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ANALYSING FARMLAND RENTAL RATES USING

BAYESIAN GEOADDITIVE QUANTILE REGRESSION

Abstract

Empirical studies on farmland rental rates have predominantly concentrated on modelling
conditional means using spatial autoregressive models, where a linear functional form be-
tween the response and the covariates is assumed. This paper extends the hedonic pricing
literature by modelling conditional quantiles of farmland rental rates semi-parametrically
using Bayesian geoadditive quantile regression models. The flexibility of this model class
overcomes the problems associated with functional form misspecifications and allows us to
present a more detailed analysis. Our results stress the importance of making use of semi-
parametric regression models as several covariates influence farmland rental rates in an ex-
plicit non-linear way.

Keywords: Bayesian Geoadditive Quantile Regression, Farmland Rental Rates, Hedonic
Pricing Models, Penalized Splines, Structured Additive Regression.

1 Introduction

Farmland is one of the most important production factors in agriculture. Based on cash-flow considerations,
farmers have to decide whether to buy or lease agricultural land. Amongst others, one advantage of leasing
is that farmers can use their cash reserves to invest in new agricultural machinery and equipment, rather
than to tie up capital in land purchases (Ciaian et al., 2012). This preference might explain why Germany
is among European countries with a high share of rented farmland: in 2008, on average 70% of the total
German agricultural farmland was leased, where the share of rented farmland was considerably higher in
East Germany (80%) compared to West Germany (60%) (Ciaian et al., 2010, 2012). Moreover, Ciaian et al.
(2010) report that German farmland rental rates exhibit substantial spatial variation with rental rates being
almost twice as high in West Germany than in East Germany. These figures, and the fact that farmland
rental rates have increased considerably over the last years, imply that the analysis of rental rates is of great
importance in practice.

Besides its relevance for farmers, the analysis of farmland rental rates and their determinants is an active
field of research in agricultural economics. Herriges et al. (1992), Bierlen et al. (1999), Lence and Mishra
(2003), as well as Roberts et al. (2003) and Kirwan (2009) analyse the determinants of price formations
on agricultural rental markets in the United States. Fuchs (2002) analyses rental rates of farmland and
their determinants in Belgium, Denmark, France, Germany and the Netherlands. Doll and Klare (1995),
Drescher and McNamara (2000), Brümmer and Loy (2001), Breustedt and Habermann (2008), Margarian
(2008), Breustedt and Habermann (2009) and Breustedt and Habermann (2011) investigate the determinants
of rental rates in Germany. Kilian et al. (2008), as well as Breustedt and Habermann (2010) and Habermann
and Ernst (2010) analyse the effects of increased land use for the production of bioenergy on German rental
rates.

Most empirical studies that analyse farmland rental rates and their determinants make use of hedonic
pricing models, as originally proposed by Court (1939) and popularized by Griliches (1961), Lancaster
(1966) and Rosen (1974). According to hedonic pricing theory, farmland rental rates can be divided into
the sum of its attributes‘ values which are then estimated using regression models. In order to avoid biased
estimates and misleading inference resulting from spatial dependencies in the data, spatial autoregressive
models have evolved as a standard tool in hedonic pricing studies of farmland rental rates. However, a re-
maining problem with hedonic pricing models is related to the choice of an appropriate functional form,
since there is no theory that guides the researcher (Martins-Filho and Bin, 2005). A common workaround
is to use data transformations as proposed by Box and Cox (1964). The functional form chosen by the
Box-Cox technique may, however, not adequately approximate the true relationship between covariates and
the response. In spatial modeling, misspecifications of the dependence structure have particularly severe
consequences; as an illustration, Kostov (2009) reanalyses the data of Patton and McErlean (2003) using
semi-parametric regression models, and concludes that misspecifications regarding the functional form may
be responsible for spuriously finding spatial dependencies when hedonic pricing models are used. Conse-
quently, hedonic models should be extended to semi-parametric regression models that allow for a broader
class of functional relationships than parametric models (Ekeland et al., 2004).

While empirical studies on farmland rental rates have predominantly concentrated on modeling condi-
tional means, extending the analysis to the modeling of conditional quantiles can provide valuable insights
into the price formation of rental rates. It seems reasonable to assume that some covariates have an effect on
the mean, while they may have no influence on more extreme quantiles; even if the same covariates are used
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during the analysis, the manner in which they affect rental rates may change across quantiles. Therefore, the
analysis based on quantile regression models can provide a more detailed picture of the conditional distri-
bution of the response variable. For this reason, linear spatial quantile regression models have recently been
introduced within spatial econometrics (see McMillen (2013) for a recent overview). However, this model
class cannot fully avoid the problems resulting from functional form misspecifications (Kostov, 2013).

The purpose of this paper is to extend the hedonic pricing literature of farmland rental rates by semi-
parametrically modeling conditional quantiles of German farmland rental rates using Bayesian geoadditive
quantile regression models. The flexibility of this model class frees the researcher from choosing the un-
derlying functional form a-priori and allows for the modeling of a variety of covariates: linear effects of
categorical covariates, smooth non-linear effects of continuous covariates as well as spatial effects to ac-
count for spatial autocorrelation and unobserved heterogeneity. In contrast to previous studies that were
primarily concerned with the analysis of average rental rates, the current study presents an important exten-
sion as the modeling of conditional quantiles allows to gain deeper insights into the data generation process
of rental rates. By modeling different quantiles of the response distribution, we are able to separately iden-
tify the determinants of rental rates for each quantile and can therefore uncover the driving forces behind
both, expensive and low rents, as well as for medium rents. We also avoid the problems associated with
linear spatial quantile regression models since Bayesian geoadditive quantile regression models account for
non-linearities in the relationship between rental rates and their determinants and, hence, allow for more
informative conclusions.

The remainder of this paper is organized as follows: Section 2 introduces the reader to the methodology.
Section 3 gives an overview of the data and is concerned with variable selection. Section 4 presents the
results. Section 5 concludes.

2 Structured Additive Regression Models

In recent years, statistical research on semi-parametric regression models that go beyond traditional linear
regression has brought forward a powerful toolkit that allows for a more realistic treatment of a variety of
real data problems. Structured Additive Regression Models (STAR), originally proposed by Fahrmeir et al.
(2004) and Brezger and Lang (2006), have turned out to be a very powerful model class as they cover the
most prominent model extensions as special cases (we refer the interested reader to Fahrmeir and Kneib
(2011) or Fahrmeir et al. (2013) for further details on Bayesian STAR Models, e.g., derivation of the full
conditionals and the MCMC-sampling algorithm). We first introduce the reader to STAR models for the
conditional mean in Section 2.1, since this model class forms the basis for Structured Additive Quantile
Regression Models introduced in Section 2.2.

2.1 STAR Models: Getting the mean right

As with the usual linear regression framework, we assume that observations (yi,xxxi,zzzi), i= 1, . . . ,n are given,
where yi is a continuous response, xxxi =(xi1, . . . ,xiq) is a vector of categorical covariates and zzzi =(zi1, . . . ,zip)
is a vector of continuous covariates. In the Generalized Linear Model (GLM) framework of Nelder and
Wedderburn (1972), the conditional mean of the response is modeled via

E(yi|xxxi,zzzi) = h(η linear
i ), with η linear

i = xxx′iβββ + zzz′iγγγ (1)

where h(·) is a response function that links the conditional mean of yi with the linear predictor η linear
i . To

allow the response to depend non-linearly on continuous covariates, GLMs can be extended to Generalized
Additive Models (GAMs) by replacing the strictly linear predictor in Equation (1) with a more flexible
semi-parametric predictor

ηi = xxx′iβββ + f1(zi1)+ . . .+ fp(zip) (2)

where f1, . . . , fp are non-linear smooth effects of the continuous covariates and xxx′iβββ is the usual parametric
part. For modeling the unknown functions f j, we follow Lang and Brezger (2004) and Brezger and Lang
(2006) who introduce a Bayesian analogue to P(enalized)-splines originally proposed from a frequentist
point of view by Eilers and Marx (1996). In order to illustrate the basic principles of P-splines, we present
the frequentist approach first, where it is assumed that the unknown function f j can be approximated by a
polynomial spline of degree l j. The spline is then represented as a linear combination of m j = h j + l j − 1

B-spline basis functions B j,k evaluated at pre-specified knots z j,min = ζ j,1 < ζ j,2 < .. . < ζ j,h j = z j,max

f j(zi j) =
m j

∑
k=1

γ j,kB j,k(zi j) , i = 1, . . . ,n. ; j = 1, . . . , p. (3)

where the coefficients γ j,k can be interpreted as amplitudes that scale the basis functions B j,k accordingly
to fit the data. To ensure a good fit to the data, Eilers and Marx (1996) suggest using a sufficiently high

2



number of equidistant knots (usually between 20 and 40) as well as to simultaneously impose a penalty

λ j ∑
m j

k=d+1(∆
dγ j,k)

2 on adjacent B-spline coefficients γ j,k that prevents f j from being too wiggly. The penalty

depends on the smoothing parameter λ j that balances the trade-off between a good fit to the data and the

amount of smoothness of f j, and ∆d denotes the d-th order difference operator, i.e., ∆1 = γ j,k − γ j,k−1 for

d=1. Rewriting the smooth functions in matrix form fff j = ( f j(z1 j), . . . , f j(zn j))
′ = ZZZ jγγγ j leads to the semi-

parametric predictor ηηη = XXXβββ +ZZZ1γγγ1 + . . .+ZZZpγγγ p, where ZZZ j = B j,k(zi j) is a (n×m j) design matrix and

γγγ j = (γ j,1, . . . ,γ j,m j)
′ is a vector of regression coefficients. The penalized least squares criterion is then given

by

PLS(λλλ ) = (yyy−ηηη)′ (yyy−ηηη)+
p

∑
j=1

λ jγγγ
′
jKKKdγγγ j (4)

where KKKd is a penalty matrix based on d-th order differences. In the Bayesian framework, the vector of
regression coefficients γγγ j and βββ are considered as random variables so that appropriate prior distributions

have to be assigned. For the parameters βββ of the parametric part, non-informative priors are assumed, i.e.,
p(βr) ∝ const,r = 1, . . . ,q. Priors for the regression parameters γγγ j of the smooth curves are defined by

replacing the difference penalty by first or second order random walks, respectively. From a Bayesian point
of view, the quadratic penalty λ jγγγ

′
jKKK jγγγ j in Equation (4) can then be replaced with a Gaussian smoothing

prior for the regression coefficients γγγ j

p(γγγ j|τ
2
j ) ∝

1

(τ2
j )

rank(KKK j)/2
exp

(

−
1

2τ2
j

γγγ ′jKKK jγγγ j

)

, j = 1, . . . , p. (5)

The amount of smoothness of f j is controlled by the variance parameter τ2
j , which corresponds to the inverse

of the smoothing parameter λ j in the frequentist setting.
Besides categorical and continuous covariates, spatially referenced data also contain information about

the location where the observations have been collected. To include this information into the model, an
additional spatial term fgeo is added to the predictor from Equation (2)

ηi = xxx′iβββ + f1(zi1)+ . . .+ fp(zip)+ fgeo(si) (6)

yielding a geoadditive model as proposed by Kammann and Wand (2003). The spatial effect fgeo acts
as a surrogate for unobserved covariates that are not included in the model and also accounts for spatial
autocorrelation (Fahrmeir and Kneib, 2011). In the case that the spatial effect originates from both spatially
correlated and uncorrelated unobserved covariates, it is advisable to split up the spatial effect fgeo = fstr +
funstr into a structured, correlated effect fstr and an unstructured, district specific effect funstr. This partition
allows the researcher to assess the complete spatial information in the data. The estimation of the correlated
spatial effect fstr can be represented in a Bayesian framework by assigning Gaussian Markov Random
Field (GMRF) priors for the regression coefficients γγγstr, reflecting the restriction that neighbouring districts
should have similar effects

γstr(s)|γγγstr(−s)∼ N

(

1

|N(s)| ∑
r∈N(s)

γstr(r),
τ2

str

|N(s)|

)

, s = 1, . . . ,S. (7)

where γγγstr(−s) is the vector containing all spatial effects except the one for district s and |N(s)| denotes the
total number of neighbours that share a common boundary with district s. GMRF assume that, given the
effects of all other districts, the expected value of γstr(s) equals the average of the neighbouring districts.
The amount of how much an effect for district s is allowed to vary around its expected value depends on the

variance τ2
str and inversely on the number of neighbours |N(s)|. The joint distribution of all spatial effects

can be derived from the conditional distributions and can be represented as

p(γγγstr|τ
2
str) ∝

1

(τ2
str)

rank(KKKstr)/2
exp

(

−
1

2τ2
str

γγγ ′strKKKstrγγγstr

)

(8)

The matrix KKKstr contains the neighbourhood information in its non-zero entries, i.e., KKKstr[s,r] = −1 if dis-
tricts s and r are neighbours and KKKstr[s,r] = 0 otherwise. If spatial heterogeneity exists only locally, it is
not reasonable to assume that coefficients of neighboring districts are spatially correlated and an uncorre-
lated spatial effect should be used instead. To model funstr, district specific i.i.d. Gaussian random effects

γunstr(s)|τ2
unstr ∼ N(0,τ2

unstr),s = 1, . . . ,S are commonly used. In the Bayesian framework, the joint multi-
variate prior distribution of the unstructured effect can be represented as in Equation (8), with KKKunstr = III.
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2.2 Structured Additive Quantile Regression: Going beyond the mean

The regression models discussed so far focus on modeling conditional means. Since these models only
allow limited insights into the way covariates influence the response, Waldmann et al. (2013) extend STAR
models from the previous section to semi-parametric additive quantile regression models that allow for the
modeling of conditional quantiles.

While in the frequentist setting of Koenker and Bassett (1978) no distributional assumptions regard-
ing the error term have to be made, the Bayesian formulation of quantile regression relies on assuming
an asymmetric Laplace distribution (ALD) as an auxiliary error distribution, as suggested by Koenker and
Machado (1999) and Yu and Moyeed (2001). This assumption allows for the specification of a likelihood
function that is needed for Markov chain Monte Carlo (MCMC) inference. The asymmetric Laplace distri-

bution with location parameter ηiτ , scale parameter σ2 and asymmetry parameter τ is particularly suitable
for geoadditive quantile regression models, since the minimization of the check function in the frequentist
setting can equivalently be represented as maximizing the asymmetric Laplace likelihood function

n

∏
i=1

p(yi|ηiτ ,σ
2,τ) ∝ exp

(

−
n

∑
i=1

ρτ
(yi −ηiτ )

σ2

)

(9)

with respect to ηiτ , where τ denotes the quantile of interest. In the Bayesian framework of Waldmann et al.
(2013), the strictly linear predictor in Equation (9) is replaced with the more flexible geoadditive quantile
predictor

ηiτ = β0τ +β1τ xi1 + . . .+βqτ xiq + f1τ (zi1)+ . . .+ fpτ (zip)+ fgeoτ (si) (10)

that allows the researcher to analyze the influence of the covariates on the response variable in a non-linear
way, for each quantile separately (we refer to Fahrmeir et al. (2013) and Waldmann et al. (2013) for the
derivation of the full conditionals and the MCMC-sampling algorithm).

3 Data description and variable selection

3.1 Data description

For our analysis, we use farm-level data based on the 2010 German agricultural census (FDZ, 2010). It is
the most comprehensive survey since 1999 and gives a representative picture of the agricultural situation
in Germany. The focus of the census is on questions regarding land use and livestock, property and leas-
ing agreements, organic-farming, labor and employment. We use farmland rental rates per hectare as the
response variable, since this number can be interpreted more easily and farmers use this figure for guidance
when determining appropriate rental agreements. We exclude tenancies that were entered between family
members to obtain a market based assessment of rental rates. Based on previous studies that analyse Ger-
man farmland rental rates (see Breustedt and Habermann (2010) or Habermann and Ernst (2010) among
others), we use the covariates presented in Table A1 for the analysis. To adjust for unobserved spatial het-
erogeneity that is not accounted for by farm-level covariates, we additionally include socio-demographic
covariates on the district level from the Regionaldatenbank (2010). After removing non-renting farmers, as
well as outlying observations, we are left with 107,620 observations for the analysis.

3.2 Variable selection

Variable selection is a challenging task in geoadditive quantile regression. The researcher has to select
a subset of covariates that he or she considers relevant for the analysis and has to decide whether the
spatial information in the data is best described by an unstructured or structured effect. To make the task
of variable selection feasible, we use a systematic and fully data-driven approach based on componentwise
functional gradient descent boosting for Structured Additive Quantile Regression, as proposed by Fenske
et al. (2011). Boosting is a machine learning approach that is aimed towards maximizing the prediction
accuracy of the response by iteratively combining different model components, called base learners, where
in each iteration step only the best-fitting base learner, i.e., the most informative covariate, is selected. For
the starting model, we include all covariates presented in Table A1. Table 1 presents the final covariates and
their selection frequencies for different quantiles. To cover the entire range of rental rates and, in particular,
to gain detailed insights into very low and very high as well as into medium rental rates, we choose to model
conditional quantiles of τ = {0.05,0.50,0.95}. Variable selection is performed using the R-package mboost
of Hothorn et al. (2013).
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Table 1. Covariates and their selection frequencies during boosting iterations.

τ = 0.05 τ = 0.50 τ = 0.95

Covariate Freq. Covariate Freq. Covariate Freq.

fstr 0.3998 fstr 0.7162 fstr 0.3208

f (cattle_district) 0.1453 f (cattle_district) 0.0735 f (hog_poultry_district) 0.1239

f (size) 0.0711 f (cattle) 0.0422 f (sugarbeet) 0.1103

f ulltime 0.0675 f (rent_share) 0.0222 f (cattle_district) 0.1056

f ( f armland_share) 0.0564 funstr 0.0217 f ulltime 0.0762

f (rent_share) 0.0547 f (size) 0.0216 f ( f armland_share) 0.0752

f (hog_poultry_district) 0.0398 f (hog_poultry_district) 0.0199 intercept 0.0414

f (sugarbeet) 0.0395 f (sugarbeet) 0.0149 f (potato) 0.0334

f (winterwheat) 0.0347 f ( f armland_share) 0.0107 f (inha) 0.0313

f (unempl) 0.0239 f ulltime 0.0083 f (rye) 0.0281

f (cattle) 0.0234 f (winterwheat) 0.0078 f (hhi) 0.0213

f (hog_poultry) 0.0179 f (unempl) 0.0076 f (hog_poultry) 0.0196

intercept 0.0152 f (hog_poultry) 0.0068 f (rent_share) 0.0130

f (rye) 0.0108 f (potato) 0.0053

f (rye) 0.0053

f (biogas) 0.0048

f (income) 0.0040

f (rent_lag) 0.0032

f (labour) 0.0022

f (inha) 0.0019

∑ 1.0000 ∑ 1.0000 ∑ 1.0000

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010). f (·) indicates that

the variable is modeled semi-parametrically, whereas the variable name itself indicates that the variable is modeled parametrically.

Table 1 shows that the way in which covariates affect farmland rental rates varies across quantiles:
while some covariates have an influence on low and medium rents, they have no effect on more expensive
ones. From Table 1 it is also apparent that only fstr has been selected for the 5% and 95% quantile in order
to model the spatial information in the data. The spatial effect can therefore be assumed not to exist only
locally, but to be correlated across districts for these quantiles. However, the unstructured spatial effect has
also been selected for the 50% quantile indicating that there seems to be additional small scale, district
specific spatial information in the data for medium rents. Also note that, for expensive rents, mainly those
covariates that reflect local competition for farmland or field crops with high profit margins have been
selected. Consulting the literature about the influence of biogas on rental rates shows that it is a subject
of great controversy. Kilian et al. (2008) find that, in general, higher concentrations of biogas plants lead
to an increase in rental rates, while the results of Habermann and Ernst (2010) do not support this effect.
Habermann and Ernst (2010) attribute these varying findings to the different granularity of the data that has
been used for the analysis as Kilian et al. (2008) use data on the community level, while Habermann and
Ernst (2010) use district averages. More importantly, Habermann and Ernst (2010) argue that, due to the
long duration of the leasing contracts, it may take some time before the effect of biogas is reflected in rental
rates. This inelasticity of rental rates might also apply to our results, since boosting has decided to include
biogas as an important covariate for medium rents only.

4 Analysis of farmland rental rates

After having identified the relevant economic variables that determine farmland rental rates, we now present
the estimation results of the Bayesian geoadditive quantile regression. The estimation is performed using the
R-packages BayesXsrc of Adler et al. (2013) and R2BayesX of Lang et al. (2013), which is an R interface
to the standalone software BayesX of Belitz et al. (2013).

4.1 Parametric and semi-parametric effects

Figure 1 shows posterior mean estimates for the semi-parametric effects together with pointwise 80% (dark
grey) and 95% (light grey) credible intervals.
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(1) sugarbeet (τττ= 0.05) (2) sugarbeet (τττ= 0.50) (3) sugarbeet (τττ= 0.95) (4) winterwheat (τττ= 0.05)

(5) winterwheat (τττ= 0.50) (6) potato (τττ= 0.50) (7) potato (τττ= 0.95) (8) rent_share (τττ= 0.05)

(9) rent_share (τττ= 0.50) (10) rent_share (τττ= 0.95) (11) size (τττ= 0.05) (12) size (τττ= 0.50)

(13) hhi (τττ= 0.95) (14) cattle (τττ= 0.05) (15) cattle (τττ= 0.50) (16) cattle_district (τττ= 0.05)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010).

Figure 1. Estimated semi-parametric effects with pointwise 80% and 95% credible intervals.
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(17) cattle_district (τττ= 0.50) (18) cattle_district (τττ= 0.95) (19) hog_poultry (τττ= 0.05) (20) hog_poultry (τττ= 0.50)

(21) hog_poultry (τττ= 0.95) (22) hog_poultry_district (τττ= 0.05) (23) hog_poultry_district (τττ= 0.50) (24) hog_poultry_district (τττ= 0.95)

(25) rye (τττ= 0.05) (26) rye (τττ= 0.50) (27) rye (τττ= 0.95) (28) farmland_share (τττ= 0.05)

(29) farmland_share (τττ= 0.50) (30) farmland_share (τττ= 0.95) (31) unempl (τττ= 0.05) (32) unempl (τττ= 0.50)

(33) inha (τττ= 0.50) (34) inha (τττ= 0.95) (35) rent_lag (τττ= 0.50) (36) biogas (τττ= 0.50)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010).

Figure 1 continued. 7



(37) income (τττ= 0.50) (38) labour (τττ= 0.50)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010).

Figure 1 continued.

In line with Breustedt and Habermann (2009) and Habermann and Ernst (2010) Figure 1 shows that

field crops with high profit margins, like sugar beets or potatoes, have a positive effect on rental rates.

However, due to the non-linearities of the effects, there are some differences to previous studies that have to

be noted. While the effect of sugar beet initially increases across all quantiles, it starts to decrease again for

low rents if more than 30% of the farmland is used for the cultivation. We further investigate the decrease of

sugar beets for the 5% quantile by forming the first derivative of the estimated effect and find that the sharp

decrease is indeed significant at a nominal level of 5%. In contrast, there seems to be a threshold effect for

medium and high rents as the effects level off above a share of 30% for the 50% and 95% quantile. The

effect of farm size for small and medium-sized farms is a positive one, as rental rates increase initially with

growing farm size. Larger farms are more likely to realize economies of scale and are therefore able to pay

higher rents. However, note that the size only has an increasing effect until a farm size of approximately 70

hectares. After this threshold, low rents remain almost constant with increasing farm size, while medium

rents are negatively affected for farm sizes between 70 and 180 hectares. A possible explanation might be

that, after a given threshold, farms may be so large that they may have a comparatively higher market power

which allows them to keep rental rates low. The effect seems to increase again for farm sizes of 180 hectares

and above. However, due to the increased uncertainty attached to the estimated effects, reliable statements

above a farm size of 180 hectares cannot be made.

While Fuchs (2002), Margarian (2008) and Habermann and Ernst (2010) find that average rents de-

crease with an increasing share of rented agricultural land, panels (8)-(10) of Figure 1 allow for a more

detailed analysis. The decreasing effect, that is reported in previous studies, can only be confirmed for a

share of rented agricultural land between 40% and 80%. For shares other than this range, rental rates clearly

increase with rented agricultural land. The incresing effects for medium and high rates are also supported

by the narrow credible intervals. While the increasing effect is more pronounced for medium and high rates,

there is virtually no effect for low rental rates above a threshold of 80%. The general finding in the litera-

ture of an overall negative relationship between rented agricultural land and farmland rental rates might be

attributed to the fact that, when averaging across quantiles, the decreasing effect for shares ranging between

40% and 80% might dominate, so that an overall negative relationship results. This example illustrates the

usefulness of semi-parametric regression, as important features in the data go undetected if linear regression

models are used. Similar to Drescher and McNamara (2000), Fuchs (2002) or Breustedt and Habermann

(2011), we find that livestock densities have a major impact on rental rates. However, in addition to previous

studies, panels (16)-(18) of Figure 1 show a pronounced U-shaped effect for the cattle density at the district

level across all quantiles: a cattle density of up to 0.5 first decreases farmland rental rates, before rental rates

start to increase beyond this livestock density. The increasing effect of livestock density on rental rates is

also very pronounced for hog and poultry densities at the farm level, and even more so for medium and high

rents on the district level. The positive influence of livestock densities on rental rates might be explained

by a statutory framework within which farmers are restricted in the amount of manure they are allowed to

discharge on their land. Farmers with a livestock density that exceeds a certain threshold either have to rent
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additional acreage or have to register a trade. To avoid tax disadvantages, farmers prefer to rent additional

farmland instead in order to reduce the livestock density (Habermann and Ernst, 2010). The strong effects

for regional livestock density may also reflect the heavy competition for farmland in certain districts. From

Figure 1, it also appears that biogas increases medium rental rates, at least up to a plant capacity of approx-

imately 380 kWh. As a result of the increased uncertainty attached to the estimation, which is reflected in

the wide credible bands, reliable statements beyond this capacity cannot be made.

We now turn to the analysis of parametric effects that are summarized in Table 2, showing posterior

means, standard deviations and 95% credible intervals. Table 2 shows that differences exist between farmers

and the rental rates they have to pay depending on whether they operate their farm full-time or part-time,

since full-time farmers have to pay higher rents compared to their part-time counterparts. This difference

may be attributed to several reasons. In order to earn a living, full-time farmers have to have a high produc-

tion volume and a high production intensity. As a consequence, full-time farmers are on average larger than

part-time farmers, with an average farm size of about 61 hectares. This is about the size until which rental

rates increase with farm size (compare Panels (11)-(12) of Figure 1). Another reason for the difference

might be due to the fact that the proportion of full-time farmers is high in those districts where the principle

income of the farmer is associated with livestock farming, and hence, in districts where rental rates are high

(compare Panels (14)-(24) of Figure 1). Due to the high demands with respect to capital intensity and the

employment of labour, livestock farming on a larger scale can be operated successfully only as a full-time

farmer.

Table 2. Estimated parametric effects.

τ = 0.05

Mean Std. Dev. 2.5% 97.5%

Intercept 167.3150 1.5635 164.3530 170.2770

full-time -4.4783 0.7025 -5.8641 -3.0617
part-time -9.0094 0.8166 -10.5819 -7.4320

τ = 0.50

Mean Std. Dev. 2.5% 97.5%

Intercept 324.0170 3.0758 317.5430 329.7030

full-time -5.3913 0.9449 -7.2346 -3.5716
part-time -12.1409 1.0729 -14.2923 -10.1269

τ = 0.95

Mean Std. Dev. 2.5% 97.5%

Intercept 445.6230 4.8821 436.3380 455.0340

full-time -11.3771 1.4211 -14.1269 -8.6229
part-time -29.8125 1.4229 -32.5452 -27.0207

Source: own calculations based on data from the 2010 German agricultural census

and from the Regionaldatenbank (2010).

4.2 Spatial effects

Our analysis of the spatial effects is motivated from a statistical point of view. In contrast to economet-

rics, where spatial autoregressive models are commonly used, we account for spatial correlation and non-

observable farmland characteristics by adding a spatial term fgeoτ to the additive predictor ηiτ . As a conse-

quence, we are mainly interested in investigating spatial patterns that emerge from spatial heterogeneities

that are left unexplained after taking covariates into account. Plotting the estimated effects of fgeoτ allows

us to graphically investigate these spatial patterns and assists in identifying additional covariates that cap-

ture the remaining heterogeneity in the data. A careful visual inspection of the distribution of these spatial

effects can also provide new insights into the data that were not previously considered. Significance maps

shown in Figure 2 further enhance the detection of spatial patterns by classifying the estimated spatial effect

into three categories; the spatial effect is classified as insignificant at the 80% level and the corresponding

district is coloured in grey, if the credible interval includes zero. Districts with significant positive effects

are coloured in white, whereas districts with significantly negative effects are coloured in black.
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(1) Posterior probabilities for fff str

(τττ= 0.05)
(2) Posterior probabilities for fff str

(τττ= 0.50)
(3) Posterior probabilities for fff str

(τττ= 0.95)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010).

Figure 2. Posterior probabilities (80%) of fstr for different quantiles.

Figure 2 shows that rental rates are considerably lower what can be explained with covariates in the

southwest, as well as in large parts of East Germany across all quantiles (black districts). It is reasonable

to assume that the pattern in East Germany results from structural differences between East and West Ger-

man rental markets, and in particular from the way rental rates were set by the Bodenverwertungs- und

-verwaltungs GmbH (BVVG), a company that managed state-owned land in East-Germany. In order to

account for the differences between East and West German rental markets, we have included a dummy

variable. However, as Table 1 shows, the dummy variable leaves the structural differences between East and

West German rental markets unexplained since boosting has never selected it during any of the iterations.

Consequently, additional covariates other than the dummy variable have to be included in the model in order

to account for the differences between East and West German rental markets. The patterns in the southwest

of Germany may be attributed to the wine-growing districts. Since rental rates are grouped by the type of

use of the agricultural land, rental rates of vineyards are recorded separately in the data. As a consequence,

although winegrowers had to pay an average rent of approximately 828 EUR per hectare for vineyards in

certain wine-growing districts, these high rents do not contribute to the estimation and the map only shows

below average farmland rental rates.

Figure 2 also reveals that the covariates are better suited to explain expensive rental rates, as the co-

variates leave heterogeneities unexplained only in very few districts of Germany across all quantiles (white

districts). While the pattern for the median and 95% quantile are similar with respect to high unexplained

rents, the 5% quantile identifies some additional districts in the far north. In accordance with the literature

and with the results from the semi-parametric effects, Figure 2 shows that rental rates for farmland are more

expensive in districts where livestock densities are high. Rental rates are also more expensive in districts in

which high livestock densities and high biogas densities meet, such as in the southern part of Germany.

5 Conclusion

In this paper we model and analyse conditional quantiles of farmland rental rates semi-parametrically using

Bayesian geoadditive quantile regression models. The flexibility of this model class overcomes the problems

of functional form misspecifications and allows us to present a more detailed analysis of farmland rental

rates and their determinants. In particular, by allowing different quantiles of the distribution to depend

differently on covariates, our study provides additional insights into the data generation process of rental

rates as the possible determinants can be separately identified for each quantile. By explicitly modeling and

plotting the spatial effects, we account for spatial autocorrelation and are able to detect spatial patterns in the
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data that can be used in future studies in order to identify additional covariates that capture the remaining

spatial heterogeneity. Our results also stress the importance of making use of flexible, semi-parametric

models as some of the covariates clearly have a non-linear influence on farmland rental rates. The results of

our study are of potential interest for both, practitioners and academics, since hedonic pricing studies in the

agricultural economics literature have primarily been concerned with the analysis of average rental rates.

For instance, our results can serve as a basis for negotiating new tenancies or designing rent adjustment

clauses, as the terms of contract can now be better tailored to the operational characteristics of the farmer.

In addition, if desired, the identification of the driving forces behind expensive rents may also serve to assist

policy makers in taking corrective actions by setting a ceiling on rental rates in order to prevent an excessive

rise of rental rates in the future.

There are several ways to extend the current analysis. From an agricultural point of view, it would

be interesting to investigate whether the increased investment in agricultural land by both agricultural and

non-agricultural investors, or the regionally high demand for zoning, traffic and compensation areas also

have an effect on farmland rental rates. From a statistical point of view, the data could be re-analyzed

using Generalized Additive Models for Location, Scale and Shape (GAMLSS), originally proposed by

Rigby and Stasinopoulos (2005) and extended to Bayesian Structured Additive Distributional Regression by

Klein et al. (2013). This model class allows the researcher to model all parameters of an assumed response

distribution as additive functions of covariates. This is important in the case of (spatial) heteroscedasticity,

where interest does not only lie with farmland rental rates themselves, but also with their (spatial) variation.
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A Appendix

Table A1. Description of Covariates.

Covariate (farm-level) Description

f arm_succ Farm succession (categorical: 1=yes, 2=no, 3=unsettled)
east Dummy Variable for East Germany (categorical: 1=West Germany, 2=East Germany)
organic Dummy Variable for organic farming (categorical: 1=yes, 2=no)
f ulltime Dummy Variable indicating whether the farmer operates his business in full-time or part-time (categor-

ical: 1=no individual enterprise as legal form, 2=full-time, 3=part-time)
rent_share Share of rented agricultural land to total agricultural land (continuous)
f armland_share Share of rented farmland to total rented agricultural land (continuous)
cattle Farm-level cattle density in animal unit (AU) per hectare (continuous)
hog_poultry Farm-level hog and poultry density in animal unit (AU) per hectare (continuous)
biogas Capacity of biogas plant in kWh (continuous)
winterwheat Share of winter wheat in cropping pattern (continuous)
sugarbeet Share of sugar beet in cropping pattern (continuous)
potato Share of potato in cropping pattern (continuous)
rye Share of rye in cropping pattern (continuous)
labour Labour force per hectare (continuous)
irrigation Share of agricultural land that could have been irrigated (continuous)
size Total agricultural land of the farmer in hectare (continuous)
fstr Structured spatial effect
funstr Unstructured spatial effect

Covariate (district-level) Description

hhi Herfindahl-Hirschman index based on the share of rented agricultural land to total agricultural land in
each district (continuous)

inha Inhabitants per square kilometre (continuous)
unempl Unemployment rate (continuous)
income Average income per inhabitant (continuous)
rent_lag Spatially lagged farmland rental rate (continuous)
dist2cc Distance to next city center in kilometres (continuous)
cattle_district Average district-level cattle density in animal unit (AU) per hectare (continuous)
hog_poultry_district Average district-level hog and poultry density in animal unit (AU) per hectare (continuous)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank (2010).
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