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Abstract. Repeated long-term censuses have revealed large-
scale spatial patterns in Amazon basin forest structure and
dynamism, with some forests in the west of the basin having
up to a twice as high rate of aboveground biomass production
and tree recruitment as forests in the east. Possible causes
for this variation could be the climatic and edaphic gradients
across the basin and/or the spatial distribution of tree species
composition. To help understand causes of this variation a
new individual-based model of tropical forest growth, de-
signed to take full advantage of the forest census data avail-
able from the Amazonian Forest Inventory Network (RAIN-
FOR), has been developed. The model allows for within-
stand variations in tree size distribution and key functional
traits and between-stand differences in climate and soil phys-
ical and chemical properties. It runs at the stand level with
four functional traits – leaf dry mass per area (Ma), leaf

nitrogen (NL) and phosphorus (PL) content and wood den-
sity (DW) varying from tree to tree – in a way that repli-
cates the observed continua found within each stand. We first
applied the model to validate canopy-level water fluxes at
three eddy covariance flux measurement sites. For all three
sites the canopy-level water fluxes were adequately simu-
lated. We then applied the model at seven plots, where inten-
sive measurements of carbon allocation are available. Tree-
by-tree multi-annual growth rates generally agreed well with
observations for small trees, but with deviations identified
for larger trees. At the stand level, simulations at 40 plots
were used to explore the influence of climate and soil nu-
trient availability on the gross (5G) and net (5N) primary
production rates as well as the carbon use efficiency (CU).
Simulated 5G,5N and CU were not associated with tem-
perature. On the other hand, all three measures of stand level
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productivity were positively related to both mean annual pre-
cipitation and soil nutrient status. Sensitivity studies showed
a clear importance of an accurate parameterisation of within-
and between-stand trait variability on the fidelity of model
predictions. For example, when functional tree diversity was
not included in the model (i.e. with just a single plant func-
tional type with mean basin-wide trait values) the predictive
ability of the model was reduced. This was also the case
when basin-wide (as opposed to site-specific) trait distribu-
tions were applied within each stand. We conclude that mod-
els of tropical forest carbon, energy and water cycling should
strive to accurately represent observed variations in function-
ally important traits across the range of relevant scales.

1 Introduction

The Amazon basin, encompassing one of the planet’s largest
forest areas and hosting one quarter of the Earth’s biodiver-
sity, constitutes a large reservoir of living biomass (Malhi and
Phillips, 2005). Amazon forests also have a substantial influ-
ence on regional and global climates (Shukla et al., 1990;
Spracklen et al., 2012). These forests are, however, under
strong human pressure through logging and forest-to-pasture
conversion, and face at present a warming and more variable
climate and changing atmospheric composition (Lewis et al.,
2004; Gloor et al., 2013). Due to the enormous area of for-
est within the Amazon basin, these factors have the potential
to modify global atmospheric greenhouse concentrations, re-
gional and global climate, and the overall biodiversity of the
planet (Cramer et al., 2004).

Traditionally, two approaches have been followed to un-
derstand current and future state of the Amazon forests. First,
dynamic global vegetation models (DGVMs) have been used
to simulate vegetation patterns and carbon fluxes across
Amazonia (Moorcroft et al., 2001; Galbraith et al., 2010)
with some predicting substantial carbon losses under scenar-
ios of global change (White et al., 1999; Cox et al., 2004)
but with others less so (Cramer et al., 2004), or even gains
(Huntingford et al., 2013). A second approach to understand
Amazonian forests dynamics is through the analysis of long-
term field observations of patterns of tree growth and mortal-
ity as they relate to climatic and edaphic variations across the
basin (e.g. Phillips et al., 2004; Quesada et al., 2012).

Analyses of Amazon forest inventory data, and particu-
larly those of the Amazon Forest Inventory Network (RAIN-
FOR) (Malhi et al., 2002), have revealed large-scale temporal
trends in biomass and species composition as well as intrigu-
ing spatial patterns in many stand properties (Phillips et al.,
1998; Baker et al., 2004; Phillips et al., 2009). Specifically,
there is systematic spatial variation in species composition,
biomass, growth and turnover rates, with western forests ex-
hibiting higher wood productivity, faster turnover time and
lower stand wood density compared to eastern forests (Baker

et al., 2004; Malhi et al., 2006). This macroecological vari-
ation may possibly be explained by the basin-wide observed
climate and soil nutrient availability gradients (Ter Steege et
al., 2006; Quesada et al., 2012). The climatic gradient com-
prises a southeast to northwest increase in annual precipita-
tion and decrease in dry season length (Sombroek, 2001),
with aboveground wood productivity positively related to
precipitation (Malhi and Wright, 2004). On the other hand,
a soil age/nutritional axis spans from the northeastern part of
the basin to southwestern Amazonia, with generally younger
and richer soils in the west and highly weathered nutrient
poor soils in the east (Sombroek, 2000; Quesada et al., 2011),
although at regional and local scales the patterns are of-
ten more complicated than this macro-gradient might imply
(Higgins et al., 2011). Soil physical properties (such as root-
ing depth, drainage and water holding capacity and soil struc-
ture) are similarly related to soil age and parental material
(Quesada et al., 2010). Poor physical (for example soil depth)
conditions (less weathered soils) are often associated with
higher soil nutrient availability (Walker and Syers, 1976; Vi-
tousek and Farrington, 1997), leading to increased nutrient
concentrations at the leaf level (Fyllas et al., 2009) and thus
a potential for higher photosynthetic rates (Reich et al., 1994;
Raaimakers et al., 1995). In addition, increased disturbance-
associated mortality rates in soils of poor physical proper-
ties lend towards more dynamic stands where faster growing
species dominate (Chao et al., 2009; Quesada et al., 2012).
This positive feedback mechanism could explain the higher
aboveground productivity and turnover rates observed for
western forests (Quesada et al., 2012).

The simplistic ways by which plant functional diversity
is currently reflected in DGVMs is an important shortcom-
ing in predicting ecosystem response to environmental gradi-
ents and their vulnerability to global change (Lavorel et al.,
2007). Some of the widely applied DGVMs represent Ama-
zonian plant diversity with only few plant functional types
(PFTs), for example the LPJ model uses only two tropical-
oriented PFTs (Sitch et al., 2003) and the JULES model only
one (Clark et al., 2011). The mean values of key model pa-
rameters like photosynthetic capacity, wood density and leaf
turnover times are selected to describe an a priori PFT defini-
tion (Fyllas et al., 2012). This means that many processes are
controlled by a set of fixed parameters that describe viable
plant strategies within very limited boundaries. Such PFT
implementation has important drawbacks. It is usually based
on the average value of a plant trait recorded from different
field studies and different species. But recent studies have
shown that key traits present a wide variation, dependent
upon species identity and site growing conditions (Sultan,
2000; Fyllas et al., 2009; Baraloto et al., 2010a). Thus any
given species has the potential to exhibit site-dependent shifts
in its trait value; this being in addition to the inter-specific
trait variability expected at any given site. Ignoring this plas-
ticity could potentially bias modelling through an underes-
timation of the PFT’s resilience by projecting dramatic but
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artificial switches in vegetation state caused by the limited
and discrete (step-wise) nature of PFT descriptions.

Such unaccounted variability could be particularly im-
portant when modelling Amazonian forest dynamics, where
environmental heterogeneity and plant functional diversity
comprise key components of the ecosystem (Townsend et
al., 2008). For example, the variation in leaf mass per area
(Ma) recorded within Amazon forests covers an approxi-
mately similar range to the one identified in global data sets,
ranging from 30 to 300 g m−2 (Fyllas et al., 2009). Similarly,
there are large contrasts in soil physical and chemical con-
ditions (Quesada et al., 2010). These important ecosystem
flux drivers have now been better quantified, with Amazon-
wide climate (Malhi and Wright, 2004), soil (Quesada et al.,
2011) and functional trait data sets also having been obtained
(Baker et al., 2009; Fyllas et al., 2009; Patiño et al., 2009;
Patiño et al., 2012). This is in addition to continually expand-
ing long-term forest inventory data in which tree growth,
mortality and species composition data are regularly being
recorded (Keeling et al., 2008; Chao et al., 2009).

We here introduce a vegetation dynamics model devel-
oped as a tool to better analyse these observed Amazonian
large-scale productivity patterns. This is achieved through
specific incorporations of observed environmental and the bi-
otic variations into the model formulation. Specifically we
focus (a) on the architectural variability, expressed through
the size-class distribution of a stand, and (b) on the functional
variability, expressed through simulated distributions of four
important functional traits which are allowed to vary from
tree to tree within individual plots. Following a continuum
approach, we replace the use of a discrete number of PFTs,
with distributions of a functional trait “quartet”, the within-
stand distributions of which also vary from plot to plot in
accordance with observation.

Two axes of functional variation/strategy are represented
in the model: the leaf economic and the tree architecture
spectra. The four functional traits include leaf mass per area
(Ma), leaf nitrogen and phosphorous dry mass concentra-
tion (NLm and PLm respectively) and wood density (DW).
The first three traits express one component of the leaf eco-
nomic spectrum (Reich et al., 1997; Wright et al., 2004),
i.e. a global photosynthetic tissue trade-off between inex-
pensive, short-lived and fast payback leaves vs. costly, long-
lived and slow payback leaves, although we emphasise that
other factors such as leaf cation concentrations may be im-
portant in this respect (Fyllas et al., 2012; Patiño et al., 2012).
Low Ma and high nutrient content leaves are associated with
comparably short longevity and usually have high (mass-
based) gas exchange rates (Reich et al., 1994; Raaimakers
et al., 1995). Lately the role of PLm has been highlighted,
as it expresses alternative limitations of the photosynthetic
efficiency of tropical tree species (Domingues et al., 2010).
The fourth trait, DW, is used to represent a tree architectural
axis with denser wood species supporting an overall higher
aboveground biomass and thus having a higher maintenance

respiration (Chave et al., 2005; Mori et al., 2010, although
see Larjavaara and Muller-Landau, 2012). These two di-
mensions capture essentially a growth vs. survival trade-off.
There is mixed evidence for a coordination between leaf and
stem traits, i.e. a correlation between slow return related leaf
traits and denser wood (Chave et al., 2009), with Baraloto
et al. (2010b) suggesting that these two axes are indepen-
dent, but with Patiño et al. (2012) showing some important
correlations with foliar traits such as PLm. For the purpose
of this study we consider leaf and stem dimensions as inde-
pendent axes of tree functional variation, with no predefined
interrelationship between the representative traits. However,
the observed among-stand variability of these four charac-
ters is used to express how growing conditions control plant
processes, while the within-stand trait variation represents a
range of ecological strategies found under the same growing
conditions.

The model is initialised with site-specific tree diameter and
functional traits data, and forced with daily climate data. We
first test the ability of the model to estimate stand-level water
fluxes at three eddy-flux tower sites. For a subset of seven
RAINFOR plots where site-specific carbon allocation coeffi-
cients are known, a tree-level test of stem growth rates is ap-
plied. We further validate the ability of the model to simulate
the spatial patterns of aboveground biomass productivity at
40 RAINFOR plots, and subsequently explore the variation
of Gross Primary Productivity (5G), Net Primary Productiv-
ity (5N) and Carbon Use Efficiency (CU) along established
Amazonian climatic and edaphic gradients.

2 Materials and methods

2.1 Model description

“Traits-based Forest Simulator” (TFS) is an individual-based
forest model, i.e. it simulates water and carbon fluxes for
each tree in a stand. In the current version of the model,
stand structure is prescribed in terms of the number of trees
and their diameter at breast height (d). This is thus a “snap-
shot” version of the model, which does not take into account
tree recruitment and mortality. In this version of TFS, each
individual is fully described through d, with allometric equa-
tions used to estimate other attributes of interest like tree
height (H), crown area (Ca), total leaf area (La) and tree-
level leaf area index (L). Whole tree biomass is then parti-
tioned to leaf (BL), stem (BS), coarse root (BCR) and fine root
(BFR) biomass using established allometric equations. Allo-
cation of assimilated carbon to different plant components
is static, i.e. it does not change with size or resource avail-
ability, but rather implements field-derived allocation coeffi-
cients (Aragão et al., 2009). The general architecture of the
model is presented in Fig. 1.
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Figure 1. The five basic components of the model and information flow among them. Tree by tree traits and size initialisation takes place at
the beginning of each simulation. Carbon and water fluxes, as well as gross and net primary productivity are estimated daily.

Tree functional diversity is expressed through four traits
(Ma, NLm, PLm, DW), which are randomly assigned to each
tree: these pseudo-data being generated from local observa-
tions using a random vector generation algorithm. Leaf pho-
tosynthesis is calculated using a modified version of the Far-
quhar biochemical model (Farquhar et al., 1980), that incor-
porates leaf chemical and soil moisture effects. The maxi-
mum photosynthetic rate is regulated by NL or PL through
the co-limitation model of Domingues et al. (2010). In con-
trast to most ecosystem fluxes models, where photosynthetic
rates are directly regulated by water availability (Scheiter and
Higgins, 2009; Clark et al., 2011), we couple water “stress”
to reduction of canopy conductance by estimating a daily
fractional available soil water content for each tree in the
stand. Carbon fluxes are simulated on an hourly and water
fluxes on a daily time step.

Light competition is based on the assumption of a perfect
canopy tessellation. The flat-top version of the perfect plas-
ticity model (Purves et al., 2007) has been used in the current
version of TFS to characterise canopy and sub-canopy trees,
by assuming that all of a tree’s foliage is found at the top
of its stem (S1, Canopy Architecture and Radiation Environ-
ment). A canopy height Z* is estimated for each forest stand,
defining canopy and sub-canopy trees. By summing up the
crown area (Ca) of all trees in the stand, Z* is estimated as
the height of the last tree that enters to the sum before the
cumulative crown area is equal to the plot area. Canopy trees
are absorbing a mean daily amount of short-wave solar radi-
ation equal to the sum of mean beam, diffuse and scattered

daily radiation in correspondence to the sun–shade model of
de Pury and Farquhar (1997). The direct and diffuse fraction
of solar radiation is estimated using the Spitters et al. (1986)
approximation. The functional configuration of a tree (i.e. the
values of the quartet of traits) does not affect its light com-
petitive status, as tree height and crown area are not directly
associated with any of the four traits. Future versions of the
model will incorporate such effects.

Soil water balance is approximated through a simple
bucket model, with soil water content affecting leaf conduc-
tance and thus photosynthetic rates. Competition for soil wa-
ter is approximated through a size hierarchy, i.e. bigger trees,
with a more extensive root system are assumed to have ac-
cess to deeper water (S1, Water Balance Algorithm). By as-
suming that a tree with a higher leaf biomass (BL) requires
a higher fine root biomass (BFR), we indirectly implement
a Ma effect on water competition (S1, Definition, Allometry
and Stoichiometry of Individual Trees in TFS). In particular,
between two trees of the same size, the higher Ma tree will
be more competitive in terms of acquiring soil water.

TFS is coded in Java and it is fully described in S1. The
main effects of including functional diversity are realised
through trait-driven effects on photosynthesis and respiration
(Reich et al., 2008, 2009). Model components that are linked
with any of the four base traits are described in the follow-
ing paragraphs. All statistical analyses and graphs were made
with R (R Development Core Team, 2013).
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2.1.1 Within-stand functional diversity

As noted above, TFS employs neither species nor PFT de-
scriptions, but rather a different discrete combination of each
the four key functional traits Ma, NLm, PLm and DW is as-
signed to each individual tree along with a diameter-based
allometry. To achieve this, the four functional characters as-
signed are generated using a procedure based on the ac-
tual values recorded within each plot. This is achieved using
a random vector generation algorithm (Taylor and Thomp-
son, 1986). This algorithm, appropriate for generating non-
repeated pseudo-observations from a relatively small sam-
ple of observations, was originally developed to provide for
a realistic probabilistic representation of shrapnel projectile
distributions in military battlefield simulations in the face of
only a limited amount of available data (due to the cost and
difficulty of undertaking the appropriate experiments). This
“ballistic method” is notable in that it was specifically de-
signed to short-circuit the usual step of multivariate density
in the generation a pseudorandom population with approxi-
mately the same moments as the original sample. The bal-
listic method is readily programmable as follows (with the
underlying rationale as discussed in Taylor and Thompson,
1986 and Thompson, 1989) and with the following descrip-
tion based on Visual Numerics (2014).

First take a vector X with n multivariate observations
(x1, . . . ,xN). To generate a pseudo data set from x, one
observation (xj ) is first chosen at random and its near-
est m neighbours, xj1, xj2, xjm are then determined and with
the mean xj of those nearest neighbours subsequently cal-
culated. Next, a random sample u1,u2, . . . ,um is generated

from a uniform distribution with lower bound 1
m

−
√

3(m−1)

m2 ,

and upper bound 1
m

+
√

3(m−1)

m2 . The random variate is then

estimated as
m
∑

l=1
u1(xj l − xj ) + xj and the process then re-

peated as required. Somewhat subjective here is the selection
of the appropriate value of the number of nearest neighbours
(m) although the nature of the simulations is not strongly de-
pendent upon that value (Taylor and Thompson, 1986). Thus,
following their recommendation and as in the Visual Numer-
ics (2014) default, we have taken here m = 5.

In our case, applying this procedure resulted in a coordi-
nated trait quartet for each tree in a stand being generated on
the basis on the smaller observational trait quartets sampled
from trees in the same stand (Baker et al., 2009; Fyllas et
al., 2009; Patiño et al., 2012) and without any assumptions
having to be made about their underlying statistical distribu-
tions. Thus no single functional trait “average stand” value is
used (or even required). Further, between-stand differences
in the trait distributions and their covariances are also in-
trinsically taken into account. This is because each stand is
characterised by its own multivariate trait sample and size
distribution. More fertile plots have an overall lower Ma and

higher NLm and PLm compared to infertile plots (Fyllas et al.,
2009), with this being reflected in the photosynthetic capac-
ity of individual trees, as described in the next paragraph.

2.1.2 Photosynthesis

A tree-level leaf area index (L), estimated as the ratio of
La to Ca, is used to compute the energy, carbon and water
fluxes for each tree in a stand. The net photosynthetic rate
(µmol m−2 s−1) is given by

AN = gS(Cα − Cc) (1)

with Cα the atmospheric CO2 mixing ratio (µmol mol−1), Cc
the CO2 mixing ratio inside the chloroplast and gS the CO2
stomatal conductance (mol m−2 s−1) calculated from Med-
lyn et al. (2011) and modulated by a soil moisture term. The
leaf-level photosynthetic rate AN is scaled up to the tree-level
by multiplying with the Ca of the tree.

The co-limitation equation suggested by Domingues et
al. (2010), whereby the leaf level photosynthetic capacity
(area basis) is potentially limited by either nitrogen or phos-
phorus, is used in TFS to estimate the leaf maximum car-
boxylation and electron transport rates:

Vmax = Ma (min{aNV + vNVNLm,aPV + vPVPLm}) (2)

Jmax = Ma (min{aNJ + vNJNLm,aPJ + vPJPLm}) (3)

(both in µmol m−2 s−1), with aNV, aNJ, aPV, aPJ (in
µmol g−1 s−1) and νNV, νNJ,νPV, νPJ (in µmol mg−1 s−1)

empirical coefficients (see Table of symbols in Sup-
plement S1). The canopy-level photosynthetic capacity
VCmax(µmol m−2 s−1) is estimated using the tree-level leaf
area index L, taking into account within-canopy gradients
in light and photosynthetic capacity based on Lloyd et
al. (2010). Nutrient optimisation is approximated using equa-
tions in Lloyd et al. (2010), with Ma also dependent on the
height of each tree (Hi) and the mean canopy height (HS):

M∗
a = Ma · exp

[

aH · (Hi − HS)
]

, (4)

with aH an empirical coefficient.

2.1.3 Respiration

Tree respiration includes a growth and a maintenance compo-
nent, both computed daily. Growth respiration is considered
as a constant fraction (0.25) of daily photosynthesis (Cannell
and Thornley, 2000). Three different maintenance respiration
formulations are allowed in TFS (S1, Respiration), but in this
study we use the one described below. Leaf maintenance res-
piration RmL is estimated as a fraction of VCmax (Scheiter and
Higgins, 2009):

RmL = 0.015VCmax. (5)

Stem maintenance respiration is estimated from the sap-
wood volume (VS) of a tree:

RmS = δVS (6)

www.geosci-model-dev.net/7/1251/2014/ Geosci. Model Dev., 7, 1251–1269, 2014



1256 N. M. Fyllas et al.: Analysing Amazonian forest productivity using a new individual and trait-based model

with δ = 39.6 (µmol m−3 s−1) as reported in Ryan et
al. (1994) for tropical trees.

Sapwood volume is estimated by inversion of the pipe
model and assuming that the ratio of leaf area to sapwood
area (8LS) increases with the height and the wood density
for tropical trees (following Calvo-Alvarado et al., 2008;
Meinzer et al., 2008):

8LS = 0.5 × (λ1 + λ2 · H + δ1 + δ2DW), (7)

with λ1 = 0.066 m2 cm−2, λ2 = 0.017 m cm−2, δ1 =
−0.18 m2 cm−2 and δ2 = 1.6 cm3 g−1.

Sapwood area (m2) and volume (m3) are then calculated
from

SA = LA/8LS (8)

with La the total leaf area of the tree (m2) and

SV = SA · (H − CD) (9)

with CD the crown depth (m).
Coarse-root maintenance respiration RmCR is estimated as

in Scheiter and Higgins (2009):

RmCR = 0.218βR
BCR

8CN
, (10)

where 8CN is the root C : N ratio estimated on the basis of
the simulated NR assuming a dry weight carbon fraction of
0.5.

Fine-root maintenance respiration RmFR is assumed to be
equal to leaf respiration.

All respiratory components are corrected with the temper-
ature dependence function of Tjoelker et al. (2001). The total
maintenance respiration Rm is then

Rm = RmL + RmS + RmCR + RmFR. (11)

2.1.4 Stomatal conductance

Initially, a maximum (no water stress) stomatal conductance,
gs,max is calculated following Medlyn et al. (2011, 2012):

gs,max = g0 + 1.6 · (1 +
g1√
DC

) ×
An

Ca
(12)

with g0 (mol m−2 s−1) the minimum stomatal conductance,
g1(−) an empirical coefficient that represents the water use
efficiency of the plant, and DC the leaf-to-atmosphere vapour
pressure difference. Values of g0 and g1 that lead to the best
model performance were different between sites, as indicated
by the model calibration procedure. For the basin-wide sim-
ulations constant values of g0 = 0.020 (mol m−2 s−1) and
g1 = 5.0 (−) were used, close to the estimates of Domingues
et al. (2014). In future versions of the model, we anticipate
that g0 and g1 will be related to other functional traits. The

maximum stomatal conductance is subsequently reduced to
the actual gS by multiplying the second term of Eq. (8) with
a water stress coefficient.

In contrast to most ecosystem flux models, where pho-
tosynthetic rates are directly regulated by water availability
(Scheiter and Higgins, 2009; Clark et al., 2011), we couple
soil water deficit to canopy conductance by estimating a daily
fractional available soil water content ϑi for each i tree in the
stand (S1, Water Balance and Soil Water Stress). This term
is then used to estimate the water stress γi that has a direct
effect on stomatal conductance, as also described in Keenan
et al. (2010).

2.2 Study sites and simulations setup

Three sets of site data were used to explore the behaviour of
the model. These include a set of three eddy flux measure-
ment (EFM) sites, seven plots with intensive carbon balance
and allocation measurements (IMs), and 40 permanent mea-
surement (PM) plots.

2.2.1 Eddy flux sites

Daily climate and energy flux data from three EFM sites
(Caxiuanã [1.72◦ S, 51.46◦ W], Manaus [2.61◦ S, 60.21◦ W]
and Tapajós [2.86◦ S, 54.96◦ W]) were used to assess
the ability of the model to estimate canopy-level wa-
ter fluxes. Data were obtained from the Large Scale
Biosphere-Atmosphere Experiment in Amazonia (LBA)
project (http://daac.ornl.gov/LBA/lba.shtml). In particular
mean daily climate parameters including incoming radiation,
temperature, precipitation, relative humidity and wind speed
were used to force the model. Latent heat flux (λE in W m−2)

was used to estimate a daily mean canopy conductance de-
fined as GC = λE

DC
. The EFM data cover a period from 2001

to 2008 for Caxiuanã, from 2000 to 2005 for Manaus and
from 2002 to 2004 for Tapajós. GC was only estimated for
days with a complete diurnal record of λE. At each one of the
EFM sites the mean daily GC (mol m−2 s−1) was compared
between observations and simulations. The model was ini-
tialised with size-class distribution and functional traits data
from RAINFOR permanent plots located near the eddy flux
towers. Specifically, CAX-06 inventory data were used for
Caxiuanã, BNT-04 for Manaus, and TAP-55 for Tapajós. We
note that the EFM sites are mainly found at the eastern part
of Amazonia (Fig. 2) growing on low nutrient status soils.

The model was initially calibrated to the site-specific val-
ues for g0 and g1 of Eq. (8) that gave the best performance.
A standardised major axis (SMA) regression, forced through
zero, was used to verify the ability of the model to simulate
GC, with a regression slope close to one indicating a good
model performance.

Geosci. Model Dev., 7, 1251–1269, 2014 www.geosci-model-dev.net/7/1251/2014/

http://daac.ornl.gov/LBA/lba.shtml


N. M. Fyllas et al.: Analysing Amazonian forest productivity using a new individual and trait-based model 1257

Figure 2. Geographic distribution of study sites. Dark grey triangles
indicate the three eddy flux tower sites (with local names), light grey
circles indicate the seven intensive measurement plots (with plot
codes), and crosses indicate the coordinates of the 40 RAINFOR
permanent measurement plots.

2.2.2 Intensive measurement (IM) sites

The ability of the model to realistically simulate carbon
fluxes at the tree level is evaluated using data from the seven
intensive measurement plots (Aragão et al., 2009; Malhi et
al., 2009). These sites are amongst the intensively surveyed
plots within the RAINFOR network (Fig. 2), where measure-
ments of all major components of the C cycle are recorded
(Malhi et al., 2009). At these plots, a detailed assessment of
the carbon stocks is applied, and 5N allocation coefficients
to different plant components are estimated (Aragão et al.,
2009; Malhi et al., 2011; Doughty et al., 2014). These site-
specific coefficients are used to calculate the amount of sim-
ulated 5N that is allocated to stems 5N,s (kg C yr−1).

The IM sites of interest include two plots at Agua Pudre
in Colombia (AGP-01 and AGP-02), one (ALP-30) at All-
pahuayo/Peru, one (BNT-04) at Manaus/Brazil, one in Cax-
iuanã/Brazil (CAX-06), one in Tambopata/Peru (TAM-05)
and one in (TAP-55) Tapajós/Brazil. Based on data from
Quesada et al. (2011), AGP-01, AGP-02, TAM-05 can be
considered to be located on fertile soils, with the other four
plots on infertile ones. Available soil depth data (Quesada et
al., 2011) and functional traits data (Fyllas et al., 2009) were
used for site-specific simulations. For all seven sites we esti-
mated the observed average multi-annual growth rate (2000–
2006) of each tree from forest census data, in order to com-
pare it with the simulated 5N,s.

The daily climate was extracted from the Princeton Global
Meteorological Forcing Data Set (Sheffield et al., 2006).
These simulations are used to validate the ability of the
model to accurately estimate tree-level stem growth, under

a given stand structure, a given climatic and soil profile and
functional traits configuration of the established trees. Aver-
age observed stem growth rate (per 10 cm d bins), expressed
in carbon units (i.e. kg C yr−1), is compared with simulated
5N,s using the York method of best straight line, which holds
when both x and y observations are subject to correlated er-
rors that vary from point to point (York et al., 2004).

2.2.3 Permanent measurement (PM) sites

Inventory data from 40 RAINFOR permanent measurement
plots (Fig. 2), including tree diameter and multi-annual
growth for all trees greater than 10 cm curated/managed in
ForestPlots.net (Lopez-Gonzalez et al., 2011), are used to
(a) validate the ability of the model to accurately simulate
stand-level carbon fluxes and (b) explore patterns of 5G, 5N
and CU along the Amazonian climatic and soil nutrient avail-
ability gradient. The size-class distribution within each PM
site is used to initialise the stand structure of the model and
simulate patterns of productivity for the 2000–2006 period.
Climate data for the same period were used here with the first
year again used as a spin-up period (Sheffield et al., 2006).
For those 40 PM plots, sample distributions of the traits quar-
tet are available (Fyllas et al., 2009) as well as a descrip-
tion of soil chemical and physical properties (Quesada et al.,
2011).

At the PM sites the simulated stand-level aboveground 5N
was compared with observed rates of aboveground growth
1BABG [kg C m−2 yr−1] for trees that survived during the
2000–2006 time period using a SMA regression. A second
step was to explore the way that 5G, 5N and CU vary across
an Amazon climatic and soil nutrient availability gradient
(Quesada et al., 2010). The site scores of a principal com-
ponents analysis (PCA) on the soil properties of the 40 PM
plots (see Fyllas et al., 2009) are used to categorise plots
along a nutrient availability gradient (81), while the key cli-
matic variables used were the annual mean temperature Ta
and annual total precipitation Pa. A Kendall correlation coef-
ficient (τ) was used to identify potential relationships of 5G,
5N and CU with Ta, Pa and 81, as in most cases non-linear
associations were observed.

2.2.4 Randomisation exercise

In order to explore (a) the importance of including trait vari-
ability and thus functional diversity in our simulations and
(b) the importance of including constraints that are known to
control the large-scale patterns of Amazonian forest dynam-
ics, we conducted a randomisation exercise with the model
being run under four alternative setups at the 40 perma-
nent RAINFOR plots. The first setup denoted as var-tr is
the variable-trait simulation with trait initialisation based on
the observed stand-level trait distribution as described in the
previous paragraphs (default setup). The second setup, de-
noted as fix-tr, is a fixed-trait simulation with all trees having
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Figure 3. Simulated against observed mean daily canopy conductance GC for the three sites with eddy flux data. The broken line represents
a 1 : 1 relationship and the continuous line illustrates a standardised major axis (SMA) regression.

the same (data set mean) values for each trait: this thus rep-
resenting a single PFT case. The third setup (rand-tr) is a
variable-trait simulation with trait initialisation based on ran-
dom values of the trait quartet as recorded in any individual
along the 40 permanent plots. This setup thus ignores any po-
tential patterns of functional trait biogeography, i.e. traits are
not related to the environmental or edaphic conditions under
which a tree is growing. The fourth setup (rand-tr-N) is a
variable-trait simulation in which the photosynthetic capac-
ity of an individual is only defined by its leaf N content and
thus the NP co-limitation constraint is removed. These alter-
native setups were compared by considering both the slope
and the R2 of SMA regressions between the predicted and
the observed 5N,S.

3 Results

3.1 Canopy conductance simulations at the EFM sites

Values of best model performance for g0 and g1 were differ-
ent between sites, with g0 = 0.035 (mol m−2 s−1) and g1 =
7.5 at Caxiuanã, g0 = 0.035 and g1 = 7.0 at Manaus with
g0 = 0.01 and g1 = 2.5 these being somewhat lower than the
estimates of Domingues et al. (2013) at Tapajós. Simulated
GC was underestimated for Caxiuana (α = 0.85 ± 0.05) and
Manaus (α = 0.90 ± 0.02), with the model overestimating
GC in Tapajós (α = 1.28 ± 0.04), but exhibiting an overall
adequate performance (Fig. 3). For simulations at the IM and
the PM sites, constant values of g0 = 0.02 (mol m−2 s−1) and
g1 = 5(−) were used, which are found within the range of
values in the EFM sites and reported estimates (Medlyn et
al., 2012; Domingues et al., 2013).

3.2 Stem growth rate simulations at the IM sites

The mean simulated stem growth rate 5N,s of each tree in
the seven IM plots was compared with the observed above-
ground biomass gains (1BABG) for the 2000–2006 period.
An accurate simulation of 5N,s can be seen for small size
classes, but with greater differences between the observed
and the simulated multi-annual growth found for bigger trees
(Fig. 4). At infertile ALP-30, the estimate slope of the York
model indicated an overestimation of aboveground produc-
tion (α = 1.18±0.06), driven mainly by an overestimation of
the mid-size classes. At BNT-04 the model underestimated
the overall growth (α = 0.82 ± 0.03). Aboveground growth
was overestimated in CAX-06 (1.11±0.07). At TAP-55 (α =
1.44±0.15) the model underestimated aboveground produc-
tion (0.90 ± 0.06). At fertile AGP-01 (α = 1.36 ± 0.08) and
AGP-02 (α = 1.25±0.05) an overestimation of aboveground
productivity was observed although with simulations of most
size classes falling within the observed ranges. At TAM-05
(α = 0.79±0.07) though, the simulated aboveground growth
was underestimated with the overall slope driven by diver-
gences in smaller size classes. The range and distribution of
5N allocation to stem growth is adequately captured by TFS
as summarised in Fig. S2.1 in the Supplement.

3.3 5G, 5N and CU simulations at the PM sites

Simulated stand-level aboveground net primary productiv-
ity 5N,A was positively associated with observed changes in
aboveground biomass of trees that survived in the PM plots
over the 2000–2006 period 1BABG, with an R2 = 0.42, sug-
gesting an adequate model behaviour (Fig. 5). A summary
of simulated stand-level 5G, 5N and CU relationship to key
environmental drivers is given in Table 1 (see also Fig. S2.2
in the Supplement). 5G and 5N and CU were not associated
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Figure 4. Simulated stem growth rate 5N,s against observed aboveground biomass change 1BABG for different size classes for the 2000–
2006 period. Upper panel: infertile plots. Lower panel: fertile plots. The broken line represents a 1 : 1 relationship. The continuous line
illustrates the straight line fit using the York method (see text for details).

with temperature. However, all three measures of stand-level
productivity were positively related to annual precipitation
and soil nutrient availability.

3.4 Randomisation exercise simulations

Results from the randomisation exercise (Fig. 6) found the
fully constrained default setup (var-tr) to have the best pre-
dictive performance (R2 = 0.42 with a SMA slope a = 0.92).
This is as compared to the fixed-trait simulation (fix-tr) sin-
gle PFT parameterisation with a decreased predictive ability
of TFS (R2 = 0.29, a = 0.82) and an overall higher mean
predicted aboveground productivity. Not accounting for the
site-specific distribution of the trait quartet, i.e. bypassing po-
tential biogeographic patterns of functional diversity and/or
environmental trait interactions (rand-tr), also reduced the
predictive ability of the model (R2 = 0.29, a = 0.74). Fi-
nally, the random trait no-NP co-limitation setup (rand-tr-N)
similarly led to an inferior model performance (R2 = 0.33,
a = 0.88) and with the highest mean simulated aboveground
productivity.

4 Discussion

We report here on the core components of an individual-
based model that has been developed in order to help better
understand the patterns revealed by recent integrated mea-
surements of climate, soils, functional diversity and stand dy-
namics for a wide range of forests across the Amazon basin.

Figure 5. Simulated stand-level aboveground net primary produc-
tivity (5AN) against observed stand-level aboveground biomass
growth (1BABG) of surviving trees, at the 40 PM plots. The line
illustrates a SMA regression of α = 0.92(0.72, . . . ,1.18) and R2 =
0.42. Red dots indicate high nutrient availability and blue dots indi-
cate low nutrient availability plots.

www.geosci-model-dev.net/7/1251/2014/ Geosci. Model Dev., 7, 1251–1269, 2014



1260 N. M. Fyllas et al.: Analysing Amazonian forest productivity using a new individual and trait-based model

Table 1. Kendall correlation coefficients (τ) and associated significance levels (p) between simulated gross primary productivity (5G), net
primary productivity (5N), carbon use efficiency (CU) and key environmental factors. Significant associations are indicated with bold.

5G 5N CU
(kg C m−2 yr−1) (kg C m−2 yr−1) (–)

Mean Annual Temperature – Ta (◦C) τ = −0.17
p = 0.131

τ = −0.21
p = 0.065

τ = −0.11
p = 0.33

Annual Precipitation Pa (mm) τ = 0.54

p < 0.001
τ = 0.60

p < 0.001
τ = 0.36

p = 0.002

Soil nutrient availability 81 (PCA Axis 1) τ = 0.48

p < 0.001
τ = 0.50

p < 0.001
τ = 0.39

p < 0.001

Figure 6. Summary of the randomisation exercise simulations. (a) Simulated stand-level aboveground net primary productivity (5AN)

against observed stand-level aboveground biomass growth (1BABG) for the four different setups. The slope of the SMA (a) and the adjusted
R2 are given in parentheses for each setup. Different colours indicate different setups. (b) Simulated Amazon-wide aboveground net primary
productivity (5AN) for the four different setups.

In its current setup the model does not explicitly simulate
regeneration and mortality dynamics but rather uses the ob-
served size distribution of trees at the study sites, thus taking
into account stand structure and functional trait variability
as observed along the main climatic and edaphic axes of the
Amazon basin. With the current setup we were able to re-
produce the tree- and stand-level 5N patterns found across
Amazonia and to explore for potential environmental con-
trols over stand-level 5G, 5N and CU.

4.1 Scientific outcomes

Our simulations found no association of stand-level gross

primary productivity (5G) with temperature, probably due to
the relatively small range of variation of temperature across
our plots. 5G decreased until an annual temperature of ap-
proximately 26 ◦C but remained relative constant above this
point (Table 1, Fig. S2.2 in the Supplement). However, our
simulations suggest that a strong association of 5G with the
annual precipitation and soil nutrient availability of the plots.
5G was positively related to annual precipitation over the

entire range observed in the 40 PM plots. The association of
5G with the nutrient availability axis is in agreement with
fertilisation experiments showing an increase with nutrient
supply (Giardina et al., 2003). In our basin-wide examination
of 5G the soil nutrient availability and stand structure gradi-
ents are not, however, independent (Quesada et al., 2012), as
in the RAINFOR network permanent plots it has been ob-
served that bigger/older trees are more abundant on eastern
infertile forests, where soil physical conditions can support
a bigger tree size (Baker et al., 2009) with a lower risk of
trees being uprooted (Chao et al., 2009). Bigger trees gen-
erally support a greater foliage area and thus could signif-
icantly contribute to the overall carbon assimilation of the
stand. However, bigger trees on infertile plots are generally
characterised by lower leaf nutrient concentrations (Fyllas et
al., 2009) and thus slower assimilation rates (Reich et al.,
1994; Domingues et al., 2010). On the other hand a higher
abundance of smaller trees with higher gas exchange rates
is observed on more dynamic, fertile plots. Ultimately this
indicates that stand structure should be specifically taken
into account when simulating 5G in tropical forests, and
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thus individual-based models could significantly contribute
towards a deeper understanding of the functioning and sensi-
tivity of these ecosystems.

In our simulations stand-level net primary productivity

(5N) showed no significant association to annual tempera-
ture but increased with soil nutrient availability and annual
precipitation (Table 1, Fig. S2.2 in the Supplement). Our 5N
simulations are in agreement with field observations of in-
creasing aboveground wood productivity with precipitation
(Quesada et al., 2012). Based on TFS parameterisation, pho-
tosynthetic rates are expected to be higher at a greater soil nu-
trient availability due to associated higher leaf N and P con-
centration (Fyllas et al., 2009; Domingues et al., 2010). Us-
ing a similar parameterisation for a “sun and shade” big leaf
model, Mercado et al. (2011) found an increase in net canopy
assimilation rate with leaf P content in agreement with our
positive association between 5N and soil nutrient availabil-
ity. Their simulated 5G accounted for approximately 0.30
of the observed wood productivity in 33 study plots, and
thus the R2 = 0.42 between simulated 5N and aboveground
growth found here suggests a marginally improved model be-
haviour. It should be noted that our definition of soil nutrient
availability (81), based on the PCA analysis in Quesada et
al. (2010), directly relates to soil P content. As shown first
in the analysis of Quesada et al. (2012), where data from
almost 60 plots were considered, aboveground 5N is pos-
itively related to soil P content in lowland tropical forest.
The increased 5N in fertile environments (apart from the
higher 5G) seems to be enhanced by the greater abundance
of small trees there. As tree size increases maintenance respi-
ration likely “consumes” an increasing proportion of assim-
ilated carbon, and thus at large size classes the proportion
of trees which have enough carbon to allocate to growth de-
creases (Givnish, 1988; Cavaleri et al., 2008). This is in line
with the negative relationship between coarse wood produc-
tion and maximum height documented for some Amazonian
trees (Baker et al., 2009).

In our simulations carbon use efficiency (CU) ranged from
0.43 to 0.54. Recent research suggests that the CU is not as
constant as had been previously suggested (DeLucia et al.,
2007; Zhang et al., 2009). For example the meta-analysis of
DeLucia et al. (2007) found that CU varies from 0.23 to 0.83
in different forest types. Our average estimate of CU = 0.51
is, however, above the range reported in Malhi (2012). Zhang
et al. (2009) identified a negative trend of the 5N/5G ratio
with temperature at the range of 20–30 ◦C, as also simulated
here especially above 26 ◦C (Fig. S2.2 in the Supplement).
Simulated CU increased with soil nutrient availability, be-
ing marginally lower at infertile (0.48) compared to fertile
(0.50) plots. This is attributable to smaller size class trees
(with lower relative respiratory costs) constituting a greater
proportion of the total stand biomass on higher nutrient status
soils. One factor relating to soil nutrient availability but not
included in the current version is an implicit consideration of
the respiratory costs of plant nutrient uptake (Lambers et al.,

2008) either directly, or through other processes such as or-
ganic acid exudation (Jones et al., 2009) or the symbiotic as-
sociations (Duponnois et al., 2012). One would expect these
costs to be proportionally higher for a stand of low nutrient
status, especially with regard to P (Quesada et al., 2012).

4.2 Practical implications

The modelling of tropical forest carbon fluxes and stand dy-
namics has traditionally involved approaches aimed at a bal-
ance between simplicity, computational economy, and com-
plexity. On one hand, the enormous biological and biogeo-
chemical heterogeneity of tropical forests (Townsend et al.,
2008) places special importance on how modellers prioritise
both the amount and the detail of processes that should be
included to capture the main controls and feedbacks. On the
other hand, the finding that Amazonia is dominated by just
227 tree species (Ter Steege et al., 2013) implies that most
biogeochemical cycling in the world’s largest tropical forest
is performed by a tiny sliver of its diversity. At one end of
the complexity spectrum are individual-based models which
are able to properly simulate population dynamics and thus
lags due to demography. Individual-based models of tropical
forests have traditionally focused on realistically represent-
ing the light environment (TROLL – Chave, 1999) or group-
ing tree species on the basis of their different responses to
environmental resources as suggested by field observations
(FORMIND – Köhler and Huth, 1998, LPJ-GUESS – Hély
et al., 2006). At the other end of the complexity spectrum
are DGVMs which simulate population dynamics more sim-
plistically (but see Moorcroft et al., 2001; Scheiter and Hig-
gins, 2009). Using a DGVM model, Verheijen et al. (2013)
allowed for within-PFT climate-driven trait variation to oc-
cur and achieved an improvement of the predicted vegeta-
tive biomass and PFT distribution patterns. A similar ratio-
nale was followed in Wang et al. (2012) where it was shown
that the inclusion of multi-trait covariance in DGVM can be
used to constrain model parameters and reduce uncertain-
ties in simulated ecosystem productivity. Fisher et al. (2010)
applied the individual-based Ecosystem Demography model
(Moorcroft et al., 2001), and showed that by varying traits re-
lated to demographic processes, forest and biomass dynam-
ics exhibited a wide range of responses to climate forcing.

Most of the above approaches have used discrete PFTs to
represent tree species and functional diversity. These stud-
ies suggest that by allowing for within-PFT trait variability
a more plastic and realistic response to the relevant environ-
mental drivers is observed. In contrast to the above, TFS re-
places the use of PFTs with trait distributions, following a
different model philosophy and architecture using the con-
cept of multidimensional trait continua. In particular, consid-
ering functional diversity to be expressed by a multidimen-
sional trait space, the use of PFTs selects a number of clus-
ters where the central vector defines the average trait values
of each PFT (Fyllas et al., 2012). Recent studies (Verheijen
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et al., 2013; Wang et al., 2012) allow for the average trait
values to be shifted based on empirical climatic and/or trait
inter-correlation functions. In contrast, the use of trait con-
tinua does not cluster the multidimensional trait space but
rather allows any realistic trait combination (as suggested
by the limited sampling of the actual population) to be sim-
ulated. Successful trait combinations under given environ-
mental conditions may then be expected to emerge as a by-
product of model dynamics (Higgins et al., 2014). A similar
to TFS representation of functional diversity has been imple-
mented in the DGVM model (Scheiter and Higgins, 2009;
Scheiter et al., 2013) where the importance of including trait
variability in simulations of vegetation dynamics has also
been highlighted. In TFS, variable-trait (R2 = 0.42) simula-
tions led to a better model performance compared to fixed-
trait (R2 = 0.29) simulations (Fig. 6). Thus including func-
tional diversity in simulations of vegetation dynamics is ex-
pected not only to suggest less vulnerable communities under
changing climatic conditions (Fauset et al., 2012; Scheiter et
al., 2013) but also, it seems, to better describe the current
patterns of key ecosystem properties like aboveground pro-
ductivity.

A few modelling studies that implement a similar traits
continua approach have recently been published. Scheiter
and Higgins (2009) were the first to develop an individual-
based framework that eschews the use of PFTs and allows for
plants to allocate carbon as a function of local environmen-
tal conditions. Falster et al. (2011) presented a model where
they used leaf economic strategy, height, wood density and
seed size to scale up from individual-scale processes to land-
scape predictions. Pavlick et al. (2013) applied an interesting
approach where they used 15 traits to incorporate trait diver-
sity within a plant community in a DGVM. The rationale of
the above models is that they allow different plant functional
strategies to be available in a specific location with given en-
vironmental conditions (for example a grid cell), and that
by setting up a set of functional trade-offs they “filter out”
poorly adapted trait combinations from the community. This
is effectively an implementation of ideas arising from the en-
vironmental filtering/community assembly theory to predict
an optimum plant community at a given location (Keddy,
1992; Scheiter et al., 2013; Fortunel et al., 2014). By con-
trast, drawing on recent findings on the processes controlling
Amazonian forest dynamics, we have here attempted to in-
corporate within TFS the relevant observed associations be-
tween functional trait diversity, stand-structure and soil phys-
ical and chemical properties (Fyllas et al., 2009; Quesada et
al., 2012). Although there are similarities with some of the
more recent models discussed above, to our knowledge this
is the first time all these linkages have been represented in
a single modelling framework. Our approach has been made
possible (and thus differs from others) because of the type
and quantity of observational constraints used. For exam-
ple in any given plot we do not force the model to select
some “optimum” trait combination based on the prevailing

environmental conditions, but we rather assume that the ob-
served trait distribution reflects that of the evolutionarily sta-
ble community structure occurring at each site. Similarly we
do not require the model to predict what the optimum tree-
size class distribution would be. Rather, we initialise simu-
lations with what is observed. We have here employed this
implementation as our primarily aim in this first instance has
been to validate the predictive ability of the model at some
extensively monitored Amazonian plots.

Even with these prescribed constraints, the trait randomi-
sation exercise yielded some interesting outputs regarding
the importance of trait variability in simulations of forest dy-
namics. As already discussed, the default variable-trait (var-

tr) simulations gave the best TFS performance in terms of
predicting patterns of aboveground production at the 40 per-
manent measurement plots with fixed trait (fix-tr) TFS sim-
ulations showing a lower predictive ability and an overall
higher mean 5AN. This pattern of trait variability reduc-
ing aboveground biomass is in contrast to a similar simu-
lation by Scheiter et al. (2013), where variable trait simu-
lations gave rise to a higher mean biomass because of an
increased chance of selecting a trait combination allowing
trees to grow larger. This difference arises from the photo-
synthesis NP co-limitation constraint hardwired into the cur-
rent version of TFS, as the use of the Amazon-wide mean
NL and PL values leads inevitably to universally phosphorus
limited estimates of VCmax and Jmax that reduce the over-
all predictive ability of the model. Indeed, when the NP co-
limitation is removed, the variable-trait simulations (rand-

tr-N) do actually yield the highest 5AN estimates. Finally,
the random variable trait setup (rand-tr) resulted again in a
similarly poor TFS behaviour (R2 = 0.29), emphasising the
importance of potential environment–trait interactions in ac-
counting for between-stand structural differences. In other
words, in the modelling tropical forest dynamics it is clear
that trait distributions cannot be used without a consideration
of how they may be shifted by the local growing conditions.

The four functional traits used in the current version of
TFS, i.e. leaf dry mass per area, leaf nitrogen and phospho-
rous concentrations and wood density, are directly related to
the rates of tree photosynthesis and respiration. For that rea-
son they provide a stable basis that should allow alternative
ecological strategies based on well-known trade-offs such as
the “growth vs. survival” to be implemented in trait-based
vegetation dynamics models. These four traits have been ex-
tensively studied around 70 plots in the Amazon and their
patterns of variation and inter-correlation have been analysed
(Baker et al., 2009; Fyllas et al., 2009; Patiño et al., 2009,
2012). For the purpose of this study, it is important to know
the within-stand variation of the functional traits used, i.e. the
trait values at the individual level across different plots. Addi-
tional functional traits that were considered but not included
as base traits in this version of TFS were the seed size and
the ratio of leaf area to sapwood area. Seed size is an impor-
tant functional trait that expresses a tolerance vs. fecundity
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trade-off, with seed size trading-off with seed number and
with larger seed species being more tolerant at more stressful
places (Muller-Landau, 2010). However, data on seed size
are usually available at the species level, i.e. intraspecific
variation is not usually recorded, and thus this kind of data
cannot be included in the current version of TFS. The ratio
of leaf area to sapwood area, 8LS, is an important trait that
can be used to constrain the hydraulic architecture of trees
(Meinzer et al., 2008). Here 8LS is expressed as a function
of DW and H (Eq. 7) and it is not used as an independent
(base) trait. Future versions of TFS will include this aspect of
functional variability, but for this first study we have selected
just a small set of key traits in order to maintain a relatively
simple model structure.

Like most modelling efforts, TFS represents work in
progress. We identify three particularly promising avenues
for future improvements. Firstly, discrepancies between the
observed and simulated stem level growth rates, particularly
in larger size classes, could result from the allometric equa-
tions used to estimate aboveground biomass and growth not
being species or size specific. The allometric equations used
here express a generic height (H vs. d relationship for Ama-
zonia, without taking into account habitat and species dif-
ferences, so a more accurate representation of tree architec-
ture would probably result in better biomass growth estima-
tion. Indeed, H −d relationships do vary significantly among
species (King, 1996; Poorter et al., 2006) and across regions
(Nogueira et al., 2008; Feldpausch et al., 2011; Goodman
et al., 2014). An additional source of bias when estimat-
ing stem-level growth rates could be related to the uniform
(static) allocation coefficient used in this study. For example,
Litton et al. (2007) showed that allocation to aboveground
tree biomass components increases with age and the avail-
ability of resources. Furthermore, Castanho et al. (2013) im-
proved the predictions of a DGVM by adjusting allocation
coefficients based on soil texture. Such ontogenetic and/or
resource-based shifts in patterns of carbon allocation could
be potentially modelled through the use of dynamic allo-
cation schemes (Friedlingstein et al., 1999; Franklin et al.,
2012).

The importance of realistically representing autotrophic
respiration processes in models of vegetation dynamics is
also highlighted here. Modelling respiration has proven to
be a difficult task (Cannell and Thornley, 2000), and ac-
curate representation of this component is of great impor-
tance for understanding the global C cycle (Valentini et al.,
2000). For example, the way that respiration is represented
in DGVMs could have a substantial influence over the way
that the dynamics of Amazonian forest under scenarios of
climatic change are simulated (Huntingford et al., 2004; Gal-
braith et al., 2010). Nitrogen content of plant tissue has been
proven a good predictor of respiration rates (Reich et al.,
2008). However, Mori et al. (2010) suggested a mixed-power
equation in which the exponent varies from 1 to 3/4 as size
increases. Both the Reich and Mori models are implemented

in TFS, but we found that a third method, combining the size
and nitrogen control, performed better. Thus we suggest that
an amalgamation of those two approaches could provide a
better way to estimate respiration fluxes in the new genera-
tion of dynamic vegetation models. In addition, leaf phos-
phorous content seems to constrain respiration rates more
strongly than nitrogen content in some tropical forests (Meir
et al., 2001; Meir and Grace, 2002), and thus inclusion of a
phosphorus constraint in future equations of leaf respiration
could increase their realism.

Finally, discrepancies in the observed versus the simu-
lated canopy conductance GC could result from the param-
eterisation of the stomata conductance model of Medlyn et
al. (2011). The estimates for g0 and g1 used in the 40 PM
plots simulations were taken as constant. However, Med-
lyn et al. (2011) suggested that g0 and g1 could vary with
functional group. Thus the Amazon-wide parameterisation
used here should be replaced with local-level estimates when
appropriate gas exchange data are available, and ultimately
with estimates based on linked functional traits as evidenced
through recently documented associations between structural
characteristics such as wood density and leaf area to sap-
wood ratio with leaf physiological traits such as Ma and leaf
13C /13C ratio (Patiño et al., 2012), although we also note
that the extent of such structural/physiological linkages re-
mains the subject of debate (Baraloto et al., 2010b). Alter-
native stomatal closure equations as a function of soil water
availability (Harris et al., 2004) should also be tested along
with the conductance model in future versions of the model.

5 Conclusions

We set out to develop a modelling framework for tropical
forests that is relatively simple yet adequately complex to
capture the main ecological gradients in the world’s most
extensive tropical forest. Our study places special emphasis
on processes highlighted by recent field studies to strongly
influence Amazonian forest dynamics, especially functional
trait diversity and its association with multiple soil proper-
ties (Fyllas et al., 2009). In summary, TFS is characterised
by a relatively simple setup, which is capable of reproducing
water and carbon fluxes as observed at both daily and multi-
annual timescales. TFS represents an important link between
inventory data and large-scale models with the incorporation
of the continuum of plant strategies, through the inclusion of
trait distributions providing a step towards better represent-
ing diversity in vegetation modelling (Lavorel et al., 2007),
representing important processes and trait variation that can-
not be adequately accounted for by a DGVM approach to
vegetation modelling. Since TFS is based heavily on mea-
sured data, the model is well suited to testing hypotheses re-
lated to the present-day Amazon biogeography and biogeo-
chemical fluxes.
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