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ABSTRACT

ANALYSES OF QUASI-ISOTROPIC COMPOSITE PLATES UNDER QUASI-STATIC 
POINT LOADS SIMULATING LOW-VELOCITY IMPACT PHENOMENA

A j i t  Dhundiraj Kelkar 
Old Dominion U n ivers ity , 1985 

D irector: Dr. Ram Prabhakaran
Co-Director: Dr. W. Elber

Composite laminates have high strength to density ra tio s  that make 

them a ttra c tiv e  fo r use in a ir c r a f t  structures. However, the damage 

tolerance of these m aterials is  lim ited  because they have very low 

ultim ate s tra in s , no p las tic  deformation range, and no usable strength 

in the thickness d irec tio n . These lim ita tio n s  are very obvious when 

laminates are subjected to impact loads. Due to these impact loads, 

laminates suffer v is ib le  and in v is ib le  damage. To improve the material 

performance in impact requires a better understanding of the deformation 

and damage mechanics under impact type loads.

In thin composite laminates, the f i r s t  level of v is ib le  damage 

occurs on the back face and is called "back face sp a llin g ."  A p la te -  

membrane coupling model, and a f in i t e  element model to analyze the large 

deformation behavior of e igh t-p ly  quasi-isotropic c irc u la r composite 

plates under impact type point loads are developed. The back face 

spalling phenomenon in thin composite plates is  explained by using the 

plate-membrane coupling model and the f in i t e  element model in 

conjunction with the fracture mechanics p rin c ip les . The experimental
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resu lts  verify in g  these models are presented. The study resulted in the 

follow ing conclusions:

1. The large deformation behavior of c ircu lar iso trop ic  membranes 

subjected to a rb itra ry  axisymmetric loading can be obtained by 

solving a single nonlinear governing equation in terms of a

rad ial stress.

2. Accurate large deflection  behavior o f c ircu la r quasi-isotropic  

T300/5208 laminates can be obtained by using a simple p la te -  

membrane coupling model.

3. The functional form of deformed shape of the plate undergoing 

large deformations is d iffe re n t from the small deflection  plate  

solution .

4. The back face spalling action in thin composite laminates is a 

spontaneous action and can be predicted by using the fracture  

mechanics princ ip les .

5 . Mixed mode ( I  and I I )  type deformations probably occur during 

back face spa lling , however, mode I  appears to govern the

delamination growth during the spalling  action.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 

INTRODUCTION

1.1 Motivation

Composite m aterials are being used increasingly in a ir c r a f t  

structures due to th e ir high specific  strength and stiffnesses, and the

resu ltant weight savings. T ra d it io n a lly , use of graphite fib e r

composites have been confined to secondary structures. However, 

requirements for reduced structural weight, improved a ir c r a f t

performance, and e ffic iency  are making composite m aterials increasingly  

comoetitive for expanded usage in primary, load carrying structures. In

comparison to conventional metals, an understanding of the complex 

behavior of composites is  s t i l l  in i ts  preliminary stage, and 

applications are based on knowledge gained through extensive

experimental programs. Past experiences and experiments have confirmed 

that graphite fib e r composite laminates have very low ultim ate s tra in s , 

no p las tic  deformation range, and no usable strength in the thickness 

d irec tio n . These lim ita tio n s  are very obvious when laminates are

subjected to impact loads. Therefore the study of .impact damage

su scep tib ility  of these composite laminates is  increasingly important.

Resin matrix composites are b as ica lly  b r i t t le  m ateria ls, and the 

damage caused by impact d iffe rs  from the damage on ductile  metal 

structures. The ductile  metals tend to develop indentations which are 

normally v is ib le . On the other hand b r i t t le  m aterials lik e  composites

1
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2

tend to have both v is ib le  and in v is ib le  damage. Such damage is  usually 

in the form of delaminations, matrix cracks and possible broken 

f ib e rs . I t  can cause s ign ifican t strength losses in composite materials  

[1 -7 ] . *  The potential severity of v is ib le  and invis ib le  damage has 

instigated numerous investigations into the impact behavior of 

composites.

Past studies [8-12] indicate that in thin composite laminates f i r s t  

level of v is ib le  damage occurs on the back face of the laminate and is 

called as "back face spalling ." A typical back face spalled laminate is 

shown in Fig. 1 .1 . Elber [8] conducted a series of tests on c ircu lar  

composite p lates. He iden tified  the sequence in which damage occurs in 

thin 8 ply T300/5208 quasi-isotropic graphite/epoxy c ircu lar plates  

subjected to center point loads. He showed th at, f i r s t  v is ib le  damage 

occurs in the lowest ply (8th ply) in the form of a matrix cracking 

para lle l to the fib e rs . Further increase in the load levels results  

into the two dominant cracks in the eighth ply and delaminations between 

plies 7 and 8 surrounds these two cracks. Additional increase in the 

load levels cause these delaminations and cracking to propagate unstably 

in the bottom ply in the fib e r d irection . This unstable growth of 

delaminations and propagation of the two dominant cracks res u lt in the 

massive back face spalling action. During the back face spalling  

action, curved tra jectory  of the 8th ply center s trip  (formed by the two 

dominant cracks in the 8th ply) running under the load point in the 

fib er direction changes v ir tu a lly  to a s tra ig h t line between the load

*The number in brackets indicate references.
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4

point and the support (F ig . 1 .1 ). Several investigators [9 -12] have 

also reported back face spalling damages in composite laminates under 

low velocity impact type point loads. While considerable experimental 

observations have been made on the back face spa lling , a theoretical 

understanding of the deformation mechanics and the back face spalling  

phenomenon is not fu lly  known. The present study was undertaken to 

develop analytical models, to understand the deformation mechanics, and 

to explain the back face spalling phenomenon, in thin composite 

laminates. These models w ill  be p a rtic u la rly  helpful to quantify the 

impact mechanics and to produce composites with improved resistance to 

the back face spalling and impact damage.

1.2 Scope and Objectives

Impact events are characterized into three ve loc ity  domains:

1. High velocity  or b a l l is t ic  impact where the v e lo c ity , v > 600 

m/sec.

2. Intermediate ve locity  impact (30 m/sec < v < 600 m/sec), such 

as foreign object damage (F.O.D.) impact on turbine fan blades, 

ground debris thrown up by wheels, e tc .

3. Low ve locity  impacts (v < 30 m/sec) are represented by handling 

damage such as dropping too ls , foot steps and s im ila r events.

In this study, the e ffe c t of low ve locity  impact on composites is  

addressed. Many low velocity  impact s ituations that an a irc ra f t  

component is exposed to include: dropped too ls, runway stones, t ir e

blow out debris, ground co llis io n s , e tc . Due to low ve loc ity  impact,
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composite laminates suffer both v is ib le  and in v is ib le  damage. To 

improve the material performance in impact requires a better 

understanding of the deformation and damage mechanics under low velocity  

type impact loading. Therefore, the specific  objectives of th is study 

are:

1. To develop an analytica l model to understand the deformation 

mechanics in thin composite laminates under low velocity type 

impact loading.

2. To develop an analytica l model to explain the back face 

spalling phenomenon in thin composite laminates under low 

velocity type impact loading.

3. To ve rify  these analytica l models by conducting experiments on 

thin composite laminates.

For both the ana ly tica l and the experimental purpose quasi­

isotropic laminates of T300/5208 graphite/epoxy material with stacking 

sequence of [4 5 /0 /-4 5 /9 0 ]s are considered in this study.

1.3 Review of E a rlie r Work

The subject of impact related phenomena has been studied by many 

investigators u t il iz in g  many d iffe re n t approaches. Some of th is work 

has been related  to b a l l is t ic  type impact, and hence, is  not applicable 

here. The past studies indicate that considerable experimental 

investigations have been made to understand the low velocity impact 

problem in composite laminates. L ite ra ture  review also indicates that 

theoretical investigations of the low velocity impact in composites are 

lim ited .
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1.3 .1  Experimental Studies

McQuillen and Gause [13] f i r s t  studied the response of composite 

structural elements to low speed, transverse impact. They conducted 

series of experiments on graphite/epoxy composite laminates 76 mm wide, 

with a span 152 mm and with thickness of 2.13 mm. The laminates had 

(± 45/02/+45 ) s stacking sequences and were simply supported on two 

edges. McQuillen and Gause concluded that inplane stress wave effects  

in the low velocity regime are neg lig ib le . They observed that the 

dynamic fa ilu re  mechanism is  identical to the s ta tic  fa ilu re  

mechanism. Rhodes e t a l .  [12] investigated the e ffe c t of low velocity  

impact damage on the compressive strength of graphite/epoxy panels. 

They concluded that the compressive strength of graphite-epoxy 

components can be reduced s ig n ifican tly  by the e ffects  of low velocity  

impact damage. Similar observations were made by Gause and Huang 

[1 4 ]. They observed s ig n ifican t reduction in the s ta tic  strength of 

graphite/epoxy panels, when panels were subjected to low velocity impact 

loads. They examined the damage mechanisms in graphite/epoxy panels 

under dynamic and s ta tic  loading. They concluded that in graphite/epoxy 

panels the s ta tic  and dynamic damage mechanisms are id en tic a l. Card and 

Rhodes [15] studied the effects of low velocity impact on the compres­

sive strength of graphite/epoxy structures. They conducted extensive 

tests on sandwich beams, laminated plates and stiffened panels. They 

studied the damage patterns and suggested possible sequence for laminate 

damage due to low velocity impact and found that, there was no v is ib le  

damage on the impact surface, however, the side opposite to impact 

surface suffered a v is ib le  damage in the form of back face spalling. 

Their observations were s im ilar to the e a r lie r  observations made by
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Cristescu e t a l .  [16] with the 0-90° ply fiberglass/epoxy composite 

plates.

Gause [17] performed low speed, hard object impact on thick 

graphite/epoxy p la tes . He concluded that inplane wave effects are not 

important in low velocity impact on thick graphite/epoxy plates. He 

found that in thick composite plates the dominant damage mode is shear 

fa ilu re  mode. He performed quasi-static  tests on thick laminates and 

found that the damage mechanics in impact and quasi-s ta tic  loading are 

id e n tic a l. Gause e t a l .  [18] studied the e f fe c t  of low-velocity impact 

damage on the composte wing box. They id e n tif ie d  th a t the f i r s t  v is ib le  

damage in composite skins occurs on the back surface (surface opposite 

to the impact point) in the form of spa lling . S im ilar observations were 

made by Ramkumar [ 5 ] ,  Bhatia [1 0 ], Hertzberg e t a l .  [1 1 ].

1.3.2 Theoretical Studies

As pointed out e a r lie r  only a few theoretica l investigations were 

made. Some of the e a r lie r  work is discussed here. A theoretical model 

to study the damage and deformation mechanics due to low velocity impact 

problem in composites was developed by Lloren [1 9 ]. He developed a 

theoretical model fo r a rectangular composite plate subjected to a 

quasi-static  load equivalent to the impact load. Dobyns and Porter [20] 

and Dobyns [21] and Hayes and Rybicki [22] performed sim ilar analysis 

for simply supported composite plates and Greszczuk [23] performed a 

quasi-s ta tic  analysis for c ircu lar composite p lates. However, a l l  these 

analyses were based on the lin ear plate bending theory.

Recent studies by Bostaph and Elber [2 4 ], Elber [ 8 ] ,  Lai [25] and 

Shivakumar el a l .  [2 6 ], have shown that the laminates undergo large
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deformation when the impact occurs a t  low ve lo c ity . Hence, i t  is

necessary to develop a more general analysis that includes large 

deflection e ffe c ts . These types of analyses w ill help to predict 

accurately the deformations and fa ilu res  in composite plates subjected 

to low velocity  type impact loading.

Bostaph and Elber [24] performed quasi-s ta tic  impact tests on thin  

composite laminates. They used superposition approach to match the 

plate bending solution and a membrane solution under the load points. 

By using th is  superposition approach they obtained load-deflection  

behavior of c ircu lar composite plates undergoing large deformations. 

Shivakumar e t a l .  [26] analyzed the impact damage problem using the R itz  

technique and the large deformation theory for the c ircu lar thin quasi­

isotropic laminates. The classical solution method used by Shivakumar 

e t a'l. [2 6 ], Timoshenko [27 ], Washizu [2 8 ], to obtain the large 

deformation solutions of thin plates under the point loads is  based on 

the R itz technique, and only represents a membrane correction to the

plate s tiffn e s s . Further the classical solution assumes that the

functional form of the deformed shape of the plate is  identical to the 

functional form of the deformed shape of the plate determined by the

small deflection solution. The functional form of the deformed shape of 

the p la te , however, is not identical for d iffe re n t load levels . Because 

a t higher load levels the plate undergoes large deformations and the 

external load is partly  equilibrated by the membrane action, the 

deformed shape of the plate can not be identical a t  a l l  load levels .

Accurate prediction of the deformed shapes are necessary to obtain 

accurate stresses in the p late. The plate analysis based on the

classical solution, which assumes the functional form of the deformed
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shape to be identical for a ll  load leve ls , would incorrectly  predict the 

stresses. One of the objectives, therefore, was to develop simple 

ana ly tica l models to predict the accurate large deformation shapes of 

thin c ircu lar laminates under quasi-static  point loads. To obtain 

accurate large deformation shapes of these thin c ircu lar laminates, a 

f in i te  difference and a f in ite  element model is proposed in this

thesis. As discussed e a r lie r , several investigators have shown that the 

damages in thin composite laminates due to low velocity impact loads are 

s im ilia r  to the damages due to equivalent quas i-s ta tic  loads, therefore 

in both the models proposed here, low velocity  impact loads are replaced 

by equivalent quasi-static  loads. These models are b r ie fly  discussed in 

the following section.

1.4 Proposed Methods of Analyses

In the present work an attempt was made to obtain simple analytical

models for the large deflection analysis of thin c ircu lar quasi­

isotropic laminates under the quasi-static  point loads. The f i r s t  model 

proposed here is a plate-membrane coupling model. This model does not 

have the constraining assumption that the deformed shape of the plate  

should be identical to the deformed shape of the plate determined by the 

small deflection plate solution. The plate-membrane coupling model 

proposed here assumes that the e ffe c t of flexura l anisotropy of the 

a x ia lly  quasi-isotropic laminates is small and the plate behaves 

f le x u ra lly  iso trop ic .

1 .4 .1  Plate-Membrane Coupling Model

A thin plate undergoing large deformations can be decomposed into 

two problems: f i r s t ,  a plate with shear and flexura l stiffnesses but no
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mid-plane extensional s tiffn ess , second, a plate with extensional 

s tiffn e s s , but no shear and flexural stiffnesses (membrane). Solutions 

of these two problems when coupled together w ill y ie ld  complete 

knowledge of displacements in quasi-isotropic laminates undergoing large 

deformations.

Solution of the f i r s t  problem is  the well known small deflection  

plate analysis [2 7 ]. The second problem which is the analysis of 

c ircu la r membrane subjected to axisymmetric loading is more complex in 

nature, as i t  involves geometrical non linearity . The problem of 

c ircu la r membrane subjected to surface and edge loads has been studied 

by many investigators. Hencky [29 ], Dickey [3 0 ], and Shaw and Perrone 

[31] determined the deflections of a uniformly loaded membrane. 

Goldberg and Pifko [32] and Weinitschke [33,34] employed power series 

approaches to obtain the solutions of annular membranes. In addition to 

power series method Weinitschke [33,34] presented an integral equation 

approach to the solution of annular membranes subjected to surface and 

edge loads. Callegari and Reiss [35] studied the axisymmetric 

deformations of c ircu lar membranes subjected to uniform normal pressure 

by using the shooting method. The l ite ra tu re  review indicates that 

lim ited  numerical solutions are availab le  for the nonlinear membrane 

problems. Furthermore these solutions are lim ited to the c ircu lar  

membranes subjected to uniform load.

In the present work a more general formulation for the analysis of 

c ircu la r isotropic membranes subjected to a rb itra ry  axisymmetric loading 

is  presented. In th is formulation a single nonlinear governing equation 

in terms of rad ia l stress is used. The nonlinear governing d iffe re n tia l 

equation is replaced by a set of nonlinear algebraic equations using
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f in i t e  difference technique. These nonlinear algebraic equations are 

numerically solved to obtain stresses and displacements.

By using the small deflection plate solution and the large 

deformation membrane solution in conjunction with the plate-membrane 

coupling model, the large deformation solution of the clamped c ircu lar  

quasi-isotropic plate subjected to quasi-static center point load is 

obtained.

The plate-membrane coupling model uses a f in i te  difference  

technique. A second analytical model is proposed in this work, to 

obtain the large deformation solutions of c ircu lar laminates uses a 

f in i te  element method. The f in i te  element formulation presented here is  

based on an appropriate lin eariza tio n  of strain displacement relations  

and uses an ite ra tiv e  method of solution. The formulation includes the 

effects  of geometric non linearity .

To study the geometric nonlinear problems many investigators [36— 

44], used the energy approach, in which the nonlinear strain displace­

ment re la tion  is  linearized  by equivalent lin eariza tio n  technique. 

However, e a r lie r  investigators have ignored the effects of inplane 

displacements in the formulation. This discrepancy was pointed out by 

Prathap and Vardan [4 5 ], Sarma and Vardan [4 6 ], Prathap and Bashyam 

[4 7 ], and Prathap [4 8 ]. However, so far no attempt has been made to 

include the inplane displacements in the f in ite  element formulation of 

the c ircu lar plate subjected to a center point load and undergoing the 

large deformations.

The reason for ignoring the effects of mid-plane displacements by 

e a r lie r  investigators may have been due to complexity of the nonlinear
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f in i t e  element formulation. In the present f in i t e  element formulation 

the discrepancy of ignoring inplane displacements is  removed and a 

complete f in i t e  element formulation which includes inplane displacements 

is  presented. The large deformation solutions of clamped c irc u la r  

plates subjected to central point loads obtained by using the p la te -  

membrane coupling model, and the f in i t e  element model, are compared. 

Experimental v e r ific a tio n  of the plate-membrane coupling model and the 

f in i te  element model is also presented.

The second objective of this research is  to develop a theoretical 

model to study the back face spalling phenomenon in thin composite 

laminates under low-velocity impact type point loads. Elber [ 8 ] 

conducted series of tests on thin e igh t ply T300/5208 quasi-isotropic  

graphite/epoxy laminates. He showed that the damage mode, in actual 

impact tests a t  ve lo c ities  around 5 m/s, was very s im ilar to the damage 

made in the s ta tic  tests. He postulated th a t the massive back face 

spalling which often is the f i r s t  v is ib le  sign of damage in laminates is  

re lated  to the low peel-mode fracture toughness in b r i t t le  resins and 

that i t  is trackable by s ta tic  analysis. In the present work, th is  

phenomenon of the back face spalling is explained by developing a simple 

ana ly tica l model based on the quasi-s ta tic  analysis . The model uses the 

large deformation shapes of the c ircu la r laminates in conjunction with 

the fracture mechanics princip les . This model is  verified  by conducting 

the back face spalling  experiments on thin composite laminates.

1.5 Layout of Presentation

In Chap. 1, the problem of low ve loc ity  impact in graphite/epoxy 

composites is  discussed. The phenomenological aspects of the problem,
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such as the large deformation behavior, the back face spalling etc . are 

introduced. The relevant lite ra tu re  on the study of the low velocity  

impact problem emphasizing the deformation mechanics and the back face 

spalling phenomenon, is reviewed. Against this background the present 

methods of analyses to study the deformation mechanics and the back face 

spalling phenomenon in thin composite laminates under quasi-static point 

loads are proposed.

Chapter 2 presents a small deflection plate analysis for a clamped 

circu lar quasi-isotropic p late . A method for modeling fle x u ra lly  

anisotropic quasi-isotropic plate as an isotropic plate having the 

flexural s tiffness components equivalent to the flexural stiffness  

components of the quasi-isotropic plate is presented. A f in i te  

difference method for computing displacements is described. The 

numerical results for the plate deformations, obtained by using the 

f in i te  difference method are compared with the exact solution.

In Chap. 3, a general analysis of c ircu la r isotropic membranes with 

clamped peripheral edges, subjected to a rb itra ry  axisymmetric loading is  

presented. A single governing equation in terms of radial stress is  

derived. The solution of th is nonlinear governing equation is presented 

by using the f in i te  difference method in conjunction with Newton-Raphson 

method.

Chapter 4- presents the plate-membrane coupling model to study the 

large deformation behavior of clamped c ircu la r p lates. The model uses 

the plate solution (Chap. 2) and the membrane solution (Chap. 3 ), in 

conjunction with a coupling p rinc ip le . The numerical results obtained 

by using the plate-membrane coupling model for clamped c ircu lar
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laminates undergoing the large deformations are presented. These 

numerical results are compared with the classical solution.

In Chap. 5, a f in i t e  element model which uses appropriate 

lin e a riza tio n  of strain-displacement re lations is  presented. The model 

is  based on a varia tion al technique and uses the princip le  o f minimum 

potential energy. The f in i t e  element model is  then used to obtain the 

large deformation solution of clamped c ircu la r laminates subjected to 

central point loads. The solutions obtained by the f in i te  element model 

and the plate-membrane coupling model are compared.

In Chap. 6 , p late mechanics experiments are described. The 

experimentally obtained large deformation shapes and the load-deflection  

curves of thin quasi-isotropic clampled c ircu la r laminates are compared 

with those obtained by using the plate-membrane coupling model (Chap. 4) 

and the f in i te  element model (Chap. 5 ).

Chapter 7 presents the back face spalling model. The back face 

spalling model is  developed by using the large deformation shapes of 

th in c ircu lar laminates in conjunction with fracture mechanics 

princ ip les . The ana ly tica l back face spalling model is  v e r ifie d  by 

conducting back face spalling experiments on thin composite laminates. 

Several a lte rn a tive  approaches to reduce the back face spalling in 

composite plates are discussed.

F in a lly , in Chap. 8 , a summary of the highlights of the present 

work and some possible directions fo r fu rther study of low velocity  

impact in composites are presented.
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Chapter 2 

SMALL DEFLECTION PLATE ANALYSIS

2.1 Introduction

In Chap. 1, a plate-membrane coupling model was introduced to 

obtain the large deformation behavior of quasi-isotropic laminates. The 

plate-membrane coupling model requires a small deflection  p late solution 

and a large deflection  membrane solution. In th is  chapter the small 

deflection p late analysis for a clamped c irc u la r quasi-isotropic plate  

is  presented. To develop a simple one dimensional an a ly tica l model, 

quasi-isotropic plate is  modeled as an isotropic plate with the flexural 

s tiffness  components equivalent to the flexura l s tiffness  components of 

the quasi-isotropic p la te . A f in i t e  difference method for computing 

displacements is  described. A study to establish the convergence 

characteris tics  of the f in i te  difference method is  then presented. The 

numerical resu lts  for the plate deformations, obtained by using the 

f in i t e  difference method are compared with the exact so lution .

2.2 Plate Configuration

Figure 2.1 shows an axisymmetrically loaded clamped c irc u la r p la te , 

with thickness h and radius a. The p late  was a quasi-isotropic  

laminate of T300/5208 graphite/epoxy material with stacking sequence 

[4 5 /0 /-4 5 /9 0 ]s . The material properties of the laminate are given in 

Table 2 .1 .

15
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y

(a) circular plate
p(r) w.(r)

»z,w
(b) loading and deformation

Fig. 2.1 Plate Configuration
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2.3 Assumptions

The small deflection plate theory, generally a ttribu ted  to

Kirchhoff and Love [49 ], is used here with the following assumptions:

1. The plate is in i t ia l ly  f la t ,  i . e .  the plate has no in i t ia l

curvature.

2. The thickness of the plate is small compared to its  other

dimensions.

3. The deflections are small compared to the plated thickness.

(Maximum deflection -to -p la te  thickness ratios of 1/15 to 1/10 

are considered small)

4. The slopes of the deflected middle surface are small compared

to unity. (This follows from the assumption 3 above)

5. The deformations are such tha t, s tra ig h t lines in i t ia l ly  normal

to the middle surface, remain s tra ig h t and normal to the middle 

surface, ( i .e .  transverse shear strains are not permitted)

6 . The material has the same e la s tic  modulus in tension and in

compression.

7. The component of stress normal to the midsurface, az , is

neg lig ib le .

8 . The strains in the middle surface, produced by inplane forces, 

are neglected.

9. The plate is assumed to be f le x u ra lly  isotropic, even though a 

quasi-isotropic plate is  anisotropic in flexure.
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2.4 The Governing D iffe re n tia l Equation

In th is  section the governing d iffe re n tia l equation for axisym- 

metrical bending of a clamped c irc u la r plate subjected to a rb itra ry  

axisymmetric loading and undergoing small deformation is  presented.

Figure 2 .2  shows an in fin it is im a l element abed cut out from the 

plate by two cy lindrica l sections ab and cd and by two radial sections 

ad and be. Consider the equilibrium  of an element abed. The couple 

acting on the side cd of the element is

Mp r  d9 ( 2 . 1 )

where Mp is  the radial moment per un it length. The corresponding couple 

on the side ab is

dMr
(Mr  + l r ~  d r  ̂ + d r  ̂ d0 ^2 ’ 2 ^

Couples on the sides ad and be of the element are each M0  dr 

where M0  is  the tangential moment per u n it length. The components of 

these couples in plane rz are each M0  dr sin (-^ ) and fo r small 

d9, sin (-Sy) . Therefore, these couples give a resu ltan t couple

in the plane rz equal to

M0  dr d6  (2 .3 )

Denoting Q(r) as the shearing force per un it length of the 

cylindrica l section of radius r ,  the to ta l shearing force acting on the 

side cd of the element is  Q (r )  r  d9, and the corresponding force on 

the side ab is  [Q ( r ) + d r] (r  + dr) d9, these forces give a

couple in the rz plane equal to
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Q(r)+dQ(r)

0

A/1 + dM

0 — d 0

Fig. 2.2 Equilibrium of the Plate Element
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Q(r) r  d9 ^  + (Q (r )  + ( r  + dr) d0 ^  (2 .4 )

Neglecting the th ird  and higher order terms in Eq. (2.4) the

resu ltan t couple in the rz plane equal to

Q (r )  r  d0 dr (2 .5 )

Summing up the moments, the equation o f equilibrium  of the element

abed:

dM
(M + ^ L  dr) (r+dr) d0 -  Mr  r  d0 -  M@ dr d0 + Q(r) r  d0 dr = 0 (2 .6 )

neglecting the th ird  and higher order terms, one has,

dM
Mr + 1 T  r  " M 0  + Q(r) r  = 0  (2 * 7)

Relations between curvatures and moments for pure bending, in

cy lindrica l co-ordinate system are given by [2 7 ],

Mr  = - 0 [ ^  + ^ ]  ( 2 . 8 )
dr

Me = - 0  [ I ^ + v ^  (2 . 9)
dr

where D is a flex u ra l modulus of the iso tro p ic  p late  and is given by

D = ---------------------------------------------------------(2.10)
1 2  ( l V )

where E is the Young's Modulus and v is  the Poisson's ra tio  of the 

isotropic p la te .

Substituting Eqs. (2.8) and (2 .9 ) in to  Eq. (2 .7 ), the governing

d iffe re n tia l equation for the c ircu la r p late  subjected to axisymmetric

loading is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation (2.11) is a governing d iffe re n tia l equation fo r the 

c ircu lar isotropic plate with the flexural modulus D and subjected to 

a rb itra ry  axisymmetric loading. Denoting Deg as a flexu ra l modulus of 

the quasi-isotropic c irc u la r plate the governing d iffe re n tia l Eq. (2 .11) 

fo r the quasi-isotropic c irc u la r  plate was w ritten  as:

d3w , l d 2w 1 dw _ Q(r)
^  1 1

where Q(r) is  a shear force per u n it length a t  any radius r  and can be 

obtained as (F ig . 2.3)

2 n r  Q(r) = 2 *  I  p U )  d? (2.13)

where p (5 ) is  the in te n s ity  of loading a t  any radius I .  Dec. in Eq. 

( 2 . 1 2 ) ,  is  an equivalent flexu ra l modulus fo r the quasi-isotropic  

laminate. The equivalent modulus Deq, can be obtained by equating 

bending energy of the quasi-isotropic laminate and an equivalent 

isotropic p la te . A d e ta il derivation to determine the equivalent 

flexura l modulus Deq, is presented in the next section.

2.5 Derivation o f the Equivalent Flexural Modulus Deq

Laminate extensional, coupling, and bending stiffnesses were 

calculated by using classical laminate plate theory [50] for a [4 5 /0 /-  

45 /90 ]s quasi-isotropic laminate with e la s tic  properties given in Table 

2 .1 . The extensional s tiffn ess  is  independent of the polar angle 0 

(see Fig. 2.1) and is  constant over the e n tire  plate domain. This 

indicates th a t the laminate behaves perfectly  isotropic fo r membrane and 

inplane loadings.
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Since the laminate is  symmetric, the co e ffic ien ts  of the coupling 

stiffn ess  are found to be zero. The laminate bending s tiffn ess  depends 

on 0. However, an equivalent bending s tiffn ess  which is  independent 

of 0  can be determined by equating the flex u ra l s tra in  energies of the 

clamped c irc u la r quasi-isotropic laminate and an equivalent c ircu lar  

isotropic p la te .

For a c irc u la r quasi-isotropic laminate the to ta l s tra in  energy in 

bending is

Ub = 7  Z  <m*T r  dr de (2.14)

where

( M K

l r r
(M) = JM0 and {<} = *

C
D

( Mr 0 Kr 0I /

Mr , Mg, and Mr 0  are moments and icr , tcQ, and icr 0  are the

corresponding curvatures. For the quasi-isotropic laminate the moments 

and curvatures are re la ted  as

{M} = CD] {<}  (2 .15)

where

D 1 1 ° 1 2 °16
CD] =

° 2 1 ° 2 2 °26

°61 °62 °56

substitution of Eq. (2 .15) in to  Eq. (2 .14) y ie ld s ,
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ub = \  {k}T CD] {k }  r  dr d 0  {2 *17)

Equation (2.17) can be expanded as

ub - 1 / f  c4  D11 + 2 V Ke D12 + 2 Kr Ke °16

+ 2  S e  Ke D26 + Ke ° 2 2

+ * 2 0  Dgg] r  dr de (2 .18)

The co e ffic ien ts  D ^ , Dig, D2 5 , and Dgg in the Eq. (2.18) are 

a l l  known functions of 0 [50 ]. Assuming that the curvatures are

functions of r  alone, then the integration over 9 in Eq. (2.18) can be

carried out and Eq. (2 .18) can be w ritten  as

^b ^ r  D11 + 2  Kr  Ke °12 + 2  Kr0 K9 °16

+ 2  * r 8  k 8  °26 + 4  ° 2 2

+ 4 s  D6 6 ] r  dr (2 ' 19>

where

Di j  '  T i  fo *  Di j  d9; 2- and 6

The bending energy of an isotropic p la te  with a flexura l modulus 

Deq> a Poisson's ra tio  o f vgC] and curvatures, <r , kq, and tcr 0  (same 

as that of the quasi-iso trop ic laminates) can be w ritten  as
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Jb (isotropic plate) = |  / 2*  l < \  Deq + 2 * r kq veq Dqq

+ 4  Deq + 4 e  V  r dr de (2' 20)

The flexu ra l modulus Deq and the Poisson's ra tio  v are 

independent o f 0. Hence integrations on 0 can be carried out and 

Eq. (2.20) can be w ritten  as,

Ub (isotropic plate) = ^  O 2 Deq + 2 <r  r 9 vqq Deq

+ 4  Deq + 4 e  H r * )  Deq] r dr (2' 21)

For the same a rb itra ry  curvatures, <r , <Q, and < r 0  on the composite 

laminate and the isotrop ic  p la te , the bending s tra in  energies must be 

the same because of the assumed energy equivalence. Hence comparing 

curvature c o e ffic ie n t of Eqs. (2 .19) and (2 .21) equivalent bending 

s tiffn ess  Deq and v Poisson's ra tio  can be determined as,

>eq '  Jo2" D11 de (2' 22)

%  Daq =-21 ^  D12 de !2' 23>

= -5 ^ d 9  (2 .24)eq 2 it o 2 2

H r 1 ) Deq -  T5 4 "  ° 6 6  de <2' 25>
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I f  c ircu la r quasi-isotropic laminates were fle x u ra lly  iso tro p ic , 

then in tegra ls

■B I ?  D16 d 9  a"d SE C  D26 d 9  <2‘ 26>

would be equal to zero. However, in the c ircu la r quasi-isotropic  

laminate under consideration, in tegra ls  represented by Eq. (2.26) were 

nonzero. However, for the m aterial properties presented in Table 2 .1 , 

in tegra ls  were found to be about 2.5 percent of d9 and

hence neglected in this analysis.

Equations (2.22) through (2 .25) represent four equations, with two 

unknowns, Deq and vgq . The f i r s t  two equations, Eqs. (2 .22) and 

(2 .2 3 ), are s u ff ic ie n t to evaluate the two unknowns Deq and v . The 

th ird  equation, Eq. (2 .2 4 ), is  essen tia lly  the same as Eq. (2.22) 

because of symmetries. For the material properties in Table 2 .1 , the 

value of Deq and v were found to be 5.688 N-m, and 0.31, 

respective ly . These values of Deq and v , when substituted into  

the la s t equation, Eq. (2 .2 5 ), s a tis fie d  the equation exactly .

For those ply properties mentioned in Table 2 .1 , the value of 

equivalent Young's modulus Eeq was obtained from an equivalent flexu ra l

modulus Deq as

Q • 12 • ( 1 - v f )
E   e q _  {2 27)
eq ^

and was found to be 53.3 GPa. This value of Eeq is  exactly the same as 

the inplane Young's modulus of the laminate obtained by using the ply 

properties in Table 2.1 and the classical laminate theory.
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2.6 Solution Method

The solution of the clamped c irc u la r plate problem via the 

classical method [2 7 ], is lim ited  to re la t iv e ly  simple p late load 

conditions. In simple loading cases shear force Q (r )  can be d ire c tly  

expressed as a function of r and since the governing equation, Eq. 2.12 

is  Euler equation, i t  can be solved to obtain a closed form solution for 

the transverse displacement w. However, i f  loading conditions are more 

complex, the analysis becomes increasingly tedious. In such cases 

numerical methods are used to obtain the solution of the problem. Among 

the numerical techniques presently a va ilab le , the f in i te  difference  

method and the f in i te  element method are most commonly used. In the 

present analysis the f in i t e  d ifference method is used. The solution of 

the plate problem using the f in i t e  element method is  described la te r  in 

Chap. 5. In the f in i te  d ifference method, the derivatives in the 

governing d iffe re n tia l equation are replaced by d ifference quantities a t  

selected points, called nodes. The d e ta ils  of the f in i t e  difference  

method are as follows:

The basic f in i t e  difference expressions follow  lo g ic a lly  from the 

fundamental rules of calculus [5 1 ] . For a continuous function w = f ( r )  

(F ig . 2 .4 ) , the f i r s t ,  second and th ird  derivatives of the displacement 

a t  any node n can be w ritten  by using the central d ifference method 

[52] as:

dw _ w(n+l) -  w (n -l)  
dr 2 • Ar (2.28)

dr

w(n+l) -  2  w(n) + w (n -l)

(Ar ) 2

w(n+2 ) -  2  w(n-t-l) + 2  w (n -l) -  w (n-2 ) 

2 • (Ar ) 3

(2.29)

dr
(2.30)
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Fig. 2

W

w= f(r)
ro

0

ArArArArArAr

4 Finite Differences for a Continuous Function w = f(r)
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The governing d iffe re n tia l equation is  then transformed to an 

algebraic equation, by substituting the appropriate f in i te  d ifference  

expressions. The solution of the d iffe re n t ia l equation thus reduces to 

the simultaneous solution of a set of lin e a r, algebraic equations, 

w ritten  for every nodal point.

2 .6 .1  Application of the F in ite  D ifference Method fo r the Solution of 
A rb itra r ily  Loaded Clamped C ircu lar Plate

To solve the governing Eq. (2 .1 2 ), the solution domain was

discretized into m regions and (m + 1) nodes. Denoting w (n), (n ),
.2 .3

— ^ (n ), and — ~ (n) as the f i r s t ,  second, and th ird  derivatives of 
dr dr

the displacement a t  the n node, the governing Eq. (2.12) was w ritten  as, 

a t any node n:

2 2 d w , > , 1  d w , » 1  dw
“ 3 (n) r “ T 7  (n) {n)dr n dr r n

_ fr n p U ) 5 d l  {7
0  r n D n n eq

F irs t, second, and th ird  derivatives of the transverse displacement 

w from the governing Eq. (2 .3 1 ), were replaced by f in i te  d ifference  

quantities given by Eqs. (2 .2 8 ), (2 .2 9 ), and (2 .3 0 ).

To sim plify the evaluation of the integral in the above equation 

the following assumption was made. Consider an i t l 1  region with  

r._^  < r  < r^ . Although the applied load varies w ithin the region 

r ._ j  < r  < r . ,  the load w ill be assumed to be uniform in th is  region 

with a value p^. The magnitude of p̂  is  assumed to be equal to the 

value of the load a t  the m id-point of th is  region, i . e . ,  a t
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r = ( r 1- + r ^ _ i ) l 2 .  As the number o f regions in the model become large, the 

size of each region decreases and hence the variation  of the load w ithin  

each region becomes in s ig n ific a n t. With th is  assumption the governing 

Eq. (2 .3 1 ), reduces to

2 .6 .2  Boundary Conditions

For the c irc u la r plate w ith axisymmetric loading the boundary 

conditions were

(a) Both the transverse displacement w and the slope dw/dr equal zero 

a t the clamped edge (r  = a ) .

(b) The slope dw/dr equal zero a t  the center (r  = 0 ) .

Using the governing Eq. (2 .32) in the form of f in i te  difference  

quantities a t each node and transforming the above boundary conditions 

in to  f in i te  difference q u a n tities , a set of simultaneous algebraic  

equations were obtained. This set contained numbers of unknowns that 

are equal to number of nodes in the solution domain. These algebraic  

equations were solved simultaneously, to obtain the transverse 

displacement a t  each node. To i l lu s t r a te  the method, a very simple 4 

region id ea liza tio n  was chosen. The d e ta ils  of the method are presented 

in the followng section, fo r th is  simple id e a liza tio n .

n 2  2

2  p (r  -  r  ) 
i= l  i  i  i - 1 (2 .32)
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2.7 I l lu s tra t iv e  Example

Consider a clamped c irc u la r quasi-isotropic plate with radius a 

and thickness h. The plate is  subjected to a uniform loading over the

region 0 < £  < 0 .5 . The objective is  to obtain the platea

displacements using the f in i te  difference method.

2 .7 .1  Problem Formulation

The solution domain 0 < < 1.0 is  d iscretized in to  4 regions and
Cl

5 nodes (see Fig. 2 .5 ) . At the node 0, the boundary condition is  slope 

•gp = 0. These conditions can be transformed into the f in i te

d ifference form as follows:

By using Taylor's  series expansion, the displacements a t  the nodes

( 1 ) and ( 2 ) can be w ritten as

w( 1) = w(0) + ^ f  (0) (0)   (2 .33)

w(2) = w(0) + ~p~ •gp (0) (0) (2 .34)
dr

2 
d wFrom the Eqs. (2 .33) and (2.34) by elim inating  terms — 7  (0) and using

d dr dwboundary condition, the slope -gp- equal zero a t r  = 0  or -gp- ( 0 ) = 0 ,

Eq. (2 .34) is  w ritten  as:

4 w (l) -  w(2) -  3 w(0) = 0 (2.35)

The governing d iffe re n tia l equation a t  any node n fo r the quasi­

isotropic p late is  (Eq. (2 .3 2 ))

d3w . 1 d2w .  1 dw ;  Pi ( r i  -  r i - l>(n) + 0  (n) -  —x —r— (n) -  2

dr* W U ' 7 ^  1 = 1
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p [-Fictitious Node

% - r & — * -¥  *  U — ©— J§— ©------------► r
-4  -3  -2  -1  0 1 2 3 41

Ar

z,w

Fig. 2.5 Four Region Idealization for the Plate Uniformly- 
Loaded Over the Region 0 <_ r/a <_ 0.5
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For the node no. 1 the f i r s t  and second derivatives can be 

expressed in the f in i te  difference form, by using central d ifference  

Eqs. (2.28) and (2.29) as:

dw _ w(2 ) -  w(0 ) fr>
W  ( 1 ) -------- 2 *'Ar (2 *36)

^  (1) = w.( 2 L -~..L y (1) + w(0) (2.37)
dr (Ar)

d3wThe th ird  derivative  i . e .  — 7  (1) can be obtained as follows:
dr

By using Taylor's series expansion the displacements a t the nodes

(2) and (3) are w ritten  as

w(2 ) = w (l) ( 1 ) (D  + -T T  A f  ( 1 ) (2.38)

w(3) = w (l) (1) + ( 2 ^ ) 2  ^  (1) + A -  (1) (2 .39)
1■ ar  dr dr

Eliminating ^  (1) from the Eqs. (2 .38) and (2.39) the following  

equation is obtained

2 3
2 w(2) -  w(3) = w (l) -  (Ar ) 2  ^ 4  (D  -  > 3  ^ 4  (D  (2.40)

dr dr

But from the Eq. (2 .37)

d2w (1) _ w(2 ) -  2  w (l) + w(0 )
dr^ (Ar ) 2
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.3
Substituting Eq. (2.37) into Eq. (2 .4 0 ), equation for — (1)  is

dr
obtained as follows:

-  3 w(2) + w(3) + 3 w (l) -  w(0) = d3w (1) (£ 41)

(Ar) 3 d ?

Using Eqs. (2 .3 6 ), (2 .3 7 ), and (2 .41) in Eq. (2 .3 2 ), a t  node no. 1, the 

governing Eq. (2.32) is

w [ y --------- + --------— 7 ~ — + wi  [ ~ ------- -— 2 + — “̂ 3^
2 r J  (Ar) r 1 (Ar) (Ar) r x (Ar) (Ar)

1 1 o i  P
+ » - [ -  — ------ + --------1 -  3 ] + w  [ 1 ] = --------1------ 2 - (2.42)

2 2 r 2 (Ar) r x (A r)2 (A r)3 3 (A r)3 2 ^  Deq

Using the central differences (Eqs. (2 .2 8 )—(2 .3 0 )) ,  a t the node no. 

2, the governing Eq. (2.32) is ,

W°   ̂ 2 (A r)3 '' + Wl ^2 r 2 (Ar) r £ (Ar) 2 (A r)3 '' ” 2  ̂ r £ (Ar)2 ''

P ( r 3 -  r ^  

eq

(2.43)

+ w [ -  J:------- + -------- -— j  ~ — i - j ]  + w [ ----- -— j ]  = — 2 T ~ D
3  2 r2 (Ar) r 0 (Ar)2 (Ar)3 4  2 (Ar)3 2  r 2 u

and a t  the node no. 3, using Eqs. (2 .2 8 )- (2 .3 0 ) ,  the governing Eq. 

(2 .32) is ,
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W5  in the Eq. (2.44) is  a displacement a t  f ic t i t io u s  node 5 (F ig . 

2 .5 ) . The boundary conditions a t  r  = a are, (-g-p) = 0 and w = 0 and 

can be expressed in the f in i t e  difference form as

^  (4) = = o (2.45)

or
w(5) = w(3) (2.46)

By using the Eq. (2 .4 6 ), Eq. (2 .44) is  w ritten  as

w, [ - ----- ^ - t ]  + w2  [-------------------

-

+ ----- -— *• + —
1  2 (Ar) 2  r 3  ( Ar) r 3  <Ar) (Ar)

+ w3  [ - ------- 1— ? + ---------------- + w4 --[-----
d r 3 (Ar) 2 (Ar)-5 2 r 3 (Ar) r 3 (A r p  (Ar)-5

/ 2 2 %p (r 2  -  r  )
= (2 47)

2  D*n3 eq

Lastly a t  the node no. 4 the displacement w = 0. Therefore

w(4) = 0 (2.48)

Thus Eqs. (2.35), (2.42), (2.43), (2.47), and (2.48) contains five
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unknowns, w (0 ), w ( l ) ,  w (2), w (3), and w(4) and can be solved

simultaneously to obtain the unknown displacements. A simple example 

problem is  presented here to i l lu s tra te  the above method.

Consider a clamped c irc lu ar p late of radius 25.4 mm and thickness

1.05 mm. Let flexura l modulus Deq, of the plate is  5.688 N.m. The 

displacements in the plate under uniform loading of in tensity  1 0 0 , 0 0 0  

N/m  ̂ over the region 0 < r  < 12.7 mm can be obtained as follows:

Since the plate radius is 25.4 mm Ar is  (25 .4 /4 ) = 6.35 mm. Also 

r l» r 2» r 3» anc* r 4 are mm> 12.70 mm, 19.05 mm, and 25.4 mm

respectively. Substitution of these values in Eqs. (2 .35 ), (2 .4 2 ),

(2 .4 3 ), (2 .4 7 ), and (2 .4 8 ), gives fiv e  simultaneous equations, which can 

be expressed in the matrix form as

-3 4 1 0 0 /  w(0 ) 1 A 0

1 2 -5 2 0 1 wCl) / p(Ar) 1

-4 13 - 8 -5 4 < w(2 ) I “ JY 8

0 -9 25 -3 -13 I w( 3 ) ( U eq 1 2

0 0 0 0 1 | w(4)J 0

(2.49)

or in concise form

[A] (w> = [F] (2.50)

where

p = 100,000 N/m2

Ar = 6.35 mm, and = 5.688 N-meq

From equation (2 .50) {w} is
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{w} = [A ] ' 1  [F ] (2 .51)

Solving equation (2.51) fo r {w}, the nodal displacement are found to 

be: w(0) = 0.076226 mm, w (l) = 0.06677 mm, w(2) = 0.038410 mm, w(3) =

0.005434 mm, and w(4) = 0 . 0  mm.

2.8 Convergence Study

To study the convergence of th is  method, the c ircu lar p late was

idealized in to  m number of regions with (m + 1) nodes. A systematic 

convergence study was then made by doubling the number of regions. The 

number of regions m, used in th is  convergence study were 4, 8 , 16, 32, 

60, and 64. Figures 2.6 and 2.7 present the re la tiv e  errors in the

maximum deflections normalized with respect to the exact central 

displacement, for the two d iffe re n t cases: case ( i )  uniformly loaded

plate and case ( i i )  a plate loaded uniformly over the regions 

0 < ^  < 0 .5 . The analysis indicated that about 60 regions were
a

necessary fo r a plate loaded uniformly over the region 0 < — < 0.5 and 

for a uniformly loaded plate to y ie ld  a solution which is w ith in  0 . 1  

percent of the exact solution.

2.9 Results and Discussion

In th is  section the central displacements obtained by using the

f in i te  difference method are compared with the exact so lution . Next 

deflected shapes of the plate obtained by using the f in i te  d ifference  

method, are compared with the exact so lution .

The comparison of the central displacements obtained by using the

f in ite  difference method and the exact solution is shown in Table 2 .2 . 

The percentage errors in the central displacements obtained by using the
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Fig. 2.6 Convergence Study for the Uniformly Loaded Plate
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rw m - exactRelative Error =
exact

eg
CD
C£L -3  _

Number of Regions, m

Fig. 2.7 Convergence Study for the Plate Uniformly Loaded 
Over the Region 0 <_ r/a <_ 0.5
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f in i te  difference method re la tive  to the exact solution were found to be 

0.055 percent and 0.072 percent for the uniformly loaded plate and for a 

plate loaded uniformly over the region 0 < < 0.5 respectively.a
Figures 2.8 and 2.9 show the percentage re la tiv e  errors in the deflected  

shapes obtained by using the f in ite  difference method and the exact 

solution, fo r the uniformly loaded plate and the plate loaded uniformly 

over the region 0 < — < 0 .5 . In both the cases maximum percentageCl

error is  w ithin 0 . 1  percent of the exact solution and occur a t  the 

center of the p late .

2.10 Concluding Remarks

In this chapter a numerical solution method to obtain the small 

deflection plate solution fo: a clamped c ircu la r quasi-isotropic plate  

was developed. The quasi-isotropic plate was modeled as an isotropic  

plate having the flexural stiffness components equivalent to those of a 

quasi-isotropic p la te . By using a f in i te  difference method, the plate  

governing d iffe re n tia l equation was replaced by a set of algebraic  

equations. These algebraic equations were solved simultaneously to 

obtain the transverse displacements for a r b itr a r i ly  axisymmetrically 

loaded clamped c ircu lar quasi-isotropic laminates. The numerical 

solution was found to be within 0 . 1  percent of the exact solution for a 

uniformly loaded plate and for a plate loaded uniformly over the region 

0 < < 0.5 by using 60 region id e a liza tio n .a

In order to study the large deformation behavior of the quasi­

isotropic p la te , membrane effects should be incorporated in the small 

deformation solution. The following chapter presents the large 

deflection membrane analysis.
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Fig. 2.8 Comparison of the Deflected Shape Obtained by
Using the Finite Difference Method and the Exact 
Deflected Shape for the Uniformly Loaded Plate
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Fig. 2.9 Comparison of the Deflected Shape Obtained by
Using the Finite Difference Method and the Exact 
Deflected Shape for the Plate Uniformly Loaded 
Over the Region 0 _£ r/a _< 0.5
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Table 2.1 -  E lastic Properties o f the Plate

Material Ejj

Modulus GPa 

E22 G12 Poisson ra tio

Gr/Ep lamina 131.0 13.0 6.4 0.34

Number of p lies  = 8 

Laminate thickness = 1.05 mm 

Stacking sequence: [4 5 /0 /- /4 5 /9 0 ]s

(Subscripts 11 and 22 correspond to the longitudinal and transverse
direction of f ib e r)
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Table 2.2 -  Comparison of Maximum Center Displacements for 
Uniformly Loaded Plate and for a Plate Uniformly 
Loaded Over the Region 0 < — < 0.5

Central transverse displacement w, 
a t r  = 0.

Type of 
loading

Present*
solution

Exact 
solution  
( re f .  27)

Uniform loading
4

0.015633 -Hi- 
eq

4
0.015625

eq

Uniform load over the 
region 0 < < 0.5

4
0.009994

eq

4
0.009987

eq

*0btained by using 60 regions idealiza tion
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Chapter 3 

LARGE DEFLECTION MEMBRANE ANALYSIS

3.1 Introduction

In Chap. 1, a plate-membrane coupling model was proposed to obtain  

the large deformation behavior of quasi-iso trop ic laminates under point 

loads simulating low-velocity impact. This model requires a small 

deflection  p late  solution and a large deflection  membrane solution. In 

the previous chapter a numerical method to obtain a small deformation 

solution for a clamped c ircu lar quasi-isotropic p la te , subjected to 

a rb itra ry  axisymmetric loading was developed. In this chapter a 

numerical method is  developed to obtain a large deflection membrane

solution. Again a quasi-isotropic c irc u la r laminate is  considered in 

the membrane analysis. This quasi-isotropic laminate has only

extensional s tiffn ess  but no shear and flexu ra l s tiffnesses. As pointed 

out in the previous chapter, quasi-isotropic T300/5208 c irc u la r

laminates with the stacking sequence of [4 5 /0 /-4 5 /9 0 ]s are a x ia lly  

iso tro p ic , i . e . ,  extensional stiffness of these laminates is independent 

of the polar angle (F ig . 3 .1 ) . Hence, these c ircu lar laminates, with  

only extensional s tiffn e s s , can be modeled as c ircu lar iso trop ic

membranes. In th is  chapter, a general analysis of c ircu lar iso trop ic  

membranes with clamped peripheral edges, subjected to a rb itra ry  

axisymmetric loading is presented. A single governing equation in terms 

of radial stress is  developed. The solution of th is nonlinear governing

45
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(a) Circular Membrane

p(r)

(b) Loading and deformations

Fig. 3.1 Membrane Configuration
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equation is  presented by using the f in i te  difference method in

conjunction with Newton-Raphson method. Three loading cases namely (a) 

uniformly loaded membrane, (b) a membrane with uniform load over an 

inner portion, and (c) a membrane with ring load are analyzed and the 

results are compared with the classical solution.

3.2 Membrane Configuration and Strain-Displacement Relations

Figure 3 .1(a) shows an axisymmetrically loaded clamped membrane 

with thickness h and radius a . Since the deflection surface is 

axisymmetrical, the displacement can be resolved into two components: 

(1) a component u in the rad ial d irec tion , and (2) a component w 

perpendicular to the plane of the membrane. From large deflection  

theory [2 7 ], strain-displacement re lations for an isotropic membrane are 

obtained as follows:

Consider an element AB of length dr as shown in Fig. 3 .2 . The 

radial s tra in  sr  from Fig. 3 .2  can be expressed as

(u + ^ d r )  -  u ds -  dr (3 .1 )£ or orr

but

ds -  dr  
3r

(3 .2 )

Substituting Eq. (3 .2 ) into Eq. (3 .1 )

(3 .3 )

The tangential s tra in  eQ from the Fig. 3.3 is
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u+du

z,w

Fig. 3.2 Radial Strain Due to Large Deflections
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„ _ (r  + u) d9 -  r  d6 _ u ^
0 ircTe r  1 J

By using Eqs. (3 .3 ) and (3 .4 ) ,  the radial and tangential stresses 

are: E

°r ■ TTTTT C  * i  O 2 + veq 7] ™
veq

E
65 B  + vQo^  + - | i ( ^ ) 2] (3.6)

eq'
ae ~ 7 ^ 7 ? )  Lr  T veq W  T T "  ^ r

where Eeg and v are the equivalent Young's modulus and Poisson's

ra t io  of the isotropic membrane and were calculated by using the

technique presented in Chap. 2.

Note that the assumption of large deflection but with small strains  

is made in th is  formulation.

3 .2 .1  Equilibrium Equations

The equation of equilibrium  in the rad ial d irection  is  obtained as 

follows:

Consider stresses on an in fin ites im a l element abed of un it

thickness as shown in Fig. 3 .3 . Summing the forces in the rad ial

d irection  along the rad ia l lin e  (0  + -^ )  one has

da
(ar  + dr) (r  + dr) d0 -  r d0 -  aQ dr sin

HR
-  (o0 + d0) dr sin —̂  = 0 (3 .7 )

Since d0 is small, sin (-^|) may be replaced by ( d̂ ) .  By 

neglecting higher order terms the equation of equilibrium  in rad ial 

direction  is
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a r  "  a 9  +  r  " ^ r -  =  0  ( 3 , 8 )

The equation of equilibrium in the d irection  perpendicular to the 

plane of the membrane, with general axisymmetric loading p (r) is  

obtained as follows:

Consider a stretched c irc u la r membrane element with general 

axisymmetric loading p (r) as shown in the Fig. 3 .4 . Consider the free  

body equilibrium  of the deflected membrane, i . e .  the v e rtic a l component 

of the reaction must equal the to ta l load. Therefore from Fig. 3.4

2 it r  h ar  sin a -  f Q p U ) 2 it ? d? = 0 (3 .9 )

dwFor small a, sin a = tan a =

Therefore the equation of equilibrium  in the d irection  per­

pendicular to the plane of the membrtane with general axisymmetric 

loading p (r ) is

2 it r  h ar  ^  p (?) 2 rc £ d? = 0 (3.10)

The stress and s tra in  displacement re la tio n s  (Eqs. ( 3 .3 ) - ( 3 .6 ) ) and 

equilibrium  (Eqs. (3 .8 ) and (3 .1 0 )) when combined form four nonlinear 

p a rtia l d if fe re n t ia l  equations with four unknowns ar , ct0, u, and w.

To obtain a numerical solution of these governing equations the 

conventional approach is  to reduce these four nonlinear equations to two 

equations containing only u and w displacements. This conventional 

approach is  applicable when u and w displacements are of the same order 

of magnitude, fo r example, a case of uniformly loaded membrane as shown
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by Shaw and Perrone [3 1 ], and Kao and Perrone [53 ], However, the 

numerical solution of a rb itra ry  axisymmetrically loaded membranes cannot 

be obtained by using the conventional approach because of the large 

differences in magnitudes of u and w displacements. Due to these large 

differences the two governing equations involving u and w displacements 

are d i f f ic u l t  to s a tis fy . Hence an a lte rnate  formulation o f the 

membrane problem is  presented below.

3 .2 .2  Derivation of a Governing Equation

Using the stress and s tra in  displacement relations (Eqs. (3 .3 ) -  

(3 .6 ) ) ,  the radial displacement u was expressed as

u = T ~  (G0 " veq ar } (3 *U )eq

The term -gH. was obtained by d iffe re n tia tin g  the radial displace­

ment u, with respect to r .

—  = ( a  - v a  ) + 0 - v  ̂r) (3 12)dr ia 9 eq V  eq l r Jeq  ̂ eq

The stra in  in the rad ial d irection  er  was expressed in terms of 

the radial and tangential stresses and by using the strain-displacement 

re lations (Eqs. (3 .3 ) and (3 .4 ) ) ,

eq

By using ^  from Eq. (3 .12) in  equation (3.13) the following  

re lationship was obtained:

( . ,  -  . r )  1  ( £ ) *  .  0  ( 3 . 1 4 )
eq eq

From the equation of equilibrium  in rad ial direction (Eq. ( 3 .8 ) ) ,
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Substituting Eq. (3.15) in Eq. (3.14) and rearranging the terms the 

follow ing re lationsh ip  was obtained:

dc_ da i  j  n

-  0 <3- 16’eq

daQ
Further, -gp— was obtained by d iffe re n tia tin g  the equation of 

equilibrium  (Eq. (3 .8 ))  in radial d irection  with respect to r ,  as

dafl da d2a

dae
Substituting th is  value of (-gp-) in governing Eq. (3 .1 6 ), the 

following re lationsh ip  was obtained:

2
d Cf d ^ a ■ A

'  ) + | ( £ ) 2 = 0 (3-18)
eq dr

By using equation of equilibrium (Eq. (3 .10)) in the direction
/ Hlj \ p ,

perpendicular to the plane of membrane, was w ritten  as

hw2 /n  P(5) 2 11 5 dE 2
( $ 5  = [ - A  R------------  (3 .19)'■or-' L r i r T o  J

Substituting th is  value of in governing equation, Eq.

(3.18) gives
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Equation (3.20) is a nonlinear d iffe re n tia l equation in terms of 

the radial stress that governs the large deflection response of the 

membrane with a rb itra ry  axisymmetric loading. Several investigators  

obtained the governing equation in terms of the radial stress ar , 

sim ilar to Eq. (3 .2 0 ). Dickey [30] and Weinitschke [33] presented the 

d iffe re n tia l equation for uniformly d istributed load. Callegari and 

Reiss [35] obtained the d iffe re n tia l equation for a membrane with an 

a rb itra ry  axisymmetric loading.

To solve the governing equation (3.20) for the radial stress, 

Dickey [30] used integral equation method, Weinitschke [33] used 

integral equation and power series approaches and Callegari and Reiss 

[35] used the shooting method. In contrast, here a numerical method of 

solution is  proposed. The nonlinear d iffe re n tia l equation was replaced 

by a set of nonlinear algebraic equations using difference quotients. 

Then using the Newton-Raphson method [5 2 ], these nonlinear algebraic  

equations were solved numerically to obtain the stresses and 

displacements. The deta ils  of the solution method are as follows:

The solution domain was discretized into m regions and (m + 1) 

nodes. Denoting <?r (n) as the rad ia l stress a t the nth node, the 

governing equation, Eq. (3.20) was rew ritten  as, a t  any node n:

3.3 Solution Method

r ~  f 3 3F "  (n) + r

r, da
(n )]  + |  [ r  h a ln )  n n

] = 0 (3.21)
eq

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

To sim plify the evaluation of the in teg ra l in the above equation, 

the same assumption as discussed in previous chapter w ill be made. 

Consider an ith  region with < r  < r^ . Although the applied load

varies w ithin the region r._^  < r < r . , the load w ill be assumed to be 

uniform in th is  region with a value of p.,-. The magnitude of p̂  is  

assumed equal to the value of the load a t  the midpoint of this region,

i . e . ,  a t  r = (r^ + r.,-_ i)/2 . As the number of regions in the model 

become large, the size of each region reduces and hence the variation of 

the load within each region also becomes in s ig n ific a n t. With this  

assumption the governing equation, Eq. (3 .2 1 ), reduces to

F irs t  and second derivatives of the rad ia l stress from the 

governing Eq. (3 .22) were replaced by using the central f in i te  

differences as:

r  da d a

r ~  t 3 -3 T  (n) + r n ~ r  (n ) leq dr

(3.22)

dr {n) ZTaFT

dar  ar  (n+1) -  ar  (n-1)

and

d a
— f  (n) =

ar  (n+1) -  2 ar  (n) + (n-1)

dr
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3 .3 .1  Boundary Conditions

For the c ircu la r isotropic membrane with axisymmetric loading the 

boundary conditions were:

1. Both the radial displacement u and the transverse displacement 

w equal zero a t  the fixed edge (r  = a ) .

dw2. The radial displacement u and the slope -gp- equal zero a t the 

center (r  = 0 ).

Since the governing equation, Eq. (3.20) was derived in terms of 

the radial stress, the transformation of boundary conditions was done by 

using stress and strain-displacement re lations (Eqs. (3 .3 )—(3 .6 )) and 

equilibrium  equations, Eqs. (3 .8) and (3 .1 0 ). When u = 0 and r = a are 

substituted into equation (3.11) fo r rad ia l displacement, the boundary 

condition no. 1 above can be transformed to

Using th is boundary condition in the equilibrium  equation in the radial 

direction (Eq. ( 3 .8 ) ) ,  Eq. (3 .2 3 ), was further transformed to

The boundary condition (2) above is a statement of symmetry about r = 0, 

the center of the membrane. This symmetry condition can be expressed in 

terms of the rad ial stresses,

(3.23)

a t  r  = a (3.24)

dar
-gp—  0, a t r  = 0 (3.25)

Using the governing equation, Eq. (3.22)
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da. d2a - n p. (r? -  r? . )  2

—  t 3 S T  (n) + r n — ? {n) 1 + F  t f ,  r  h a in) * = 0eq ar i=± n r

and boundary conditions (Eqs. (3 .24) and (3 .2 5 )) in the form of f in i t e  

difference quotients a t  each node, m + 1, nonlinear algebraic equations 

were obtained. These algebraic equations contained m + 1 unknowns, 

v iz . ,  ar (0) . . .  ar (m) . By using the Newton-Raphson technique as 

described in Appendix A, these (m+1) equations were solved to obtain the 

rad ial stress a t  each node.

dorOnce the rad ia l stresses were known, a t each node, the ^ p - a t

each node was calculated by using the f in i t e  difference method. Using
dar

these values o f or  and -gp- in Eq. (3 .8 ) ,  the tangential stress aQ

a t each node was obtained. By using Eq. (3 .1 1 ), the radial displacement
dwu a t  each node, was obtained. The slope -gp- a t  any node was obtained 

using Eq. (3 .1 9 ). Then using the boundary conditions,

w = 0 a t  r  = a ,

■gp = 0 a t  r  = 0,

dwand the f in i t e  d ifference representation of the slope, -gp , a t  each 

node, (m + 1) simultaneous equations with w(0) . . . .w(m) unknowns, 

were obtained. These (m + 1) equations were then solved to obtain 

transverse displacement w a t each node. The deta ils  for a simple four 

region id ea liza tio n  to obtain rad ia l stresses a t each node are presented 

next:
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3 .3 .2  I l lu s t r a t iv e  Example

Consider a clamped c ircu lar membrane w ith radius a and thickness h. 

The membrane is subjected to a uniform loading over the region 

0 < < 0 .5 . The obj’ective is  to obtain the membrane displacements
cl

using the f in i t e  d ifference method.

The solution domain 0 < £■ < 1.0 is  d iscretized into 4 regions and
dor5 nodes (F ig . 3 .5 ) .  At the node 0, the boundary condition is  -gp- = 0 

(Eq. (3 .2 5 )) .  This boundary condition can be w ritten in the f in i t e  

d ifference form using Eq. (2.35) as

4 ffr(l) - 3 <Tr(0) - crr(2) = 0 (3.25)

The governing d iffe re n tia l equation a t  any node n for the membrane

is (Eq. (3 .2 2 ))
2  2  . 2 2 , 2  r  d a  d a , n p. ( r .  -  r .  -,)

M + r" ^  'n)1 + *  {A  \  " °r'<" 1 = °eq dr i= l  n r

For the nodes 1, 2 and 3 the f i r s t  and second derivatives can be 

expressed in the f in i t e  difference form, and by using central difference  

equations, Eqs. (2 .28) and (2 .2 9 ), Eq. (3 .22) is  

At the node 1:
2a 2^

-  0.5 a (0) a ? (l) -  2 c j ( l )  + 2.5 a (2) a ? ( l ) = --------------- (3 .27)r  r  r  r  r  m  ^

At the node 2:

crr ( l )  <£(2) -  8 a j(2) + 7 ar (3) aj(2)

2 2 ,
P a
 M  (3.28)

32 h
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Fig. 3.5 Four Region Idealization for the Membrane
Uniformly Loaded Over the Region 0 ±  r/a _<_ 0.5
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At the node 3:

1.5 0 . ( 2 ) o?(3) -  6  c?(3) + 4.5 op(4) <£(3) (3.29)

n2 a 2 cP a  eq
216 h2

At the node 4, the boundary condition (Eq. 3.24) needs to be 

s a tis fie d . This condition is

dar
° r (4) (1‘ W  + r 4 T T  (4) = 0  ( 3 ' 3 0 1

da
The -3 - ^  (4) in the Eq. (3.30) can be obtained as follows: dr

Using the Taylor's series expansion or (3) and ar (2) can be 

w ritten as:

®r <3> -  <y(4) ■ ‘T n i r  (4) ~ p r  (4) (3 -31)

°r (2) = ° r (4) - T T  3 T  (4) + T T  (4) (3‘ 32)

By elim inating — (4) terms from the Eqs. (3.31) and (3.32) and 
da dr da 

solving for -gp— (4 ) ,  the -gp— (4) is  obtained as follows:

-  4 a (3) + a (2) + 3 a ( 4 )  dar
- - - - - - - - - - - - - - - - - - - 2  •  (Ar)- - - - - - - - - - - - - - - - =  " H r-  ( 4 )  { 3 * 3 3 )

Substituting Eq. (3.33) into Eq. (3.30) the equation a t  the node 4 is
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2 <xr ( 2) -  8 ar (3) + 0 .(4 ) (6 + (1 -  v ) )  = 0 (3 .34)

Equation (3 .2 6 ), (3 .2 7 ), (3 .2 8 ), (3 .2 9 ), and (3.34) are the f iv e  

nonlinear algebraic equations and they contain five  unknowns f f ( 0 ) ,  

a r ( l ) >  crp (2 ) ,  ar (3 ) ,  and or (4 ). These nonlinear algebraic equations 

are solved by using Newton-Raphson's method (see Appendix A) to obtain 

the unknown radial stress at each node. As discussed e a r l ie r ,  once the 

rad ia l stresses were known a t each node, the equation o f equilibrium  in 

the rad ial d irection  (Eq. (3 .8 ) ) ,  was used to obtain the tangential 

stress, tig, a t  each node. The radial displacement, u, and the slope, 

■gp , a t  any node were obtained by using Eqs. (3.11) and (3 .1 8 ),  

respective ly , and the ar  and oQ values a t  that node. Then using the 

boundary conditions,

w = 0 a t  r  = a,

^  = 0 a t  r  = 0

dwand the f in i t e  d ifference representation of the slope, -gp , a t  a l l  the 

nodes, the transverse displacements, w, were determined.

3.4 Convergence Study

In th is  section, f i r s t  a convergence study for the above outlined  

method is  presented. Then, the present method is illu s tra te d  for 

c ircu lar membranes with d iffe re n t loadings, shown in Fig. 3 .6 .

1. Uniformly loaded c ircu lar membrane.

2. A membrane with uniformly d istributed  load over the inner 

portion.
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Fig. 3.6 Types of Loading on the Membrane
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3. A membrane with a ring load.

The stresses and displacements were expressed in dimensionless 

forms, using Hencky's normalized formulation as,

° r =  ^ L m  ^ L i / s
(— (— r ^ 2 )

h h

To study the convergence of the present method, the c ircu lar  

membrane was idealized in to  m number of regions with (m + 1) nodes, 

(where nodes are numbered from the center to the outside). The number 

of regions, m, used in th is  convergence study were 8 , 16, 32, 60, and 

64. Figures 3 .7 (a ) and 3 .7(b ) present the re la tiv e  errors in the 

normalized maximum deflections and stresses, for a uniformly loaded 

membrane and for a membrane loaded uniformly over the region 

0 < — < 0 .5 . The solution shows rapid convergence and about 60
cl

regions were found to be necessary for a membrane loaded uniformly over 

the region 0 < — < 0 .5 , to y ie ld  a solution which is  w ithin 0.001
cl

percent of the converged solution . In contrast much fewer than 60 

regions were necessary fo r the uniformly loaded membrane. However, a 60 

region idea liza tion  is  used in the analysis and a l l  the results  are 

presented for this id e a liz a tio n .

The Newton-Raphson method used here needs in i t ia l  values for
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the ite ra tiv e  process. The se n s itiv ity  of the present method to these 

in i t ia l  values was studied. Table 3.1 presents the number of ite ra tio n s  

needed to achieve convergence for a range o f in i t ia l  a values fo r the 

three configurations studied. The in i t ia l  values were as low as

three orders of magnitude smaller than the maximum converged value of 

ar and as high as three orders of magnitude higher. For the uniformly 

loaded membrane with each of these in i t ia l  values the present method

converged to the same solution . The other two configurations showed
* _

sim ilar convergence, thus showing in s e n s itiv ity  to the in i t ia l  a.

values. When the in i t ia l  a values were fa rth e r away from the

converged values the number of ite ra tions  needed were around 40 compared

to about 8 when the in i t ia l  ex values were closer to the converged

5 values, r

3 .4 .1  Uniformly Loaded C ircular Membrane

The f i r s t  problem analyzed was that of a uniformly loaded c irc u la r  

membrane, for which classical solution [29] ex is ts . The uniform loading 

was represented by setting the magnitude of loading terms p  ̂ through pgg 

equal to unit values. Using these values in Eq. (3 .2 2 ), the governing 

equation for the membrane was solved by using the procedure outlined  

e a r lie r .  The values of u and w displacements and stresses a and 

are presented in Figs. 3.8 and 3 .9 , respective ly . A comparison of 

the present solution with Hencky's classical solution [29] and Kao and 

Perrone [53] nonlinear relaxation method solution is  shown in Table 

3 .2 . The central displacement as well as central and edge radial 

stresses obtained by the present method are in excellent agreement with 

the e a r lie r  reported resu lts  as shown in Table 3 .2 .
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Fig. 3.8 Normalized Displacements for Uniformly 
Loaded Membrane
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3 .4 .2  A Membrane With Uniformly D istributed Load Over the Inner Portion 

The second example is  that of a membrane with uniformly distributed

load over an inner portion. A p articu la r case of loading over the 

region 0 < £- < 0.1 was analyzed. In the corresponding solution, this

loading was represented by setting the magnitude of loading terms pj

through pg equal to u n it values and terms p-j through pgQ equal to

zero. Again using the governing Eq. (3.22) with the loading terms

discussed before, the solution was obtained fo r stresses and displace­

ments a t  each node. The corresponding values of u and w displace­

ments and ar  and cr0 stresses are shown in Figs. 3.10 and 3.11 

respective ly .

3 .4 .3  A Membrane With a Ring Load

The la s t  problem considered here is  one where the membrane carried  

a uniformly d istributed  ring load. As a specific  case the ring load was 

assumed to be spread over the region 0.5 < ~  < 0 .6 . Since loading was
a

considered over the region 0.5 < < 0.6 in the corresponding
a

solution, th is  loading was represented by setting the magnitude of 

loading terms pj through p3g equal to zero, p31 through p36 equal to 

u n it values; and p3 7  through pgg equal to zero. Using these values in 

Eq. (3 .2 2 ), the governing equation fo r the membrane with the ring load 

was solved by using the procedure outlined e a r l ie r .

The corresponding values of u and w displacements are presented 

in Fig. 3.12 and stresses a and aQ are presented in Fig. 3 .13. 

Figure 3.12 shows that the transverse displacement w is  constant up to 

the ring load and then s ta rts  decreasing and becomes zero a t  the clamped 

edge. In contrast, the rad ial displacement u is  zero a t  the center,
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increases gradually u n til i t  reaches the peak value in the loading 

region and then s tarts  decreasing and becomes zero a t the fixed edge. 

On the other hand, the normalized stresses and aQ are of the

identical magnitude in the unloaded region 0 < ^  < 0.5 and then
a

decrease for larger values of r .

3 .5  Discussion

As pointed out e a r l ie r ,  when inplane and transverse displacements 

d if fe r  by large amounts a simultaneous method of solution presents 

d if f ic u lt ie s .  As the present method does not use u and w as 

parameters, rather uses a single parameter ar  these d if f ic u lt ie s  are 

avoided. Therefore, i t  is  in te res tin g  to compare the differences in  

magnitudes of u and w values for various problems analyzed. For a 

membrane with uniformly d is trib u ted  load u and w are of the same 

magnitude (F ig . 3 .8 ) ,  whereas in the case of membrane loaded over an 

inner portion and fo r the ring loaded membrane, the displacements d if fe r  

by two (Fig. 3.10) and one (F ig . 3.12) order of magnitude, respective ly . 

Because u and w do not d if fe r  by large amounts in the case of 

uniformly loaded membrane, one would expect the simultaneous solution to 

be e f f ic ie n t  and fe a s ib le . Indeed, i t  is so as demonstrated by Kao and 

Perrone [53 ]. Because u and w d if fe r  by large amounts for the 

a r b itr a r i ly  loaded membranes, one would expect d if f ic u lt ie s  with  

simultaneous solution method. This may be the reason for the lim ited  

numerical solutions fo r these two loading cases. The present method on 

the other hand avoided these problems by using a governing equation in a 

single parameter, the rad ia l stress. The present method shows good 

convergence characteris tics  fo r a l l  the problems studied and converges
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to the correct solution even when the in i t ia l  values are u n re a lis tic a lly  

large or small. Therefore, the nonlinear governing equation in terms of 

the radial stress and the Newton-Raphson technique appear to be the 

ideal choice for large deflection problems of a r b it r a r i ly  loaded 

membranes.

3.6 Concluding Remarks

In th is  chapter the quasi-isotropic c ircu lar laminate with only 

extensional s tiffness but no shear and flexu ra l stiffnesses were modeled 

as c ircu la r isotropic membranes. A single nonlinear d iffe re n tia l 

equation which governs the response of these c ircu la r clamped isotropic  

membranes under a rb itra ry  axisymmetric loading was developed. This 

nonlinear equation was solved by using the f in i t e  difference method in 

conjunction with Newton-Raphson method. The numerical studies on the 

large deflection membrane analysis show that the present method of 

analysis yields accurate solutions fo r inplane and transverse 

deflections and stresses fo r the a r b it r a r i ly  axisymmetrically loaded 

circu lar membranes.

In the next chapter a pi ate-membrane coupling model, which uses the 

small deflection p late solution obtained in Chap. 2 and the large 

deflection  membrane solution obtained in th is  chapter, is  presented to 

predict the large deformation behavior of thin c ircu lar quasi-isotropic  

laminates under point loads.
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Table 3.1 -  S e n s itiv ity  of the Present Method of the In i t ia l
Values o f a

In it ia l
cr values13 r

Number of ite ra tio n s  required for convergence

Uniform loading over the region

0 < £  < 1 0 a < L  < 0.1 0.a 5 < £  < 0.6a

0.0001 25 22 23

0.001 20 16 17

0.01 14 10 11

0.1 8 8 5

1.0 9 19 15

10.0 20 27 26

100.0 31 41 37

Converged 0.431(3 0.11(34 0.1237
a. (r = 0)

Converged 
ap (r  = a)

0.3329 0.0235 0.0971

aMembrane idealized with 60 regions
^Constant rad ial stress £ was assumedr a t a ll  61 nodes.
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Table 3 .2  -  Comparison of Normalized Displacements and Stresses 
fo r Uniformly Loaded Membrane

Central transverse 
deflection  
w a t  r  = 0

Central rad ia l 
stress 
a t  r  = 0

Edge Radial 
stress 

Op a t  r = a

Hencky* 
( re f . 29)

0.6536 0.4310 0.3280

Kao and 
Perrone 
( re f .  53)

0.6541 0.4289 0.3306

Present 0.6534 0.4310 0.3329
Results

*Values taken from reference 53.
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Chapter 4 

PLATE-MEMBRANE COUPLING MODEL

4.1 Introduction

In Chapters 2 and 3, numerical solution methods to analyze the 

small deformation behavior of c irc u la r quasi-isotropic plates and the 

large deflection behavior o f c irc u la r  isotropic membranes are 

described. In th is chapter, a pi ate-membrane coupling model to study

the large deformation behavior of clamped c ircu lar plates is

developed. The model developed herein uses the plate and membrane 

solutions in conjunction with a coupling p rinc ip le . A numerical 

solution method to analyze the clamped c ircu lar quasi-isotropic  

laminates under point load, using pi ate-membrane coupling model is  

presented.

4.2 Analysis

In the plate-membrane coupling model two d iffe re n t plate problems 

are analyzed. F irs t ,  a thin plate with shear and flexural stiffnesses  

but no mid-plane extensional s tiffn ess  under point load is considered. 

The deflected shape of the plate is then obtained by using the classical 

small deformation theory. Second, a p late  with mid-plane extensional 

s tiffn e s s , but no shear and flexura l s tiffnesses, i . e . ,  a membrane is  

considered. The deformed plate shape obtained in the plate problem is

used in the membrane problem. For th is  deformed shape membrane loads

are calculated by using a nonlinear membrane theory. Large deformation

79
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solutions of thin plates are then obtained by coupling these solutions 

of plate and membrane problems. The d e ta ils  of the plate-membrane 

coupling model are given below:

4 .2 .1  Plate Configuration

Consider a clamped c ircu la r plate of thickness h and radius a, 

subjected to a central point load P as shown in F ig . 4 .1 . The plate is  

a quasi-isotropic laminate of T300/5208 graphite/epoxy material with 

stacking sequence [4 5 /0 /-4 5 /9 O ]s and material properties given in Table 

2.1.

To analyze th is  quasi-isotropic clamped c irc u la r plate for large 

deformation behavior, f i r s t  a c ircu lar plate with a prescribed central 

deflection  w0 is  considered. The objective of the analysis is to 

determine the large deformation shape of the p late  w (r) and the 

central concentrated load P.

This problem as mentioned e a r l ie r ,  can be decomposed into two 

component problems: problem-1 is  a p late with shear and flexura l

stiffnesses but no mid-plane extensional s tiffn e s s , problem-2 is  a plate  

with mid-plane extensional s tiffness  but no shear and flexura l 

stiffn esses , i . e . ,  a membrane.

4 .2 .2  Problem-1: Plate Problem

In problem-1 the plate was assumed to be f le x u ra lly  iso trop ic  even 

though a quasi-isotropic p late is  anisotropic in flex u re . (This 

assumption was experimentally v e r ifie d  and w il l  be discussed in deta il 

in Chap. 6 .)

From Chap. 2, the governing d iffe re n tia l equation for
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y

(a) circular plate

 a » 
w  

(b) loading and deformation

Fig. 4.1 Plate Configuration
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axisymmetrical bending of a clamped c ircu la r p late  subjected to 

a rb itra ry  axisymmetric loading and undergoing small deformation is  (Eq.

where Q(r) is  a shear force a t any radius r  and is given by (Eq. (2 .13))

where p U ) is the in ten s ity  of loading a t  any radius Z.

In equation (4 .1 ) ,  Deq is an equivalent flexu ra l modulus fo r the 

quasi-isotropic lam inate. As discussed in Chap. 2, the equivalent

modulus Deq was obtained by equating bending energies of the quasi­

isotropic laminates and an equivalent iso trop ic  p la te . Equation (4.1)

can be solved to obtain the deformed shape of the plate fo r a given 

in ten s ity  o f load p ( r ) .

4 .2 .3  Problem-2: Membrane Problem

In problem-2, a plate with mid-plane extensional s tiffn ess  but no 

shear and flexu ra l s tiffn e s s , i . e . ,  a membrane is analyzed. Since the 

quasi-isotropic laminates are a x ia lly  iso tro p ic , the governing

d iffe re n tia l equations fo r these laminates are essen tia lly  the same as 

th a t fo r a c irc u la r iso trop ic  membrane. From Chap. 3 , the governing 

equations fo r the large deflections of c ircu la r isotropic membranes 

subjected to a rb itra ry  axisymmetric loading are (Eqs. (3 .18) and (3 .19 ))

(2 . 12))

d3w + 1 d2w 1 dw =1 dw Q(r) (4.1)

2 n r  Q(r) = ! r0 2 % Z p U ) dZ (4 .2 )

eq
+ r

ar
(4 .3 )
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where crr  is  the rad ia l stress. I f  the displacement w is known, the

ro tation  (-gp) is  known and hence the radial stress can be determined

by in tegrating  Eq. (4 .3 ) .  With th is  rad ia l stress a d is trib u tio n ,

the loading p (r) on the membrane can be determined by using equation

(4 .4 ) .

4 .2 .4  Coupling of the Two Problems

The large deformation solution fo r quasi-isotropic clamped c ircu lar  

laminate with the prescribed central point deflection  wQ can be obtained 

by using the governing equations, (Eqs. (4 .1 ) - (4 .4 ) )  and by the

appropriate coupling of plate and membrane problems as shown in a flow 

chart of the Fig. 4 .2 . This procedure is outlined in Fig. 4 .3 , and is 

as follows:

The central point load P and the deformed shape w(r) for a 

clamped c ircu la r p late were obtained by using the prescribed central 

deflection  w0 and the governing equation, Eq. (4 .1 ) (steps 1 and 2 in 

Figs. 4.2 and 4 .3 ) .  This deformed shape w(r) was used in the membrane 

problem, to determine the membrane loads p (r) (step 3 in Figs. 4.2 and

4 .3 ) .  The loads which are equal in magnitude to p (r) but opposite in 

d irec tio n , and the point load P were applied to the plate problem (step 

4 in Figs. 4 .2  and 4 .3 ) .  For th is  new loading the new deformed shape 

w '(r )  o f the clamped c ircu la r p late  was obtained by solving the plate  

problem (step 5 in Figs. 4.2 and 4 .3 ) .  Since the membrane loads p (r) 

were applied in the opposite d irec tio n , th is  caused reduction of the 

central deflection  of the plate by an amount A wQ (step 6 in Fig. 4 .2 ) .
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w (r)
Plate problem 
(steps 1 and 2)

r  p + ap

-p (r) w (r)
Membrane problem 

(step 3)
Plate problem

(steps 8 and 9)Plate problem 
(steps 4, 5 and 6)

(step 7)

Stop
Iterate

Fig. 4.2 Plate-Membrane Coupling Model 00•p»
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STEP 1:

■STEP 2:

STEP 3:

STEP 4:

STEP 5:

,. STEP 6:

STEP 7:

STEP 8:

■STEP 9:

YES

STOP

START

IS THE 
PERCENT 
DIFFERENCE 
<0. 01?

THE DEFLECTED 
SHAPE OF THE 
PLATE AND MEM­
BRANE ARE 
MATCHED.

USING NONLINEAR MEMBRANE THEORY 
AND w(r), OBTAINED IN STEP 2, 
OBTAIN MEMBRANE LOADS, p(r)

USING LINEAR PLATE THEORY OBTAIN 
A DEFLECTED SHAPE, w(r) FOR THE 
CENTER DEFLECTION OF wn

APPLY LOADS P'=P+aP AT r=0 AND 
THE LOADS WHICH ARE EQUAL IN 
MAGNITUDE, TO p(r) OBTAINED IN 
STEP 3 BUT OPPOSITE IN DIRECTION.

COMPUTE AWg AS 
Aw0=[w0-w0 ].
USING LINEAR PLATE 
THEORY COMPUTE 
CENTRAL INCREMENTAL 
LOAD aP TO DEFLECT 
THE PLATE BY Awn.

USING LINEAR PLATE THEORY OBTAIN 
A POINT LOAD P AT r = 0 SUCH THAT 
THE DEFLECTION AT THE CENTER (r =

USING LINEAR PLATE THEORY OBTAIN 
A NEW DEFLECTED SHAPE w'(r) FOR 
THE LOAD SYSTEM OF STEP 4. LET 
w ‘(r=o)=w0'

COMPUTE THE DIFFERENCE IN DEFLEC­
TIONS OBTAINED IN STEP 2 AND STEP 
5 AT EACH RADIUS. PERCENT DIFFER­
ENCE =ABS [(w(r)-w’ (r))/w0l x 100

IN ADDITION TO QUASI POINT LOAD 
P', APPLY LOADS P(r), WHICH ARE 
EQUAL IN MAGNITUDE TO p(r), BUT 
ARE OPPOSITE IN DIRECTION

Fig. 4 .3  Flow Chart for the Plate-Membrane Coupling Model
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An incremental load AP is necessary to n u llify  the reduction of 

the central d e flec tio n , A wQ . The magnitude of the incremental load 

AP, is  calculated by using Eq. (4 .1 ) (step 8 o f Fig. 4 .3 ) . This 

incremental load AP, together with the orig ina l point load P and the 

membrane loads which are equal in magnitude to p(r) but opposite in the 

direction were applied to the p late problem (step 9 of Figs. 4.2 and

4 .3 ) . This load system yields a central deflection equal to w0 , the 

original value. However, the new deflected shape w (r), determined from 

Eq. (4 .1 ) is  in general d iffe re n t from the o rig ina l deflection shape. 

This ite ra tiv e  procedure is  repeated until the deflected shapes obtained 

in any two consecutive ite ra tio n s  are almost id e n tic a l, i . e .  step 7 in 

Fig. 4.3 is s a tis fie d .

A complete solution can now be obtained by coupling the p la te -  

membrane solutions. The coupled p late and the membrane are analogous to 

two coupled p a ra lle l springs, one with lin e a r  (p late) s tiffness and 

other with a nonlinear (membrane) s tiffn e s s . I f  these springs undergo 

the same deflection w0 then the unknown load P applied to th is  spring 

system is the sum of the loads carried in the two springs. S im ilarly  in 

the present coupling model the deflected shapes of the plate and the 

membrane are identica l and therefore the loads are add itive .

When the deflected shapes obtained in any two consecutive 

iterations are nearly identica l the plate carries a central point load 

and a d is trib u tiv e  in te ra c tive  load ( -p ( r ) )  and the matched membrane 

carries the opposite o f d is trib u tiv e  in te rac tive  loads p ( r ) .  When the 

plate and membrane are coupled, in te ra c tive  loads on the p late and 

membrane n u llify  each other and the to ta l load is simply a single 

central point load on the p la te . The complete plate-membrane solution
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thus yields the large deflection shape o f the plate and the magnitude of 

the central concentrated load, for a prescribed central deflection wQ.

Instead of prescribing a central deflection  w0 , one could formulate 

the problem for a prescribed central point load P. The analysis  

procedure fo r th is case is s tra ig h t forward with minor differences and 

is as follows:

The problem as before, is  also decomposed in to  two component 

problems. By using the center point load P in the plate problem, 

deflected shape w(r) and the central deflection  wQ is  obtained by using 

Eq. (4 .1 ) .  Then steps 2 through 6 (Figs. 4 .2 and 4.3) are repeated as 

done e a r l ie r .  Since in step 4, the membrane load p (r) is  applied in the 

opposite d irec tio n , th is  causes a reduction in central deflection by 

A wQ (step 6 of F ig. 4 .3 ) . At th is stage instead of incrementing the 

center point load P, the new membrane loads p(r) are calculated by 

using the deformed shape w '(r )  obtained in step 5 (step 3 of Fig. 4 .3 ) .  

This procedure is  repeated until the deflected shapes obtained in any 

two consecutive ite ra tio n s  are almost id e n tic a l.

A complete solution can now be obtained by coupling the p la te - 

membrane solutions. When the fin a l p late and membrane solutions are 

coupled as before, the in teractive  loads on the plate and membrane 

n u llify  each other and the orig inal prescribed central point load is 

l e f t  on the p la te . The corresponding matched central deflection wQ, and 

the deflection  shape w (r), are the large deformation solutions of the 

clamped c irc u la r p late  subjected to a prescribed central point load.

The above procedure, although presented fo r a central concentrated 

load, can be applied in a s im ilar manner to obtain the large deformation
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solutions fo r a r b it r a r i ly  axisymmetrically loaded clamped c ircu lar  

plates. I f ,  on the other hand, the large deformation shape of the plate  

is  known, i t  can be used in the linear plate theory to calculate the 

plate loads, and in the nonlinear membrane theory to calculate the 

membrane loads. The sum of these two loads gives the complete large 

deformation solution .

4.3 Solution Method

The plate governing equation, Eq. (4 .1 ) fo r the deflecton w, was 

solved by using f in i t e  difference method as described in Chap. 2. The 

ordinary d iffe re n t ia l Eq. (4 .1 ) , was replaced by a set of linear  

algebraic equations using f in i te  difference q u an tities . These linear 

algebraic equations were solved numerically, to obtain rotations and 

displacements. The nonlinear governing equations, Eqs. (4 .2 ) and (4.3) 

were replaced by a set of nonlinear algebraic equations using f in ite  

difference q u a n tities . These nonlinear equations were solved by using a 

Newton-Raphson method in conjunction with the f in i t e  d ifference method, 

as described in  Chap.3.

Using these p late  and membrane solutions in conjunction with the 

plate-membrane coupling model discussed before, the large deformation 

shapes fo r the clamped c irc u la r quasi-isotropic laminates were obtained.

From the plate-membrane coupling model i t  was observed that as 

plate central deflection  to plate thickness ra tio  increases, the number 

of ite ra tio n s  required to obtain the large deformation solution  

increases. Table 4.1 presents the number o f ite ra tio n s  required to 

obtain the large deformation solution of the clamped c ircu lar quasi-
w0

isotropic laminates under point loads for (—̂ -) ra tio s  ranging from 0.5 

to 2 .0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

4.4  Results and Discussion

In th is section analytical deflected shapes obtained with the

plate-membrane coupling model, fo r the central deflection to p late
w0

thickness ra tio s  (—pj-) ranging from 0.5  to 2.0 are presented. These

analytica l deflected shapes obtained by using the p la te - membrane

coupling model are compared with the deflected shapes obtained by using

the classical solution [2 7 ], Load-displacement curve obtained by using

the plate-membrane coupling model is  compared with the classical

solution [2 7 ]. Figures 4.4 and 4.5 show the ana ly tica l deflected shapes
woobtained by using the plate-membrane coupling model; fo r (—pp) ra tio s  

of 0.5 to 1 .0 , and 1.5 and 2 .0 . Figures 4 .4  and 4.5 indicate that the 

functional form of the deformed shapes of the plate is  d iffe re n t fo r
w0

various (—pp) ra tio s .

To compare the plate-membrane coupling analysis, the classical 

solution [27] based on the energy method was considered. Appendix B 

presents the large deformation classical solution based on the energy 

method for a clamped c ircu lar plate subjected to the center point load 

P. The classical solution assumes that the functional form of the 

deformed shape of the p late is identica l to the functional form of the 

deformed shape o f the p late determined by the small deflection  

solution. Thus as per the classical solution [2 7 ], the large deformed 

shape of a clamped c ircu la r plate under center point load is  given as:

w (r ) ~ WQ [ 1 ~ (—£■) + 2 (-2-) An (—) ] (4 .5 )
.2 2 
T ) + 2 U
a a

The transverse displacements w obtained by using the p la te -  

membrane coupling model and the classical solution (Eq. (4 .5 ))  for
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Fig. 4.5 Deflected Shapes for the Quasi-Isotropic 
Circular Plate Under Point Loads for 
w /h = 1.5 and 2.0
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various ra tio s  ranging from 0.5 to 2.0 are presented in Table

4 .2 . The results  obtained by using the plate-membrane coupling model
wQ

show that the functional form of the deflected shapes for various (—

ratios  is  d iffe re n t. In contrast, as mentioned e a r lie r  the classical

solution [27] based on energy method, assumes that the functional form
woof the deflected shape of the plate is identical for a l l  (—pp) ra tio s . 

The deflected shapes obtained by using the plate-membrane coupling model 

are compared with those obtained by using the classical solution [2 7 ],

Figure 4.6 presents the percentage errors , in the deflected shape

of the classical solution re la tiv e  to the present solution, a t various 
w

rad ii for (— r at i o of 2 .0 . I t  is  observed that the maximum error is  

about 4 percent and occurs a t Gr) = 0.233. Although re la tiv e  errors
a

in the displacements are small, these errors get magnified i f  the 

curvatures obtained by the plate-membrane coupling model and the 

classical solution are compared. Figure 4.7 compares the curvatures 

obtained with the plate-membrane coupling model and the classical
W

solution, for (—pj-) ra t io  of 2 .0 . Figure 4.7 shows that the p la te -  

membrane coupling model predicts higher values of curvatures than those 

obtained by using the classical solution up to (£■) ra tio  of 0 .4  and 

beyond (£■) = 0 .9 . However, in  the range 0.4 < < 0 .9 , the
a  cl

classical solution predicts higher values of curvatures. Since stresses 

are proportional to the curvatures even small differences in the 

curvature re s u lt in s ig n ific a n t errors in stress predictions in the 

plate undergoing large deformation.

In the plate-membrane coupling model, another important point that 

was noticed was the movement of the radius of in flec tio n  (radius a t  

which curvature is  zero ), as a function of the central deflection to the
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w o

plate thickness ratios (-^ ) . The classical solution [2 7 ], assumes

that the functional form of the deformed shape is identical for a l l  
w

(—fjO ra tio s , hence the radius of in fle c tio n  shows no movement with the 

change in ratios and is  located a t  (■£■) = 0.3678. (The deta ila
derivation for the radius of in flec tio n  is  presented in Appendix C).

The plate-membrane coupling model on the other hand does not make any

assumption on the deformed shape of the p late and hence on the radius of

in fle c tio n . The deformed shape and the radius of in flec tio n  are

obtained as part of the solutions. Figure 4.8 shows the movement of the

radius of in flection  with the change in the central deflection to the
w

plate thickness ratios (—rr) . The symbols in Fig. 4.8 show the
woposition of the point of in flec tio n  for d iffe re n t values of (— . For

increasing central deflection the point of in flection  moves toward the

center of the plate (r  = 0 ). The inward movement of the point of
w wQ

in flec tio n  with increasing (— r at i o occurs, since, as (—pj-) ra tio

increases, the plate behaves more lik e  a membrane than a flexural p la te , 
w

That is  as (— r at i o increases, the external load is equilibrated  

more and more in membrane action than in flexura l action.

Figure 4.9 presents a comparison between the load-displacement

curves obtained by using the plate-membrane coupling model and the

classical solution [2 7 ]. This figure indicates that the classical

solution based on the energy method predicts the load-displacement
w

behavior accurately up to (—̂ ) ra tio  of 1.0. However for higher 
w

values of (— rat i os the classical solution yields lower 

displacements than the plate-membrane coupling solution.
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4.5 Concluding Remarks

In this chapter c irc u la r quasi-isotropic composite plates were 

analyzed to study the large deformation behavior under point loads. A 

plate-membrane coupling model was formulated and solved numerically to 

obtain the large deformation shapes for thin c ircu lar composite 

laminates under the point loads. These large deformation shapes were 

compared with the large deformation shapes obtained by using the 

classical solution [27] which assumes that the functional form of the 

deformed shape of the plate is identical to the functional form of the 

deformed shape of the plate determined by the small deflection plate  

solution. The comparison shows that the functional form of the deformed 

shape of the plate undergoing large deformations is d iffe re n t from the 

small deflection plate solution in that the deformed shape is a function 

of the center point displacements and thus is d iffe re n t for d iffe re n t  

load leve ls . The classical solution and the plate membrane coupling 

solution are in good agreement up to the central d e flec tio n -to -p la te  

thickness ra tio  of 1 .0 . For higher values of the center d e flec tio n -to -  

plate thickness ratios the classical solution yields lower displacements 

than the plate-membrane coupling solution. This plate membrane coupling 

model is  experimentally v e rifie d  in Chap. 6.
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Table 4.1 -  Number of Itera tions to Obtain Large Deflection
Solution of a Clamped C ircular Plate Under Central 
Concentrated Load Using the PI ate-Membrane Coupling 
Model.

Plate center deflectionw
to thickness ra tio

Number of 

ite ra tio n s

0.5 9

1.0 11

1.5 14

2.0 21
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Table 4 .2 (a ) -  Comparison o f the Transverse Displacements w
Obtained by Using the Pl^te-Membrane Model and the
Classical Solution for Ratios c f 0.5 and 1.0 .

r /a  Classical Plate-Membrane
Solution Coupling Model

w
( ° )  = 0.5 0.0 0.50000 0.50000

n 0.1 0.47197 0.46764
0.2 0.41562 0.40842
0.3 0.34664 0.33791
0.4 0.27339 0.26484
0.5 0.20171 0.20311
0.6 0.13610 0.13506
0.7 0.08023 0.07762
0.8 0.03719 0.03828
0.9 0.00966 0.01001
1.0 0.00000 0.00000

w
(—£) = 1.0  0 .0  1.00000 1.00000

n 0.1 0.94394 0.93050
0.2 0.83124 0.80831
0.3 0.69328 0.66745
0.4 0.54678 0.52491
0.5 0.40342 0.39392
0.6 0.27220 0.27028
0.7 0.16046 0.16570
0.8 0.07438 0.07719
0.9 0.01932 0.02074
1.0  0.00000  0.00000
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Table 4 .2 (b ) -  Comparison of the Transverse Displacements w
Obtained by Using the Pl^te-Membrane Model and the

Classical Solution for (— Ratios of 1.5 and 2 .0 .

r /a Classical Plate-Membrane
Solution Coupling Model

0.0 1.50000 1.50000
0.1 1.41592 1.38595
0 .2  • 1.24686 1.19548
0.3 1.03992 0.98512
0.4 0.82018 0.78421
0.5 0.60513 0.58841
0.6 0.40830 0.40245
0.7 0.24068 0.25309
0.8 0.11156 0.12140
0.9 0.02897 0.03286
1.0 0.00000 0.00000

0.0 2.00000 2.00000
0.1 1.88789 1.83399
0.2 1.66248 1.57111
0.3 1.38656 1.29297
0.4 1.09357 1.02026
0.5 0.80685 0.77129
0.6 0.54441 0.53813
0.7 0.32091 0.34512
0.8 0.14875 0.16870
0.9 0.03863 0.04561
1.0 0.00000 0.00000
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Chapter 5 

FINITE ELEMENT MODEL

5.1 Introduction

In the previous chapter, a plate-membrane coupling model was 

presented to obtain the large deformation behavior of c ircu la r quasi­

isotropic laminates under point loads. To v e rify  the plate-membrane 

coupling model, a f in i t e  element form ulation, which uses appropriate 

lin e a riza tio n  o f strain-displacement re la tio n s  [36] is developed and 

presented in th is  chapter. The formulation is  based on a varia tion al 

technique and uses the princip le  of minimum potential energy [2 8 ]. As 

pointed out in Chap. 1, several investigators [36-44] used a lin e a r iz a ­

tion technique, to study the geom etrically nonlinear c ircu la r plate  

problems. However, e a r lie r  investigators ignored the membrane e ffe c ts  

due to mid plane stretching. In th is  chapter, the membrane e ffec ts  due 

to the mid-plane stretching are incorporated in the f in ite  element 

model. This model is  used to analyze the large deformation behavior of 

the c ircu lar quasi-isotropic laminates under point loads. The resu lts  

from this model are compared with the resu lts  from the plate-membrane 

coupling model.

5.2 F in ite  Element Method

The basis of the f in i te  element is  the representation of a body or 

structure by an assemblage of subdivisions ( f in i te  elements). Simple 

functions are then chosen to approximate the d istribution  or varia tion

102
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of the actual displacements over each element. These functions are 

usually referred to as shape functions. A variational p rin c ip le , such 

as the princip le of minimum potential energy, is then employed to obtain 

the set of equilibrium  equations for each element. The equilibrium  

equations fo r the en tire  body are then obtained by combining the 

equations of the individual elements. The equations are modified for 

the given force or displacement boundary conditions and then solved to 

obtain the unknown displacements.

Mathematically, the f in i te  element representation of continuum 

strongly resembles the Ritz method [2 8 ], in which the displacements of 

the plate are approximated by the sum of the functions, each m ultiplied  

by an unknown constant. These unknowns are determined from the minimum 

potential energy theorem. While using the R itz method, the assumed 

series expression describes the total displacement f ie ld  of the entire  

p la te , in the f in i t e  element method individual displacement patterns for 

each element are assumed. The entire  displacement f ie ld  of the plate 

can be approximated piecewise. The total potential of the plate, 

obtained from the sum of the to ta l potentials of the individual 

elements, has a stationary value when the node points are in 

equilibrium . This condition leads to minimization of the total 

potential o f the structural system, which, in turn, yields the 

displacement f ie ld  corresponding to its  equilibrium  condition.

The application of the f in ite  element method to obtain the large 

deformation solution for the quasi-isotropic c ircu lar plates under point 

loads is  presented in following sections.
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5.3 Plate Configuration

As before the plate configuration used was th a t of a quasi­

iso trop ic  c irc u la r plate with a concentrated load a t  the center. The 

plate is  assumed f le x u ra lly  isotropic and the equivalent flexura l 

modulus Deq of the plate is  computed as described in Chap. 2. With th is  

assumption of the flexu ra l isotropy the problem of a c irc u la r quasi­

isotropic plate subjected to a central point load reduces to an 

axisymmetric problem. This problem is then analyzed by the f in i t e  

element method as shown in the following sections.

5 .3 .1  Strain-Displacement Relations

For the axisymmetrically loaded c irc u la r p late  the deflection  

surface is  axisymmetrical. Due to the symmetry the shearing stresses

r e are zero. Also from the basic assumptions o f the plate theory

(Chap. 2 ) , shearing stresses Trz and normal stresses a2 are zero.

For the c irc u la r plate undergoing large deformations, the rad ia l 

and tangential bending stra ins a t  any distance z from the middle surface 

are,

'0

d^w

2

C\J 
.

•a 
T3 

fo

*-*!»-
i = Z er

e9
(5 .1 )

'bending

and the membrane strain-displacement matrix is  (Eqs. (3 .3 ) and (3 .4 ))

Er
du
W ♦i rdw-|2 1

Er
£0 membrane

u
r

.

j e0
(5 .2 )

m
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Therefore the to ta l rad ia l and tangential strain-displacement 

m atrix is

£ I e £
( = z r + r

£e J £e b e e

or in concise form

{e} = z {eb> + {em} (5 .4 )

The stresses and strains are re lated  by a material properties  

m atrix, [H ], forming the following co n stitu tive  equation

{a} = [H] {c} (5 .5 )

where

CH] = "eq

( i - v  3  eq eq

eq (5.6)

where Egq and v are the equivalent Young's modulus and Poisson's 

ra t io  fo r the quasi-isotropic plate and were calculated by using the 

technique presented in Chap. 2.

5 .4  The Axisymmetric F in ite  Element

An axisymmetric f in i te  element in the form of a ring of constant

cross section is shown in Fig. 5 .1 . The node points of such an element 

are in fa c t nodal c irc le s , and the volume of such an element is

dependent on both i ts  cross-sectional area and the ra d ii of these nodal

c irc le s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Fig. 5.1 Axisymmetric Element
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A convenient approach fo r derivation o f the f in i te  element 

governing expressions is based on the p rinc ip le  of minimum potential 

energy. Consider a c ircu la r p late discretized into n number of 

axisymmetric elements. Each element is of a constant thickness h, with 

r.,- and r0 as inner and outer ra d ii (F ig . 5 .1 ) . Let Ue be the stra in  

energy of the axisymmetric element and A represents the surface area 

of the element. The to ta l potential energy it of an element is  the 

to ta l stra in  energy of the element minus the to ta l work done and can be 

expressed as

where (S) is  a vector o f nodal displacement and ( f } is  the 

corresponding load vector containing inplane loads I ,  the transverse 

loads p and the applied moments M a t  a l l  nodes on the element. Ue in  

the Eq. (5 .7 ) is the s tra in  energy of the axisymmetric element and is  

given by

vol in Eq. (5 .8 ) is  the volume of the axisymmetric element. 

Substituting Eq. (5 .5 ) into Eq. (5 .8 ) stra in  energy for the element was 

w ritten  as

^  " If  <S>T { f }  dAe e " (5 .7 )

U = ±  J i a }1 {e} d (vol) 
vol

(5 .8 )

4  I  {e>T CH] {£> d (vol) 
e £ vol

(5 .9 )
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where [H] is  the constitu tive  matrix given by Eq. (5 .6 ) .  For a plate 

under combined bending and stretching the strain-displacement re lation  

is  given by Eq. (5 .4 ) .  Substituting Eq. (5 .4 ) into equation (5 .9 ),  

stra in  energy Ue is :

U. = ” C.„ L °  { c ) T [Q] U  > r  dreq ' r .  m' (5.10)

*  11 Deq >r°  V T {£b> req dr

(L n and Dpn in Eq. (5.10) are called the membrane and the bending 
“M

stiffness  coeffic ien ts  respectively and are given by

- _ Ee , h and D
E hv eq

eq (5.11)

and

[ Q ]  =
eq

V -eq 1
(5.12)

Substituting Eq. (5.10) into Eq. (5 .7 ) ,  the to ta l potential energy 

of the element is :

%  -  [ *  ceq <r° V T [ «  V  '  dr

+ *  Deq >r°  " b ,T [Q] ‘ V  req dr

-  2% J 0 {S)T { f } r  dr] 
r i

(5.13)
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By using the princip le of minimum potential energy, the element 

stiffness  matrix was obtained as follows:

5 .5 . Stiffness Matrix of an Axisymmetric Element

A cubic displacement in w and a lin ear displacement in u were 

assumed in the plate element as

2 3w = a,. + a .r  + a0r  + a , r  (5.14)0 1 4  o

u = b + b .r  (5.15)o l

These displacement functions ensure the continuity of displacements 

between adjacent elements. Thus these displacement functions satis fy  

the compatability requirements, which state that a t  element interfaces  

the f ie ld  variables u, w and any of its  partia l derivatives up to one 

order less than the highest order derivative appearing in the energy 

expressions i t m u s t  be continuous.

In the plate problems, the bending strains are defined by second 

derivatives of the transverse displacements. Therefore a cubic function

in w w ill give a constant strain in an element. S im ilarly the membrane

strains are defined by f i r s t  derivatives of the radial displacements and 

thus a lin ear function in u w ill  give a constant strain in an element. 

Therefore a cubic displacement function in w and a linear displacement 

function in u meets the constant stra in  condition in the element and 

thus sa tis fies  the convergence c r ite r ia  in the f in i te  element. 

Equations (5.14) and (5.15) contains six unknowns a0, a j,  a2, a3, b0, 

and b  ̂ and the axisymmetric plate element has two nodes, therefore each
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node was assumed to have three degrees of freedom, the radial displace-

dwment u, the transverse displacement w, and the rotation ^  . These 3

degrees of freedom sa tis fy  the compatability requirements discussed

dwe a r lie r ,  which requires that the u, w, and should be continuous a t 

element in terfaces.

For any axisymmetric element with radius r^ and r 0, nodal displace­

ments can be expressed in terms of generalized displacements as:

c f  'N

ui
wi

0

1

0

r i

0 0 1

0
r i
0

ao
al

rdwiW Ji > =
0 1 2rf 3r 1 0 0 1 a2

uo 0 0 0 0 1 r o \ a3

wo 1 r o r o r o 0 0 bo
(dw-i
l3 r Jo 0 1 2ro *1 0 0

_ bl
V- J

where subscripts i and o represent inner and outer nodes.

(5.16)

(5.16) was expressed in the concise form as follows:

{6>e = [A] {a} (5.17)

where {6>e = the nodal displacement vector. From the foregoing, the 

solution for the unknown constant is

{cc> = [A ]-1  {6>e (5.18)

Now consider the to ta l potential energy equation (Eq. (5 .1 3 )) .  Applying 

the principle of the minimum potential energy, the variation  in the
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to ta l potential energy should be equal to zero. Therefore the variation  

in the potential energy from Eq. (5.13) is

= [ 2 *  %  [ °  {A ^ } T [Q3 {sb> r dr

r  j
+  2tc C f °  {Ae } [Q] (e } r  dreq r .  m m

2u f 0 {As}1 { f}  r  dr] = 0 
r i

(5.19)

The bending strains {e^} in Eq. (5.19) are (Eq. (5 .1 ))

V

2dw

dr
1  i l l
r  dr

Using the shape functions (Eq. (5 .1 4 )) ,  Oĝ -) and (^ -^ ) can be
dr

r d^W'

w ritten as

^  = ax + 2 a2r  + 3 a3r 2 (5.20)

and

2
= 2 a , + 6 a .r  (5.21)

dr c J

Using Eqs. (5.20) and (5 .2 1 ), can be expressed in matrix form as
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0

0

or concisely as,

0 -2  -6 r  0 0

-1 -2  -3 r  0 0

(5 .22)

{eb> = [R] {«} (5.23)

= [R] [A ]"1 {6} (5.24)

Using Eq. (5 .2 4 ), {Ae. } can be w ritten  as

{Aeb> = [R] [A ]"1 (A6}e (5.25)

5 .5 .1  Nonlinear Terms: -  L inearization Procedure

Consider the membrane strains {Em> in the equation (5 .1 9 ). They

are:

{£m> =m

dr 1 rdvi}2
3r 7  W J
u 
7

Since the vector {em) contains a nonlinear term a

lin e a riza tio n  technique [36] needs to be used. The lin e a riza tio n

procedure used is as follows:

Consider a nonlinear term (^jr)^ in "the membrane strains {em>

1 dwLet 7  cF = B (5.26)
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where B is  called as a lin eariza tio n  constant. Using th is d e fin itio n  

the membrane stra ins can be w ritten  as,

dr . R dw 
aF ar 
jj 
r

(5.27)

Using Eq. (5 .1 5 ), and -p can be w ritten  as

du k 
W ~  bl (5.28)

and

1  = —  + b. r  r  1 (5.29)

Using Eqs. (5 .2 0 ), (5 .28) and (5 .2 9 ), {em> can be expressed in matrix 

form as

{£m} =m

0

0

B

0

2 Br 

0

3 Br 

0

0
1

(5.30)

or concisely as,

(e } = CT] i a}  m (5.31)

= [T] [A ]-1 {6} (5.32)
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The next step is  to evaluate the varia tion  of the membrane s tra in s ,

{Ae } . This is achieved as follows: m
The membrane stra ins {e } can be represented as the sum of the twom
vectors, one containing only the lin e a r terms, whereas the other 

containing the nonlinear terms. Therefore,

U „ )  -  {cL> + <tNL> (5.33)

where

{eL>
du
W
_u
r

(5.34)

{eNL}

1 fdw\2
7  l o F  ■'

0
(5.35)

The variation  of {e } ,  then ism

{Ae } = {Ae. } + m L {iE NL} (5.36)

or

{Ae } =m

f!?<

+ *  i r  $ > 2 »

A g ) A (0 )
(5.37)

or

{Ae } =m
+

A ©

1
7

dw
cF

0

rdwi
(5.38)
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The lin eariza tio n  constant 8 is  then used in Eq. (5.38) and {Aem> is  

rew ritten as,

{Ae } =m
A (£)

2 B 4 ( ^ )

A (0)
(5.39)

Using the shape functions fo r u and w the variation of membrane strains  

can be expressed in the matrix form as,

a0

A {[
0 2 B 4 Br 6 3r‘  0 0
0 0 0 0 0 0

a0

h° *>1 v. y

( 5 . 4 0 )

or in concise form as,

{Aem} = A [ [ Y x ]  [ A ] * 1 { 6 } e + [Yg ]  [ A ] " 1 ( 6 ^ ]  ( 5 . 4 1 )-1

= [ Y 1 +  Y2]  [ A ] " 1 ( 5 } e (5.42)

Lastly consider a generalized displacement vector {S}
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{S} =
u
w
dw
W

(5.43)

Using Eqs. (5 .1 4 ), (5.15) and (5 .2 0 ), a generalized displacement vector 

can be expressed in the matrix form as

{S>

0 0 0 0 1 r

1 r r 2 r 3 0 0

0 1 2r 3 r2 0 0

al0

(5.44)

or in concise form

{S> = [N] {a} (5.45)

By using Eq. (5.18) for {a }, in Eq. (5 .4 5 ), Eq. (5.45) was w ritten  as

{S> = [N] [A ]"1 {6} (5.46)

and

{AS} = [N] [A ]"1 {A6} (5.47)

In summary the matrices obtained so fa r a re ,

{eb> = [R] [ A ] '1 (6>e {Aeb} = [R] [A ]"1 (A6>e

{ e } = [T] [A ]"1 {6} {Ae } = [Y- + Y?] [A ]"1 {A6K m e m I d  t
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{S} = [N] [A ]"1 {6} {AS} = [N] [A ] '1 {A6}e e

The varia tion  in the potential energy of the element (A %Q) of

Eq.(5.19) is  then,

A * e = 2n Deq / r °  {A6}I  [ [ a] "13T [R]T CQ] CR] [A ]"1 {6}e r  dr

p
+ 2* Ceq Jr °  {A6}1 [[A ]"1 ] 1 [Y j + Y2] T [Q] [T] [A ]-1 {6}g r  dr

p
-  2n f 0 {A6}T [ [A ]" 1]1 [N ]T { f }  r  dr = 0 (5.48)r . e

Since Eq. (5 .48) should be valid  fo r a rb itra ry  values of {A6}g, Eq. 

(5.48) reduces to

{ [k L] e + CkNL] e} (6>e = {F )e (5.49)

where [k L]e and CkNL] e are called the bending and the membrane s tiffn ess  

m atrix for the element and (F>e is  the corresponding load vector and 

are given by

p
[k L3e = 2u Deq Jp° [CAD- 1 ]1 [R ]T EQ] [RI [A ]” 1 r dr (5.50)

r

CkNL] e = Ceq K °  tCA]"1 CY1 + Y2]T CQ] [T ] CA]"1 r dr (5 *51)eq
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{F}e = 2lt V ?  f [A]_13T { f }  r  dr ( 5 -52>

Assembling the element stiffnesses and nodal loads, global s tiffness  

matrix and to ta l load vector can be obtained and Eq. (5.49) can be 

w ritten  as:

[K] (6} = {F} (5.53)

where [K] is  a global s tiffness  matrix and is  given by

n
[K] = Z ([k L]e + CkNL] e } (5.54)

and

n
(F) = I  {F} (5.55)

1 e

5 .5 .2  Boundary Conditions

For the clamped c ircu la r quasi-iso trop ic  plate with axisymmetric 

loading, boundary conditions are

1. The radial displacement u and the ro ta tion  (-j^) equal zero a t  

the center (r  = 0 ).

2. The radial displacement u, the transverse displacement w, and 

the rotation  (-gp-) equal zero a t the clamped edge (r = a ) .
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5.6 Solution Procedure

To solve the governing Eq. (5 .53) fo r the nodal displacements 

{6 }, the solution domain was d iscretized  in to  n axisymmetric elements 

and (n+1) nodes. Each node had three degrees of freedom, the rad ial 

displacement u, the transverse displacement w, and the ro ta tion  .

In Eq. (5 .5 3 ), [K] is  a global s tiffn ess  matrix and is given by the Eq. 

(5.54) as:

[K] = I  {[kL]e + [kN|_]e>

In order to evaluate the global s tiffn ess  matrix [K ], i t  is  

required to obtain the bending s tiffn ess  matrix [k|_]e and the membrane 

stiffness  [ k ^ e  ^or eacfl element. However, the membrane s tiffness  

matrix CkfjL^e (5 .5 1 )) contains the lin e a riz in g  function "B" and as

the function "B" was not known a p r io r i ,  an ite ra tiv e  scheme was adopted 

in the present so lution . The d e ta ils  of the ite ra tiv e  scheme are given 

below and presented in the flow chart o f Fig. 5 .2 .

The lin ear bending stiffness [k[_]e and the load vector {F}g were 

computed by using Eqs. (5.50) and (5 .52) (step 3, Fig. 5 .2 ) . Since the 

lin e a riz in g  function B, was not known a p r io r i ,  i t  was assumed zero and 

hence the membrane stiffness [ k ^ e  was a nu^  matrix (step 4, F ig. 

5 .2 ) .  Using Eqs. (5 .54) and (5 .5 5 ), the global s tiffness matrix [K] and 

the load vector { F> were computed (step 6, Fig. 5 .2 ) .  Equation 

(5.53) was then solved to obtain the lin e a r displacement solution {6} 

(step 7, Fig. 5 .2 ) . By using the lin e a r displacements and the rotations  

a t  each node, the lineariz ing  function "B" and the membrane s tiffness
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STEP 1: ITER = 0

STEP 2:

STEP 3:

STEP 4:

r*-STEP 5:

STEP 6:

STEP 7:

STEP 8: YES

STEP 9:
YES

STEP 10: STOP

START

ITER = ITER + 1

COMPUTE [k.]e, M

COMPUTE LINEARIZING 
FUNCTION B AND THE

DISCRETIZE INTO N AXISYMMETRIC 
ELEMENTS

COMPUTE [k],

SOLVE FOR THE NODAL DISPLACEMENTS

COMPUTE GLOBAL STIFFNESS 00
M  = I fk ]P 
COMPUTE LOAD VECTOR {f{
m  -i me

Fig. 5.2 Flow Chart for the Finite Element Model
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C^NL^e were computed (step 10, F ig . 5 .2 ) .  The to ta l s tiffness  m atrix of 

the element [k ]e is  then the sum of the lin e a r bending s tiffn ess  [k|_]e 

and current membrane s tiffn ess  [kNL] e . The global s tiffness  matrix [K] 

was then formed and the new displacements were computed. Using the new 

displacements a new CkNL] e m atrix is  computed. This ite ra t iv e  procedure 

was continued u n til there was no s ig n ific a n t difference in displacements 

between the successive ite ra tio n s .

5.7 Convergence Study

To study the convergence o f the present method, the c irc u la r p late  

was d iscretized into n axisymmetric elements and (n+1) nodes. A 

systematic convergence study was made by increasing the number of 

elements in the id e a liza tio n s . The number of elements used in th is  

convergence study were 2, 4, 8 , 16, 32, 40, and 48. For the cen tra lly  

loaded clamped c irc u la r p late with center deflection to p late thickness 

ra tio  of 2 .0 , a 48 element id e a liza tio n  was found to obtain a converged 

nonlinear so lution . Figure 5 .3  presents the re la tiv e  errors in the 

maximum deflections normalized with respect to the converged maximum 

center deflections. The solution shows a rapid convergence and about 32 

regions were found to be necessary to y ie ld  a solution which is  w ith  

0.01 percent of the converged solution .

By using the 48 element id e a liz a tio n , the clamped quasi-isotropic  

c ircu la r plate was analyzed to obtain the large deformation solutions  

fo r various center d e fle c tio n -to -p la te  thickness ra tio s . As the center 

d e flec tio n -to -p la te  thickness ra tio  increases, the number of ite ra tio n s  

required to obtain the large deformation solution increased. Table 5.1  

presents the number of ite ra tio n s  required to obtain the large
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deformation solution of the clamped c irc u la r quasi-isotropic laminates 

under point loads fo r central d e flec tio n -to -p la te  thickness ra tio s

ranging from 0.5 to 2 .0 .

5.8 Results and Discussion

In th is  section, the deflected shapes obtained with the f in i t e  

element model fo r the central defection to plate thickness ra tio s

ranging from 0.5  to 2.0 are compared with the deflected shapes obtained 

by using the plate-membrane coupling model. Mext the load-displacement 

curve obtained by using the f in i te  element model is compared with the 

load-displacement curve obtained e a r l ie r  by using the plate-membrane 

coupling model.

The transverse displacements w obtained by using the f in i t e  element 

model and the plate-membrane coupling model (Chap. 4) for various 

central deflection to p late  thickness ra tio s  ranging from 0.5 to 2.0 are 

presented in Table 5 .2 . The results obtained by the f in i t e  element

model are in exce llen t agreement with those obtained e a r l ie r  by using

the plate-membrane coupling model.

Figure 5.4 presents a comparison between the load-displacement 

curves obtained by using the f in i te  element model and the plate-membrane 

coupling model. Figure 5 .4  indicates th a t the results obtained by using 

the f in i te  element model compare well w ith those obtained by using the 

plate-membrane coupling model. Figure 5.4 also shows the e ffe c t  of 

non linearity  on the p late  deflection . For any given load the nonlinear 

displacement is much smaller than the lin e a r  displacement.

As pointed out in the introduction, in the current f in i t e  element 

form ulation, the membrane e ffe c ts  due to the mid-plane stretching are
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considered. So i t  is  in teresting  to compare the radial displacements 

obtained by using the f in i t e  element model, with those obtained by using 

the classical solution (Appendix B). Figures 5.5 and 5.6 show a com­

parison of the rad ia l displacements fo r the central deflection to plate  

thickness ra tio s  of 0.5 to 2 .0 . The functional form of the radial 

displacement curve obtained by using the classical solution is identica l 

for the central deflection  to plate thickness ra tio s  of 0.5 and 2 .0 . On 

the other hand, the functional form of the radial displacement curve 

obtained by using the f in i te  element model and the plate-membrane 

coupling model is  d iffe re n t fo r the central deflection to plate  

thickness ra tios  of 0 .5  and 2 .0 .

Figures 5.5 and 5.6 also show that the magnitudes of the radial 

displacements are three orders less as compared to the magnitudes of the 

transverse displacements. Although the rad ia l displacements are much 

smaller in comparison with the transverse displacements, th e ir  co n tri­

bution to the membrane radial s tra in s , and the tangential stra ins is 

s ig n ifican t. These membrane stra ins are p a rtic u la rly  important for 

stra in  energy calculations in the back face spalling model. Thus for 

accurate predictions of stresses and strains in the p la te , the radial 

displacements should be incorporated into the f in i te  element formula­

tion .

Figure 5.6 indicates tha t, for the central deflection to plate  

thickness ra tio  of 2 .0 , radial displacements obtained by using the 

classical solution are in good agreement with those obtained by using 

the f in i te  element solution and the plate-membrane coupling model 

solution. On the other hand, Fig. 5.5 shows th a t, for the center 

deflection to p late thickness ra tio  o f 0 .5 , radial displacements
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obtained by using the classical solution d if fe r  considerably from the 

corresponding f in i t e  element solution and the plate-membrane coupling 

model solution. Therefore the functional form of the rad ial displace­

ments assumed in the classical solution would predict correct radial 

displacements only for higher values of the center-deflection to plate  

thickness ra tio s , while for lower values of the center deflection  to 

plate thickness ra tio s , the functional form of the radial displacements 

assumed in the classical solution would predict incorrect values of the 

radial displacements.

5.9 Concluding Remarks

In this chapter, c ircu la r quasi-isotropic composite plates were 

analyzed to study the large deformation behavior under point loads. A 

f in i te  element model was formulated to study the large deformation 

behavior of these p la tes . A f in i te  element model,, in contrast to those 

in the lite ra tu re , considers both radial and transverse displacements in 

i ts  formulation. This model uses a lin e ariza tio n  technique with an 

ite ra tiv e  procedure to obtain the large deformation shapes fo r thin  

composite laminates under the point loads.

The deformation shapes obtained by using the f in i te  element model 

agreed very well with the deformation shapes obtained by using the 

plate-membrane coupling model. The load-deflection curve was obtained 

using the f in i t e  element model and compared with the load-deflection  

curve obtained by using the plate-membrane coupling model. Excellent 

agreement was observed between the two resu lts . The classical solution  

[27 ], based on the energy method, assumes that the functional form of 

the radial displacements curve is  identical for the various values of
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the central displacements to plate thickness ra tio s , whereas the f in i t e  

element model indicates that the functional form of the radial displace­

ments curve is  d iffe re n t fo r the various values of the central displace­

ments to p late thickness ra tio s . The rad ia l displacements are found to 

be about three orders of magnitude less , as compared to the transverse 

displacements. The radial displacements obtained by using the f in i t e  

element solution compares well with the classical solution for the 

central deflection  to p late thickness ra tio  o f 2 .0 , but they are 

s ig n ific a n tly  d iffe re n t from the c lassical solution for the center 

deflection  to plate thickness ra tio  of 0 .5 .
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Table 5.1 -  Number of Ite ra tio n s  Required to Obtain Large
Deformation Solution of a Clamped C ircular Plate 
Under Central Point Load

Plate center deflection
0to thickness ra tio

Number of 

ite ra  tions

0.5 4

1.0 9

1.5 17

2.0 29
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Table 5 .2 (a ) -  Comparison of the Transverse Displacements w 
Obtained by Using the F in ite  Element Mo^el and
the Plate-Membrane Coupling Model for (—S-) Ratios 
of 0.5 and 1 .0 . n

r /a F in ite  Element Plate-Membrane
Model Coupling Model

0 .0 0.50000 0.50000
0.1 0.46810 0.46764
0.2 0.40963 0.40842
0.3 0.34011 0.33791
0.4 0.26712 0.26484
0.5 0.20418 0.20311
0.6 0.13558 0.13506
0.7 0.07916 0.07762
0.8 0.03763 0.03828
0.9 0.00983 0.01001
1.0 0.00000 0.00000

0.0 1.00000 1.00000
0.1 0.93167 0.93050
0.2 0.81098 0.80831
0.3 0.67184 0.66745
0 .4 0.53024 0.52491
0.5 0.39756 0.39392
0.6 0.27246 0.27028
0.7 0.16224 0.16570
0.8 0.07546 0.07719
0.9 0.02024 0.02074
1.0 0.00000 0.00000
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Table 5 .2(b ) -  Comparison of the Transverse Displacements w 
Obtained by Using the F in ite  Element Mo ĵel and
the Plate-Membrane Coupling Model fo r (-2-) Ratios 
of 1.5 and 2 .0 .

r /a F in ite  Element 
Model

Plate-Membrane 
Coupling Model

-  1.S 0.0 1.50000 1.50000
0.1 1.38780 1.38595
0.2 1.19976 1.19548
0.3 0.99214 0.98512
0.4 0.79318 0.78421
0.5 0.59440 0.58841
0.6 0.40648 0.40245
0.7 0.24651 0.25309
0.8 0.11811 0.12140
0.9 0.03186 0.03286
1.0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

W O
•

CMII

0 .  j 2.00000 2.00000
0.1 1.83683 1.83399
0.2 1.57758 1.57111
0.3 1.30415 1.29297
0.4 1.03569 1.02026
0.5 0.78009 0.77129
0.6 0.54370 0.53813
0.7 0.33418 0.34512
0.8 0.16317 0.16870
0.9 0.04395 0.04561
1.0 0 . 0 0 0 0 0 0 . 0 0 0 0 0
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Chapter 6 

PLATE MECHANICS EXPERIMENTS

6.1 Introduction

In Chaps. 4 and 5, the plate-membrane coupling model and the f in i te  

element model were developed to study the large deformation behavior of 

c ircu lar quasi-isotropic p la tes . Both of these models assume that the 

quasi-isotropic T300/5208 graphite/epoxy laminates with stacking 

sequence [4 5 /0 /-4 5 /9 0 ]s , are f le x u ra lly  iso trop ic . In th is  chapter th is  

assumption of flexura l isotropy is experimentally v e r if ie d .

The large deformation shapes and the load-displacement curves for 

the c ircu la r quasi-isotropic plates under central point loads were 

obtained by conducting series of tests on the c ircu la r quasi-isotropic  

laminates. F irs t , the experimentally obtained deflected shapes are 

compared with the an a ly tica l deflected shapes obtained by using the 

plate-membrane coupling model and the f in i te  element model. Then, the 

experimental load-displacement curve is compared with those of the 

plate-membrane coupling model and the f in ite  element model.

6.2 Test Set-up

To study the large deformation behavior of c irc u la r plates under 

central point loads, a torque bo lt arrangement and a servo-hydraulic 

testing machine were used. The torque bo lt arrangement was used to 

obtain the large deformation shapes of the c irc u la r plates under central

133
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point loads and the servo-hydraulic testing  machine was used to obtain 

the load-displacement behavior of the c irc u la r plates under central 

point loads. For both tests, quasi-isotropic graphite/epoxy laminates, 

with the stacking sequence of [4 5 /0 /-4 5 /9 0 ]s and the material properties  

given in Table 2.1 were used. C ircu lar laminates with 76.2 mm (3 

inches) or 101.6 mm (4 inches) diameters were bolted between two steel 

annular plates as shown in Fig. 6 .1 . These steel plates provided 

clamped boundary conditions for the specimens. A torque b o lt 

arrangement was used to push a 25.4 mm diameter steel ball against the 

laminate, to provide the desired s ta tic  loading (Fig . 6 .2 ) . Although 

the ball diameter was 25.4 mm, the contact radius between the ba ll and 

the plate was very small (of the order of 1 mm) and thus pushing the 

steel ball simulated the desired s ta tic  point load conditions.

A traversing horizontal d irec t current d iffe re n tia l transducer 

(DCDT) and a v e rtic a l DCDT were used to measure the deflected shapes of 

the clamped c irc u la r quasi-isotropic laminates as shown in Fig. 6 .1 .

To obtain a load-deflection curve, the s ta tic  loading tests were 

conducted in a servo-hydraulic testing machine. The test specimens were 

clamped to a platform , shown in Fig. 6 .3 , which was mounted on the 

hydraulic ram, and load was applied to the center of the specimen by 

means of a punch, tipped with a 25.4 mm diameter steel b a ll.  A DCDT 

displacement gauge was attached to the indenter to measure plate de flec ­

tion as the load was applied. The e le c tr ic  signals from the load ce ll 

and the displacement gauge were given as an input to the x-y p lo tte r  to 

allow d ire c t load-displacement p lo ttin g .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

T‘« &Ji.< r  , ; - h  » .  V  •  ,  s  ■>

Y TRANSDUCERX TRANSDUCER

A N N U L A R  P L A T E SSPECIMEN

Fig. 6.1 Experimental Set Up



136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo
ad
in
g 

on 
the

 
Sp

ec
im

en



137

Fig.

DCDT Displacement Gage

W  Indenter

■Annular PlatesTest Specimen

Hydraulic Ram

5.3 Static Loading on the Quasi-Isotropic Circular 
Laminate

Reproduced with permission of the copyright o w n er Further reproduction prohibited without permission.



138

6.3 Test Data

C ircular quasi-isotropic plates of two sizes with diameters 76.2 mm

and 101.6 mm were tested. By using the torque bo lt arrangement, the

76.2 mm diameter plate was loaded t i l l  the desired center deflection  was

obtained. This center displacement was measured by using the v e rtic a l

DCDT. Once the desired center displacement was obtained, the f i r s t  set

of observations were made along the f ib e r  d irection  (0 = 0°) o f the

eighth ply (farthermost ply from the point of load ap p lica tio n ). The

second and th ird  set of observations were made on a line  perpendicular

to the fib e r direction of the eighth p ly , (9 = 90°) and on a lin e  45°

(0 = 45°) to the f ib e r  d irection  of the eighth ply, respective ly .

These three sets of observations were recorded for central d e flec tio n -
w0

to-plate-th ickness ra tio  (— of  0 .5 , 1 .0 , 1 .5 , and 2 .0 . S im ilar 

observations were made for 101.4 mm diameter p la te .

The load-displacement data were obtained by using the servo- 

hydraulic machine. The 76.2 mm diameter and the 101.4 mm diameter 

plates were loaded and the corresponding central deflections were 

recorded t i l l  the central deflection was about two times the p late  

thickness.

6.4 Results and Discussion

In this section, f i r s t  the v a lid ity  of flexural isotropy in 

c ircu la r quasi-isotropic laminate is discussed. Then the measured 

deflected shapes are compared with the plate-membrane coupling model and 

the f in ite  element model.

To ve rify  the flexura l isotropy in the c ircu lar quasi-isotropic  

laminates, experimental measurements made along three diametral lines a t
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0 = 0 °, 0 = 45° and 0 = 90°, for various values of the central

d e flec tio n -to -p la te  thickness ratios ranging from 0.5 to 2.0 were
wQ

compared. Figure 6.4 presents the typical deflected shapes for (-pp) 

ra tios  of 0.5 and 1.5 along 0 = 0° and 90° radial lin e s . The 

deflected shapes fo r ra tios  of 1.0 and 2.0 showed sim ilar trends and 

hence are not shown. The experimental observations showed that the 

deflected shapes along 0 = 45° were bounded by the shapes along 

0 = 0 °  and 0 = 90°. The maximum differences between the 0 0° and 

90° observations occurred near (•£■) = 0.4 and were about six percent ofa

the maximum center deflections. Thus the experimental observations 

indicate that clamped c ircu lar quasi-isotropic laminates, subjected to 

axisymmetric loading, exh ib it near flexura l isotropy and show nearly 

axisymmetric bending behavior.

Figures 6.5 and 6.6 present the measured deflected shapes a t

0 = 0 °  and the analytica l deflected shapes obtained with the p la te -
w

membrane coupling model for (—pj-) ra tios  ranging from 0.5 to 2 .0 . 

Since the deflected shapes obtained by using the f in i te  element model 

are almost identica l to those obtained by using the plate-membrane 

coupling model (Table 4 .1 ) ,  only the plate-membrane coupling model 

results are compared with the experimental data. In Figs. 6.5 and 6.6 

the experimental results are shown as c ircu lar symbols and solid lines  

represent the results of the plate-membrane coupling model. Figures 6.5 

and 6.6 show excellent agreement between analytical and experimental 

resu lts .

Figure 6.7 presents the measured load-deflection curve and the 

analytical load-deflection curve obtained by using the plate-membrane 

coupling model and the f in i te  element model. The analytical results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

o
•Mo
a>

x

oo
cc

CD
03

o  £
CD _

O

O CD

CD

o0 s CM

Lf\o

03

CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.
 

6.4
 

Ax
is

ym
me

tr
ic

 
Va

li
da

ti
on

 
for

 
Qu

as
i-

Is
ot

ro
pi

c 
8-

P
ly

 
T

30
0/

52
08

 
La

mi
na

te



141

Experimental data 
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Fig. 6.5 Deflected Shapes for the Laminate Under Quasi- 
Static Point Loads for wQ/h = 0*5 and 1.0
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were found to be w ith in  six percent of the experimental resu lts . These 

differences between the analytical and experimental results are probably 

due to experimental errors which might have been introduced while  

p rac tica lly  sim ulating the clamped boundary conditions.

6.5 Concluding Remarks

Eight ply T300/5208 quasi-isotropic c ircu la r plates were tested to 

ve rify  the assumption of flexura l isotropy and to study the large  

deformation behavior under central point loads. The experimental 

observations ind icate  that clamped c ircu lar quasi-isotropic lam inates, 

subjected to a central point loading, behave as i f  they are almost 

f le x u ra lly  iso tro p ic  and they show nearly axisymmetric bending behavior.

The experim entally obtained large deformation shapes and the load- 

displacement curves were compared with those obtained with the p la te -  

membrane coupling model and the f in i te  element solution. The exp eri­

mental results are in good agreement with the analytical resu lts  

obtained by using the plate-membrane coupling model and the f in i t e  

element model.

In the next chapter, the large deformation shapes of the quasi­

isotropic c irc u la r p late  obtained by using the plate-membrane coupling 

model and the f in i t e  element model are used in conjunction with the 

fracture mechanics approach to describe the back face spa lling  

phenomenon in thin quasi-isotropic c ircu la r laminates.
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Chapter 7 

BACK FACE SPALLING MODEL

7.1 Introduction

In Chaps. 4 and 5, the plate-membrane coupling model and the f in i te  

element model were developed to study the large deformation behavior of 

clamped c irc u la r quasi-isotropic laminates under s ta tic  point loads. 

These models were v e r ifie d  by conducting tests on the clamped c ircu lar  

laminates. In th is  chapter a simple ana ly tica l model is  developed to 

describe the back face spalling phenomenon in thin quasi-isotropic  

laminates. The model is  based on the fracture mechanics princip les and 

uses the large deformation shapes of the plates obtained e a r lie r  by 

using the plate-membrane coupling model. .Th is ana ly tica l model is 

v e rifie d  by conducting the experiments on thin quasi-isotropic T300/5208 

c irc u la r p la tes .

7.2 Back Face Spalling Mechanism

As discussed in Chap. 1, for quasi-isotropic laminates under the 

central po int loads, f i r s t  v is ib le  damage occurs in the fa rth es t ply 

from the load ( i . e .  8th p ly ) . The damage is  in the form of a matrix 

cracking p a ra lle l to the f ib e rs . Further increase in load level results  

in two dominant cracks in the 3th ply and surrounding these two cracks 

delaminations form between 7th and 8th p lie s . Additional increase in 

load causes these delaminations and cracking to propagate ustably in the 

f ib e r  d irection  of the bottom p ly . This unstable growth of

145
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delaminations and the propagation of the two dominant cracks is known as 

the back face spalling  phenomenon. During the back face spalling  

action , curved tra jec to ry  of the 8th ply center s tr ip  (formed by the two 

dominant cracks in the 8th ply) running under the load point in the

fib e r  d irection  changes v ir tu a lly  to a s tra ig h t lin e  between the load 

point and the support (F ig . 7 .1 ) .  A large fra c tio n  of stra in  energy 

from th is  8th ply center s tr ip  is shed during th is  spalling action. 

This mechanism of the back face spalling is  modeled by using the

concepts of fractu re  mechanics in the following sections.

7.3 Fracture Mechanics Concepts

Any general deformation of a cracked body can be described by 

combination of three independent modes of deformation (F ig . 7 .2 ) . The 

three independent modes are: opening mode, s lid ing  mode and tearing

mode. Normal stresses give rise to the opening mode denoted as mode

I .  Inplane shear results  in mode I I  or s lid ing  mode. The tearing mode 

or mode I I I  is  caused by out-of-plane shear.

7 .3 .1  The G r if f i th  C riterion

One of the basic c rite rio n  fo r fracture was established in 1921 by

G r if f i th  [5 4 ], The G r if f i th  energy c rite rio n  fo r fracture  can be stated

as "crack growth can occur i f  the energy required to form additional 

crack surfaces can be delivered by the system."

For example, consider a cracked p late of thickness B under a load 

P, as shown in F ig . 7 .3 . For a crack of size a the lin ear load- 

displacement re lationsh ip  can be represented by lin e  OA in Fig. 7 .4 . 

S im ilarly  fo r a crack of size a+da the load-displacement re la tion  can
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Mods I Mode 11 Mode 111

Opening Mode Sliding Mode

Fig. 7.2 Three Modes of Fracture
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be represented by the lin e  0E (the lin e  OE has a lower slope than the 

lin e  OA because of reduced s tiffness  of the p la te ). I f  the ends of the 

plate are fixed and i f  crack extension takes place from a to a+da a t  a 

load Pj_, the displacement remains constant and the load drops from point 

A to point B (F ig . 7 .4 ) . During th is  process e las tic  energy, repre­

sented by the area of trian g le  OAB, is  released, which is  A P.V.

I f  crack extension takes place a t constant load the displacement 

increases from point A to point E, i . e .  by an amount AV (F ig . 7 .4 ) .  

Therefore the work done W, by the load is

W = Px • AV (7 .1 )

The increase in the e la s tic  energy of the plate is

area (OEF) -  area (OAC) = |  P-^v+Av) -  \  P^V = j  P^AV (7 .2 )

This increase in energy has to be provided by the load. The energy 

provided by the load is area (AEFC)

area (AEFC) = Px • AV (7 .3 )

Equations (7 .2 ) and (7 .3 ) ind icate that there remains an amount of 

energy equal to area (OAE). Area (OAE) can be expressed as

area (OAE) = |  Pj-AV AP«V + ^  AP-AV (7 .4 )
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In Eq. (7 .4 ) AP»AV is  the second order term and hence can be

neglected. Thus i t  follows th a t area (OAB) » (OAE). This means that 

energy availab le  for crack growth is  the same in fixed grip and constant 

load case.

As seen e a r lie r  in the case of fixed grips the e la s tic  energy is  

released as the crack grows from a to a+da. This e la s tic  energy

released per u n it crack extension is  called "e la s tic  energy release

rate" and is  denoted by G. Since e la s tic  energy is  proportional to the

strain  energy, G is  usually expressed in terms o f the s tra in  energy and 

is called "stra in  energy release ra te ."

7 .3 .2  C r itic a l Strain Energy Release Rate G

G r if f i th  [54] postulated th a t the crack growth occurs only when the

strain energy release rate G exceeds certain c r it ic a l  values. This

c r it ic a l value is  called a " c r it ic a l stra in  energy release rate" and is  

denoted by Gc. This quantity Gc is a material property l ik e  the y ie ld  

stress, Young's modulus and is  d iffe re n t from material to m ateria l.

7 .4  Back Face Spalling Model

As discussed e a r l ie r  in the section 7 .2 , in quasi-isotropic  

laminates under the point loads, f i r s t  v is ib le  damage occurs in the

lowest ply in the form of two dominant cracks and surrounding these two

cracks delaminations form between the 7th and 8th p lie s . With further

increase in load a t a certain p late  center deflection  wQ, massive back 

face spalling occurs. During th is  spalling action the 8th ply center

s trip  (formed by the two dominant cracks in the 8th p ly ) which is

previously deformed in the same shape as that of a c irc u la r p late
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changes v ir tu a lly  to a s tra ig h t lin e  between the load point and the

support. This fa ilu re  mechanism suggests that the complete back face 

spalling event can be explained by modeling the center s tr ip  in the 8th

p ly.

The center s trip  model developed here to describe the back face 

spalling phenomenon is based on the follow ing assumptions:

1. Before the back face spalling  occurs, the center s tr ip  in the

8th ply has the same deformed shape as that of a quasi-iso trop ic

plate under the point load. Thus the radial displacements (u ),
f dw ̂the transverse displacements (w ), and the rotations IgyrJ* i n 

the center s tr ip  can be obtained by performing the large deflec­

tion analysis of the quasi-iso trop ic circu lar plate under point 

loads.

2. The in i t ia l  delamination between the 7th ply and the center

s tr ip  in the 8th ply is  assumed to ex is t a t  the radius of 

in fle c tio n  (the radius a t  which curvature in the s tr ip  is  zero ).

3. The change in s tiffness  of the plate due to the back face

spalling action is  assumed neg lig ib le  and hence is  not 

considered in the center s tr ip  model.

4. The e ffects  of in ternal damage in the c ircu lar p late  on the

deformed shape of the p late are assumed to be n e g lig ib le .

5. The center displacement of the p late is held constant and i t

does not change during the back face spalling action .

With these assumptions the center s tr ip  model was formulated and
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solved to compute the s tra in  energy release rates during the back face 

spalling  action .

Consider a center s tr ip  in the 3th p ly . The deformed shape of the 

s tr ip  is  the same as that of the c irc u la r p la te . The s tr ip  has a width 

b and the thickness t  ( t  = one ply thickness). This center s tr ip  was 

discretized  into m number of elements with (m+1) nodes. The rad ia l 

displacement (u ), the transverse displacement (w), the ro tation  ( ^ )  , 

and the curvature a t  each node were calculated by using the p la te -

membrane coupling anlysis as described in Chap. 4 . An in i t ia l

delamination was assumed to e x is t between the center s tr ip  (of the 8th 

ply) and the 7th ply a t  the radius of in fle c tio n  as shown in Fig. 7 .5 . 

This in i t ia l  delamination was assumed to have a length equal to BD as 

shown in Fig. 7.5 where nodes B and D are the nodes adjucent to the node 

a t  the radius of in fle c tio n . Due to the presence of th is  in i t ia l  

delam ination, the o rig ina l deformed shape of the center s tr ip  ABCDEF as 

shown in Fig. 7.5 changed to the new deformed shape ABC’ DEF. The

center s tr ip  i n i t ia l l y  deformed between the nodes BD as BCD became 

s tra ig h t as BC'D. Due to th is change the o rig ina l displacements,

ro ta tion  and curvature a t  the node C have changed. The new displace­

ments, ro ta tio n  and curvature a t the node C' were calculated as follows: 

The rad ia l displacement a t  the node C1 equal to

(un -  Up)

“c  = - T i m  • (4r)  + UB (7 - 5)

The transverse displacement a t  the node C' equal to

V  = 2 • ' {AFT * (Ar) + WB (7 ,6 )
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The rotation  a t  the node C1 equal to

fdw') -  (WD ‘  WB} (7
7"-TaF7 u ' n

The curvature a t  the node C1 using f in i te  difference approximation a t  C1 

is

“ o • 2 V + w.

dr C' T aFT (7 .8 )

Substituting equation (7 .6 ) for Wq« into Eq. (7 .8 )

( A )  = 0
dr C'

(7 .9 )

Thus with an in i t ia l  delamination the center s tr ip  had the same 

nodal displacements, ro ta tions , and the curvatures as th a t of a p la te , 

except a t  the node C1 where the displacements and ro ta tion  are given by 

Eqs. (7 .5 )—(7 .8 ) .  The curvature a t the node C ', however, is  zero. By 

using these values of displacements, ro tations and curvatures s tra in  

energy of the center s tr ip  was calculated as follows:

The stra in  energy U of a body in terms of stress (a) and s tra in  

(e) is given by:

U = i  /  a e d(vol) (7.10)
*  vol
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Only the transverse displacements (w) and the rad ia l (ax ia l) displace­

ments (u) were assumed to be present in the s tr ip . With these

assumptions, the s tr ip  was modeled as a beam and hence only one stress

cr exists  in  the center s tr ip . The s tra in  energy of the s tr ip

idealized as a beam is ,

where vol is  the volume of the center s tr ip  and Er r  = E ^  is  the 

e la s tic  modulus of the s trip  in the fib e r d ire c tio n .

In Eq. (7.11) is  the radial (a x ia l)  s tra in  and is the sum of

the membrane stra ins and the bending s tra in s :

where z in the Eq. (7.12) was measured with respect to the p late  

coordinate system.

A substitution of Eq. (7.12) in Eq. (7 .1 1 ), gives the to ta l s tra in  

energy of the s tr ip  U as

Since z was measured with respect to the plate coodinate system, 

the lim its  of in tegration  for the 8th ply center s tr ip  in z d irection  

are (3h/8) to (h /2 ) , therefore

U = d (v o l)
vol

(7.11)

2.
(7.12)
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.. _ El l b ra rh/2 rdu . 1 fdw ^ d2w->2 . . , ,
2“  ■’o 3l / 8  W  + '  z dr dz (7 *14)

In order to evaluate the integral in Eq. (7 .1 4 ), the center s trip  

was discretized into m number of elements. The nodal displacements, 

the ro ta tion , and the curvatures were computed by using the p la te - 

membrane coupling model. These displacements, rotation and curvature 

were modified a t  the node C' (F ig . 7.5) by using Eqs. (7 .5 ) —(7 .9 ).  

Using these modified nodal displacements, Eq. (7.14) was numerically 

integrated to obtain a stra in  energy U of the center s trip  of the 8th 

ply. This procedure was repeated for various values of m, where number 

of elements m, were chosen as m ultiples of 10. About 60 elements and 90 

elements were found necessary for a 25.4 mm and 38.1 m  length center 

s tr ip  respectively, to y ie ld  a converged solution for the strain  energy 

U. Once the stra in  energy U was computed a delamination of one element

size was allowed to grow in the outward d irection as shown in Fig. 7 .5 .

Due to this growth of delamination the deformed shape of the s tr ip  

ABC'DEF changed into a new deformed shape ABC'D'EF as shown in Fig. 

7 .5 . Thus due to growth of del amination the deformed shape of the s trip  

between the nodes B and E is  a continuous stra ight lin e . The new

displacements, rotation and the curvatures a t  nodes C " ,  D' were calcu­

lated as follows:

The radial displacements of the nodes C '1 and D' are 

(uF -  uR)

V  = ^ - z r ' * r  + uB (7 *15)

(Up -  U p )

UD' = 3 »(Ar) * 2 ( Ar) + ub (7.16)
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The transverse displacements a t the nodes C '1 and O' are

(W  ̂ -  Wg)

WC  = T -  ( A r F  ’ (Ar) + WB (7 ‘ 17)

(w •* w )

V g i -  (AT) ‘ 2 (ar) + WB (7 - 18)

The rotations a t  the nodes C" and D' are

fdw-> _ rdw-j _ {WE " WB}
'• ( iP C 1 L3 r JD‘ " T ^ l A r T  (7 • ;L9,

Since the deformed shape of the s tr ip  between the nodes B and E was 

s tra ig h t, the curvatures a t the nodes C " and D* were zero. Therefore

( d fw , „  ( A )  = 0 (7 20)

dr C "  dr D1

Thus for the new deformed shape ABC'D'EF except a t the nodes C '' 

and D' the nodal displacements, ro tations, and curvatures of the center 

s tr ip  are the same as those obtained by using the plate-membrane 

coupling model. For the nodes C " ,  O ', the displacements, ro ta tions , 

and curvatures are given by Eqs. (7 .1 5 )- (7 .2 0 ) .  Using these values of 

nodal displacements, ro tations, and curvatures in to  equation (7 .1 4 ), the 

new stra in  energy U1 of the center s tr ip  with the deformation shape 

ABC'D'EF was calcu lated .

This s tra in  energy U1 corresponding to the deformed shape ABC'D'EF 

was found less than the strain energy U corresponding to the deformed
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shape ABC'DEF. Thus during the delamination growth from BD to BE (Fig . 

7 .5 ), the amount of s tra in  energy released AU is  given by

A U = U -  U1 (7 .21)

Expressing the stra in  energy released AU in terms of stra in  

energy release rate G, one has

r  _ 3U AIJ , 7
G -  a* a*  (7 *22)

where

A A = b x AdQ (7.23)

b = width of the s trip  

AdQ = length of the delamination growth 

This G corresponds to a delamination length of dQ + AdQ.

By using the above procedure, the s tra in  energy release rates were

calculated by incrementing the delamination outward by one element

length each time, u n til the delamination reached the clamped edge (node

F, Fig. 7 .5 ) . This s tra in  energy release rate analysis was repeated for 
w

several (—pj-) ra tio s  and fo r two plate sizes with ra d ii 25.4 mm and

38.1 mm.

7.5 Strain Energy Release Rate Results

In th is  section the s tra in  energy release rates obtained by using 

the center s tr ip  model are presented fo r two plate sizes with ra d ii 25.4 

mm and 38.1 mm. For each p la te  size stra in  energy release rates were
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determined for each delamination length. Figures 7.6 and 7.7 present G 

as a function of delamination length for various values of plate center 

deflection wQ. For a l l  delamination lengths, Fig. 7.6 shows that larger 

values of center deflection w0  gave larger values of the strain energy 

release ra tes . Figure 7.6 also indicates that beyond delamination 

length of 15 mm, the stra in  energy release rates reach a constant value 

and do not depend on the delamination length.

Figure 7 .7  presents the strain  energy release rate variation with 

delamination length for a plate radius of 38.1 mm, for various values of 

center deflection . This figure shows sim ilar trends as Fig. 7 .6 .

7.6 Discussion of the Back Face Spalling Phenomenon

As pointed out e a r l ie r ,  the back face spalling phenomenon occurs 

spontaneously ( i . e .  a center s trip  from the 8 th ply peels o ff  unstably). 

This unstable peeling action suggests that, during delamination growth 

between the 7th ply and the center s tr ip  from the 8 th p ly, the strain  

energy release rate G must exceed the c r it ic a l  stra in  energy release 

rate for delamination growth. Assuming that the spalling occurs due to 

the peeling action alone, i .e .  only mode I  is present, then by using the 

c r it ic a l s tra in  energy release rate value of the T300/5208 

graphite/epoxy material in the opening mode (G j) c, the back face 

spalling damage can be predicted by using the center s tr ip  model.

Consider a 25.4 mm radius p la te . The c r it ic a l  strain energy 

release rate value (G j)c , for the T300/5208 graphite/epoxy material is

0.1 KJ/m  ̂ [5 5 ]. Figure 7.6 shows that for the plate center deflections  

of 1.60 mm or less, the calculated G values to grow in i t ia l  delamination 

length BC'D to new delamination length BC 'D 'E (F ig . 7 .5 ) , are less than
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0.1 KJ/m̂ , or (G j)c value. This indicates that for the plate center 

deflections of 1.60 mm or less, the in i t ia l  delamination between the 

center s tr ip  and the 7th ply w il l  not grow. However, for the plate

center deflections of 1.70 mm or more, Fig. 7.6 shows that the 

calculated G values to grow the in i t ia l  delamination length BC'D to new 

delamination length BC'D 'E (F ig . 7 .5 ) , exceed (G j) c value. Therefore, 

fo r p late center deflections equal to or greater than 1.7 mm the in it ia l  

delamination between the center s tr ip  and the 7th ply w ill grow unstably 

and the center s trip  w ill peel o f f ,  thus resulting  into the back face 

spalling action . Figure 7.6 also indicates that i f  the in it ia l  

delamination lengths are large, the back face spalling action w ill occur 

a t lower values of central deflection w0. For example consider an

in t i t i a l  delamination length of 5 mm. From Fig. 7.6 the calculated G 

value required for growth in the in i t ia l  delamination length of 5 mm

exceeds 0.1 KJ/m  ̂ or (G i)c value when wQ is  1.60 mm. That means even a t

the center deflection of 1.60 mm, the in i t ia l  delamination of 5 mm

length w ill grow unstably resu lting  in the back face spalling action.

Next consider the larger p late of 38.1 mm radius. Figure 7.7 shows 

th a t for the plate center deflection  of 2.6 mm or more, the calculated G 

values to grow an in ita l  delamination length BC'D to new delamination 

length BC 'D 'E (Fig. 7 .5 ) , exceeds (G j)c value. Therefore, for plate 

center deflections equal to or greater than 2 . 6  mm the in i t ia l  delamina­

tion between the center s tr ip  and the 7th ply w ill grow unstably and the 

center s tr ip  w ill  peel o f f ,  thus resulting into the back face spalling  

action . Figure 7.7 also indicates that i f  the delamination lengths are 

large, the back face spalling action w ill occur a t lower values of 

center deflections wQ.
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7.7 Back Face Spalling Experiments

To v e rify  the back face spalling model, experiments were performed 

on clamped c ircu la r quasi-isotropic p lates. Quasi-isotropic  

graphite/epoxy laminates, with the stacking sequence of [4 5 /0 /-4 5 /9 0 ]s 

and the material properties given in Table 2.1 were used for the tests . 

C ircu lar laminates with 25.4 mm and 38.1 mm ra d ii were bolted between 

two annular steel p lates. By using the torque-bolt arrangement (s im ila r  

to the one described e a r lie r  in Chap. 6 ) ,  a 25.4 mm diameter steel ball 

was pushed against the laminate. Although the ball diameter was 25.4 

mm, which was h a lf the size of the plate diameter, the contact radius 

between the ball and the p late was very small (o f the order of 1  mm) and 

thus pushing of the steel ba ll simulated the desired s ta tic  point load 

conditions. A v e rtic a l DCDT was used to measure the center deflection  

w0. The s ta tic  load on the plate was gradually increased by using the 

torque b o lt, t i l l  the back face spalling occurred. At this instant the 

center deflection  w0  of the p late was measured. From the experiments i t  

was observed th a t fo r 25.4 mm radius p la te , the back face spalling  

occurred w ithin the center deflections, ranging from 1.80 mm to 1.90 mm. 

For 38.1 mm radius plate the back face spalling  occurred a t  higher 

center deflection s, with the values ranging form 3.00 mm to 3.1 mm.

The back face spalling experiments show that fo r the two plate  

sizes studied, a p late with 25.4 mm radius fa ile d  a t  a mean center 

d eflection  of 1.85 mm. The c r it ic a l  stra in  energy release rate (Gc ) ,  

corresponding to the center deflection  w0  = 1.85 mm from Fig. 7.6 is  

about 0.14 KJ/m^. In the case of 38.1 mm radius plate back face 

spalling  occurred a t  a mean center deflection of 3.05 mm. The c r it ic a l  

s tra in  energy release rate  Gc, corresponding to the center deflection
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wQ = 3.05 mm form F ig .7.7 is  0.14-7 KJ/m^. Thus the experimentally 

obtained c r i t ic a l  s tra in  energy release rates Gc, are about 0.14-0.15  

KJ/m^. Comparing these values with the opening mode c r it ic a l  stra in  

energy release rate (G j) c [5 5 ], Gc is somewhat higher than (G j)c . This 

may be due to the presence of shear s lid ing  mode (mode I I )  in addition  

to the opening mode (mode I)  during the back face spalling action .

E a rlie r  investigators [56 ,57 ] have shown that fo r b r i t t le  systems 

lik e  T300/5208 graphite/epoxy material under the mixed mode situations  

(opening mode and shear s lid in g  mode), the fa ilu re  is  predominantly 

governed by the c r it ic a l  s tra in  energy release rate in the opening mode. 

The present experimental values of Gc are very close to (G j) c . Hence, 

even though in the back face spalling phenomenon a mixed mode (mode I + 

mode I I )  s itu ation  may e x is t, the c r it ic a l  s tra in  energy release rate  in 

the opening mode (G j)c, probably governs the back face spallng mechanism 

in  th in composite laminates.

7 .8  Prevention of Back Face Spalling in Thin Composite Laminates

The an a ly tica l and experimental results form the back face spalling  

model suggest th a t, the composite laminates with higher (G j)c values 

than T300/5208, w il l  have bette r resistance to the back face spalling . 

For example consider composites AS1/3501-6 made by Hercules. Russel and 

S tree t [58] obtained the (G j)c value o f AS1/3501-6 as 0.15 KJ/m^. This 

value is  f i f t y  percent higher than that for T300/5208 composites. 

Therefore AS1/3501-6 composites may have better resistance to the back 

face spallng when compared to T300/5208 composites. Recently consider­

able a tten tio n  is  focused on the development of tough resins. The tough 

systems of composites usually have higher (G j) c values than b r i t t le
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system of composites [5 6 ]. Mall and Johnson [59] determined the (G j)c 

values for FM-300 tough m atrix composite by Hexel. They found that 

(G j)c values are 7 to 10 times higher than the b r i t t le  systems ( i .e .  

T300/5208 and AS1/3501-6). Hunston [60] and O'Brien e t  a l .  [61] 

obtained (G j)c values fo r F-185 matrix composite by American Cynamide. 

They reported the value of (G j) c fo r T6000/F185 composite as 2 KJ/m^, 

which is about 20 times higher than the T300/5208 values. Thus tough 

systems of composites may have superior resistance to back face spalling  

when compared to b r i t t le  systems of composite.

Some investigators [62] have found that "stitching" of the laminate 

decreases delamination. The s titch ing  of the laminate may be 

p a rtic u la rly  useful to prevent the back face spa lling , as s titch in g  has 

a restrain ing e ffe c t  on peeling action . Another possible way to prevent 

the back face spa lling , is  to use woven ply on the back of the lam inate, 

because the weave w ill not allow center s tr ip  from the bottom ply to 

peel o ff  without involving cross-ply s tr ip s .

F in a lly , in the present analysis the plates were assumed to be 

stress fre e . I f  the plates are pre-stressed, the plates would react 

d iffe re n tly  to the center po in t load. For the center point load, the 

center deflection w0  of the ten s ile  pre-stressed plate would be less 

compared to the center deflecton wQ of the plate with zero pre­

stresses. This is because the ten s ile  pre-stressed plate is more s t i f f  

compared to the plate with zero pre-stresses [2 7 ]. This suggests that 

the back face spalling would occur a t  higher loads in thin composite 

plates pre-stressed with ten s ile  stresses compared to the in i t ia l l y  

stress free p lates.
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7.9 Conclusions

In th is  chapter a simple ana ly tica l model was developed to 

understand the back face spalling phenomenon in thin quasi-isotropic  

laminates. The model uses the large deformation plate shapes obtained 

by using the plate-membrane coupling model in conjunction with the 

fracture mechanics princ ip les . The s tra in  energy release rates during 

back face spalling  action were obtained by using the an a ly tica l model 

for two plate sizes with plate ra d ii of 25.4 mm and 38.1 mm. Experi­

ments were performed on the 8  ply T300/5208 quasi-isotorpic c irc u la r  

plates to obtain c r it ic a l stra in  energy release rates during back face 

spalling action . Good agreement was observed between experimental and 

ana ly tica l re s u lts . Experimental and an a ly tica l results indicated that 

the back face spalling  phenomenon in 8  ply T300/5208 quasi-isotropic  

laminates is  governed by the c r it ic a l  s tra in  energy release rate {G j) c 

in  the opening mode. Therefore the back face spalling in composites can 

be reduced by using the material with higher (G j)c values than ( G j) c 

value of the b r i t t le  systems composite lik e  T300/5208. Another possible 

way to prevent the back face spa lling , is  to s titch  the laminate or to 

use a woven ply on the back of the laminate.
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SUMMARY AND CONCLUSIONS

The present investigation is concerned with the fa ilu re  analysis of 

composite plates under low-velocity impact loads. This analysis is  

p artic u la rly  important to understand the damage mechanics and to develop 

composites with improved impact resistance. The s ta te -o f-a r t of the 

low -velocity impact problem was reviewed and important aspects of the 

problem such as deformation mechanics, back face spalling phenomenon 

were investigated. Three models, plate-membrane coupling model, f in ite  

element model, and back face spalling model were developed. These 

investigations should help in understanding the low velocity impact 

problem and lead to better design and analysis of composite structures.

The low velocity impact problem in T300/5208 graphite/epoxy 

c ircu la r quasi-isotropic plates was formulated by replacing impact type 

point loads with equivalent quasi-static  loads. The quasi-isotropic  

plates were modeled as isotropic plates having the flexural stiffness  

components equivalent to the flexural s tiffness components of the quasi­

isotropic p lates. A plate-membrane coupling model and a f in ite  element 

model were developed to obtain the large deformation behavior of 

c ircu la r composite plates under point loads. These models were verified  

by conducting plate mechanics experiments. From the study of these 

analytical models and experiments the following conclusions can be made:

169
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1. A c ircu la r quasi-isotorpic p late with stacking sequence o f 

[4 5 /0 /-4 5 /9 0 ]s can be modeled as an isotropic plate having 

flexura l s tiffness  components equivalent to those of a quasi­

isotropic p la te .

2. The large deformation behavior of c irc u la r isotropic membranes 

subjected to a rb itra ry  axisymmetric loading can be obtained by 

solving a single nonlinear governing equation in terms of rad ia l 

stress using the f in i te  d ifference method in conjunction w ith  

Newton-Raphson method.

3. Accurate large deformation behavior of thin c ircu lar quasi­

isotropic plates can be obtained by using a simple p la te -  

membrane coupling model.

4. The functional form of the deformed shape of the p late  

undergoing large deformations is  d iffe re n t from the small 

deflection  plate solution. The deformed shape is a function o f 

the center point displacements and thus is  d iffe re n t fo r  

d iffe re n t load leve ls . Furthermore, fo r a plate undergoing 

large deformations, there is  an inward movement of the ra d ii of 

points of in fle c tio n .

In addition to the deformation mechanics, a study was undertaken to 

develop a damage mechanics. From the experiments on thin laminates i t  

was observed that f i r s t  v is ib le  damage in c irc u la r quasi-iso trp ic  

laminates under quasi-s ta tic  point loads occur on the back surface o f 

the laminate in the form of spa lling . To understand this back face 

spalling phenomenon, a simple model using the large deformation behavior
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of thin composite plates in conjunction with fracture mechanics

principles was developed. This back face spalling model was verified  by 

conducting experiments on thin c ircu lar quasi-isotropic p lates. The 

study resulted in the following conclusions:

1. The back face spalling action in thin composite laminates is a 

spontaneous action and can be modeled by using the fracture

mechanics princip les.

2. Mixed mode ( I  + I I )  type deformations probably occurs during the 

back face spalling action. However, analysis and experiments 

suggest that the mode I (opening mode) may be the dominant 

mechanism and governs the delamination growth during the

spalling  action.

3. Back face spalling model shows that the back face spalling

occurs only when the stra in  energy release rate G, exceeds the 

c r i t ic a l  value o f strain energy release rate in the opening mode 

(G j)c. This implies that back face spalling can be reduced or 

prevented by:

(a) Use of tough composites having higher values of (G j) c 

compared to b r i t t le  resin systems lik e  T300/5208.

(b) Stitching of the laminate, as stitching has a 

restraining e ffe c t  on peeling action .

(c) To use woven ply on the back of the laminate, because 

the weave w ill not allow center s tr ip  from the bottom 

ply to peel o f f  without involving cross-ply strips .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



172

The present investigation has also shown that future research is  

warranted in the following areas:

1. To include e ffects  of the internal damages in composite plates  

and develop more general deformation mechanics.

2. To extend the back face spalling model for rectangular composite 

plates by developing 2-D analysis.

3. To develop a technique for identify ing  individual strain energy 

release rates in d iffe re n t modes I ,  I I ,  and I I I  during back face 

spalling action .

4. To determine the e ffects  of stitching on the back face spalling  

action in thin composite laminates.

5. To extend present analysis to thick composite plates by 

incorporating the e ffects  due to shear.

6 . To perform a dynamic analysis and compare i t  with the quasi­

s ta tic  analysis.
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APPENDIX A

NEWTON-RAPHSON METHOD FOR NONLINEAR SYSTEM

The purpose of th is  appendix is  to present the Newton-Raphson 

method for solution o f nonlinear simultaneous algebraic equations. 

F irs t  a method is  explained with reference to a function involving one 

variab le . Next, the method for a general n variable system is  

presented. Last, the method is  illu s tra te d  with the set of nonlinear 

equations involving 5 variables derived in Chap. 3 for the membrane 

problem.

A .l Newton-Raphson Method fo r One Dependent Variable

Consider a function F(x) of one dependent variable x. The 

objective is  to find  the root of the equations F(x) = 0. Figure A-l 

presents the function F(x) graph ically . The Newton-Raphson method is an 

i te ra t iv e  method which continuously updates an in i t ia l  approximation 

un til the actual root is  found. Consider an approximation x = xQ as the 

ro o t. The value of F{x) is  F(x0 ) a t point P as shown in Fig. A -l. At P 

draw a tangent to the curve. The tangent in tersects the X axis a t  T. 

Therefore the next approximation for the root is  x  ̂ = x0  + AxQ where 

Axq is MT in Fig. A - l.  Next draw a tangent a t  point Q. This tangent 

intersects the X axis a t  T^. Therefore the next approximation for the 

root is x2  = x j + Axj . Imagine a th ird  tangent is drawn a t  R, this  

tangent w il l  cut the X axis a t some point T2  between T  ̂ and S. 

Therefore points T, T j ,  T2, . . .  w ill approach the point S as a l im it ,
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F(x)

0

Fig. A-1 Graphical Representation of The Newton-Raphson Method
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th a t is ,  the intercepts OT, OT ,̂ OT2 , . . .  w il l  approach the in te rcep t OS 

as a l im it .  But OS represents the real root of the equation F(x) = 0. 

Hence the quantities OT, OTj, OT2 , . . .  are successive approximations to 

the desired roo t. The fundamental formula fo r finding the root of the 

equation F(x) = 0 can be derived by using F ig . A -l as follows:

Consider Fig. A - l .  Let MT = AxQ , and TTj = Ax  ̂ , e tc . The 

slope of the graph a t  P is  F '(x 0) .  From the Fig. A - l ,  PM = F(x0) and

where F‘ (x^) is  the derivative  of the F(x) a t  x.,-. In the one-variable

F (x }
slope a t  the point P = tan < X TP = F' (xQ) = -  —  Therefore

0

(A -l)

The improved value of the root is  then

( A—2)

Sim ilarly  succeeding approximations are

x 2  = X 1  + Axl

x 3 = x 2 + AX2 (A—3)

X — X -j + A x . n n - l  n - l

where -  F (x .)
(A—4)
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case F '(x ) = CJ(x.,-)]l x l , where [J ] is  called as Jacobian.

The value of x is  updated t i l l  the | a x̂  | < e, where e is  the 

specified tolerance. The corresponding root of the equation F(x) = 0 is  

x.,-. The above procedure can be generalized for n variables as follows:

A.2 Newton-Raphson Method for n Variables

Consider a system of simultaneous nonlinear algebraic equations 

with n variab les, (xj_, X3 , . . .  xn) as

f j  (X j, x2 , x3 ................... xn) = Rx

f 2  (x^, x2, x3 ...........  xn) = R2  (A-5)

f n (xl *  x2 ’ x3................... xn* = Rn

Equations in (A-5) can be represented as

{F (x )}  = { ( f 2  -  Rx) ,  ( f 2  -  R2) ...............  ( f n -  Rn)>T (A—6 )

The approxmate solution of the nonlinear system (Eq. (A-5)) can be 

obtained s tarting  with an in t ia l  approximation X0  as follows:

With the in i t ia l  approximation X0  , [J (XQ)]  is f i r s t  evaluated

as:
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9 f j  (x) 
53TJ

9f2 (x) 
aju

8fn <*>

9 fj (x) 
9x1

9f2 (x) 
9x7

9 ^  (x) 

a3T

9 f 2  (x) 

9x_

afn (x)
5x_

(A—7)

{X} = {XQ}

Next {F(Xq)} is  evaluated by using Eq. (A—6 ) .  With these values 

of {F(X0 )> and [J(XQ) ]  the next approximation X̂  is  obtained as,

(x l> "  < V n x l  -  (Xo” nxn <F' Xo > W  (A' 8)

With th is new value of (X ^ ,  (F fX j)}  and ClKX-^] are calculated and

then (X2> is  calculated as:

< ¥  ■ {Xl>nxl -  [ [J (Xl ) ] nxn lF <Xl » n x l ]  (A- 9>

This ite ra t iv e  procedure is  continued t i l l  the maximum difference  

in (X} values between the successive ite ra tio n s  is  within specified  

tolerence o f e i .e .

Max | {X .} -  {X.j_^} | < e (A—1 0 )

When Eq. (A-10) is  sa tis fied  the ite ra tio n s  are stopped and the

solution of Eq. (A-5) is  {X..}.
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A .3 Example Problem

In the i l lu s t r a t iv e  example (section 3 .3 .2 ) ,  a c ircu lar membrane

with radius a and thickness h, and with a uniform loading over the

region 0 < £• < 0.5 was analyzed. By using the four region id e a liz a ­

tion and a f in i t e  difference technique, five  nonlinear equations were 

obtained. These fiv e  nonlinear equations (Eqs. (3 .2 6 ), (3 .2 7 ), (3 .2 8 ),  

(3.29) and (3 .2 4 )) were expressed in terms of normalized stresses as:

-  3 a ,(0 )  + 4 0 .(1 ) -  o .(2 ) = 0 (A—11)

-  0.5 o .(0 ) or 2 ( l )  -  2 o .3 ( l )  + 2.5 0 . ( 2 ) or 2 ( l )  = -  ^  (A-12)

o ( l )  o 2 (2) -  8  o 3 (2) + 7 o (3) o 2 (2) = -  J ?  (A-13)r  r  r  r r  6d

4.5 o .(4 ) or 2 (3) + 1.5 0 . ( 2 ) o .2 (3) -  6  o .3 (3) = -  ^  (A-14)

o (4) (6 .69) -  8  o (3) + 2 o ( 2 )  = 0 (A-15)r  r  r

where

Using Newton-Raphson method [J (o ) ]  was obtained as:
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- 3

0.5 cr 2 ( l )

-  ^ . ( 0 ) op( l )

-  6 ar 2( 1)

+ 5 ar  (2) 0 .(1 )

-1

2.5 or 2 ( 1)

2 ar(l) ar(2)
-  24 ar 2 (2)

+ 14 (3 ) cr (2)r  r

7 ar 2 ( 2 )

1.5 ar 2 (3) 9 o (4) or (3) 4.5 a 2 (3

+ 3 cr (2) cr (3) r  r
-  18 a2  (3)

-  8  6.69 _
(A—16)

An in i t ia l  approximation for the normalized stress 0 ,(0 ) ,  o .(l)»

o^.(2), or (3 ) , and ar (4) was assumed as unity. With this assumption, 

the function { F ( y } and [ J ( y ]  were evaluated. They are

0

1/128
[F (o J ]  = 1 1/32 

11/216 
0.69

CJ(or ) ]  =

-  3 4 - 1 0 0

-0 .5 - 2 2.5 0 0

0 1 - 8 7 0

0 0 1.5 - 6 4.5
0 0 2 - 8 6.69 

(A—17)

The next approximation for r .r > was obtained by using Eq. (A-8 ) as:
r  n

y o ) 1 ~ -3 4 - 1 0 0 0

y n 1 - -0 .5 - 2 2.5 0 0 1/128

y 2)
■ <

1 0 1 - 8 7 0

(
1/32

y 3 ) 1 0 0 1.5 - 6 4.5 1/215

a (4) 1 0 0 2 - 8 6.69 0.69
l r ^ v > JA-18)
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Solution of Eq. (A—18) is
/  N NS

5r (0> 0.02039

5r ( l ) 0.01941

5r <2) )  -  <
0.01648

5r (3) 0.01160

5r (4) 0.0089
V. d

The above procedure was repeated and the next approximation

to {a } was obtained as: r

ar ( 0 ) 27.5628

H-* 27.7630

ar ( 2 ) 28.3637

5r (3) 27.3757

5r (4) 24.2568
s. J

This ite ra t iv e  procedure was continued t i l l  the maximum difference

in {a  } values between the successive ite ra tio n s  was less than IE - 6  or r
max | A or | < IE - 6  . The solution converged a fte r  18 ite ra tio n s , 

and the corresponding normalized stress values were: (0) = 0.3156,

ap (1) = 0.3065, ar  (2) = 0.2726, 0 p (3) = 0.2233, and (4) = 0.1851.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



187

APPENDIX B

LARGE DEFLECTION SOLUTION OF CLAMPED CIRCULAR PLATE LOADED AT 

THE CENTER USING THE ENERGY METHOD

Consider clamped c ircu lar plate o f thickness h and radius a , 

subjected to a center point load P. The classical large deflection  

solution based on the energy method assumes that the deformation shape 

of a clamped c ircu a lr plate under center point load has the same 

equation as in the case of small de flec tio n s , therefore

where w0  is  the central displacement of the p la te .

The corresponding strain energy of bending can be w ritten as [27]

( B—2 )

(B-3)

where Deq is  a flexura l modulus and is  given by

D (B-4)
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where Eeg and v are the equivalent Young's modulus and Poisson's 

ra tio  for the q uasi-iso trp ic  p late  and were obtained by using the 

technique described in Chap. 2.

For the rad ia l displacement u, classical solution assumes the 

expression

u = r  (a -  r )  (C  ̂ + C2 r )  (B-5)

Equation (B-5) s a tis fie s  the boundary conditions that u must vanish 

a t the center and a t  the edge of the p late .

The s tra in  energy due to stretching of the middle plane of the 

plate is  given by [27]

Um = 1 l 4  *  4  + 2  veq Er  Ee> r  dr (B' 6>
( 1 - V  ) 0  ^eq

where er  and eQ are rad ial and tangential strains and are given by 

Eqs. (3 .3 ) and (3 .4 ) from Chap. 3 as:

u ( B—8 )

From expressions (3 -1 ) and (B-5) for the displacements, the strain  

components er  and eQ were calculated by using Eq. (B-7) and (B-8 ) .  

Substituting these s tra in  components in Eq. (8-5) stra in  energy due to 

stretching Um was obtained as
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2
^  ̂ ^ 0 0 0 A.

U = ----- 2?. - , .—  [0.250 c: a + 0.1167 C% a *

!1 -  eq

w 2

+ 0.300 Cx C2  a 3  + 0.06332 Cx (B-9)

w 4

+ 0.09851 C2  w2  + 0.18240 - J - ]
61

The constants and C2  were determined from the condition that the

to ta l energy of the p late for a position of equilibrium  is  minimum.

Hence

aum aum
zq = 0 and aCJ = 0 ( B " 1 0 )

Substituting Eq. (B-9) fo r Um, following two lin e a r equations fo r  

Ci and Cg were obtained

w 2

0.50 C. a2  + 0.300 C0 a3  -  0.06332 - 2 -  (B - l l )
1  c a

0.2334 C, a4  + 0.300 ^  a3  = -  0.09851 wq 2  (B-12)

Equations (B - ll)  and (B-12) were solved simultaneously and and 

C2  were obtained as:

2 2 w w
C, = 0.5531 A -  C, = -1.133 - 2 -  (B-13)

a a
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Substituting values of and C£ from Eq. (B—13) into Eq. (B -9 ), Um 

was obtained as
4

% E h w
Um =  eq [0.14409 -2 _ ] (B—14)

'  1 1  '  veq > ^

Total potential energy itp was w ritten  as the sum of the bending energy 

and stretching energy minus the work done, therefore

8  it 0 w  ̂ w ^ it E h
it = ------------19——  +  0 . 1 1 4 4 0 9   eq-  -  P w ( B—1 5 )
P 7 V  (1 - *e, 2)

Minimizing itp with respect to w0, following relationship between load 

P and wQ was obtained

3 c uw w it E h
1 6  it  D „  - Z  +  0 . 5 7 6 3 6  - 2  e q  - ■»-  = P ( B - 1 6 )

T  a  -  v ,^ )

E h3

Substituting D _ = ---------- 3------- ---  , and rearranging the terms, Eq. ( B - 1 6 )
e q  1 2  ( 1  -  v  ) 

can be w ritten as: q

w„ w„ 3 _,2
+ 0.433 ( -£ )  = 0.2157 — pa  ̂ (B-17)

Ea„ h eq

Equation (B-17) is  the c lassical large deflection solution for 

clamped c ircu lar plate under central point load P.
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APPENDIX C

DERIVATION FOR THE RADIUS OF INFLECTION

The classical large deformation theory [2 7 ], assumes the deforma­

tion  shape of a clamped c ircu la r p la te  under central point load as:

Furthermore the classical theory assumes that the functional form of the 

deformation shape remains unchanged for various values of central 

deflec tion , wQ. Thus the radius o f in flec tio n  (the radius a t which

can be obtained as follows:

By d iffe re n tia tin g  Eq. (C—1) tw ice, curvature can be w ritten  as

curvature is zero) is  independent o f (-^-) . The radius of in flec tio n
w

dr a
(C-2)

The radius of in fle c tio n  is  the radius a t  which (^ -7 ) = 0 .
dr

Hence,

4 w
( C—3 )

a

yie lds  the radius of point of in fle c tio n  as

(J) = e- 1  = 0.3678a, ( c—4)
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