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ABSTRACT service level agreement (SLA) management is one of the key issues in cloud computing. The

primary goal of a service provider is to minimize the risk of service violations, as these results in penalties in

terms of both money and a decrease in trustworthiness. To avoid SLA violations, the service provider needs

to predict the likelihood of violation for each SLO and its measurable characteristics (QoS parameters)

and take immediate action to avoid violations occurring. There are several approaches discussed in the

literature to predict service violation; however, none of these explores how a change in control parameters

and the freshness of data impact prediction accuracy and result in the effective management of an SLA

of the cloud service provider. The contribution of this paper is two-fold. First, we analyzed the accuracy

of six widely used prediction algorithms—simple exponential smoothing, simple moving average, weighted

moving average, Holt–Winter double exponential smoothing, extrapolation, and the autoregressive integrated

moving average—by varying their individual control parameters. Each of the approaches is compared to

10 different datasets at different time intervals between 5 min and 4 weeks. Second, we analyzed the

prediction accuracy of the simple exponential smoothing method by considering the freshness of a data;

i.e., how the accuracy varies in the initial time period of prediction compared to later ones. To achieve

this, we divided the cloud QoS dataset into sets of input values that range from 100 to 500 intervals in

sets of 1–100, 1–200, 1–300, 1–400, and 1–500. From the analysis, we observed that different prediction

methods behave differently based on the control parameter and the nature of the dataset. The analysis helps

service providers choose a suitable prediction method with optimal control parameters so that they can obtain

accurate prediction results to manage SLA intelligently and avoid violation penalties.

INDEX TERMS Cloud computing, QoS prediction, SLA violation, prediction accuracy, data acquisition,

protocols, mining.

I. INTRODUCTION

Cloud computing is increasingly recognized and popular

among business communities due to its elastic architec-

ture and economical, easily accessible, scalable and flexi-

ble nature. In a press release from April 2019, Gartner [1]

claimed that the cloud market would grow exponen-

tially by 2022 and predicted that worldwide cloud market

would increase by 17.5% from $182.4 billion in 2018 to

$214.3 billion by the end of 2019. Among different cloud

service markets, the leading service market is for Infrastruc-

ture as a Service (IaaS). IaaS is predicted to grow its revenue

by 27.5% to $38.9 billion in 2019, an increase of 8.4%
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from 2018. When businesses and consumers use cloud ser-

vices, they benefit by increasing their capacity in several

ways. Cloud computing provides the architecture through

which a consumer can store, retrieve and process data as

well as execute their application anytime and anywhere,

regardless of the physical location of the servers. A cloud

can be considered as a huge pool of virtualized resources,

such as a platform, infrastructure and services that can be

easily accessed and used by consumers under the agreed stan-

dards of service delivery. Often called service level objectives

or SLOs, these are the performance metrics of service level

agreements (SLAs).

An SLA is an important legal contract between the cloud

service provider and consumer that outlines the obligations,

commitment and penalties of each party. For example, in
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their SLAs, Amazon Elastic Compute Cloud (EC2) and Ama-

zon Elastic Block Store (EBS) commit to providing an uptime

of at least 99.99% for their services in a monthly billing

cycle [2] and are liable for a 10% service credit if the monthly

uptime of EC2 is less than 99.9% but equal to or greater

than 99.0%. EC2’s SLA also contains information about their

service commitment and procedure for compensating the

consumer if the commitment is not fulfilled. IBM provides

SLAs for high availability and non-high availability zones.

According to the IBM cloud service description published

in April 2019 [3], for all cloud services except IaaS, the ser-

vice provider is liable for 10% of service credit if the monthly

uptime is less than 99.95% for services in both high availabil-

ity and non-high availability zones and 25% of service credits

for services if it is less than 99.90% for high availability zone

and less than 99.0% for non-high availability zones. How-

ever, there are exclusions of no credit for failure to meet the

SLA due to causes such as technology, design, unsupported

system, hardware, facility and client system administration.

Microsoft Azure offers different SLAs for its services. It com-

mits to a monthly uptime of at least 99.99% for Azure Active

Directory [4] both for basic and premium services and if the

uptime percentage is less than 99.9% then the provider is

liable for a service credit of 25%. The service credit will

increase to 100% if the uptime percentage drops to less

than 95%.

An SLA is comprised of one or many performance metrics

called service level objectives (SLOs), which are further com-

posed of one or many low-level resource metrics or quality

of service (QoS) parameters. To avoid a service violation and

penalties, the service provider needs to predict QoS parame-

ters beforehand and in the case of discrepancies take immedi-

ate action to avoid a violation. Quality of service (QoS) is the

measurable characteristics on which the overall performance

of the cloud service depends. It is one of the key factors

used to measure the SLOs in an SLA. A critical parameter

combines with other QoS parameters to form a performance

metric. Therefore, effective predictionmethods are needed by

which the service provider can predict instances of deviations

in the QoS that will be delivered and take appropriate steps

so that quality promised in the SLAs is maintained. There are

many techniques that are used to predict QoS parameters for

future intervals; however, each technique behaves differently

depending on the choice of the prediction method, the data

patterns for input, the prediction method parameters and

considering the distant or near past data for the prediction.

The choice of a prediction algorithm with appropriate control

parameters for each method plays an important role in service

providers managing SLAs and avoiding SLA violations. Not

meeting the agreed-upon QoS parameters results in violation

penalties and damage to a provider’s reputation. A provider

can reduce their risk of service violation by following more

formal quantitative prediction methods [5] and by select-

ing an optimal parameter for the related prediction method.

Therefore, in order to manage the risk of SLA violation and

to avoid violation penalties, it is vital that the service provider

determine the appropriate QoS predictionmethod based on its

prediction accuracy at different time intervals.

In the authors’ previous work [6], [7], we analysed the

accuracy of the time series and machine learning prediction

approaches and ranked them according to their prediction

accuracy. The contribution of this paper is two-fold. First,

we demonstrate that how prediction accuracy changes by

varying the value of the individually control parameters of the

related algorithm; for example, how the simple exponential

smoothing prediction method behaves while the value of a

smoothing parameter or control parameter is changing, i.e.

the value of α from 1 to 9. Choosing an optimal parameter

for the associated prediction method assists in minimizing the

mean square error (MSE), taking the cut-off frequency and

the computational limitation of the transfer function, among

other advantages [8], that resulted in minimized errors and

maximized prediction accuracy. Secondly, we analysed the

prediction accuracy by considering the freshness factor of

data. By freshness, we mean how a prediction algorithm per-

forms in an earlier time period as compared to the following

ones. Usually, prediction accuracy changes by considering

data from previous intervals to predict the future interval [7].

For this study, six of the most commonly used prediction

methods are considered: simple exponential smoothing, sim-

ple moving average, weighted moving average, Holt-Winter

double exponential smoothing, extrapolation and the autore-

gressive integrated moving average (ARIMA). Prediction

accuracy is determined by changing each control parameter

on a real cloud dataset fromAmazon EC2 IaaS cloud services.

Three QoS parameters are considered: central processing

unit (CPU), memory and input-output (I/O). The QoS val-

ues of these parameters are predicted and then the pre-

dicted values are compared with the actually observed ones.

The evaluation benchmark for comparison is mean square

error, root means square error (RMSE) and mean absolute

deviation (MAD). To consider various possible patterns in

the input QoS data and determine their effect on the output

values, each dataset is divided into 10-time intervals, starting

from 5 minutes to 4 weeks, which provides datasets which

contain different patterns.

A. THE GAPS IN THE LITERATURE

Firstly, it has been observed that while the existing lit-

erature evaluates various prediction approaches including

machine learning, stochastic and time series prediction, none

of them discusses how the different control parameters

of each approach impact the prediction accuracy of cloud

QoS data. Secondly, none of the existing studies explores how

the freshness of data impacts on prediction accuracy. Finally,

none of the previous research examines how the prediction

algorithms and each individual control parameters behave on

cloudQoS data with different data patterns such as horizontal,

cyclic and sessional at different time intervals (from 5 min to

4 weeks) and look at the prediction algorithms from a cloud

SLA management perspective. This paper addresses all three

gaps.
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B. CONTRIBUTIONS OF THE PAPER

This paper aids in the understanding of the existing time

series prediction algorithms by analysing how different pre-

diction algorithms behavewhen the values of different control

parameters are varied at different data patterns. The second

contribution of this work is to analyse prediction accuracy by

considering the freshness of data that means that how the pre-

diction algorithm responds by considering data from earlier

interval to predict for future intervals. This paper analyses the

prediction approaches for 10 different time intervals between

5 minutes and 4 weeks. Consumers usually request for a new

virtual machine about 12 – 15 minutes before they need [9]

and it takes about 5 to 10 minutes to set up a new virtual

machine. Therefore, we choose a minimum of 5 minutes and

increased the time intervals up to 4weeks to analyse how each

prediction approach behaves with various control parameters.

C. SIGNIFICANCE OF THE PAPER

This study is significant for the following reasons. Firstly,

by knowing the prediction algorithm with optimal control

parameters to detect possible service violations before the

actual violation occurs, the cloud service provider would

be able to optimally manage their SLA to avoid violations.

Secondly, the paper assists the cloud provider in choosing

the optimum prediction method for different data patterns

at varying time intervals. Thirdly, the cloud provider can

improve its reputation in the market by achieving high con-

sumer satisfaction, eventually converting potential consumers

to regular consumers. Finally, the discussed approaches assist

interacting parties in proactively managing SLA, not only on

single services but in managing combined services such as in

a Cloud of Things (CoT) environment. In CoT, the required

services are combined from different services from different

regions. Therefore QoS parameters such as availability and

response time need to be accurately predicted to assist in

service formation and protective management.

The structure of the paper is organized as follows. Section 2

discusses and critically analyses related studies from

the literature in the area of this work. Section 3 describes the

adopted approaches and the benchmark used to measure the

prediction accuracy. Section 4 presents the overall prediction

accuracy of each approach with varying control parameters.

Section 5 presents the prediction accuracy by considering

the freshness of data. Section 6 presents the findings and

discussion and, finally, Section 7 concludes the paper.

II. RELEATED STUDIES

Researchers have used many techniques for QoS prediction

in recent times. The current approaches used for QoS predic-

tion for cloud services will be reviewed in this section. The

QoS prediction approaches are an effective way to predict

the near-future values of cloud services [10]. Predictions are

based on an analysis of previous QoS data. Typical QoS

prediction techniques that have been proposed are neural

network and artificial intelligence [11], collaborative filtering

technology [12], case-based reasoning [13], Bayesian net-

works [14] and combinational prediction techniques [15].

Kumar et al. [16] propose an artificial neural network

model using past QoS performance parameter data to predict

missing QoS parameters. The performance was analysed

using a comparison of three training algorithms: Levenberg-

Marquardt (LM), Bayesian regularization (BR) and the

scaled conjugate gradient (SCG). The results show that the

BR algorithm is more precise in predicting the QoS param-

eters in cloud computing environments; however, there is a

need to develop models with varying neural network values

and different neural network architectures for more accurate

prediction results. To resolve the issue of overload informa-

tion, the QoS approaches for service recommendations have

been incorporated into cloud servicemarketplaces [17]–[19].

To predict QoS and ranking of cloud services, the

authors [20] applied the Spearman coefficient on QoS sim-

ilarity computing in the typical collaborative filtering (CF)

model. However, all of the approaches discussed above [20],

[21] fail to consider the fact that QoS values are not constant

and are dependent on the time factor, instead of focusing only

on QoS information for the service recommendation.

Furthermore, the QoS values prediction problem is closely

related to matrix factorization methods [22]. The matrix

and the collaborative filtering sparse problems impact the

prediction accuracy and overall recommendation quality of

QoS values [23]. For these reasons, trust-aware collaborative

filtering methods such as [24], [25] have gained attention

in recent times. Liu et al. [23] proposed a novel clustering-

based and trust-aware method for personalized and reliable

QoS values prediction. Moreover, Wu et al. [26] proposed a

context-aware prediction model that provides a more effec-

tive approach for the QoS prediction in the case of sparse

data. Ma and Shan [22] proposed a general collaborative

filtering (GFC) method based on a neural network to model

the user-service interactions. The QoS values from 339 users

on 5,825 web services were evaluated and the results showed

better prediction accuracy than existing collaborative filtering

methods. However, the trials only focused on response time

QoS prediction.

Zhang et al. [27] suggested a time-aware personalized

QoS prediction framework (WSPred) to predict unknown

QoS values. With the help of a tensor factorization model,

a time-sensitive QoS prediction method was developed. This

method is based on a 3D matrix involving the dimensions

of user, service and time. To study the relationship between

the trio (user, service and invocation time), Zhang et al. [28]

widened the work in [27] by forming a non-negative ten-

sor factorization model. These time-sensitive, CF-based QoS

prediction methods [27], [28] neglect the fact that predictable

QoS values of target user at particular time period will be

influenced both by the QoS values of previous time intervals

and by other similar users’ QoS values. Also, Lo et al. [29]

suggested a framework of extended matrix factorization

(EMF) along with the relational regularization. For the same

purpose, some researchers explore incorporating EMF by
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adding information such as geographical location, time

and reputation. The survey of QoS prediction is reported

in [30]–[32]. The performance predictionmodel is considered

in [30]. To assess and predict the performance of servers

employed in cloud infrastructure, the authors utilize the

Markovian arrival process (MAP) and a MAP/MAP/1 queu-

ing model. The QoS requirements are met by resolving the

problem of QoS optimization at runtime in [33]. To fulfil

the particular QoS requirements of service-oriented systems

and to identify a runtime variation methodology, a linear

programming optimization problem is implemented in [34].

To develop QoS adaptive service-based systems for meeting

the QoS attributes defined earlier, a multi-objective optimiza-

tion problem is suggested in [33]. Gallotti et al. [35] proposed

QoS prediction based on themodel checking solution to assist

in QoS prediction at the earliest possible time.

Wu et al. [36] put forward a learning neighbourhood-based

prediction method. In this approach, the previous profile

record is critical for the prediction of a service violation.

The service brought forward by Romano et al. [37] was QoS

monitoring as a service (QoS-MONaaS). It consists of four

elements, which are highly functional. Since QoS-MONaaS

elements operate in an inconsistent cloud environment, they

are capable of managing functions as per time use [38].

ur Rehman et al. [39] proposed the service management

model. This framework allows the end user of a service to

not only analyse the efficiency of services with the help of

predictable QoS results but also helps them to decide whether

to continue or discontinue the use. Chaudhuri et al. [40]

used earlier service records to predict the QoS parameters.

A flexible method of computation has been used for the

confirmation of this approach on the public dataset. Amethod

called local neighbourhood matrix factorization (LoNMF)

was proposed by Lo et al. [41] for forecasting QoS param-

eters. The integration of the matrix factorization method

with the network and service neighbourhood information by

Qi et al. [42] made possible the prediction of personal-

ized QoS parameters. Zheng et al. [43] brought forward a

prediction method by merging item-based and user-based

collaborative filtering methods. Sun et al. [44] utilized the

memory-based collaborative filtering method and QoS web

services’ characteristics for the similarity measurement.

Shao et al. [45] employed the method of collaborative fil-

tering for similarity mining based on earlier performance.

The evaluation of time series is the procedure used to mea-

sure the parameters at a particular time, such as hourly,

daily, weekly, monthly or any regular time interval. The data

obtained from the evaluation of time series not only reveals

the data patterns in a time series but also proposes a proper

method for predicting future data and provides information

about the system’s previous behaviour [46]. Because each of

the predictable revealed patterns in time series data exhibits

particular characteristics, it helps in selecting an optimal

prediction method [47]. Additionally, current methods fail to

predict the variation of dynamic web service QoS parame-

ters. Moreover, the average QoS parameters are described by

the historical data, however QoS parameters fluctuate based

on different locations and networks. Therefore, to predict

dynamic web services, Song et al. [48] suggest a new tech-

nique for personalized QoS parameters. However, the authors

used a small dataset, which may limit the development of

QoS value prediction.

The main document to look at in order to examine the

commitment of services’ source and the end-user is the ser-

vice level agreement (SLA). Hussain et al. [49] provide a

comparative analysis of the SLA violation prediction model

depending on the profile record. Kumar et al. [1] developed

a model to predict 15 QoS parameters of web services based

on 37 source code metrics. The performance of the matrices

was measured with six different sets as input and assessed

using extreme learning machines (ELM) with various ker-

nel functions. The results show that the performance of the

predictive model differs with the different sets of feature

selection technique, software metrics and the kernel func-

tions. In another study, Hussain et al. [6] compared the time

series with machine learning-based prediction approaches.

The authors provided a comprehensive evaluation of existing

SLA management approaches. The above-discussed studies

give predictable QoS values; however, these approaches do

not fully take into account the impact and significance of

QoS attributes and resources of the core cloud architecture.

Although the approaches discussed in this section assist

different stakeholders in a cloud environment to predict

QoS parameters and help them in making the decision to

mitigate it, to the best of our knowledge the approaches are

lacking in the following areas:

• None of the approaches discusses QoS prediction with

varying data patterns at different time intervals;

• None of the prediction approaches discusses how pre-

diction algorithms behave by changing each individual

control parameter of the related prediction algorithm;

• None of the approaches discusses how prediction accu-

racy is impacted by considering data from different time

intervals;

• None of the approaches demonstrates how different data

patterns impact output results; and

• Very few of the approaches discuss predictions from the

perspective of cloud small scale service providers for

SLA management while using a real cloud dataset.

III. PREDICTION APPROACHES AND ACCURACY

BENHMARK

There are several types of prediction algorithms available

in the literature for time series predictive modelling with

varying degree of prediction accuracy. For this study, we have

selected six commonly used prediction methods – simple

exponential smoothing, simple moving average, weighted

moving average, Holt-Winter double exponential smooth-

ing (HWDES), extrapolation and the autoregressive inte-

grated moving average (ARIMA). The reason for choosing

those methods because these methods have been used widely

in time series dataset [7], [50]–[52], and give optimum
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prediction results. The authors [8], [53]–[56] used simple

exponential smoothing, simple moving average, weighted

moving average method to get best prediction results, and the

authors [57]–[59] used ARIMA and HWDES as the predic-

tion method to get an ideal result. A brief explanation of these

prediction approaches and their related methods is provided

below.

A. SIMPLE EXPONENTIAL SMOOTHING METHOD

Exponential smoothing is an optimal forecasting approach

for state-spacemodels [60]–[64]. Exponential smoothing was

proposed by Brown [65] for smoothing and predicting time

series data. The basic purpose of this method is to smooth

random variations in time series data and give optimal results

for short-range forecasting [66].

The method predicts the forthcoming data by taking the

weighted average of all previous data where its weights

decrease on an exponential basis over time. The smoothing

function starts from the second observation and needs an

initial value that most of the time is chosen as the first value

of the series Ft−1 = yt .

These weights are determined by a smoothing constant,

as presented in Equation 1:

K̂a+1 =∝ Ka + (1− ∝)K̂a (1)

where K̂a+1 is the forecasted value at interval a+1, K̂a is the

forecasted value at time interval a, Ka is the actual value at

interval ‘a’ and ′ ∝′ is a value -smoothing constant that ranges

between 0 and 1 i.e. 0 <∝< 1.

B. SIMPLE MOVING AVERAGE METHOD

This prediction method considers the data from the earlier

time intervals, averages them and then uses the result to

predict the upcoming time interval [67]. The working of a

simple moving average is presented in Equation 2.

Ŝt+1 =
∑t

i=t−j+1 St

j
(2)

where Ŝt+1 is the predicted result for future interval t + 1

and j is the total time intervals. Each of the j previous values

has a weight of 1/j. When the size of the previous record j

becomes larger, each individual value of the recent past is

assigned a lesser weight in order to have a smooth series

forecast graph. The first period in St−j+1 is one stage old.

The second period is two stages old and so on till j term. The

phrase term moving is used because each time a new value

replaces the previous value in the equation, a new average is

calculated.

The average for each period changes or is moved based on

the new data. The problem with this method is that it always

lags behind the actual data. To use the moving average,

we need to select the number of time series j. The observation

at j depends on the relevance of the number of previous

values. For a small number of previous values, a small value

of j is considered and for a large number of previous values,

a larger value of j is considered. Therefore, for a smaller

number of datasets, jwill track shiftsmore quickly in a dataset

and a larger value of j gives the optimal result for smoothing

random fluctuation.

C. WEIGHTED MOVING AVERAGE METHOD

The prediction method gives a higher weight to the near-

est past data rather than the older data to calculate the

average [68]. In this method, a set of weighting factors are

selected such as w1, w2, w3 . . . .,wk , with the sum of all these

weights being equal to 1, as presented in Equation 3.

∑k

i=1
wi = 1 (3)

The weights are used to determine the smoothed statistics

value st , as presented in Equation 4.

st =
∑N

i=1
wiat+1−i = w1at + w2at−1 + . . .+ wNat−N+1

(4)

where a is a raw time series and w is a weighting factor.

Many technical analysts believe that assigning a greater

weight to the recent past data rather than older data pro-

duces good prediction results. When using this method,

the system reacts quickly when it detects any change.

Equation 5 presents the weighted moving average:

Ft =
∑

N

i=1 wi∗At
∑

N

i=1 wi
(5)

where w is the weighting factor, A is the actual data, F is the

average data and N is the total time period.

D. HOLT-WINTER DOUBLE EXPONENTIAL SMOOTHING

METHOD

This prediction method deals with data that have a trend and

seasonality. Seasonal data are time-series data that repeat

after every N time interval. The Holt-Winter method [69]

comprises a prediction equation and a smoothing equation

for level, seasonality and trend. There are two methods in the

Holt-Winter model that vary from each other based on sea-

sonal components. These methods are the multiplicative sea-

sonal component and the additive seasonal component [70].

Themultiplicative seasonal component is used when seasonal

data changes proportionally with the time-series data or when

there is a multiplicative change in seasonality, as presented

in Equation 6.

yt = (p1 + p2t) ∗ SF t + et (6)

where p1 is the permanent factor, p2 is the linear trend factor,

SF t is a seasonal factor and et is the error factor. The additive

seasonal component is used when there is a constant seasonal

change in the data, irrespective of the overall level of time-

series data, as presented in Equation 7.

yt = p1 + p2t + SF t + et (7)
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FIGURE 1. QoS parameters of EC2 US West.

E. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

METHOD (ARIMA)

The method was formulated by mathematical statisticians

George and Gwilym in the 1970s [71] to use with business

and economic data. This is one of the most efficient of

the autoregressive moving average (ARMA) methods that

include the seasonality component [72].

A non-seasonal ARIMA model is represented by ARIMA

(p, d, q) such that p, q and d are positive integers and

p represents autoregressive (AR), d represents the level of

differencing and q represents moving average (MA).

The ARIMA method is presented in Equation 8.

y̌t = a+ ψ1yt−1 + ψ2yt−2 + ψ3yt−3 + . . .+ ψnyt−n
+ b+ 1et−1 + 2et−2 + 3et−3 + . . .+ net−n + et

(8)

where y̌t is the predicted value. The sequence of the

AR model, the number of differencing and the sequence of

the MA model is presented as ARIMA (p, d, q). Therefore,

ARIMA (1, 1, 2) is presented as AR = 1, MA = 2 and the

difference of 1.

F. EXTRAPOLATION METHOD

The prediction method predicts forthcoming data based on

previously available data and considers all data including data

beyond the range of known data points. Thismethod produces

better results for the short range than the long range because

irrelevant previous datamake the long-range results noisy and

insignificant.

The method is reliable, inexpensive, quick and effortlessly

automated; however, the process of extrapolation can only

be applied to historical data. Short-range data, in which the

values that have been collected are less than a year old,

are adjusted seasonally adjusted by a seasonal adjustment to

reduce error in prediction [73]. Some of the commonmethods

of extrapolation are linear extrapolation, polynomial extrap-

olation and conic extrapolation. In the linear extrapolation

method, a tangent line is drawn which extends outside the

limit of a series, as presented in Equation 9.

b (ã) = b1 + ã− a1

a2 − a1
∗ (b2 − b1) (9)

where (a1, b1) and (a2, b2) are the end point of a series,

b (ã) is the predicted value at point ã. The polynomial extrap-

olation determines the function value at some point ã on the

x-axis, which is in the range of dataset n value. The conic

extrapolation selects five nearest points around the known

data which is performed by using a template known as ‘‘conic

section template’’ [74].

G. ACCURACY BENCHMARK FOR MEASURING

PREDICTION ACCURACY

We analysed the prediction accuracy of each method using

mean square error (MSE), root mean square error (RMSE)

and mean absolute deviation (MAD). MSE is the average of

the squared predicted errors as presented in Equation 10.

MSE =
∑a

t=b+1 et

a− b
(10)

MSE gives a quadratic loss function as it squares and

averages the different errors. MSE is therefore advantageous

at the point when we would be concerned about huge errors

whose negative results are proportionately greater than the

equivalent smaller ones [75]. RMSE is calculated by taking

the square root of the MSE as presented in Equation 11.

RMSE =
√
MSE =

√

∑a
t=b+1 et

a− b
(11)

MAD is also referred to as mean absolute error (MAE),

which is the mean absolute value of the forecast error.

MAD does not consider positive or negative forecast errors,

as presented in Equation 12.

MAD =
∑x

t=v+1 |et |
x − v

(12)

Prediction accuracy depends on forecast error, which is

the degree of alteration between two values – predicted and

observed. If Zt and Žt represent the observed and predicted

values respectively at time interval t , then prediction error et
is calculated using Equation 13.

et = Zt − Žt (13)

A positive error indicates that the forecast method has

underestimated the actual observation, and a negative error
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TABLE 1. Data patterns for all datasets.

TABLE 2. Prediction using the SES method for CPU.

indicates that the forecast method has overestimated the

actual observation for time period t .

IV. ANALYSING OVERALL ACCURACY of PREDICTION

ALGORITHMS with VARYING CONTROL PARAMETERS

To analyse the prediction accuracy of the previously men-

tioned approaches, we use a dataset from Amazon EC2 US

West for a period of three years starting from 28-03-2013

to 28-03- 2016. The data were collected from CloudCli-

mate [76] using the PRTG monitoring service [77].

The QoS parameters considered for this study are CPU,

memory and I/O. Figure 1 represents a part of the

PRTG network dataset from 01-01-2014 to 09-02-2015 for

the CPU, memory and I/O.

A. MEASUREMENT INTERVAL OF QoS PARAMETERS AND

DETERMINING THE PATTERNS IN THEM

We divided the measurement intervals of a dataset into

10 subsets i.e. 5 minutes, 10 minutes, 20 minutes, 1 hour,

4 hours, 12 hours, 1 day (24 hours), 1 week, 2 weeks and
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TABLE 3. Prediction using the SMA method for CPU.

4 weeks. The minimum dataset is of 5 minutes and we chose

it because it takes approximately 5 to 10 minutes for a service

request to result in the requested resources [9]. Therefore,

a time interval of 5 minutes is the minimum possible time

for the provider to take appropriate mitigating action when

it detects that a violation is likely to occur. Each of the

time intervals has different data patterns which are presented

in Table 1. We observed five different data patterns in a

dataset: trend (TRD), horizontal (HOZ), random (RND), ses-

sional (SNL) and cyclic (CYC).

1) QoS PREDICTION ACCURACY USING THE SIMPLE

EXPONENTIAL SMOOTHING (SES) METHOD

In this subsection, we analyse the prediction precision of

the SES method to predict the QoS parameters. The existing

literature advocates that different observations of α be

used for prediction to represent the sensitivity of a

forecast.

Chopra andMeindle [78] suggest that a value of α = 0.2 is

the optimal parameter value that generates an accurate result

in the SES method. Schroeder et al. [79] recommend that

when the value of α is set between α = 0.1 and α = 0.3,

it generates an optimal result in SES. Heizer et al. [80]

propose that when the value of α is set between α =
0.05 to 0.5, the SES produces an optimal prediction

result.

To observe the effect of α on the prediction accuracy of

a cloud dataset, we analyse the prediction result with all

nine possible values for the variable. We start with the value

of 0.1 and increase it to 0.9.
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TABLE 4. Prediction results using the WMA method for CPU, memory and I/O.

The prediction accuracy for each case is observed by ascer-

taining MAD, MSE and RMSE. Due to space limitations,

we present only the prediction results for CPU in Table 2;

however, a comparative analysis of the other two QoS param-

eters, memory and I/O, is presented in Table 8.

2) QoS PREDICTION ACCURACY USING THE SIMPLE

MOVING AVERAGE (SMA) METHOD

This subsection determines the prediction accuracy of the

SMA method to forecast the QoS factors as previously men-

tioned. Subject to the size of a dataset, we test the results

with different numerical values of k where k is the number

of observations. Due to space limitation, we cannot present

prediction accuracy for each observation, therefore, to anal-

yse prediction accuracy we start with two entries and then

divide 1912 entries of the CPU dataset into ten equal inter-

vals that begin with 193 and end with the last entry 1912.

The values for MAD, MSE and RMSE for each time inter-

val with a variable value of k are shown in Table 3. Due

to space limitations, we only present the prediction results

for CPU. However, a comparative analysis of the other two

QoS parameters, memory and I/O, is presented in Table 8.

3) QoS PREDICTION ACCURACY USING THE WEIGHTED

MOVING AVERAGE (WMA) METHOD

In this subsection, we determine the prediction accuracy of

theWMAmethod to forecast the QoS parameters. To analyse

the impact of the number of observations and an increasing

factor, the system takes two inputs from a user: the number
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TABLE 5. Prediction results using the Exp method for CPU, memory and I/O.

of observations k that is used to consider average and weight

factor α.

A weight factor is used to assign the highest weight to

recent past data and a lower weight to distant past data and

the sum of all the weight factors is equal to one. To anal-

yse the impact of different values of k with respect to the

weight factor α, we take 15 entries for each time interval.

Subject to the size of a dataset, the value of k (number of

observations) and a weighted factor are selected. We select

three values of k for each time interval in such a way that the

first value of k takes the first two observations, the second

value of k takes the mid-value of the dataset and the third

value of k takes the last value of the dataset. For each value

of k, we evaluate it with five values of weighted factors –

0.5, 1.5, 2, 5 and 10. The values for MAD, MSE and RMSE

for CPU, memory and I/O are presented in Table 4. Due

to space limitations, we only present the prediction results

for three-time intervals: 5, 10 and 20 minutes. However,

a comparative analysis of other time intervals is presented

in Table 9.

As discussed earlier, due to the larger input for k and the

large value of the increasing factor, a smaller weight factor is

generatedwhich is smaller than the smallest non-zero floating

point value. Therefore, the system did not produce a value,

as indicated by N/A in Table 4. From Table 4, we observe

that with a higher number of observations and a higher value

of alpha, we obtain better prediction accuracy at every time

interval.

4) QoS PREDICTION ACCURACY USING THE

EXTRAPOLATION (Exp) METHOD

In this subsection, we determine the prediction accuracy of

the extrapolation method to forecast the QoS parameters.

Table 5 presents the prediction results for CPU, I/O and

memory using the extrapolation method.

5) QoS PREDICTION ACCURACY USING THE HOLT-WINTER

DOUBLE EXPONENTIAL SMOOTHING (HWDES) METHOD

This subsection determines the prediction precision of the

Holt-Winter double exponential smoothing method to fore-

cast the QoS parameters. To analyse the impact of smooth-

ing factor α and trend smoothing factor β on prediction

accuracy, we take all possible values of α (0 < α < 1)

and β (0 < β < 1) for each time interval and take the value

of MAD, RMSE and MSE. Each time interval has 81 entries

with all possible values of α and β.

The values for MAD, MSE and RMSE for CPU, memory

and I/O are shown in Table 6 and Figure 2a, 2b and 2c.

Due to space limitations, we present the prediction results for

5 minutes only; however, a comparative analysis of the other

time intervals is presented in Table 9.
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TABLE 6. Prediction results using the HWDES method for CPU, memory and I/O.
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TABLE 6. (Continued.) Prediction results using the HWDES method for CPU, memory and I/O.

From the prediction results, we observe that each time

interval where the value of α is 0.9 and the value of β

is 0.1 gives an optimal prediction result, because the value of

MSE, RMSE and MAD values for CPU, memory and I/O are

lowest among all other values. Therefore, for optimal value

in each time interval, each value of α and β should be 0.9 and

0.1 respectively.

6) QoS PREDICTION ACCURACY USING THE ARIMA

METHOD

This subsection determines the prediction accuracy of the

ARIMA method to forecast the QoS parameters. The system

takes as inputs the order of ARIMA (p), the degree of differ-

encing (d) and the order of MA (q). Due to space limitations,

we consider only eight combinations of p, d and q, these being

(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and

(1,1,1) for only two time intervals, 5 and 10 minutes.

However, a comparative analysis of the other time intervals

is presented in Table 9. The values for MAD, MSE and

RMSE for different arrangements of p, d and q are presented

in Table 7.

V. ANALYSING THE SES ALGORITHM BASED ON THE

FRESHNESS OF DATA

The second part of this research analyses the prediction

accuracy of the SES by considering the freshness of data.

Freshness represents the accuracy of results in the initial time

periods of prediction as compared to later ones. As men-

tioned in the literature [7], [81]–[83], the prediction accuracy

varies with training dataset. The accuracy of the prediction

approaches decreases with an increase in time [7], so the

freshness criterion aims to determine which parameter and

variable in the prediction approach gives the most accurate

results for the initial time slots.

In this section, we present our observations on the

best input parameters to use for QoS prediction using the

SES method. To achieve this, we divide the dataset into

sets of input values that range from 100 to 500 in sets of

1–100, 1–200, 1–300, 1–400 and 1–500. For each input value,

we first determine the error value at time slot t1 to t10 and

then plot the change in the error value over the time slots

as a percentage of deviation with respect to the error value

observed at time slot t1. The plot of the error value over the

nine time slots (future intervals), taking the inputs of 1–100,

1–200, 1–300, 1–400 and 1–500 for different values of alpha,

is shown in Figures 3 to 10.

Figures 9 and 10 show the averaged error over the predicted

time slots for datasets 1–400 and 1–500 respectively.

VI. DISCUSSION

This section presents the results of the above-mentioned pre-

diction algorithms based on two criteria: overall accuracy

and freshness of prediction result. The overall accuracy anal-

yses the prediction accuracy of each method with its opti-

mal control parameters determined from earlier experiments.

The second area of discussion is the freshness of data and how

it impacts prediction accuracy.

A. OVERALL ACCURACY

We evaluate and compare the overall accuracy of all dis-

cussed approaches with their optimal control parameters on

10×3 different datasets considering three QoS parameters:

CPU, memory and I/O. We present following terms for each

prediction methods. MT- 1 as SES, MT-2 as SMA, MT-3 as

WMA,MT-4 as Exp,MT-5 as HWDES andMT-6 as ARIMA.

The comparative analysis is presented in Table 8.

From the table 8 we observe the following findings:

The SES algorithm generates good results for a dataset that

does not have any patterns. Furthermore, we see that when

a dataset has a seasonality and trend pattern then the accu-

racy decreases, as can be seen for CPU data for weeks 1, 2

and 4 where their dataset follows a seasonal pattern.
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FIGURE 2. (a) HWDES method for CPU. (b) HWDES method for memory. (c) HWDES method for I/O.

We observe that the smoothing factor α impacts prediction

accuracy. The sensitivity of prediction accuracy is directly

proportional to the value of α. When α = 1, it is only lacking

one behind the naive forecast, which abruptly changes with a

sudden change in the dataset.

Depending on the nature of the dataset, different values

of α give optimal results. To analyse the impact of α, we

evaluated the nine possible combinations of α ranges from

0.1 to 0.9 for all 10 types of datasets. From the prediction

results, we observe that there is no specific value of α which

produces an optimal result and for each dataset with its own

pattern, different values of α generate optimal results.

a) The SMA generates good results for a dataset that has

random variations and the prediction accuracy highly

depends on the size of its control parameter k , which is

the number of records for the calculatingmean. To anal-

yse the impact of parameter k on prediction accuracy,

we divide the dataset into 10 subsets and ponder the
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TABLE 7. Prediction results using the ARIMA method for CPU, memory and I/O.

FIGURE 3. Prediction error for predicting nine future intervals (100–108) by taking CPU data with values
of 1–100.

FIGURE 4. Prediction error for predicting nine future intervals (201–209) by taking CPU data with values 1–200.

different value of k subject to the number of records in

a dataset. For each time interval, the analysis starts by

two record - k = 2 and increases at different intervals

until the end of a dataset. From the obtained results,

we observe that the prediction accuracy is inversely

proportional to the size of k because smaller time
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TABLE 8. Comparative analysis of the six prediction methods with their optimal control parameters.
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TABLE 8. (Continued.) Comparative analysis of the six prediction methods with their optimal control parameters.
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TABLE 8. (Continued.) Comparative analysis of the six prediction methods with their optimal control parameters.

FIGURE 5. Prediction error for predicting nine future intervals (301–309) by taking CPU data with values 1–300.

intervals are more sensitive to prediction accuracy

and it alters abruptly compared to longer time inter-

vals when k generates more smooth data. Therefore,

theminimumvalue for k , which is 2, is themost optimal

parameter in the SMA algorithm.

b) The prediction accuracy of WMA is analysed by vary-

ing two parameters – the number records k and the

increasing factor α, which is the difference in weight

between recent past and distant past. To achieve this,

we take three values of k – initial k = 2/3, mid k = N

(total number of records)/2 and final k = N − 1/N − 2

– and a random value of α– 0.5, 1.2, 1.5, 2, 5 and 10.

When the value of α = 0.5, then it means that the

weight of the recent past record is 0.5 times greater

than the distant past record, and when the sum of all

weights is equal to 1, it means that by increasing the

value of α it gives higher weight to the most recent

data. From the above result, we observe that the pre-

diction accuracy is directly proportional to the value

of k and α, which means that a large dataset and higher

weights to the most recent record generate more accu-

rate results. The N/A in a table indicates that the weight

factor is smaller than the smallest non-zero floating-

point value in MATLAB and it does not generate any

output.

c) The extrapolation algorithm generates accurate results

on different data patterns. From the above results,

we see that a dataset with time intervals of 1 hour,
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TABLE 9. Accuracy ranking of prediction algorithms at different time intervals.
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FIGURE 6. Averaged error over the predicted time slots for dataset 1–300.

FIGURE 7. Prediction error for predicting nine future intervals (401–409) by taking CPU data with values 1–400.

FIGURE 8. Prediction error for predicting nine future intervals (501–509) by taking CPU data with values 1–500 values.

4 weeks and 1 day for CPU, memory and I/ O respec-

tively generates the most accurate results.

d) The prediction accuracy of the Holt-Winter dou-

ble exponential smoothing algorithm is analysed by

varying two parameters: α and β. To achieve this,

we analyse these parameters on 9×9 = 81 different

cases by varying the values of α and β with 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Table 8 shows the
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FIGURE 9. Averaged error over the predicted time slot for dataset 1–400.

FIGURE 10. Averaged error over the predicted time slot for dataset 1–500.

most accurate results of the value of α = 0.9 and

β = 0.1.

e) The last algorithm for our study is ARIMA and for

this method we consider three control parameters –

the order of ARIMA (p), the degree of differencing

(d) and the order of MA (q) – and consider eight

sets of these parameters (p, d, q) with the values

(0,0,0), (0,0,1),(0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)

and (1,1,1). From the above analysis, we observe that

in all cases by setting the value of p = 0, d = 1 and

q = 0, i.e. (0,1,0), gives the most accurate result.

f) Using optimal control parameter for each prediction

methods we compare the accuracy of six methods at

different time intervals and ranked the approaches in

ascending order as presented in Table 9. We observed

that the Weighted Moving Average method (MT-3) has

the best prediction result in 25 out of 30 cases, followed

by ARIMA that get best result in 5 out of 30 cases.

From the above analysis we determined that WMA

and ARIMA methods are the two most accurate pre-

diction methods at different time intervals as presented

in Table 10. The first three accuracy ranking are pre-

sented in Table 11.

TABLE 10. Most accurate prediction result at 30 different datasets.

TABLE 11. Accuracy ranking of prediction approaches.

B. THE FRESHNESS OF DATA

When we analyse the SES algorithm by considering the

freshness factor, we find out the following observations:

a) From Figure 3, we see that when the deviation in error

in time slot t2 exceeds 0.5%, then the value of α which

gives the highest positive deviation (that is, shows an

improvement in the prediction results) from the error

observed in the first time slot results in having the

best sustained prediction in future time slots from time

slot t1 (100 in the figure).
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b) This observation holds true when we consider

datasets 1–200 and predict the future QoS values

using the SES algorithm, as shown in Figure 4. From

this figure, we note that even though the alpha value

of 0.9 leads to the highest possible positive devia-

tion, exceeding 0.5%, it goes into the negative region

between time slots t2 and t3 but it is the first value

to come back in the positive region. Thus, when the

freshness of the prediction results is more important,

then using the value of alpha which gives the largest

deviation, exceeding more than 0.5% in time slot t2,

ensures the most optimal prediction results.

c) Figure 5 shows the prediction results over the dataset

with inputs 1–300. Unlike the previous two cases, it can

be noted that the deviation of change in the error in time

slot t2 is less than 0.5, so the observation made earlier

does not hold in this case.

d) But, we note that the alpha value that results in the

lowest deviation in time slot t2 gives a prediction

result that stays in the positive range over the predicted

time slots, as shown in Figure 6. The curve for alpha

value 0.2 shows the predicted error being in the positive

range for the longest period of time over which the

prediction is done.

e) From the analysis, we observe that for the input data

of 1–400 and 1–500, the prediction results follow the

same common pattern. When the input data is non-

cyclic and the deviation is not more than 0.5%. The

alpha value, which gives the highest positive change

and has a sustained increase in the predicted accuracy

as the time slots increase, as shown in Figure 7 and

Figure 8 which illustrates the deviation of error in time

slot t2 with respect to time slot t1 for datasets 1–400 and

1–500 respectively.

VII. CONCLUSION AND FUTURE WORK

An SLA is a key document between a consumer and the

service provider that outlines service objectives, business

terms, service relations, obligations and the possible actions

to be taken in the case of SLA violations. An SLA violation

causes penalties in terms of money, service credit or loss

of reputation. To avoid SLA violations, the service provider

should have an optimal SLA management framework that

intelligently predicts discrepancies in SLO and QoS parame-

ters and, in the case of violation detection, alerts the service

provider to take appropriate action before the actual violation

occurs.

In conclusion, we analysed the prediction accuracy of six

widely used prediction methods based on overall accuracy

and the freshness of data. We examined the control param-

eters of each approach and examined how a variation in

control parameters impacts the prediction accuracy. Our anal-

ysis allows the cloud provider to identify any discrepancies

in SLOs and manage the SLA optimally.

In future work, we will evaluate our approach in a Cloud

of Thing environment where a requested service is composed

of a variety of services from different regions and it’s very

important for a service provider to choose optimal prediction

method that generates accurate future QoS parameters to

manage services ideally. We will analyse that using discussed

prediction methods, how the cloud provider can better man-

age its resources in cloud-of-thing environment.
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