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Abstract. Evolutionary Robotics can be a powerful tool in studies on
the evolutionary origins of self-organising behaviours in biological sys-
tems. However, these studies are viable only when the behaviour of the
evolved artificial system closely corresponds to the one observed in bi-
ology, as described by available models. In this paper, we compare the
behaviour evolved in a robotic system with the collegial decision making
displayed by cockroaches in selecting a resting shelter. We show that ar-
tificial evolution can synthesise a simple self-organising behaviour for a
swarm of robots, which presents dynamics that are comparable with the
cockroaches behaviour.

1 Introduction

In recent studies, Evolutionary Robotics (ER, see [1]) has been used as an instru-
ment to investigate the evolutionary conditions for the emergence of adaptive
behaviour in groups of interacting agents. The main motivation behind these
studies is that the evolution of certain adaptive traits and behavioural responses
is tightly linked to ecological and social conditions. These conditions are ex-
tremely difficult or impossible to be controlled and replicated with empirical
studies [2], while they can be completely managed in ER studies. The use of
ER to analyse adaptive behaviours has been demonstrated in several occasions.
For instance, the effects of genetic relatedness on the evolution of cooperative or
deceptive communication strategies can be investigated by systematically vary-
ing the composition of interacting groups [3, 4]. Similarly, thanks to a simple
ER experiment, it has been shown that the effect of stochastic variations in the
evolutionary history could be at the basis of the emergence of diverse signalling
strategies [5].

At the same time, ER represents a powerful design tool for the synthesis
of collective, self-organising behaviours in swarms of robots [6]. It provides an
automatic design methodology to synthesise the individual mechanisms leading
to an optimal group response, according to a user-defined performance metric.
Additionally, ER can shed light on the evolutionary pressures leading to the



emergence of observed collective behaviours. However, it is necessary to under-
stand whether or not the target behaviour can be evolved in the artificial system,
and whether it displays dynamics comparable with the natural counterpart.

In this paper, we perform this first step, that is, the validation of an ER
system with respect to collegial decision making by cockroaches in selecting a
resting shelter [7]. Cockroaches (Blattella germanica) are gregarious insects that
manifest cooperative behaviour in selecting a resting site: whenever more than
one site is present, the insects collectively choose to aggregate in one single
place (provided that it is large enough to host them all). Experimental studies
allowed to determine which are the social influences that lead to such a collegial
decision-making process, and a dynamical model has been developed (see [7] and
Section 3.1 for more details). The identified mechanisms have been successfully
exploited for designing collective aggregation and decision-making behaviours
in swarms of robots [8–10], allowing also mixed insect-robot experiments [11].
However, to the best of our knowledge, there has been no attempt to study
the evolution of a similar decision-making behaviour in swarms of robots. In
this paper, we demonstrate that similar collegial decisions can be evolved in an
artificial system. Our goal is to (i) verify the evolvability of the collegial decision
making in the artificial system, and (ii) determine whether the dynamics of the
system correspond qualitatively and quantitatively to the ones predicted by the
biological model [7]. This will allow us to determine whether or not evolutionary
robotics is suitable for formulating hypotheses about the evolutionary pressures
that resulted in collective decision-making in cockroaches.

The paper is organised as follows. In Section 2, we describe in detail the
experimental setup for the ER experiments. In Section 3, we discuss the results
obtained from the evolutionary experiments with respect to the evolvability of
the decision-making behaviour in a robotic system. In Section 3.1, we present the
dynamical model proposed in [7], and we discuss the methodology that lead us to
fit the evolved behaviour to the model. In Section 3.2, we present a comparison
of the dynamics of the evolved behaviour with the ones predicted by the model.
Section 4 concludes the paper with some final remarks.

2 Experimental Setup

We study the evolution of collegial decision making in a swarm of robots that
have to aggregate in one of two areas within the experimental arena. Our ex-
perimental setup is based on the one used in Amé et al. [7]. The robots operate
in a dodecagonal arena (Figure 1 left) of area 4.91m2 surrounded by walls. The
floor of the arena is white with two black circular areas, having the same radius
(ra = rb = 35cm) and centred at 67cm from the walls. In the following, we refer
to the two black areas as area a and b, and the remaining white area as c.

The experiments are carried out in simulation using ARGoS [12], a multi-
engine simulator of swarm robotics systems. The robots and the environment are
modelled using a 2D dynamic physics engine. We use a simulated model of the
e-puck robot (Figure 1 right), a small wheeled robot designed for research and



Fig. 1. Left: a snapshot of the simulated experimental arena used for the experiments.
Right: the e-puck robot, used for the simulated evolutionary experiments presented in
this paper.

education [13]. In our experimental setup, each robot can perceive walls and other
robots through eight infrared proximity sensors placed all around its chassis. It
can sense the colour of the floor using three ground sensors placed under its front.
Additionally, each robot features another sensor called range and bearing [14].
This sensor allows the robot to communicate locally with other robots by sending
and receiving messages. In our experiments, the robot uses such a sensor only
to perceive the number of other robots within a 70cm range. To normalise the
output of the sensor, we use the preprocessing function z(n) = 1−( 2

1+en ), where
n is the number of robots perceived at any given moment. Since the real e-puck
can perceive only a limited number of robots at a given time, z(n) saturates to
1 for n > 5.

The controller that governs each robot is an artificial neural network. We
assume that robots can achieve aggregation using a memoryless behaviour, that
is, the behaviour of each robot depends only on the present values of sensors
without any kind of internal state. For this reason, we use as controller a fully
connected, feed-forward neural network. This neural network has 12 inputs, one
for each sensor (8 infrared proximity, 3 ground sensors, 1 from the range and
bearing), 2 outputs, one for each wheel, and no hidden units. The input values
are linearly scaled in [0,1] when necessary. The activation of the output neurons is
computed as the weighted sum of all input units plus a bias term, filtered through
a standard logistic function. The two output neurons control the speed of the two
wheels, by scaling their activation in the range [−vm, vm], with vm = 16cm/s.

We use a simple evolutionary algorithm to set the parameters of the neural
network. Each parameter is represented in the genotype by a real number in the
range [-5,5]. The evolutionary algorithm works on a population of 100 genotypes,
evolved for 200 generations. The population of the first generation is randomly
generated. Subsequent generations are created using a selection and reproduction
process that involves elitism and mutation. The 20 best genotypes—i.e., the
elite—are included unchanged for the next generation. The remaining genotypes
of the population are generated by mutation of the genotypes of the elite. The



mutation is done by adding a random value to each element of the genotype. The
random value is drawn from a normal distribution with mean 0 and variance 1.

The genotype is mapped into a controller that is instantiated in all the robots
of the group (N = 10). To evaluate the performance, K = 10 trials of T = 250
seconds are run. The evaluation of the performance of the genotype is based on
the function f(t):

f(t) =
|xa(t)− xb(t)|

N
∈ [0, 1] (1)

where xi(t) is the number of robots in area i ∈ {a, b} at time t and N is the total
number of robots. The function f(t) is equal to zero when a and b contain the
same number of robots. On the contrary, f(t) is equal to 1 when all the robots
aggregate on the same area. The values of f(t) are aggregated over time using
an exponential moving average:

Gk(t) = αGk(t− 1) + (1− α)f(t), ∀k ∈ [1,K] (2)

where α = 0.9 is the time constant of the moving average, andGk(0) = 0. Finally,
the fitness F of the genotype is the average of Gk(T ) over all the K = 10 trials.

3 Results

We performed 20 evolutionary runs starting from different randomly generated
populations. For each run, we selected the best controller within the final pop-
ulation: we evaluated the performance of every controller of the last generation
for K = 200 trials, and we selected the one with the highest average fitness. All
the evolutionary runs were able to produce controllers with high performance
(data available as suppmentary material in [15]).

A qualitative analysis of the obtained controllers reveals that the evolved
behaviours are quite similar one to the other. In general, the robots act differently
according to their position in the arena. When a robot is in the white area c, it
explores the arena following a wide curved trajectory. If the robot reaches the
external wall of the arena, it starts to follow it. The robot motion is influenced
by the presence of other robots: curves become sharper when other robots are
nearby. Such a perturbation makes the robot leave the border of the arena and
eventually enter in one of the two black areas. When the robot is in one black
area it follows a circular trajectory. The radius of the trajectory decreases as
the number of robots in the area increases. In this way, if the area is empty
the robot follows a wide trajectory and eventually leaves. On the contrary if the
area is crowded the robot almost rotates on its axis. If the robot goes out of the
black area it starts again to explore the arena. Example videos of the obtained
controller are available as supplementary material [15].

There are qualitative similarities between the evolved behaviour just de-
scribed and the self-organizing aggregation behaviour observed in groups of cock-
roaches. In particular, we observed that the probability that a robot leaves an
area is inversely proportional to the number of the robots located in the area



itself. To determine whether or not the evolved behaviour presents dynamics
quantitatively similar to the biological system, we check the adherence of the
evolved robotic behaviour3 with the model introduced in [7]. In the next section,
we introduce the model and the methodology we used to estimate its parame-
ters. In Section 3.2, we compare the dynamics of the evolved behaviour with the
predictions of the mathematical model.

3.1 Model

In Amé et al.’s model, the behaviour of each individual insect is characterised
by Ji, the probability that it joins area i, and Li, the probability that it leaves
area i. Both probabilities depend on xi, the number of insects located in area i,
and on S, the carrying capacity, which is a measure of the maximum number of
insects that can be hosted in a single area.

The joining probability Ji decreases slightly with the number of insects in
it because of crowding effects. This accounts for the observation that it is less
probable to join an area that is already densely populated. Amé et al. define Ji
as:

Ji = µ
(

1− xi
S

)
, i = [a, b]; (3)

where µ represents the area quality, that is, the probability that an individual
joins the area without social influences, xi is the number of insects already in
area i, and S is the carrying capacity.

Similarly, the leaving probability Li is inversely proportional to the number
of individuals in area i. This accounts for social influences among individuals,
which tend to stay close together. The probability Li is low when the area is
densely populated and high when it is sparsely populated. Amé et al. define Li

as:

Li =
θ

1 + ρ
(xi
S

)2 , i = [a, b]; (4)

where θ depends on the quality of the area, and ρ is a reference surface ratio
related to the area carrying capacity. Using Ji and Li it is possible to describe
the time evolution of the number of individuals in the different areas through a
system of differential equations:

dxi
dt

= Jixc − Lixi = µxc

(
1− xi

S

)
− θxi

1 + ρ
(xi
S

)2 , i = [a, b] (5)

N = xc + xa + xb (6)

where N is the total number of individuals and xc is the number of individuals
in c, that is, the individuals outside the resting areas. This model therefore
describes the dynamics of the aggregation behaviour in terms of the number of
individuals present in the different areas of the arena (see [7] for details).

3 To this aim, we select the best obtained controller among all evolutionary runs.
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To evaluate the correspondence of the evolved robotic behaviour with the
above model, we estimated the model parameters from the results of simulated
experiments.

To estimate the parameters of Ji and Li, we gathered the empirical prob-
abilities by performing 200 simulated experiments in the same conditions as
presented in Section 2 (N = 10, r = 0.35cm, S = 29). We separately fitted the
parameters for Ji and Li to our data using the non-linear least squares method.
The obtained parameters are: µ = 0.008, θ = 0.008 and ρ = 138.574. We mea-
sured the quality of the fitting by computing the coefficient of determination
R2. While the fitting on Li is excellent (R2 = 0.979, p-val< 0.001), the fitting
on Ji is not as good (R2 = 0.560, p-val= 0.148). This is due to the fact that
in our robotic system, Ji appears to be non-linear, differently from Amé et al.’s
model. Even though the fitting is not good, we decided to be consistent with
Amé et al.’s model and not change Ji. A discussion on the possible effects of this
decision is presented in Section 4.

Following the analysis presented in [7], we studied the system behaviour
described by eq. (5) and (6) for different values of d = S

N . In Fig. 2, it is possible
to see the bifurcation diagram of the model. Four different situations can be
observed: (i) For d lower than 0.5, the areas are too small to host all the robots;
the robots fill completely the areas and some remain in c. (ii) For d between
0.5 and 1, a single area is too small to host all the robots, so the areas are
filled equally. However, in this second case, there is enough space on both areas
for all the robots, so only few robots are on c. (iii) For d between 1 and 4.2



the areas are big enough for aggregation to happen. Two stable solutions are
found, corresponding to area a or area b hosting the majority of the robots.
Additionally an unstable solution is found, corresponding to both areas filled
equally. (iv) For d greater than 4.2 the areas are too big and the robots are less
likely to perceive the presence of other robots in the same area. Thus, the stable
solution corresponds to both areas filled equally.

The number of robots present in c described by eq. (6) also varies with d.
Two different situations can be observed: For d lower than 0.5, xc/N decreases
sharply: as areas a and b get bigger, more space is available and the areas can
host more and more robots; For d greater than 0.5, the population fraction
on c increases steadily. This is due to the fact that, as S becomes bigger, the
probabilities Ji and Li increase, resulting in a system less likely to converge on
a state in which all robots are in areas a or b.

We consider that a clear collective decision occurs only when xa/N > 0.8.
In the bifurcation diagram in Fig. 2 this happens only for d between 1 and 2.8.
For d between 2.8 and 4.2 the model predicts a more variable condition with a
still unbalanced distribution of robots among the two areas, and an increasing
number of robots that move from one area to the other. In the following, we
verify these model predictions with respect to the experimental data, presenting
a comparison between the results obtained in simulation and those obtained with
the model.

3.2 Dynamics of robotic and model simulations

We compared the results obtained from simulated robotics experiments and
Monte Carlo experiments for different values of d = S/N . We carried out two
different analyses. In the first one, the different values of d are obtained by
keeping the number of robots fixed to N = 10 and varying the carrying capacity
S, by changing ri. In the second, we keep ri = 0.35 (S = 29) and we vary the
number of robots. For each value of d, we run 1000 trials of T = 500 seconds,
both for the robotic and the Monte Carlo simulations. For each trial, we collected
the final group distribution xi over the different areas.

Figures 3 and 4 show the obtained results. Such diagrams depict, for each
value of d, one bar for each area of the arena. The colours in the stacked bars
show the frequency of individual distributions. We divided the distribution in five
classes (0-20%, 20-40%, 40-60%, 60-80%, 80-100%), giving each class a different
colour. The size of each class in the figures represents its frequency. If the robots
are able to perform a collegial decision and aggregate in one single area most
frequently, the bars of the areas a and b are mostly dark blue, corresponding to
a bimodal distribution with peaks in 0-20% and 80-100%. On the contrary, if
the group splits by aggregating on both areas, the bars of the areas a and b are
mostly white, corresponding to a unimodal distribution centred in 40-60%. Area
c is depicted in dark red when empty (0-20%) and white when full (80-100%).

Figure 3 shows the comparison between robotics and model simulations when
the number of robots is fixed to N = 10. Apart from low values of S, there is a
good correspondence between the model and the evolved behaviour. Moreover,
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Fig. 3. Comparison between the behaviour of the simulated experiments and the Monte
Carlo experiments keeping the number of robots fixed to N = 10, and varying the size
of the black areas from ri = 0.15 to ri = 0.5.

the evolved behaviour looks more stable for d > 2.9, indicating that the robots
have a better tendency to perform collegial decision than predicted by the model.
For S = {5, 11}—corresponding to ri = {0.15, 0.2}cm—the robots find the areas
with difficulty due to the small radius, and aggregates are less stable, therefore
robots remain mostly outside.

Figure 4 shows the results when the carrying capacity S is fixed to 29. The
evolved behaviour presents a smoother transition from equally occupying the
areas at low d to collegial decisions at high d. For 12 ≥ N ≥ 8 there is a good
correspondence, as the robotic system is close to the evolutionary conditions.
Otherwise, for N ≥ 13 robots split more frequently than aggregating, while the
model predicts splitting only when one area is saturated. Overall, we observe
a good qualitative correspondence between robotic simulations and the model,
but mostly within the range of parameters used to evolve the robotic behaviour.
A more detailed discussion about these discrepancies follows in the next section.

4 Conclusions

In this paper, we demonstrated that evolutionary robotics techniques can be
exploited for the synthesis of a collegial decision making behaviour similar to the
one observed in cockroaches. This is an important result, especially considering
that the robotic controllers are simple feed-forward neural networks without
internal states. That is, also in a robotic system collegial decisions can emerge
solely from simple individual behaviours modulated by social interactions.
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Fig. 4. Comparison between the behaviour of the simulated experiments and the Monte
Carlo experiments keeping a constant radius ri = 0.35 (S = 29) and varying the number
of robots from N = 5 to N = 40.

We compared the dynamics of the evolved robotic behaviour with the pre-
dictions of the model proposed in [7], finding some qualitative correspondence.
However, quantitative comparisons revealed similar dynamics mostly for a small
parameter range around the evolutionary conditions (N = 10, S = 29). We iden-
tify mainly two reasons for these discrepancies: (i) the evolved system exploits
geometric regularities, such as the arena dimension and the positioning of the ar-
eas; (ii) the sensing radius for the robots (75cm) is quite large with respect to the
arena dimensions. Both these issues have a bearing on the probability of joining
an area, which also explain the non perfect fit of the model parameters observed
in Section 3.1. In practice, we observe that the evolved behaviour depends on
both S and N , and not only on the their ratio d, as predicted by the model.
In future work, by removing geometric regularities from the evolutionary setup,
we hope to obtain a better quantitative matching with the model predictions. If
successful, we plan to exploit this artificial experimental setup to investigate the
optimality of the evolved behaviour with respect to different selective pressures,
genetic relatedness among individuals in the group, and variable ecological con-
ditions. We believe this can be useful to better understand the evolutionary path
leading to collegial decision making.
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