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Analyses of the mitochondrial mutations in the
Chinese patients with sporadic Creutzfeldt–Jakob
disease

Jin Zhang1,2, Zhi-Xia Zhang1, Peng-Chen Du3, Wei Zhou1, Su-Dong Wu4, Qi-Ling Wang5, Cao Chen1,
Qi Shi1, Chen Chen3, Chen Gao1, Chan Tian1 and Xiao-Ping Dong*,1,6

Pathogenic mitochondrial DNA (mtDNA) mutations leading to mitochondrial dysfunction can cause a variety of chronic diseases

in central nervous system (CNS). However, the role of mtDNA mutations in sporadic Creutzfeldt–Jakob disease (sCJD) has still

been unknown. In this study, we comparatively analyzed complete mtDNA sequences of 31 Chinese sCJD patients and 32

controls. Using MITOMASTER and PhyloTree, we characterized 520 variants in sCJD patients and 507 variants in control by

haplogroup and allele frequencies. We classified the mtDNAs into 40 sub-haplogroups of 5 haplogroups, most of them being

Asian-specific haplogroups. Haplogroup U, an European-specific haplogroups mtDNA, was found only in sCJD. The analysis to

control region (CR) revealed a 31% increase in the frequency of mtDNA CR mutations in sCJD versus controls. In functional

elements of the mtDNA CR, six CR mutations were in conserved sequence blocks I (CSBI) in sCJD, while only one in control

(Po0.05). More mutants in transfer ribonucleic acid-Leu (tRNA-Leu) were detected in sCJD. The frequencies of two

synonymous amino-acid changes, m.11467A4G, p.(¼ ) in NADH dehydrogenase subunit 4 (ND4) and m.12372G4A, p.(¼ )

in NADH dehydrogenase subunit 5 (ND5), in sCJD patients were higher than that of controls. Our study, for the first time,

screened the variations of mtDNA of Chinese sCJD patients and identified some potential disease-related mutations for further

investigations.
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INTRODUCTION

Creutzfeldt–Jakob disease (CJD), the most common form of trans-
missible spongiform encephalopathies (TSEs) or prion disease in
human beings, is characterized by the aggregation of partially
protease-resistant isoform PrPSc and spongiform degeneration in
the central nervous system (CNS). The most common form of CJD
(485%) is sporadic CJD (sCJD), which occurs with an incidence of
about 1–2 per million individuals per year.1 It is considered to be
spontaneous because no epidemiological evidence for association with
any exogenous factors.

Although up to now the aetiology of sCJD remains unknown,
many researchers have proposed that it has powerful genetic
determinants.2 Studies demonstrate a common polymorphism in
the coding region of the PrP gene locus gene (PRNP) at codon 129 is
a well-established genetic risk factor for sCJD.3 Homozygosity at
PRNP codon 129 increases the risk of sCJD in Caucasian.4 Codons
127 and 219 of PRNP also harbour amino-acid (AA) polymorphisms
that confer resistance to Kuru5 or sCJD.6 Recently, other candidate
genes have been identified as risk factors for sCJD, such as an SNP
upstream of PRNP exon 1 (SNP 1368),7 c.592C4T(p.T174M) in
prion-like doppel gene (PRND),8 APOE e4 allele,9 polymorphisms at
CALHM1 gene,10 and BACE1 gene.11 Identification of the potential

genetic risk factors for sCJD seems to be one of the important
pathways for understanding of the pathogenic mechanisms and
human susceptibility to the disease.

The mitochondrion is the essential organelle that provides energy
in the form of ATP for normal cell function.12 Although 495% of all
enzymes present in the mitochondria are encoded by the nuclear
genome, mitochondrial DNA (mtDNA), a 16 569-bp circle of double-
stranded DNA in mitochondria contains 37 genes specifying: 13
polypeptides, 22 transfer ribonucleic acids (tRNAs), and 2 ribosomal
ribonucleic acids (rRNAs).13 The rate of sequence evolution in
mtDNA is 10–20 times higher than that in the nuclear genome.14

Thereby mutations in mtDNA are the major reason for the
abnormalities of mitochondrion.

Mutations in the mtDNA can result in defect of mitochondrial
oxidative phosphorylation (OXPHOS), which may subsequently
inhibit ATP production, exacerbate generation of reactive oxygen
species (ROS), affect calcium homeostasis, and induce apoptosis.15

High levels of ROS cause damage of cell membranes through lipid
peroxidation and accelerate the high mutation rate of mtDNA.
Accumulation of mtDNA mutations enhances oxidative damage,
causes energy depletion, and increases ROS production, in a
vicious cycle.16 Moreover, the brain is especially prone to oxidative
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stress-induced damage due to its high levels of polyunsaturated fatty
acids, high oxygen consumption, high content in transition metals,
and poor antioxidant defenses.17 There is increasing evidence that
impairment of mitochondrial energy metabolism has an important
role in the pathophysiology of some chronic brain disorders and the
mutations in mtDNA are now recognized as the major contributors to
brain disorders, such as Leber’s hereditary optic neuropathy
(LHON),18 mitochondrial encephalomyopathy,19 and Alzheimer’s
disease (AD).20 Transition at np 4336 of the mitochondrial tRNA
glutamine gene is a risk factor for AD.21 Since CJD shares similar
pathological changes with AD, including abnormal protein deposits in
CNS tissues, faulty calcium metabolism, high level of ROS and
apoptosis in neurons, it is reasonable to assume a role of mtDNA
variants in sCJD.

To date, the situation of mtDNA mutations is rarely described in
the patients with sCJD. To explore the potential association of
mtDNA mutations or well-known polymorphisms in the control
and coding regions with sCJD, a mutational screening of the mtDNA
sequences of 31 sCJD patients and 32 non-CJD cases at the ages from
45 to 55 years old was carried out. Analyses of mtDNA sequences in
those subjects identified a total of 1131 mtDNA different variants in
sCJD patients compared with the revised Cambridge Reference
Sequence (rCRS). These variants have been further evaluated by
phylogenetic analysis, structure function relation and our efforts were
made to establish the relationship of each variant with sCJD.

MATERIALS AND METHODS

Ethics statement
Usage of the stored human peripheral blood samples in China CJD

Surveillance System has been approved by the Ethical Committee of National

Institute for Viral Disease Prevention and Control, China CDC.

Clinical samples
The peripheral blood samples from 31 Chinese probable sCJD cases and 32

non-CJD cases that did not fulfill the criteria for CJD were included in this

study. The diagnoses of CJD were made by China CJD Surveillance Centre

according to WHO CJD diagnostic criteria. The diagnosis for each case was

made by an expert board consisting of neurologists, neuropathologists,

epidemiologists, and laboratory staff. Peripheral blood samples were collected

in EDTA-containing vacutainer tubes and stored at �80 1C until DNA

extraction. DNA was extracted by using the Qiagen’s DNA purification kit

(Hilden, Germany) according to the manufacturer’s instructions.

PCR Amplification of mtDNA
The whole mitochondrial genome of each tested sample was individually

amplified with 24 pairs of primers. PCR amplifications for all primer sets were

performed in a 25-ml volume. The PCR products were kept at �20 1C until

sequencing. The full mtDNA genome was sequenced. All fragments were

sequenced forward and backward for confirmation of any nucleotide variation.

Sequence analysis using MITOMASTER
We assembled the data for both sCJD and non-CJD groups using Jellyfish v

1.3.1 (Field Scientific LLC, Lewisburg, PA, USA), a sequence analysis software

in comparison with mtDNA reference, the rCRS (NC_012920.1) provided by

the National Center. The complete mtDNA sequence of each case was analyzed

by MITOMASTER (http://www.mitomap.org), which included a database of

over 3600 mtDNA sequences from NCBI GenBank. Using MITOMASTER, the

mtDNA sequence of each case was compared with the rCRS and all mtDNA

variants identified. The array of sequence variants was used to determine the

haplogroup of the tested case. The haplogroup-associated variants were

identified and the population frequency of each nucleotide sequence variant

was calculated relative to the MITOMASTER and Pereira’s databases. To

identify rare variants, we arbitrarily defined variants with allele frequencies

o0.5% as rare and those with frequencies 40.5% as common, similar to cutoff

used for nDNA variation. We have submitted our data to Mitomap database

(http://www.mitomap.org/bin/view.pl/MITOMAP/VariantSubmissionList).

Prediction of pathogenicity
For prediction of pathogenic characteristics of all non-synonymous mtDNA

changes, two analysis tools were used, Polymorphism Phenotyping v2

(PolyPhen-2) and Sorting Intolerant From Tolerant (SIFT). Polyphen scores

of 40.50 are intolerant (possibly damaging). The scores of o0.50 are likely

tolerant (benign). SIFT is based on the premise that protein evolution is

correlated with protein function.22,23 SIFT scores range from 0 to 1. The AA

substitution is predicted to be damaging if the score is r0.05, and to be

tolerated if the score is 40.05.

Statistical analysis
A case–control association study was carried out between sCJD and non-CJD

groups individually for each mtDNA mutation and for Haplogroup. Frequen-

cies between sCJD cases and controls were compared to assess the associations

of individual mtDNA mutations and Haplogroup using the Chi-square test.

The P-value of o0.05 was considered as significant difference. Effect size for

the association was measured as an odds ratio (OR) with a 95% confidence

interval (CI). A permutation test was employed to address the issue of multiple

testing by Bonferroni. The statistical analyses were carried out using the

statistical packages Stata SE12.0 (StataCorp LP, College Station, TX, USA).

RESULTS

mtDNA sequence variants detected by sequencing relative to rCRS
mtDNA sequencing following the amplification of whole mtDNA
revealed a total of 1131 mtDNA variants in 31 sCJD patients and 1189
mtDNA variants in 32 non-CJD cases compared with the rCRS
(Supplementary Table 1). On the basis of both coding- and control-
region mutations, including haplogroup nomenclature, mtDNAs
from patients and controls were classified into 40 sub-haplogroups
of 5 haplogroups followed a phylogenetic tree of global human
mtDNA variation. Most of them were typical of modern East Eurasian
populations, while a few were West Eurasian (R0 and U) mtDNAs.
The only haplogroup that showed statistical association with sCJD
patients was haplogroup U, that four sCJD patients, but none of non-
CJD cases, belonged to haplogroup U, with a P-value of 0.035
(Table 1). However, this significance was not maintained after
correcting for multiple hypotheses using a permutation test procedure
(adjusted P-value¼ 0.056).

Table 1 Frequencies of mtDNA haplogroups in the groups of sCJD

and controls

sCJD

(n¼31)

Ctrl

(n¼32)

Haplogroupa n % n %

CHI2

exact P-value

Adjusted

P-valuec OR (95% CI)

Ub 4 12.9 0 0 4.409 0.035 0.056 —

R0 1 3.22 1 3.13 0.0005 0.98 1 0.97 (0.06–16.2)

R 4 12.9 10 31.25 1.9846 0.079 0.236 2.36 (0.7–7.96)

N 7 22.58 2 6.25 3.4294 0.064 0.082 0.23 (0.04–1.2)

D 5 16.13 8 25 1.4943 0.38 0.339 2.25 (0.6–8.42)

M 10 32.26 11 34.38 0.0318 0.86 1 1.1 (0.38–3.14)

aHaplogroups were grouped according to PhyloTree. U includes U2e and U4b; R0 includes R0
and H1bH; R includes B4d, B5a, F1, F1a, F1b, F3a, and J1c; N includes N9a, A4e, and
W3a; D includes D4, D4a, D4b, D4c, D4e, D4i, D4j, D4k, and D5c; M includes M, M1, M7b,
M7c, M8a, M9a, C4a, C7, C7a, and Za.
bStatistical difference between the groups of sCJD and control with a P-value of 0.035,
adjusted P-value of 0.056.
cAdjusted P-value: adjustment of Chi-square P-values was carried out with a permutation-based
approach; number of permutations¼20000.
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Excluding highly polymorphic mtDNA variants in the mtDNA
control region (CR) and variants belonged to the mitochondrial
haplogroup-specific variants (Supplementary Table 2), the rest of 520
mtDNA variants in 31 sCJD patients, 285 different kinds of mtDNA
variants were identified (Supplementary Figure 1).

Novel non-haplogroup-associated mtDNA variants
Haplogroup-associated variation accounted for most of the 520
substitution variants (Supplementary Table 3). On the basis of allele
frequencies, there were 36 (13%) novel mtDNA variants. Among
them, 13 were mapped in the protein-coding regions. Excluding two
variants (m.6228C4T and m.14067C4T) that were haplogroup-
associated ones, four variants were non-haplogroup-associated
variants leading to synonymous AA changes and seven were non-
synonymous variants (Table 2). Four altered AAs out of those seven
variants seemed to be able to change the conservative AAs (CI487%;
Table 2). SIFT and PolyPhen analyses proposed that three of them
were possibly pathogenic changes. Two variants, m.11375A4C
(p.K206Q in NADH dehydrogenase subunit 4 (ND4)) and
m.12631T4A (p.S99T in NADH dehydrogenase subunit 5 (ND5)),
were observed in the case 9.

Identification and quantification of the mtDNA variants in the CR
To determine the presence of mtDNA mutations in the CR (nps
1_578), the mutants in this region which involved in the known
functional elements of the mtDNA CR were selected (Figure 1a).
Generally, the frequency of mtDNA CR mutations in the group of
sCJD was about 31% increased compared with that of non-CJD
(Figure 1b). Regarding the functional elements of the mtDNA CR,
there were six CR mutations in conserved sequence blocks I (CSBI) in
the sCJD patients, but only one in the non-CJD cases (Po0.05), while
no obvious difference in the other functional elements was noticed
between two groups (Figure 1c). It seems that the group of sCJD
patients has more mutations in the functional elements of mtDNA
CR, which may influence the biological functions of those elements.

Identification and quantification of the mtDNA variants in the
regions for tRNA and rRNA
The mtDNA sequencings identified 40 and 20 nucleotide variations
within tRNA genes in the groups of sCJD and non-CJD, respectively
(Figure 2). More mutants in tRNA-Leu were observed in the sCJD
patients. Especially an A to G transition mutation at position of
12 308, which located in the variable loop of tRNA-Leu, was found in
five tested sCJD cases, but not in all non-CJD cases, showing

statistical difference in the frequency of m.12308A4G (P-
value¼ 0.018, adjusted P-value¼ 0.024). The number of mutations
within rRNA gene between sCJD and controls were comparable
without statistical difference (Supplementary Figure 2).

Case–control association for variations in protein-coding genes
There were 108 variants leading to non-synonymous AA changes in
protein coding in those two groups. Frequency of non-synonymous
sequence variations in all genes did not reveal statistically significant
between sCJD patients and controls (Supplementary Table 4). All
nucleotide variations identified in the current study were homo-
plasmic (Supplementary Table 1).

SIFT and PolyPhen analyses of all non-synonymous changes from
sCJD and non-CJD revealed 18 pathogenic changes, without statistical
difference between sCJD and non-CJD groups (Supplementary
Table 5). Remarkably, two synonymous AA changes c.11467A4G,
p.(¼ ) in ND4 and c.12372G4A, p.(¼ ) in ND5 showed higher
frequencies in the sCJD patients with statistically different from the
non-CJD cases. These two mutants have been reported to be related
with altered brain pH value.

DISCUSSION

In prion diseases, the impairment of mitochondrial function is
repeatedly observed, which could potentially contribute to or even
initiate the various abnormalities, for example, synaptic pathology,24

faulty calcium metabolism,25 high level of ROS,26 and apoptosis of
neurons.27 However, it has still been unclear whether mtDNA
mutations as a risk factor for sCJD. In this study, we have screened
and compared 31 sCJD cases and 32 controls for mtDNA variations.
We have found that haplogroup U appears to be closely associated
with Chinese sCJD, though this significance was not maintained after
correcting for multiple hypotheses. This finding is somehow
unexpected, since European-specific haplogroup U is uncommon in
populations of China. The haplogroup-related SNPs may relate to
partial uncoupling of OXPHOS and decreased efficiency of ATP
production.28,29 This means that each haplogroup, with its different
set of SNPs, can have unique bioenergetic properties and responses to
oxidative stressors. The risks of developing PD and AD within the
Western European are higher among mtDNA haplogroup H, but
lower for haplogroups J and K.30,31 It is possible that the haplogroup
H has significantly higher mitochondrial oxidative damage and higher
VO (2max) (oxygen consumption) to produce more ROS.32 It seems
to be that the association between haplogroup U and the risks of sCJD
needs further assays in a larger sample scale.

Table 2 Eleven novel non-haplogroup-associated mitochondrial DNA variants in the protein-coding regions

Location/Effect Variant Gene AA change CI Haplogroup Case no. Pathogenic

mRNA/Synon m.9732C4T COX1 Silent 0.98 M7b 2

m.9974C4T COX3 Silent 0.98 G1c 15

m.11407C4T ND4 Silent 1 M7b 2

m.13821C4T ND5 Silent 0.07 N9a 10

mRNA/Nonsyn m.11375A4C ND4 p.K206Q 1 N9a 9 Possibly damaging

m.12473C4T ND5 p.I46S 0.47 N9a, W3a 9,11 Possibly damaging

m.12631T4A ND5 p.S99T 0.93 N9a, W3a 9,11 Possibly damaging

m.14457T4C ND6 p.M73V 0.89 U4b 29 Benign

m.14753C4T CYTB p.P3S 0.2 U2e, U2e 21,24 Benign

m.14980C4A CYTB p.I78M 0.4 G1c 15 Benign

m.15765G4A CYTB p.G340E 0.87 B4d 4 Benign

Abbreviations: AA, amino acid; CI, conservation index; COX1, cytochrome c oxidase I; COX3, cytochrome c oxidase III; CYTB, cytochrome B; Nonsyn, non-synonymous; Synon, synonymous.
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On the basis of the review of the relevant literatures and websites,
we have found 36 novel mtDNA variants in sCJD patients. Two of
them, m.11375A4C (p.K206Q in ND4) and m.12631T4A (p.S99T
in ND5), seem to be pathogenic mutations after assays by a couple of
bioinformatics methods. ND4 and ND5 are two of seven subunits of
complex I. Studies point out mutations in complex I genes defect in
respiration, ATP synthesis, increase ROS production, and are
associated with LHON,33 Leigh’s syndrome,34 mitochondrial
encephalomyopathy,35 lactic acidosis stroke-like episodes (MELAS),
and infertility. The exact effect on mitochondrial function of these
two mutations deserves further study.

By analyzing the mtDNA CR sequence variation of sCJD and
non-CJD, we conclude that sCJD patients display a high frequency of
mtDNA CR mutations in the key elements of CSBI. Mutations in
CSBI can result in the reduction of mtDNA copy numbers, because
the L-strand transcript, processed at CSBI, has been proposed to
provide the primer for initiating mtDNA H-strand synthesis at
H-strand replication 1 (OH1) and H-strand replication 2 (OH2).36

Lower mtDNA copy numbers will reduce the amounts of the
encoding mitochondrial proteins, and subsequently affect the
activities of complexes I, III, IV, and V.

The tRNA-Leu in sCJD patients have more mutations than in non-
CJD cases, especially, the mutation of m.12308A4G in the variable
loop of tRNA-Leu. The tRNA-Leu encodes the most represented AA
in the mitochondrial respiratory chain, suggesting a key role of
this tRNA in mtDNA-coded OXPHOS subunits. The m.12308A4G

variation has been reported associated with increased ROS produc-
tion. The m.12308A4G change is a well-known polymorphism
defined for European haplogroup U and may constitute a risk factor
for occipital stroke in patients with migraine,37 AD in man,31 and
severe knee osteoarthritis (OA).38 The association between
m.12308A4G variation and the risks of sCJD needs further assays
in a larger sample scale.

Two synonymous AA changes, m.11467A4G in ND4 and
m.12372G4A in ND5, are more frequently observed in sCJD
patients. These two mutants are believed to associate with the pH
alteration in brains, which may induce a significantly higher pH value
(7.006±0.18 SD) in brain tissues compared with that of control
(6.86±0.18 SD).39 It has been hypothesized that these two mutants
lead to loosing coupling due to less excess mitochondrial oxidation
and decreased Hþ ion gradients in the outer membrane. The roles of
those two mutations in the pathogenesis of prion diseases remain
unsettled.

In summary, our study, for the first time, has screened mtDNA
sequence variations in sCJD patients. sCJD patients have more
mutations in CSBI versus controls. Mutants in tRNA-Leu, especially
the frequency of m.12308A4G in sCJD patients, have statistical
significance. European-specific haplogroup U appears to be closely
associated with Chinese sCJD. Two synonymous AA changes,
m.11467A4G in ND4 and m.12372G4A in ND5, show higher
frequency in sCJD patients. The exact association between these
mtDNA variations and the risks of sCJD needs further detailed assays.
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Figure 1 The numbers of the mutations in mtDNA control region (CR) regulatory elements in the groups of sCJD and control. (a) Schematic structure of a

570-bp CR in mtDNA. The CR includes the L- and H-strand promoters (PL and PH), the binding sites of mitochondrial transcription factor A (mtTFA), the

downstream conserved sequence blocks (CSB) I, II, and III, and the origins of H-strand replication (OH1 and OH2). (b) mtDNA CR mutation frequency in

the groups of sCJD and control. (c) The numbers of heteroplasmic mutations in mtDNA CR regulatory elements in the groups of sCJD and control. *o0.05.
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m.634T>C
m.618T>G
m.612A>G
m.593T>C
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Figure 2 The numbers of the mutations in mtDNA tRNA between the groups of sCJD and controls.
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