [59] determined the (Gy).
values for FM-300 tough matrix composite by Hexel. They found that
(Gp) values are 7 to 10 times higher than the brittle systems (i.e.
T300/5208 and AS1/3501-6). Hunston [60] and 0'Brien et al. [61]
obtained (GI)c values for F-185 matrix composite by American Cynamide.
They reported the value of (GI)c for T6000/F185 composite as 2 KJ/mz,
which is about 20 times higher than the T300/5208 values. Thus tough
systems of composites may have superior resistance to back face spalling

when compared to brittle systems of composite.

Some investigators [62] have found that "stitching" of the laminate
decreases delamination. The stitching of the laminate may be
particularly useful to prevent the back face spalling, as stitching has
a restraining effect on peeling action. Another possible way to prevent
the back face spalling, is to use woven ply on the back of the laminate,
because the weave will not allow center strip from the bottom ply to

peel off without involving cross-ply strips.

Finally, in the present analysis the plates were assumed to be
stress free. If the plates are pre-stressed, the plates would react
differently to the center point load. For the center point load, the
center deflection w, of the tensile pre-stressed plate would be less
compared to the center deflecton w, of the plate with zero pre-
stresses. This is because the tensile pre-stressed plate is more stiff
compared to the plate with zero pre-stresses [27]. This suggests that
the back face spalling would occur at higher loads in thin composite
plates pre-stressed with tensile stresses compared to the initially

stress free plates.
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7.9 Conclusions

In this chapter a simple analytical model was developed to
understand the back face spalling phenomenon in thin quasi-isotropic
laminates. The model uses the large deformation plate shapes obtained
by using the plate-membrane coupling model in conjunction with the
fracture mechanics principles. The strain energy release rates during
back face spalling action were obtained by using the analytical model
for two plate sizes with plate radii of 25.4 mm and 38.1 mm. Experi-
ments were performed on the 8 ply T300/5208 quasi-isotorpic circular
plates to obtain critical strain energy release rates during back face
spalling action. Good agreement was observed between experimental and
analytical results. Experimental and analytical results indicated that
the back face spalling phenomenon in 8 ply T300/5208 quasi-isotropic
laminates is governed by the critical strain energy release rate (Gp).
in the opening mode. Therefore the back face spa]iing in composites can
be reduced by using the material with higher (Gj). values than (Gj).
value of the brittle systems composite Tike T300/5208. Another possible
way to prevent the back face spalling, is to stitch the laminate or to

use a woven ply on the back of the laminate.
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Chapter 8
SUMMARY AND CONCLUSIONS

The present investigation is concerned with the failure analysis of
composite plates under Tlow-velocity impact loads. This analysis is
particularly important to understand the damage mechanics and to develop
composites with improved impact resistance. The state-of-art of the
Tow-velocity impact problem was reviewed and important aspects of the
problem such as deformation mechanics, back face spalling phenomenon
were investigated. Three models, plate-membrane coupling model, finite
element model, and back face spalling model were developed. These
investigations should kelp 1in understanding the Tlow velocity impact

problem and lead to better design and analysis of composite structures.

The low velocity dimpact problem 1in T300/5208 graphite/epoxy
circular quasi-isotropic plates was formulated by replacing impact type
point loads with equivalent quasi-static loads. The quasi-isotropic
plates were modeled as isotropic plates having the flexural stiffness
components equivalent to the flexural stiffness components of the quasi-
isotropic plates. A plate-membrane coupling model and a finite element
model were developed to obtain the 1large deformation behavior of
circular composite plates under point loads. These models were verified
by conducting plate mechanics experiments. From the study of these

analytical models and experiments the following conclusions can be made:
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1. A circular quasi-isotorpic plate with stacking sequence of
[45/0/-45/90]g can be modeled as an isotropic plate having
flexural stiffness components equivalent to those of a quasi-

isotropic plate.

2. The large deformation behavior of circular isotropic membranes
subjected to arbitrary axisymmetric Tloading can be obtained by
solving a single nonlinear governing equation in terms of radial
stress using the finite difference method in conjunction with

Newton-Raphson method.

3. Accurate large deformation behavior of thin circular quasi-
isotropic plates can be obtained by using a simple plate-

membrane coupling model.

4. The functional form of the deformed shape of the plate
undergoing 1large deformations 1is different from the small
deflection plate solution. The deformed shape is a function of
the center point displacements and thus 1is different for
different load 1levels. Furthermore, for a plate undergoing
large deformations, there is an inward movement of the radii of

points of inflection.

In addition to the deformation mechanics, a study was undertaken to
develop a damage mechanics. From the experiments on thin laminates it
was observed that first visible damage 1in circular quasi-isotrpic
Taminates under quasi-static point loads occur on the back surface of
the Tlaminate in the form of spaliing. To understand this back face

spalling phenomenon, a simple model using the large deformation behavior
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of thin composite plates in conjunction with fracture mechanics
principles was developed. This back face spalling model was verified by
conducting experiments on thin circular quasi-isotropic plates. The

study resulted in the following conclusions:

1. The back face spalling action in thin composite laminates is a
spontaneous action and can be modeled by using the fracture

mechanics principles.

2. Mixed mode (I + II) type deformations probably occurs during the
back face spalling action. However, analysis and experiments
suggest that the mode I (opening mode) may be the dominant
mechanism énd governs the delamination growth during the

spalling action.

3. Back face spalling model shows that the back face spalling
occurs only when the strain energy release rate G, exceeds the
critical value of strain energy release rate in the opening mode
(GI)c' This implies that back face spalling can be reduced or

prevented by:

(a) Use of tough composites having higher values of (Gy),

compared to brittle resin systems like T300/5208.

(b) Stitching of the 1laminate, as stitching has a

restraining effect on peeling action.

(c) To use woven ply on the back of the laminate, because
the weave will not allow center strip from the bottom

ply to peel off without involving cross-ply strips.
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The present investigation has also shown that future research is

warranted in the following areas:

1.

To include effects of the irternal damages in composite plates

and develop more general deformation mechanics.

To extend the back face spalling model for rectangular composite

plates by developing 2-D analysis.

To develop a technique for identifying individual strain energy
release rates in different modes I, II, and III during back face

spalling action.

To determine the effecis of stitching on the back face spalling

action in thin ccmposite laminates.

To extend present analysis to thick composite plates by

incorporating the effects due to shear.

To perform a dynamic analysis and compare it with the quasi-

static analysis.
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APPENDIX A
NEWTON-RAPHSON METHOD FOR NONLINEAR SYSTEM

The purpose of this appendix is to present the Newton-Raphson
method for solution of nonlinear simultaneous algebraic equations.
First a method is explained with reference to a function involving one
variable. Next, the method for a general n variable system is
presented. Last, the method is illustrated with the set of nonlinear
equations involving 5 variables derived in Chap. 3 for the membrane

problem.

A.1 Newton-Raphson Method for One Dependent Variable

Consider a function F(x) of one dependeﬁt variable x. The
objective is to find the root of the equations F(x) = 0. Figure A-1
presents the function F(x) graphically. The Newton-Raphson method is an
jterative method which continuously updates an initial approximation
until the actual root is found. Consider an approximation x = x, as the
root. The value of F(x) is F(x,) at point P as shown in Fig. A-1. At P
draw a tangent to the curve. The tangent intersects the X axis at T.
Therefore the next approximation for the root is x; = x, + Axo where

Axo is MT in Fig. A-1. Next draw a tangent at point Q. This tangent
intersects the X axis at Ty. Therefore the next approximation for the
root is x, = xj + Axl . Imagine a third tangent is drawn at R, this
tangent will cut the X axis at some point T, between T; and S.

Therefore points T, Tp, Tp, ... will approach the point S as a limit,
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F(x)

Fig. A-1 Graphical Representation of The Newton-Raphson Method
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théf'is, the intercepts 0T, 0Ty, 0T,, ... wili approach the intercept 0S
as a limit. But 0S represents the real root of the equation F(x) = O.
Hence the quantities 0T, 0Ty, 0Ty, ... are successive approximations to
the desired root. The fundamental formula for finding the root of the

equation F(x) = 0 can be derived by using Fig. A-1 as follows:

Consider Fig. A-1. Let MT = Ax0 , and TTl = Axl s, etc. The

slope of the graph at P is F'(x,). From the Fig. A-1, PM = F(x,) and

F(x.)
slope at the point P = tan < X TP = F'(xo) = - % ° Therefore
()
- F (xo)
Axo = .F.,_._(__)_xo (A-l)
The improved value of the root is then
Xq = X+ A ' (A-2)
Similarly succeeding approximations are
Xy = Xy + Axg
X3 = Xy + Ax2 (A-3)
Xn T %p-1 ¥ AXn—l
where -F (Xi)
M = T (A-4)

where F‘(xi) is the derivative of the F(x) at x;. In the one-variable
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case F'(x) = [J(xi)llxl’ where [J] is called as Jacobian.

The value of x 1is updated till the |A xil < &, where & is the
specified tolerance. The corresponding root of the equation F(x) = 0 is

X;. The above procedure can be generalized for n variables as follows:

A.2 Newton-Raphson Method for n Variables

Consider a system of simultaneous nonlinear algebraic equations

with n variables, (X1, Xp, X3,... Xp) as

fl (xl, Xps X3 eeesens xn) = R1
f2 (xl, Xps X3 seeesann xn) = R2 (A-5)
: _ ﬁ

f (xl, Xps X3 ceevenes xn) n

b ]

Equations in (A-5) can be represented as
- - - T -
{F (x)} = {(f1 - Rl)’ (f2 RZ) ceeecans (fn Rn)} (A-6)
The approxmate solution of the nonlinear system (Eq. (A-5)) can be

obtained starting with an intial approximation X, as follows:

With the initial approximation X, , [J (X,)] is first evaluated

as:
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3f, (x) o (x) af; (x) ]
bxl bxz e axn
of, (x) af, (x) of, (x)
_ 2 2 2 _
0] = | —5— o (A-7)
afn (x) afn (x)
T ooooooooooooooooo axn
" - {x} = {x }

Next {F(XO)} is evaluated by using Eq. (A-6). With these values

of {F(Xo)} and [J(X,)] the next approximation X; is obtained as,

-1
- [0 (X1 FX)DY ] (A-8)

X} = (X}

With this new value of {Xl}, {F(Xl)} and [J(X1)] are calculated and

then {Xz} is calculated as:

-1
- [0 (I, FXT ] (A-9)

{X5) = {x;} nxn

nxl
This iterative procedure is continued till the maximum difference

in {X} values between the successive iterations is within specified

tolerence of € 1i.e.
Max | X} - (X} [ <e (A-10)

When Eq. (A-10) is satisfied the iterations are stopped and the

solution of Eq. (A-5) is {Xi}.
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A.3 Example Problem

In the illustrative example (section 3.3.2), a circular membrane
with radius a and thickness h, and with a uniform loading over the
region 0 < §-< 0.5 was analyzed. By using the four region idealiza-
tion and a finite difference technique, five nonlinear equations were
obtained. These five nonlinear equations (Egs. (3.26), (3.27), (3.28),

(3.29) and (3.24)) were expressed in terms of normalized stresses as:

-35.(0) +45.(1) -5(2) =0 (A-11)
- -2 -3 - -2,y __ 1 _
- 0.5 Gr(O) S,. (1) - 2 S, (1) + 2.5 cr(Z) o, (1) = SV (A-12)
- -2 -3 - -2,y __ 1 _
cr(l) o, (2) - 8 S, (2) + 7 cr(3) , (2) = T (A-13)
4.53.(4)3203) +1.55.(2 523 -65303) =- o1 (A14)
Br(4) (6.69) - 8 Bk(a) + 2 8}(2) =0 (A-15)
where

- Gr

g =

r pEa2 E 1/3

( €d)
h

Using Newton-Raphson method [J (3})] was obtained as:
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-3
-2
0.5 o, (1)
0
0
0
.

An initial approximation for the normalized stress

4
- Ef(O) Br(l)

- 65.2(1)
+5 5% (2) o (1)

5 %)

-1

- 2,4
2.5 S\ (1)

2 E+(1) Bk(z)

A= 2
24 S, (2)

73522

+ 14 3} (3) 6;(2)

-2
1.5 S (3)

9 B¥(4) E}(3) 4.5 B}

+ 3 B}(z) Bf(s)

2
18 o, (3)
-8

cr(O),

185

o

2(3

6.69 |
(A-16)

s (1),

E}(Z), 3}(3), and 3}(4) was assumed as unity. With this assumption,

the function {F(Er)} and [J(B})] were evaluated. They are

1721

0

) 1/12
[F(c})] = }1/32
0.6

9

8 -
6 [J(O})] =

4
2
1 -8
0
0

-1
2.5

1.5
2

ONANNOO

PP OOO

.5
‘69

(A-17)

The next approximation for {Ef} was obtained by using Eq. (A-8) as:

]

)
E}(l)

cf(O

5.(2)) =

5.(3)

l§ (4)
rJ
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-3 4
-0.5 -2
0 1

0 0

0 0

-1 0
2.5 0
-8 7
1,5 -6
2 -8

4.5
6.69

]

(o0
1/128

1/32

1/216
.69

0
\( A-18 )J
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Sotution of Eq. (A-18) is

CY ( A

8}(0) 0.02039
3}(1) 0.01941
< Br(Z) > = < 0.01648 >
(A-19)
Er(3) 0.01160
o (4) 0.0089
" J \ J

The above procedure was repeated and the next approximation

to {Er} was obtained as:

( A ~ N
Ur(o) 27.5628
0}(1) 27.7630
Gr(Z) = 28.3637
(A-20)
Ur(3) 27.3757
o _(4) 24,2568
S L p

This iterative procedure was continued till the maximum difference
in {3}} values between the successive iterations was less than 1E-6 or
max | A q,. | < 1E-6 .  The solution converged after 18 iterations,

i

and the corresponding normalized stress values were: 3} (0) = 0.3156,

(3) = 0.2233, and o, (4) = 0.1851.

. (1) = 0.3065, o, (2) = 0.2726, ¢ .

r
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APPENDIX B

LARGE DEFLECTION SOLUTION OF CLAMPED CIRCULAR PLATE LOADED AT
THE CENTER USING THE ENERGY METHOD

Consider clamped circular plate of thickness h and radius a,
subjected to a center point load P. The classical large deflection
solution based on the energy method assumes that the deformation shape
of a clamped circualr plate under center point load has the same

equation as in the case of small deflections, therefore
r2 r2 r
wir) =w_[1 - (;'2') + 2 (;2-) in (g)] (B-1)

where w, is the central displacement of the plate.

The corresponding strain energy of bending can be written as [27]

2r 2v 2
U = eq f f [(d w)2 + 1 (dw)z +_ g dw d w] r dr d6 (B-2)
b~ "2 o o E;? ';? ar r EF'E;?
2
8D W X
-0 (8-3)
a

where Deq is a flexural modulus and is given by

E R

= (8-4)

D =
€ 12 (l-vzq)
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where Eeq and Veq are the equivalent Young's modulus and Poisson's
ratio for the quasi-isotrpic plate and were obtained by using the
technique described in Chap. 2.

For the radial displacement u, classical solution assumes the

expression
u=r(a-r)(C;+ Chr) (B-5)

Equation (B-5) satisfies the boundary conditions that u must vanish

at the center and at the edge of the plate.

The strain energy due to stretching of the middle plane of the

plate is given by [27]

nE
2
.._7_]'(5 +e+2veqre)r‘dr‘ (B-6)

(1-v q)

where € and €g are radial and tangential strains and are given by

Egs. (3.3) and (3.4) from Chap. 3 as:

( )2 (B-7)

m
Il

™
u
Sle

(B-8)

From expressions (3-1) and (B-5) for the displacements, the strain
components e, and €g Were calculated by using Eq. (B-7) and (B-8).
Substituting these strain components in Eq. (B-5) strain energy due to

stretching Um was obtained as
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2
T E ha
_ " Feq 2 .2 2 4
U, = II'i‘C'?7' [0.250 €7 a® + 0.1167 C5 a
eq
3 wo2
+0.300 C; C, a” + 0.06332 C; —— (8-9)
v

%, 2 0
+0.09851 C, wy + 0.18240 ;7r-]

The constants C; and C, were determined from the condition that the
total energy of the plate for a position of equilibrium is minimum.

Hence

aUm aUm
Wl-': 0 and ECZ= 0 (8-10)

Substituting Eq. (B-9) for Uy, following two linear equations for

Cl and Cz were obtained

2
‘W
0.50 C. a2 + 0.300 C. a> - 0.06332 2 (B-11)

1 2

4 4 0.300 C, a3 = - 0.09851 w02

0.2334 C, a

Equations (B-11) and (B-12) were solved simu]taneously~and C; and

Co were obtained as:

w2 w2

= 0.5531 —2_C, = -1.133 - (8-13)

1 a3 2 at

c
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Substituting values of C; and C, from Eq. (B-13) into Eq. (B-9), U

was obtained as

T Eeq h w04
U = ————— [0.14409 —] (B-14)
(1 - Veq ) a

Total potential energy = was written as the sum of the bending energy

P
and stretching energy minus the work done, therefore

8D w 2 wo4 T Ee h
x =_§9_°_ +0.114409 — a = P W (B-15)
P a a® (1 - veq )

Minimizing = with respect to w,, following relationship between Toad

p
P and W, was obtained

v, wo3 T Eeq h (
l6 =D + 0.57636 =P B-16)
eq? a2 (1 ~v 2-)
eq
Epq I
Substituting Deq = ! 7= > and rearranging the terms, Eq. (B-16)
12 (1 -v_°)
can be written as: €q
w w_ 3 2
a
() + 0.433 () = 0.2157 B (B-17)

r.eq h

Equation (B-17) is the classical large deflection solution for

clamped circular plate under central point load P.
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APPENDIX C
DERIVATION FOR THE RADIUS OF INFLECTION

The classical large deformation theory [27], assumes the deforma-

tion shape of a clamped circular plate under central point load as:
r2 r2 r
wir) =w, [1- (?) + 2 [;2') in (g)] (C-1)

Furthermore the classical theory assumes that the functional form of the
deformation shape remains unchanged for various values of central
deflection, w,. Thus the radius of inflection (the radius at which
curvature is zero) is independent of (i%) . The radius of inflection

can be obtained as follows:

By differentiating Eq. (C-1) twice, curvature can be written as

dzw 4 wo r
r a
2
The radius of inflection is the radius at which (2—;) =0.
: dr
Hence,
4 w
0 r _ -
—;z—[l-i-ﬁ.n (a]]-o (C3)
yields the radius of point of inflection as -
(L) = et = 0.3678 (C-4)
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