
Feature Article: Animesh Adhikari, Lakhmi C. Jain and Sheela Ramanna

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1

25

�
Abstract — In many applications we need to synthesize global

patterns in multiple large databases, where the applications are
independent of the characteristics of local patterns. Pipelined
feedback technique (PFT) seems to be the most effective technique
under the approach of local pattern analysis (LPA). The goal of
this paper is to analyse the effect of database grouping on
multi-database mining. For this purpose we design a database
grouping algorithm. We introduce an approach of non-local
pattern analysis (NLPA) by combining database grouping
algorithm and pipelined feedback technique for multi-database
mining. We propose to judge the effectiveness of non-local pattern
analysis for multi-database mining. We conduct experiments on
both real and synthetic databases. Experimental results show that
the approach to non-local pattern analysis does not always
improve the accuracy of mining global patterns in multiple
databases.

Index Terms — Local pattern analysis, Multi-database mining,
Non-local pattern analysis, Pipelined feedback technique,
Synthesis of patterns

I. INTRODUCTION

ULTI-database mining is strategically an essential area
of data mining. This is because of the fact that in many

applications we need to process data from various sources [12],
[13], [4], [8]. As a result, research in multi-database mining is
gaining momentum [18], [20], [6].
 In many situations data are collected from different regions
across the globe. It might be possible to move data from one
place to another place for some applications that are
independent of the local properties of databases. The goal of
this paper is to judge whether one could improve mining global
patterns by sacrificing local properties of patterns in
multi-databases. In an earlier work [7], we have shown that
PFT improves the quality of global patterns significantly as
compared to an existing technique [15], [17], [19], [5] that
scans each database only once. In an effort to make further
improvements, we introduce non-local pattern analysis for

Animesh Adhikari is with the Department of Computer Science, S P

Chowgule College, Goa, India (phone: 91-0832-2759504; fax:
91-0832-2759067; e-mail: animeshadhikari@yahoo.com).

Lakhmi C. Jain is with the School of Electrical and Information Engineering,
University of South Australia, Mawson Lakes Campus, Australia (e-mail:
Lakhmi.Jain@unisa.edu.au).

Sheela Ramanna is with the Department of Applied Computer Science,
University of Winnipeg, Winnipeg, Canada (e-mail:
s.ramanna@uwinnipeg.ca).

multi-database mining and propose to study its effectiveness in
synthesizing global patterns. There are two primary reasons for
non-local pattern analysis (i) the local properties of patterns
need not always to be preserved; (ii) the number of estimations
of a pattern might get decreased.

Local pattern analysis [19], [5] is an important approach of
mining multiple large databases. One could obtain reasonably
good solutions for a large class of problems. In local pattern
analysis, each local database is mined locally. Then every
branch forwards the local pattern base to the central location.
All the pattern bases are then processed for synthesizing global
patterns in multiple databases. It is important to observe that the
same pattern might not get reported from every local database.
As a result, the local pattern analysis is an approximate method
of mining multiple large databases. If we are able to
amalgamate all the databases together then there is no
difference between mono-database mining and multi-database
mining. There might be different reasons in different contexts
that prohibit us to amalgamate all the databases together [6].
The next question comes to our mind is that whether one could
reduce the frequency of database mining. In this regard, there
are two extreme cases of multi-database mining viz.,
mono-database mining and local pattern analysis.
Mono-database mining is used when there is a possibility of
clubbing all the local databases. But the latter is used when each
local database requires mining locally. In the first case, the
frequency of mining database is one. But the frequency of
mining is equal to the number of local databases in case of local
pattern analysis. In view of reducing the frequency of mining,
one may need to group the databases and then each group of
databases is mined separately. Moreover, when we group some
databases, the databases in a group are mined together. Thus,
the number of estimations of a pattern will be reduced. For the
purpose of constructing groups we consider that the groups of
databases are mutually exclusive and exhaustive. The mutually
exclusiveness property ensures that a database belongs to only
one of the different groups. On the other hand exhaustiveness
property ensures that each database belongs to a group. We
club all the databases in a group for the purpose of
multi-database mining. In this arrangement one needs to
estimate a pattern less number of times, but local properties of a
pattern may not get restored. This may have a bearing on the
quality of the global patterns. In this paper, we investigate
whether such an arrangement of local databases enhances
accuracy of the global patterns.

Grouping of databases seems to an important issue for
discovering knowledge in multiple databases. Wu and Zhang.

Analysing Effect of Database Grouping on
Multi-Database Mining

Animesh Adhikari, Lakhmi C. Jain, Sheela Ramanna

M

26 Feature Article: Analysing Effect of Database Grouping on Multi-Database Mining

December 2011 Vol.12 No.1 IEEE Intelligent Informatics Bulletin

[16] have proposed a similarity measure sim1 to identify similar
databases based on item similarity. The authors have designed a
clustering algorithm based on measure sim1 to cluster databases
for the purpose of selecting relevant databases. Such clustering
is useful when the similarity is based on items in different
databases. Item similarity measure sim1 might not be useful in
many multi-database mining applications where clustering of
databases is based on some other criteria. For example, if we
are interested in the databases based on transaction similarity
then the above measures might not be appropriate. We have
designed an algorithm for database clustering based on
transaction similarity [4]. For this purpose, we have proposed a
similarity measure simi1 to cluster databases. One could group
some objects based on an external criterion also. For example,
the available main memory could pose a constraint in
multi-database mining. It might be difficult to mine all the
databases together when the databases are large. We will
discuss later how the available main memory induces database
grouping for the purpose of multi-database mining.

In an earlier work [7], we performed many experiments
using different multi-database mining techniques (MDMTs).
Experimental results have shown that PFT outperforms each of
the existing techniques that scans a database only once. We
introduce an approach of non-local pattern analysis based on
PFT. For the purpose of completeness we present PFT in
Section III.

Data mining applications based on multiple databases could
be broadly categorized into two groups. The applications in the
first group are based on patterns in individual databases. On the
other hand, the second group of applications deals with the
global patterns in multiple databases that are distributed in
different geographical regions. Our goal is to study the
effectiveness of non-local pattern analysis for mining global
patterns in multiple databases. In many applications one may
not have any restriction on moving a local database from one
branch to another branch. Therefore, one could amalgamate a
few branch databases and then mine a group of databases
together. Then another group of databases could be formed and
mined together, and so on. Finally, one could synthesize global
patterns from the patterns in these groups of databases. We
propose to study the effect of such grouping on synthesizing
global patterns.

Rest of the paper is organized as follows. In Section II, we
discuss related work. We present pipelined feedback technique
in Section III. In Section IV, we introduce a non-local pattern
analysis. We present a heuristic-based grouping algorithm in
support of non-local pattern analysis. A discussion on finding
the best grouping can be found in Section V. We present
experimental results in Section VI.

II. RELATED WORK
Zhang et al. [17] have proposed algorithm IdentifyExPattern

for identifying global exceptional patterns in multi-databases.
Here every local database is mined separately at random order
using mono-database mining technique for synthesizing global
exceptional patterns. As a result, the synthesized global

patterns might deviate significantly from the true global
patterns. We have proposed an algorithm
Association-Rule-Synthesis [5] for synthesizing association
rules in multiple real databases. This algorithm is useful for real
databases, where the trend of the customers’ behaviour
exhibited in one database is usually present in other databases.
For synthesizing high frequency association rules, Wu and
Zhang [15] have proposed RuleSynthesizing algorithm for
synthesizing high frequency association rules in multiple
databases. Based on the association rules in different databases,
the authors have estimated weights of different databases. Let
wi be the weight of the i-th database, i = 1, 2, …, n. Without any
loss of generality, let the association rule r be extracted from
the first m databases, for 1� m ≤ n. Actual support of r in Di,
suppa(r, Di), has been assumed as 0, for i = m + 1, m + 2, …, n.
Then the support of r in D has been synthesized as follows.
supps(r, D) = w1 � suppa(r, D1) +…+ wm � suppa(r, Dm) (1)
This method is an indirect approach and computationally
expensive as compared to other techniques. Existing parallel
mining techniques [2], [9] could also be used to deal with
multiple large databases. In the context of pattern synthesis,
Viswanath et al. [14] have proposed a novel pattern
synthesizing method called partition based pattern synthesis
which can generate an artificial training set of exponential
order when compared with that of the given original training
set.

III. PIPELINED FEEDBACK TECHNIQUE (PFT)
For the purpose of completeness, we first present an

overview of PFT [7]. Consider a multi-branch organization that
collects data from multiple local branches. Let Di be the
database corresponding to the i-th branch, i = 1, 2, …, n. Also
let LPBi be the local pattern base for Di, i = 1, 2, …, n. Also, let
D be the union of all branch databases.

Let D1, D2, …, Dn be an arrangement of mining databases.
First D1 is mined using a mono-database mining technique [3],
[11], and local pattern base LPB1 is extracted. While mining D2,
all the patterns in LPB1 are extracted irrespective of their values
of interestingness measures such as minimum support and
minimum confidence. Apart from these patterns, some new
patterns that satisfy user-defined thresholds of interestingness
are also extracted. In general, while mining Di all the patterns in
Di-1 are extracted irrespective of their values of interestingness,
and some new patterns that satisfy user-defined thresholds of
interestingness are also extracted. Due to this nature of mining
each database, the technique is called a feedback model. Thus,
|LPBi-1| � |LPBi|, i = 2, 3, …, n. There are n! arrangements of
pipelining for n databases. All the arrangements of databases
might not produce the same mining result. If the number of
local patterns increases, we get more accurate global patterns
and a better analysis of local patterns. An arrangement of local
databases would produce near optimal result if |LPBn| is
maximal. Let size(Di) be the size of Di (in bytes), i = 1, 2, …, n.
We shall follow the following rule of thumb regarding the
arrangements of databases for the purpose of mining: The
number of patterns in Di-1 is greater than or equal to the number
of patterns in Di, if size(Di-1) � size(Di), i = 2, 3, …, n. For the

Feature Article: Animesh Adhikari, Lakhmi C. Jain and Sheela Ramanna

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1

27

purpose of increasing number of local patterns, Di-1 precedes Di
in the pipelined arrangement of mining databases if size(Di-1) �
size(Di), i = 2, 3, …, n. Finally, we analyze the patterns in LPB1,
LPB2, …, LPBn for synthesizing global patterns, or analyzing
local patterns.

Most of the databases are sparse. A pattern might not get
reported from all the databases. However, once a pattern gets
mined from a database, it also gets reported from the remaining
databases in the pipeline. Thus, PFT improves the accuracy of
multi-database mining. In the Section IV, we shall introduce an
approach of non-local pattern analysis and we analyse its
effectiveness in Section VI.

For synthesizing global patterns in D we discuss here a
simple pattern synthesizing (SPS) algorithm with the help of
itemset pattern in a database. Without any loss of generality, let
the itemset X be extracted from the first m (≤ n) databases. Then
synthesized support of X in D could be obtained as follows:

� � ||) ,(
||

1) ,(
m

1 i
iian

1 i
i

s �
� 	

	

��	 DDXsupp
D

DXsupp (2)

The accuracy of global pattern X increase as m approaches to n.
The concepts of accuracy and error of a pattern are opposite to
each other. When the error of a pattern increases, we say that its
accuracy decreases, and vice-versa. We explain the concept of
error in the following section.

A. Error
Let D1, D2, …, Dn be n branch databases. Also, let size(D1) ≥

size(D2) ≥ … ≥ size(Dn). In PFT, the databases are mined
according to the following order: D1, D2, …, Dn. An itemset X
gets reported from some of the given databases. In PFT, once X
is reported from one of the given databases, then it also gets
mined from the remaining databases. Suppose X is reported
first time from Dk at minimum support level
, for 1 � k ≤ n.
Then the error of mining X in D could be expressed as follows:
Error (X, D) = |suppa(X, D) – suppe(X, D)| (3)
where, suppa(X, D) and suppe(X, D) denote the actual (apriori)
support [3] and the estimated support of X in D, respectively.
The supports suppa(X, n

1k i �	� Di) and suppe(X, n
1k i �	� Di) are

the same, since X gets reported from the databases Dk+1,
Dk+2, …, and Dn at minimum support level
. Thus, the error of
mining X in D could be expressed as follows:

) ,(-) ,(),(Error i
k

1 iei
k

1 ia DXsuppDXsuppDX 			 �� (4)

As the value of k increases, the amount of error increases
provided the method of estimating support remains the same.
Therefore, if the itemset X gets mined early in the pipelined
arrangement, then amount of error decreases. In other words, as
the number of estimations reduces, the error of mining itemset
X reduces. This is an important observation and has been
applied to the proposed non-local pattern analysis. Let S be the
set of all itemsets synthesized from D. Then the average error
(AE) of the experiment could be defined as follows:

�
�

	
S X

),(
||

1 AE DXError
S

 (5)

Also, one could define maximum error (ME) of the experiment
as follows:
ME = maximum {Error (X, D)| X� S} (6)

IV. NON-LOCAL PATTERN ANALYSIS (NLPA)
Consider a multi-branch organization that has n (≥ 2)

branches. Suppose that each branch maintains a database of all
local transactions. The goal of this paper is to investigate
whether one could improve multi-database mining by
sacrificing local properties of the patterns. In view of this one
could group databases induced by available main memory. Let
k be the number of groups of databases. Different groups of
databases are given as follows: {D11, D12, …, D1n 1 }, {D21,

D22, …, D2n 2 }, …, {Dk1, Dk2, …, Dkn k }, where Dij � {D1,

D2, …, Dn}, for j = 1, 2, …, ni; i = 1, 2, …, k; nn i
k

1 i 	� 	 ; ni ≥
1. Afterwards each group of databases are amalgamated and
mined. The crux of non-local pattern analysis is how to group
the databases so that one could mine each group of databases
effectively within the limited memory. We formulate the
problem of grouping databases as follows.

A. Grouping Databases
Multi-database mining could be performed by amalgamating

some local databases and mining them together. But the
performance of data mining process seems to be constrained by
size of the main memory. If the available main memory is less,
it might take a longer time to accomplish the mining task.
During the grouping process, we shall continue to club
databases as long as main memory is available. Let be the
optimum size of available main memory. Let size(D) be the size
of database D. Then the problem of grouping databases can be
stated as follows:

We are given a set of numbers S = {size(D1), size (D2), …, size
(Dn)}. Our objective is to find r subgroups S1, S2, … Sr, for some
r ≥ 1, so that � �� �ij

n
1 j

1-r
1 i - i Dsize		 �� is a minimal, where

the following conditions are true.

(i))(ij

n
1 j

i �� 	 Dsize , for i = 1, 2, …, r, and Dij�{D1, D2, …,
Dn}
(ii) Si = {size(Di1), size(Di2), …, size(

iinD)}, and Si � S, i = 1,
2, …, r
(iii) Si � Sj = � , � i � j, and r

1 i 	� Si = S

� �ij
n

1 j - i Dsize	� is the amount of unutilized space for the

i-th group, i = 1, 2, …, r. The goal of the grouping process is to
reduce the total amount of unutilized spaces. In the next section,
we propose a heuristic algorithm that utilizes main memory
effectively.

B. An Heuristic Algorithm for Grouping Databases
As the number of groups decreases, one needs to estimate a

global pattern fewer number of times. If the number of groups
is one then all the patterns are exact and become true
representative of the multiple databases. Given a limited
amount of memory, it is important to group the databases so
that it can fit best in the main memory. During the grouping

28 Feature Article: Analysing Effect of Database Grouping on Multi-Database Mining

December 2011 Vol.12 No.1 IEEE Intelligent Informatics Bulletin

process, if the larger databases are not considered at the early
stage of grouping, then it could pose problems. As a result, the
number of groups might increase. Smaller databases can be
accommodated in a group easily, since their sizes are small. We
apply this heuristic to design a grouping algorithm. Let us take
an example to illustrate the grouping process.

Example 1. Let N be the set of sizes of the given databases. Let
N be {139, 29, 43, 152, 165, 74, 5, 120}. Also let be 200. First
we sort the numbers in N in non-decreasing order. The ordered
numbers are given as follows: 5, 29, 43, 74, 120, 139, 152, 165.
The maximum size among the given databases is 165 bytes.
First, we form a group with the database of size 165 bytes.
Otherwise, it might cause producing a larger amount of
unutilized space. Then along with the database of size 165
bytes, we club the database of size 29 bytes so that their sum
194 still remains less than or equal to 200. The database of size
29 bytes is obtained by searching the list from the right hand
side. Any database of size in between 29 bytes and 165 bytes
can not be clubbed with the database of size 165 bytes, since
their sum would exceed 200 bytes. No more databases can be
clubbed with them. Otherwise, their sum could exceed the
available memory. In this case, the available memory is 200
bytes. As a result, the first group G1 = {165, 29} is formed with
an unutilized space of 6 bytes. Now we consider the database of
size 152 bytes, since it is the second maximum among the given
database sizes. Proceeding in the same way, one could form the
second group as G2 = {152, 43, 5} with an unutilized space of 0
byte. Then the next group G3 = {139} is formed with unutilized
space of size 61 bytes. The final group is G4 = {120, 74} with
unutilized space of 6 bytes. The total amount of unutilized
spaces is equal to (6 + 0 + 61 + 6) bytes i.e., 73 bytes. Such
grouping of databases might not be unique. For example, there
exists another grouping of databases viz., {{152, 43, 5}, {165},
{139, 29}, {120, 74}}, that results in the same amount of
unutilized spaces. �

Lemma 1. Let be the optimum size of available main
memory. Also, let Dij be a database in group Gi, for j = 1, 2, …,
ni and i = 1, 2, …, r. Then the following grouping results in the
same amount of unutilized spaces, provided |Gj| + |Dik| ≤ :
G1, G2, …, Gi-1, Gi – {Dik}, Gi+1, …, Gj-1, Gj � {Dik}, Gj+1, …,
Gr, for some i ≠ j. �

Based on the procedure illustrated in Example 1, we present
here a heuristic algorithm, Database-Grouping, as follows.

procedure Database-Grouping (n, A,)
Input:
n: number of databases
A: array of database sizes
: maximum available memory (in bytes)
Output:
k: number of groups
G: two dimensional array representing different groups
01: sort A in non-decreasing order;
02: let k = 0;
03: for i = 1 to n do
04: allocation(i) = 0;

05: end for
06: let index = n;
07: while (index ≥ 1) do
08: let i = index; let sum = 0; let col = 1;
09: increment k by 1;
10: while (sum �) and (i ≥ 1) do
11: if (sum + A(i) �) and (allocation(i) = 0) then
12: sum = sum + A(i); allocation(i) = 1;
13: increment col by 1; G(k, col) = A(i);
14: end if
15: decrease i by 1;
16: end while
17: G(k, 1) = col-1;
18: let j = n;
19: while (allocation(j) ≠ 0) and (j ≥ 1) do
20: decrement j by 1;
21: end while
22: let index = j;
23: end while
24: for i = 1 to k do
25: display the members of the i-th group;
26: end for
end procedure

We explain here the different variables and parts of the above
algorithm. The number of groups is returned through the
variable k. Here G is a two dimensional matrix that stores the
output groups. The i-th row of G stores the i-th output group, i =
1, 2, …, k. The first element of each row contains the number of
elements in that group as noted in line 17. The subsequent
elements are the database sizes in that group. The databases,
whose sizes are kept in a group, are required to be clubbed for
the purpose of mining. Initially, all the databases are
unallocated (lines 03-05), since there exists no group. The
database having a maximal size is allocated first in a group.
Therefore, index variable gets initialized to n (line 06). The
inner while-loop constructs a group of databases that are
amalgamated afterwards for the purpose mining (lines 10-16).
When a database is included in a group, the corresponding
allocation tag is changed to 1 (line 12). Lines 18-22 help
finding the next position (index) in the array A from which we
start allocating the element for the next group. All the elements
at the right side of current value of index are allocated to
different groups.

Algorithm Database-Grouping forms k groups from the
given databases, for some k ≤ n. Once the groups are formed,
then we amalgamate the databases in each group for the
purpose of mining. Accordingly, we have k amalgamated
databases. We then follow pipelined feedback technique for
mining these k databases.

The accuracy of synthesized patterns would depend on the
sizes of the databases. In PFT, we mine first the database
having the maximum size. It is expected that the database
having the largest size would produce the maximum number of
patterns. Further, PFT extracts all the previously extracted
patterns irrespective of their interestingness values. Thus, it is
always better to mine the largest database right at the beginning.
The procedure Database-Grouping helps maximizing the
database at every step by clubbing the databases. Moreover, it

Feature Article: Animesh Adhikari, Lakhmi C. Jain and Sheela Ramanna

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1

29

applies a heuristic approach while forming a group of
databases.

In the context of mining time-stamped databases [8],
Database-Grouping algorithm might play an important role.
The time granularity of time-stamped databases is an important
issue. Again, the time granularity would depend on an
application. If time granularity is smaller, for example a month,
then each of the monthly databases is expected to smaller. The
procedure Database-Grouping would produce better grouping
of databases. As a result, Database-Grouping algorithm is
expected to produce good grouping when the size of each
database is small.

Lemma 2. Let n be number of databases and k be the number of
groups returned by the Database-Grouping algorithm. The
time complexity of the algorithm is O(n × k).
Proof. For-loop in lines 3-5 takes O(n) time. The algorithm
returns k groups. Therefore, the outer while-loop in lines 7-23
repeats k times. The inner while-loop in lines 10-16 could
repeat O(n) times for each iteration of outer while-loop. Also,
the while-loop in lines 19-21 could repeat n times for an
iteration of outer while-loop. In lines 26-28, we display all the
members in every group. Therefore, it takes O(n) time. Thus,
the time complexity of the algorithm is maximum {O(n), O(n ×
k), O(n) }, i.e., O(n × k) time. �

C. Accuracy of mined patterns
If all the branch databases are amalgamated and mined then

there is no difference between multi-database mining and
mono-database mining. In this case a reported pattern is 100%
accurate. But such situation may not exist always. Many branch
databases could be very large. As a result the data mining
process could consume unreasonable amount of time. In some
cases it might not be possible to complete the data mining task.
As a result a multi-database mining technique might report
approximate patterns. An approximate pattern is not true
representative pattern in multiple databases.
 In our earlier work [7], we have noted that the accuracy of a
mined pattern using PFT is generally higher than that of any
other existing technique. This is true because of the fact that
once a pattern is reported from a branch database, it also gets
reported from the databases mined afterwards. If we can
increase the size of each group (Gi) as much as possible by
amalgamating branch some databases (Dj), the experimental
results have shown that the average accuracy of a mined pattern
might not decrease, for i = 1, 2, …, r; j = 1, 2, …, n. As we
increase the size of each Gi, we expect more patterns to be
generated at each stage. Specifically, if a large number of
patterns are reported at the initial stages of mining then the
accuracy of those patterns, when synthesized globally, become
higher. This is because of the fact that if a pattern is reported at
any stage then it also gets reported subsequently due the
application of feedback mechanism. Let us consider those
patterns that are reported at the latter stages. These patterns
might differ significantly from the actual global patterns.
Therefore, the error of the experiment, AE and / or ME, might
be more for non-local pattern analysis that that of PFT.

 It might be appealing if one attaches depth of data mining
with a mined pattern. We define depth of a pattern in
multi-database mining as the fraction of total sizes of group

databases from which a pattern gets extracted to the total size of
all databases. Let G1, G2, …, Gr be the group of databases
mined sequentially. Let pattern p be reported first time from the
k-th group i.e., Gk. If p is an itemset pattern, then one could
report its depth along with its support [1]. Thus,

depth (p) = (|Gk| + |Gk+1| + … +|Gr|) / |D|,
where (|G1| + |G2| + … +|Gr|) = |D|, 0 < depth (p) ≤ 1. Depth of a
pattern represents the amount of data from which it has been
extracted from a multi-database environment. If the depth of p
is 1, then it is exact. One could discard a pattern if its depth is
low.

V. AN OPTIMAL GROUPING OF DATABASES
Let us refer to algorithm Database-Grouping presented in

Section IV. In most of the cases, it produces good grouping of
databases. But it may not result in an optimal grouping for the
purpose of multi-database mining. One could determine all
possible groupings of databases at a given a set of databases
and . Then one could find the amount of unutilized spaces for
every grouping. In the worst case one needs O(n2) comparisons
to form a group, where n is the number of databases. Thus, the
worst case complexity of such optimal algorithm is O(n2 × k),
where k is the number of groups. Such an algorithm might not
be always attractive when a simpler algorithm like
Database-Grouping produces an optimal result in the most of
cases.

VI. EXPERIMENTAL RESULTS
We have carried out several experiments to study the

proposed approach of mining global patterns in multiple large
databases. All the experiments have been implemented on a 2.8
GHz Pentium D dual core processor with 988 MB of memory
using visual C++ (version 6.0) software. We present
experimental results using synthetic dataset T10I4D100K [10]
and two real datasets retail [10] and BMS-Web-Wiew-1 [10].
We present some characteristics of these datasets in Table I. Let
NT, AFI, ALT, and NI be the number of transactions, average
frequency of an item, average length of a transaction, and
number of items in a database, respectively. Each of the above
datasets is divided into 10 databases for purpose of conducting
our experiments.

TABLE I
DATASET CHARACTERISTICS

Dataset NT ALT AFT NI
T10I4D100K 1,00,000 11.10 1276.12 870

retail 88,162 11.31 99.67 10,000
BMS-Web-Wiew-1 1,49,639 2.00 155.71 1,922

30 Feature Article: Analysing Effect of Database Grouping on Multi-Database Mining

December 2011 Vol.12 No.1 IEEE Intelligent Informatics Bulletin

TABLE II
T10I4D100K DATABASE CHARACTERISTICS

TABLE III
retail DATABASE CHARACTERISTICS

DB NT size(DB) ALT AFI NI
R0 1,000 36 9.52 5.11 1,000
R1 2,000 96 11.91 11.57 830
R2 3,000 143 11.72 16.22 862
R3 4,000 181 11.17 20.15 873
R4 8,000 358 11.10 4015 899
R5 10,000 473 11.49 49.82 1,097
R6 12,000 565 11.33 55.91 1,218
R7 14,000 634 10.76 58.34 1,311
R8 16,000 744 11.04 65.80 1,389
R9 18,162 922 11.89 77.87 1,500

TABLE IV
BMS-Web-Wiew-1 DATABASE CHARACTERISTICS

DB NT size(DB) ALT AFI NT
B0 1,000 10 2.0 5.13 195
B1 2,000 22 2.0 3.56 157
B2 3,000 35 2.0 5.01 77
B3 5,000 63 2.0 3.05 1637
B4 10,000 131 2.0 6.23 1605
B5 15,000 205 2.0 1500 10
B6 20,000 273 2.0 2000 10
B7 25,000 341 2.0 2500 10
B8 30,000 410 2.0 3000 10
B9 38,639 528 2.0 3863.8 10

We have generated these databases arbitrarily consisting of a
good mix of small and large databases. The databases obtained
from T10I4D100K, retail and BMS-Web-Wiew-1 are named as
Ti, Ri, and Bi respectively, for i = 0, 1, …, 9 and subsequently
referred to as input databases. Some characteristics of these
input databases are presented in Tables II, III, and IV. Let NT be
{40, 81, 119, 159, 323, 400, 483, 605, 807, 1,027}, the set of
sizes of databases obtained from T10I4D100K. Let NR be {36,
96, 143, 181, 358, 473, 565, 634, 744, 922}, the set of sizes of
databases obtained from retail. Also, let NB be {10, 22, 35, 63,
131, 205, 273, 341, 410, 528}, the set of sizes of databases
obtained from BMS-Web-Wiew-1. In Table V, we present some
outputs showing that the proposed non-local pattern analysis
does not always improve accuracy of patterns in multiple large
databases.

TABLE V
ERROR OF THE EXPERIMENTS AT A GIVEN MINIMUM SUPPORT

Dataset T10I4D100K retail BMS-Web-Wiew-1

Minimum support 0.045 0.15 0.075
Error type AE AE AE

MDMT: PFT + SPS 0.00451 0.00478 0.00206
MDMT: NLPA 0.00452 0.00499 0.00333

Error type ME ME ME
MDMT: PFT + SPS 0.02411 0.01191 0.00702

MDMT: NLPA 0.02418 0.01270 0.00781

We apply Database-Grouping algorithm presented above. The
choice of for each of the three databases is an important issue.
The sizes of T10I4D100K, retail and BMS-Web-Wiew-1 are
3.83 MB, 3.97 MB, 1.97 MB respectively. Therefore, it might
be possible to fit all the 10 databases in main memory for
conducting experiments using each of the three datasets. But
for the purpose of applying Database-Grouping algorithm one
could consider as little more than the maximum size of the
generated databases, and accordingly, we taken as 1,100 KB,
1,000 KB, and 700 KB for conducting experiments using
datasets T10I4D100K, retail and BMS-Web-Wiew-1,
respectively. The groups formed for above three datasets are
given below:

Group corresponding to T10I4D100K, GT = {{1027, 40}, {807,
159, 119}, {605, 483}, {400, 323, 81}} with the total amount
of unutilized space is equal to (33 + 15 + 12 + 296) bytes i.e.,
356 bytes.
Group corresponding to retail, GR = {{922, 36}, {744, 181},
{634, 358}, {565, 143, 96}, {473}} with the total amount of
unutilized space is equal to (42 + 75 + 8 + 196 + 527) bytes i.e.,
848 bytes.
Group corresponding to BMS-Web-Wiew-1, GB = {{528, 131,
35}, {410, 273, 10}, {341, 205, 63, 22}} with the total amount
of unutilized space is equal to (6 + 7 + 69) bytes i.e., 82 bytes.

Now we club the databases in each group for purpose of mining
multi-databases. Let the databases generated for the first,
second and third groups be DTi, i = 1, 2, 3, 4; DRj, j = 1,2, 3, 4, 5;
and DTk, k = 1, 2, 3, respectively. We present the databases after
grouping in Tables VI, VII and VIII.

TABLE VI
NEW DATABASES GENERATED FROM T10I4D100K

Generated databases Databases to be clubbed

DT1 T9, T0
DT2 T8, T3, T2
DT3 T7, T6
DT4 T5, T4, T1

DB NT size(DB) ALT AFI NI
T0 1,000 40 11.09 12.70 795
T1 2,000 81 11.18 24.43 834
T2 3,000 119 11.01 35.45 847
T3 4,000 159 11.01 46.84 855
T4 8,000 323 11.15 93.79 866
T5 10,000 400 11.05 115.93 867
T6 12,000 483 11.12 140.28 866
T7 15,000 605 11.13 175.24 867
T8 20,000 807 11.14 233.31 869
T9 25,000 1,027 11.07 290.38 867

Feature Article: Animesh Adhikari, Lakhmi C. Jain and Sheela Ramanna

IEEE Intelligent Informatics Bulletin December 2011 Vol.12 No.1

31

TABLE VII
NEW DATABASES GENERATED FROM RETAIL

Generated databases Databases to be clubbed

DR1 R9, R0
DR2 R8, R3
DR3 R7, R4,
DR4 R6, R2, R1
DR5 R5

TABLE VIII
NEW DATABASES GENERATED FROM BMS-WEB-VIEW-I

Generated databases Databases to be clubbed

DB1 B9, B4, B2
DB2 B8, B6, B0
DB3 B7, B5, B3, B1

We have conducted experiments on the new databases by
applying PFT and non-local pattern analysis. In Figs. 1, 2, and 3,
we have presented results of AE with respect to minimum
supports. Experimental results show that PFT reports more
accurate global patterns than non-local pattern analysis in the
most of the cases. Also, we observe that there no fixed trend of
AE over the increased support values.

Fig. 1. Average error versus minimum support (for T10I4D100K)

Fig. 2. Average error versus minimum support (for retail)

Fig. 3. Average error versus minimum support (for BMS-Web-Wiew-1)

VII. CONCLUSION
In this paper we have introduced non-local pattern analysis

for multi-database mining in an attempt to study its
effectiveness in synthesizing global patterns. A database
grouping algorithm induced by main memory constraint has
been introduced to applying non-local pattern analysis. Main
memory constraint is an illustration of a criterion used for
database grouping. Apparently non-local pattern analysis looks
to be attractive, since the frequency of data mining is less as
compared to local pattern analysis. As a result one needs to
estimate a pattern lesser number of times for the purpose of
synthesizing the global pattern. The drawback of non-local
pattern analysis is that the patterns reported only from the last
few groups might contribute significantly to the error of the
experiment. This is due to the fact that a pattern is assumed
absent when it does not get reported. Therefore, a mined pattern
needs to be associated with the amount of data that it represents.
For this purpose we have defined depth of a pattern in
multi-database mining. A pattern becomes useless if its depth is
low. We have conducted several experiments on real and
synthetic datasets. Experimental results show that non-local
pattern analysis might not be a better technique than PFT.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules
between sets of items in large databases,” In Proceedings of ACM SIGMOD
Conf. Management of Data, 1993, pp. 207-216.
[2]R. Agrawal, and J. Shafer, “Parallel mining of association rules,” IEEE
Transactions on Knowledge and Data Engneering, vol. 8, no. 6, pp. 962-969,
1999.
[3] R. Agrawal, and R. Srikant, “Fast algorithms for mining association rules,”
In Proceedings of VLDB, 1994, pp. 487-499.
[4] A. Adhikari, and P. R. Rao, “Efficient clustering of databases induced by
local patterns,” Decision Support Systems, vol. 44, no. 4, pp. 925-943, 2008.
[5] A. Adhikari, and P. R. Rao, “Synthesizing heavy association rules from
different real data sources,” Pattern Recognition Letters, vol. 29, no. 1, pp.
59-71, 2008.
[6] A. Adhikari, P. R. Rao, W. Pedrycz, Developing multi-database mining
applications, Springer, 2010.
[7] A. Adhikari, P. R. Rao, B. Prasad, and J. Adhikari, “Mining multiple large
data sources,” International Arab Journal of Information Technology, vol. 7, no.
2, pp. 243-251, 2010.

32 Feature Article: Analysing Effect of Database Grouping on Multi-Database Mining

December 2011 Vol.12 No.1 IEEE Intelligent Informatics Bulletin

[8] J. Adhikari, P. R. Rao, and A. Adhikari, “Clustering items in different data
sources induced by stability,” International Arab Journal of Information
Technology, vol. 6, no. 4, pp. 394-402, 2009.
[9] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Hüning, M. Köhler, J.
Sutiwaraphun, H.W. To, and D. Yang, “Large scale data mining: Challenges,
and responses,” In Proceedings of KDD, 1997, pp. 143-146.
[10] Frequent Itemset Mining Dataset Repository,
http://fimi.cs.helsinki.fi/data/.
[11] J. Han, J. Pei, and Y. Yiwen, “Mining frequent patterns without candidate
generation,” In Proceedings of SIGMOD, 2000, pp. 1-12.
[12] D. Page, and M. Craven, “Biological applications of multi-relational data
mining,” SIGKDD Explorations vol. 5, no. 1, pp. 69-79, 2003.
[13] W. –C. Peng, Z. –X. Liao, “Mining sequential patterns across multiple
sequence databases,” Data & Knowledge Engineering, vol. 68, no. 10, pp.
1014-1033, 2009.
[14] P. Viswanath, M.N. Murty, and S. Bhatnagar, 2006. “Partition based
pattern synthesis technique with efficient algorithms for nearest neighbor
classification,” Pattern Recognition Letters, vol. 27, no. 14, pp. 1714-1724,
2006.
[15] X. Wu, and S. Zhang, “Synthesizing high-frequency rules from different
data sources,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 2, pp. 353-367, 2003.
[16] X. Wu, C. Zhang, and S. Zhang, “Database classification for
multi-database mining,” Information Systems, vol. 30, no. 1, pp. 71-88, 2005.
[17] C. Zhang, M. Liu, W. Nie, and S. Zhang, “Identifying global exceptional
patterns in multi-database mining,” IEEE Computational Intelligence Bulletin,
vol 3, no 1, pp. 19-24, 2004.
[18] S. Zhang, C. Zhang, X. Wu, Knowledge discovery in multiple databases.
Springer, 2004.
[19] S. Zhang, X. Wu, C. Zhang, “Multi-database mining,” IEEE
Computational Intelligence Bulletin, vol. 2, no. 1, pp. 5-13, 2003.
[20] S. Zhang, and M. J. Zaki, “Mining multiple data sources: Local pattern
analysis,” Data Mining and Knowledge Discovery (Special issue), Springer,
2006.

