
PsychNology Journal, 2004
Volume 2, Number 3, 304 - 330

 304

Analysing interaction problems with cyclic interaction
theory: Low-level interaction walkthrough

Hokyoung Ryu♠♦, Andrew Monk♣

♦ IIMS, Massey University

Auckland, New Zealand

♣ Department of Psychology
University of York, York, England

ABSTRACT

This paper aims to develop a brief interface evaluation method on cyclic interaction theory,
allowing low-level interaction analysis, i.e., action-effect problems, effect-goal problems, and
goal-action problems. It illustrates low-level interaction problems from everyday examples
and, in turn, based on cyclic interaction theory a designer review method, the low-level
interaction walkthrough, is introduced. The method is a modified version of cognitive
walkthrough and the analysis focuses on the issue of direct concern to the practitioner who
intends to identify low-level interaction problems in their design specification.

Keywords: Cyclic interaction theory, low-level interaction walkthrough, mode, goal
reorganisation, goal-action matching.

Received 11 June 2004; received in revised form 16 November 2004; accepted 16
December 2004.

1. Introduction

When users interact with a user interface they do so in a piecemeal and iterative way.

In a series of iterations, the user performs various actions towards achieving desired

outcomes. This is a very effective way of interacting with systems particularly graphical

user interfaces, which are the most important application of Human-Computer

Interaction (HCI). In HCI this idea of cyclic interaction was introduced by Card et al.

(1983) as their recognise-act cycle. Norman’s (1986) seven stages model also

envisages a cycle of interaction, says “the action someone takes leads to changes to

the environment. These are evaluated with respect to, and in a manner conditioned by,

the user’s current goals. This evaluation leads to the reformulation of goals and further

action, leading to a new state of the environment, and so on”. However, neither Card et

al., nor Norman makes explicit how effects of actions on the environment could

♠ Corresponding Author: Dr. Hokyoung Ryu
IIMS, Massey University, Auckland, New Zealand
Phone: +64 (0)9 4140800 ext. 9140
Fax: +64 (0)9 4418181
E-mail: h.ryu@massey.ac.nz

H. Ryu and A. Monk

 305

generate the subsequent iterations of interaction or how the context of interaction

would make differences in the user’s interaction.

Recent researches on the HCI theories, e.g., situated action (Suchman, 1987),

distributed cognition (Hutchins, 1996), and activity theory (Nardi, 1997), have advanced

the account of cyclic interaction in a broader context, emphasising how actions are

informed, in taking actions, and how users configure the next step in the different

contexts. Building on these advances, Monk (1998) and Wright et al., (2000) have re-

established the account of cyclic interaction, making explicit low-level interactions

between the user and the system at each point to provide a clearer understanding of

cyclic interaction. While they might impose great efforts on modelling interactions, they

provide what a process results in, as well as what triggers that interaction in a particular

context. It is thus possible for the designer to build interactive versions of the design so

as to assess the assumptions made or being made regarding the interaction between

the user and the system. This paper shows cyclic interaction theory may be applied

well to walk through a proposed interaction design, as cognitive walkthrough (Polson,

Lewis, Rieman, & Wharton, 1992) and activity walkthrough (Bertelsen, 2004) do.

Fig. 1: Cyclic interaction theory. It illustrates a recognition-based interaction
working on graphical user interfaces (GUIs). That is, action results from the user
having some goal and recognition of the environment. The action leads to some
effects on the environment. The new state of the environment (or world) is
evaluated, leading to new goals and new recognition that in turn lead to new
actions, and so on.

The key characteristics of cyclic interaction theory can be reasonably simplified as that

of Figure 1, which depicts three paths in an interactive cycle: goal-action path, action-

effect path, and effect-goal path. That is, the user begins an interactive cycle with the

formulation of goals arising from the task or visible parts of the display in an interaction

Cyclic Interaction Theory

 306

context. The only way the user can manipulate the system is through an action, i.e.,

goal-action path. An action with the input device triggers system effects (action-effect

path). The execution phase of the cycle is complete and the evaluation phase begins.

The system is in a new state within the environment (or world), which must now be

communicated to the user. The effect-goal path deals with changes in what are

perceived and then continues to new goals in the interaction context.

Yet, this cyclic understanding of interactions between the user and the environment

has been less applied to an analysis of user interfaces. This is because the models,

e.g., State-Transition Scenarios (STS: Monk, 1999), based on cyclic interaction theory

are more likely to provide a descriptive understanding rather than a formative

perspective to analyse how the users tasks would be achieved in the course of

interactions with the environment.

We do see that the walkthrough approach, e.g., Cognitive walkthrough (Polson et al.,

1992), Activity walkthrough (Bertelsen, 2004), can make cyclic interaction theory

operationalise for HCI practitioners, which is readily applicable for practical analysis of

a design specification without real users in the evaluation stage.

In the following sections, we identify three classes of low-level interaction problems

with cyclic interaction theory and develop a brief walkthrough analysis to detect them.

Note that in this paper, we do not assume a specific interaction specification, but we

will suggest how interaction specification of the designers’ own use can be analysed in

terms of cyclic interaction theory.

The three paths of interactions which are illustrated in Figure 1 in turn result in the

three sets of interaction problem: action-effect problems, effect-goal problems, and

goal-action problems. They have already been identified by the second author of this

paper (Monk, 2000). We see that it may be an oversimplified assumption of all

interaction problems, so this taxonomy would be very contestable with other

classifications. Although it is open to dispute, we will show how this classification can

provide many useful applications of the low-level usability check at the design stage.

Firstly, we will consider action-effect problems as unpredicted effects caused by

user’s action. That is, if the users are trying to take actions, expecting some effects in

their head, however if the effects are not predictable, it results in action-effect

problems. In turn, if system effects or environmental cues cannot generate any goals to

be followed, the interaction would fail to proceed to the next action. The issues

considered here are how the next goals are generated or eliminated by the system

effects. This results in unpredicted goal-construction and elimination.

H. Ryu and A. Monk

 307

GOAL

ACTION EFFECT

G
oa

l-a
ct

ion
 p

ro
bl

em
s

(U
np

re
dic

te
d

ac
tio

n)

Action-effect problems
(Unpredicted effect)

Effect-goal problem
s

(Unpredicted goal construction and elim
ination)

Fig. 2: Categorisation of interaction problems in terms of cyclic interaction theory.

Finally, the crux of the user interface design is how to assign physical actions on the

system to achieve a particular goal or task. Therefore, if we imagine a user-friendly

interface, most of the actions available to achieve any goal are very straightforward to

find. Otherwise, the user is not able to match the correct action with the current goal

state. This would be a goal-action problem, if the designer has not considered how the

match between the goal and the action would be derived by the user. Figure 2 shows

the three classes of interaction problems in terms of predictability.

In the following sections, the three sets of interaction problems will be illustrated with

everyday practical examples and provide a brief walkthrough method to identify the

interaction problems.

Cyclic Interaction Theory

 308

Name:A_Tel number:2_

Fig. 3: Number-entry mode vs. letter-entry mode in a mobile phone. The user
notices the current entry mode from the different prompts, i.e., ‘Tel number’ and
‘Name’ – Extended from Monk (2000).

2. Action-effect problems

Of all, an important issue to be analysed with respect to the action-effect path is the

mode in which the same action leads to different system effects. Formally, this can be

stated as the principle of action-effect consistency (Dix, 1991). That is, the consistent

action-effect association reduces the effort needed to carry out a task and so makes

learning by exploration much more effective.

Unnecessary modes in the interface should be avoided but sometimes they are

inevitable. For instance, small devices like mobile phones employ the same action to

perform various tasks. Thus, the action of pressing a particular button will lead to

different effects depending on what mode the system is in. This moded interaction is

less of a problem if a user is aware of what mode they are in (Monk, 1986). This is a

noticeable mode. In normal calling mode pressing the button “ ” has the effect of

putting the number ‘2’ on the display; on the other hand, when the user edits their

address book, pressing the button adds the letter ‘A’ first. They are less likely to feel

confused about the different effects, because the mobile phone provides a clear mode

signal using the prompt in the display (e.g., See Figure 3, ‘Tel number:’ for number-

entry, and ‘Name:’ for letter-entry).

This character entry-mode example as shown in Figure 3 in a mobile phone

demonstrates an instance where modes are signalled through the environment.

Otherwise, mode errors are liable to occur. Mode errors, which give rise to action-effect

problems, tend to occur where (i) the mode change has been forgotten; (ii) there has

been a failure to recognise the environment including information to indicate the mode;

H. Ryu and A. Monk

 309

or (iii) a misleading mode signal is perceived by the user. The first possibility is a

hidden mode problem, because the identification of the current mode depends on the

recall of an earlier event rather than the recognition of external cues. The second

possibility can be thought of as a partially hidden mode problem because of the

relatively low salience of the mode signal given. One can attribute the third possibility to

a wrong user model, which misleads users into believing that they are doing the correct

action, i.e., misleading mode signal. Each of the mode problems is explored in the

following sections.

2.1. Hidden modes

Most GUI guidelines (e.g., Apple computer, 1992) have emphasised a clear mode

design, suggesting that all relevant information about modes should be noticeably

presented in the environment. If the environment cannot signal the current mode, this

causes the first type of mode error, i.e., hidden mode.

A typical hidden mode problem can be found in a UNIX vi editor. Mode errors in the

Unix text editor vi – like many text editors, vi has a command mode, in which

characters that are typed as input are interpreted as commands, and input mode, in

which characters that are typed are inserted into the document being edited. Because

there is (by default) no indication of which mode the editor is currently in, users often

type in text thinking they are in input mode, but vi interprets their characters as

commands because it is actually in command mode. This hidden mode issue can also

be found in the L-0111 aircraft disaster (Vicente, 2004). The main cause of the disaster

is that the autoflight system became disengaged as soon as a pilot inadvertently

grabbed the control yoke, however, nobody noticed the aircraft was being manually

controlled because there were no clear mode signals of whether it was in the manual or

the automatic control mode.

For an everyday hidden mode example around us, see Figure 4. In the current New

Zealand TV environment, in general, a television set has two different tuners:

Terrestrial TV tuner (built-in tuner for each TV set) and Satellite TV tuner. When one

wants to tune into a satellite TV channel from a terrestrial TV channel, one needs to

change the mode from terrestrial to satellite, taking an appropriate action on the remote

control. Yet, it is almost impossible for the user to know whether they are in satellite TV

or terrestrial TV mode without any support from the environment as s/he is watching a

TV programme. In the absence of a clear mode signal, the user has to recall what

Cyclic Interaction Theory

 310

mode the TV set was last changed to. This is a hidden mode problem, because the

user does not have any external cue to reason about the current mode or the mode

reachable by the action.

Fig. 4: A satellite TV environment. It has at least two different tuners: one is a
terrestrial TV signal tuner and the other is a satellite TV signal tuner. If the tuner
selection is not easily recognised by the user, it may result in a hidden mode
problem.

Whenever the mode change is likely to happen in any interaction situation, a designer

should see if some recognisable signals of the current mode could be provided. In fact,

some digital set-top boxes, for instance, signal the current mode explicitly by means of

text or coloured icons in the display.

2.2. Partially hidden modes or poorly signalled mode

The second kind of mode ambiguity is where mode signals are not saliently designed.

This is different from the first type of mode ambiguity, because mode cues do exist in

the environment; however there is a difficulty in recognising them as mode signals.

H. Ryu and A. Monk

 311

 (a) Sheet-editing mode (b) Cell-editing mode

Fig. 5: Two editing-modes in Microsoft Excel™ 97.

A poorly signalled mode is found in the Microsoft Excel™ 97 spreadsheet application

(Dix, 2001). Excel™ 97 has two editing-modes: one is a cell-editing mode that enables

the user to edit the contents of a single cell by, for example, adding a formula. The

other is a sheet-editing mode that allows the user to edit or move sheets around. A

mode ambiguity in Excel™ 97 occurs when the system changes the sheet-editing

mode automatically into the cell-editing mode when users type anything whilst they are

in the sheet-editing mode. Also, hitting the ‘Enter’ key returns the cell-editing mode

promptly into the sheet-editing mode (Dix, 2001).

Consider the following situation from Dix: “if a user has selected a cell and can see

the formula ‘=3+5’ (see Figure 5(a)), the user may simply type ‘+2’ thinking wrongly that

they are in the cell-editing mode. However, this results in deleting the original cell

contents rather than getting ‘=3+5+2’ as probably expected. This mode error will be

detected easily when the user is looking at the screen, and then they will try to undo

the edit. However, if the user is looking back and forth to a paper list of numbers, it will

be quite difficult to notice this error.” See Figure 5(b). The application signals the

current mode using only small icons, a cross (×) and a tick (√) in the formula box. The

difficulty in recognising the current mode from the relatively low salience of signal (i.e.,

poorly signalled mode) may give rise to the partially hidden mode problem.

Whenever recognition of mode appears to occur, designers should ask themselves

whether the mode signals provided are strong enough for mode changes to be

Cyclic Interaction Theory

 312

recognised. The partially hidden mode problem can be reduced by strongly signalled

cues that enable users to reason about different outcomes of the same action. For

instance, Dix (2001) suggests that a visual effect such as adding a very slight coloured

tint over the spreadsheet would be effective to distinguish the two different modes in

Excel 97.

2.3. Misleading mode signal

The third kind of action-effect problem may arise when the environment hinders the

correct interpretation of the current mode. This commonly happens when mode signals

are in conflict, in turn; it is ambiguous what the system status is in, at the time of

interaction. It can account for the failure of highly moded interfaces, i.e., interfaces with

many modes. In the aircraft flight circumstance, many accidents have been reported,

which are caused by conflicting mode signals. For instance, consider the A320

Strasbourg disaster. Due to the confusing display of the mode reads 33 in the one

mode and 3.3 in another, the aircraft descended at 3,300 ft per minute instead of 3.3

degree glide slope. That is, pilots selected the wrong mode of descent in a highly

moded situation.

 (a) (b)

Fig. 6: Various case mode signals (a) the first letter ‘B’ as a case mode signal, (b)
both the prompt ‘ABC’ and the first letter ‘A’ imply the second letter ‘E’ will be
upper-case.

Ryu and Monk (2002; 2004b) also carried out several mode experiments with respect

to case-mode signals in hand-held devices. These experiments demonstrated that the

users with the given information ‘Abc:A’ had more difficulty in learning the upper-case

correct mode than those with ‘ABC:A’. It was argued that the poorer performance of

‘Abc:A’ to that of ‘ABC:A’ resulted from the fact that the prompt ‘Abc’ could imply that

H. Ryu and A. Monk

 313

the letters would be lower-case from the second letter on. See Figure 6(a). This shows

that the designer employs the last letter ‘B’ as a case-mode signal for the case of the

second letter. Yet, another plausible case-mode signal from the prompt, i.e., Abc, may

turn to the user to reason about the case of the second letter as lower-case, instead.

Therefore, whenever recognition of mode is likely to occur, a designer should ask

himself or herself whether there are possibly competing mode signals.

First phase: preparation

• Step 1. Examine your interaction specification where the same action
has different effects.

• Step 2. For each interaction specification where the same action has
different effects, list system effects that may inform the user what the current
mode is.

Second phase: walkthrough
To check mode problems, the questions are composed of three parts that will be

answered in parallel, i.e., iteratively. The subquestions are interdependent
because it is not possible to separate perception of modes. The three questions
are partly redundant which helps the practitioners identifying more mode problems
from the user’s perspective.

• Q1. Hidden mode: Does the user recognise (rather than recall) the
current mode from system effects?

• Q2. Partially hidden mode (Poorly signalled mode): Are system effects
sufficiently salient for the user to discriminate the mode change from the
previous interaction?

• Q3. Mode signals in conflict (Misleading mode signal): Is it possible that
mode signals imply different modes?

Third phase: walkthrough verification
Finally, the mode problems identified from the walkthrough questions should be

reviewed critically whether they are following mode design heuristics. Special
attention is directed to how well the mode signal of the current interaction matches
to the following heuristics:

• Do not rely on user’s recall of mode changes.
• Provide mode signals with visibly or audibly salient signals in system

effects, so that the user notices the mode change between interactions.
• Keep mode signals to indicate the same mode between interactions.
• Remove competing mode signals in system effects where there is more

than one mode signal.
• Provide consistent mode signals across all tasks.

Fig. 7: The low-level interaction walkthrough of action-effect problems.

In summary, most systems have modes of one kind or another. This is a problem if

the user is not aware of the contingency, i.e., if the mode is Hidden (no signal to the

user); Poorly signalled (mode signal insufficiently salient to guide the user’s behaviour);

or Inappropriate (mode signal misleads the user). This classification accounts for why

the user’s perception of the current mode needs to be considered whenever there are

modes.

Cyclic Interaction Theory

 314

However, these case-by-case analyses do not offer ready-made techniques and

procedures. Furthermore, it must be concretised according to the specific nature of the

technology-in-use under scrutiny. For this purpose, we do provide a walk-through

procedure (or checklists), as depicted in Figure 7, in order to identify action-effect

problems. Having written a complete interaction specification of some parts of a system

the designer is asked to examine all relevant action-effect pairs where the same action

has different effects. Having answered the questions in Figure 7, the designer will be

satisfied that the assumptions made in the design are without mode problems. In this

way, the designer can provide a credible argument for their proposed design based on

the interaction behaviour of the user depicted in their design specification.

Fig. 8: Chart wizard from Microsoft Excel 97. (a) Step 1/4 – Select Chart type, (b)
Step 2/4 –Select data to be referred, (c) Step 3/4 – Select chart options, and (d)
Step 4/4 – Select chart location.

H. Ryu and A. Monk

 315

3. Effect-goal problems

In most HCI tasks, the way a user communicates with a system heavily depends on

system effects. This is a very effective way of working and GUIs are arguably the single

most influential application of HCI research. Of this, cyclic interaction theory explains

that when visible and audible system effects are inadequate, the user will not be able to

construct or eliminate appropriate goals. The only way to interact with such systems is

to recall the correct task procedure. In turn, this kind of interaction results in more

efforts to learn.

The effect-goal path in cyclic interaction theory can be effectively thought of as the

goal reorganisation process. For instance, the chart wizard in Excel™ 97 helps users

decompose a goal into a number of subgoals (Wright et al., 2000). In this way, they

realise what has been achieved at each step and how many steps are left to

accomplish the overall goal. In Figure 8, the controlled process of goal reorganisation

in the chart wizard application is starting from a goal ‘Create Chart’. It is very

straightforward to imagine that the goal gives rise to the action ‘Click Icon(Chart)’ in

Excel™. The environment in Figure 8(a) generates another goal ‘Specify chart type’.

The next interaction allows the user to eliminate the goal ‘Specify chart type’ and in turn

initiate the subsequent goals ‘Specify Chart subtype’ in Figure 8(a), ‘Specify data range

on sheet’ as in Figure 8(b), ‘Specify X- and Y- axis’ as in Figure 8(c), and ‘Specify

location’ as in Figure 8(d).

Affordances (Djajadiningrat, Overbeeke, & Wensveen, 2002; Gibson, 1979; Norman,

1999) of each display help the construction and elimination of appropriate goals (Ryu &

Monk, 2004a, 2004b). The main benefit of the wizard application results from the

affordances of these objects on establishing and then removing subgoals appropriately.

The wizard application example demonstrated the instance where the subsequent

goals are naturally generated and the completed goals are explicitly terminated through

the appropriate changes to the environment. Otherwise, effect-goal problems are liable

to occur. An inadequate goal-reorganisation process thus can be classified into four

categories as follows: (i) missing cues for goal construction– effects do not suggest

appropriate goals; (ii) misleading cues for goal construction– effects suggest irrelevant

goals; (iii) missing cues for goal elimination– effects do not delete completed goals; or

(iv) misleading cues for goal elimination– effects delete incomplete goals. The first two

possibilities may be followed by incorrect actions; the last two are likely to result in

repeating attempts to achieve the goal.

Cyclic Interaction Theory

 316

3.1. Missing cues for goal construction

The user reasons about the subsequent goal from system effects, except when

obviously given to the user. Thus all relevant cues for reasoning about the subsequent

goal should be presented appropriately. The lack of appropriate cues may result in goal

construction problems arising from missing cues or misleading cues. An extreme

example of the former case is where cues or information are not presented in the

system. The latter implies that inadequate cues are in the system, leading to irrelevant

goals and, in turn, incorrect actions.

Fig. 9: An alert message in starting an application.

The first kind of goal construction problem refers to the instance where it is difficult for

the user to reason about subsequent goals from system effects. In turn, it is less likely

to take the subsequent correct action. An example of this kind of goal-construction

problem can be found where a system generates an alert box when a user initiates an

application as in Figure 9. A critical criticism of this dialogue box is that it is very difficult

for the user to click the ‘Yes’ button to start the application, even though the ‘Yes’

button has been signalled as the default button. Indeed, this problem originated from

the fact that an action indicating goal – i.e., Select ‘Yes’ – cannot be straightforwardly

constructed from this system effect. They may be more likely to choose ‘Cancel’ as

being safer. In fact, this will invoke the debugger causing the novice user further

confusion. Whenever it is assumed that subsequent goals will be generated by system

feedback, a designer should see if the goal could be added by the strong affordance of

the system effect.

3.2. Misleading cues for goal construction

The second kind of goal construction problem is where system effects strongly imply

irrelevant goals, thus leading to incorrect actions. This is common when the affordance

H. Ryu and A. Monk

 317

of a display (or object) is so strong that users instinctively establish inadequate

subgoals that are related to the affordance of the display.

(a) (b)
Fig. 10: Copying a file onto a floppy disk in (a) Windows 2000™, (b) Windows NT™

For instance, consider the task of copying a file onto a floppy disk. In Windows™

2000, when users have not inserted a floppy disk into the drive, a dialogue box as that

of Figure 10(a) appears. In contrast, Windows NT™ employs an alert box like Figure

10(b).

It can be thought that the designer of Windows™ 2000 assumes that users will

construct the subsequent goal, i.e., Insert disk, from the message ‘Please insert a disk

into a drive A’; however the designer overlooks a possibility that the strong affordance

of the sole clickable object – i.e., the Cancel button – may suggest an irrelevant goal,

i.e., Cancel first, that does not pertain to the overall goal. In contrast, Windows NT

environment allows the user to plan appropriate subgoals from appropriate affordances

of the display at the cost of an extra click (see Figure 10(b)). The affordance of the

‘Retry’ button and the message inform the correct sequence of actions such as ‘Insert a

disk, and then Click Retry’. In fact, we found that many users selected the ‘Cancel’

button instinctively in Figure 10(a), when asked to perform the task.

As stated above, this phenomenon is partly because the affordance of the ‘Cancel’

button is too obvious at the point of interaction. Polson et al. (1992) have also claimed

that this problem arises from a dialogue box that cannot produce an ‘and-then’ goal

such as would be required in the example shown in Figure 10(b). Here, the user has to

‘Insert a disk’ and then ‘Retry it’.

Cyclic Interaction Theory

 318

First phase: preparation
• Step 1. Examine system effects in the system specification that are designed to

construct the subsequent goals.
• Step 2. List the system effects and the subsequent goals.
Second phase: walkthrough
To check goal-construction problems, the questions are composed of two parts that will

be answered in parallel, i.e., iteratively. The subquestions are interdependent because
the two types of goal-construction problems are frequently co-existing. The two
questions are partly redundant which helps the practitioners identifying more goal-
construction problems from the user’s perspective.

• Q1. Missing cues for goal construction: Do system effects strongly suggest the
constructed goal?

• Q2. Misleading cues for goal construction: Do the other system effects suggest that
the user conceive of goals that do not pertain to the overall goal?

Third phase: walkthrough verification
Finally, the goal-construction problems identified from the walkthrough questions should

be reviewed critically whether they are following goal-construction design heuristics.
Special attention is directed to how well the system effects matches to the following
heuristics:

• Suggest next goals using comprehensive system effects (or strong affordance to imply
subsequent goals).

• Inform the sequence of actions for the user to plan subsequent goals.
• Remove situations or system effects that can strongly suggest irrelevant goals.

Fig. 11: The low-level interaction walkthrough of goal-construction problems.

In summary, goal construction problems occur when the subsequent goal is

ambiguous or irrelevant, i.e., if system effects do not suggest appropriate goals

(missing cues); or, effects suggest irrelevant goals (misleading cues). These two

problems tend to be followed by incorrect actions, thus they can be equally considered

as effect-action problem. In any system specification, the two kinds of goal construction

problems can be detected by examining all the effects which can construct subsequent

goals and then determining whether all the goals pertain to the overall goal. Figure 11

describes a walkthrough approach to be applied for identifying goal-construction

problems.

3.2. Missing cues for goal elimination

In addition to constructing subgoals, system effects in interactive systems remove any

doubt about what the system is doing and how it is responding to the user’s action. For

example, where there is a long system delay a user needs to know whether the system

is actually responding to their last action and how the command is progressing. That is,

H. Ryu and A. Monk

 319

system effects have to show whether the user’s goals have been successfully

completed or not. The lack of appropriate feedback results in goal elimination problems

arising from missing cues or misleading cues. The former implies that feedback of

goals completed is not presented in the system, therefore the user has to remember

what they have completed. The latter suggests that feedback leads to the elimination of

incomplete goals inadvertently.

The first kind of goal elimination problem refers to the instance in which completed

goals are not eliminated from the current goal set due to the lack of clear system

effects. This implicit feedback is also found in the DOS environment, when a user types

‘del my.doc’ to delete the word file, and the system responds with a new command-line

prompt, if successful. The new prompt is feedback, however, one cannot identify

whether the file was deleted. Here, the feedback is provided only with respect to the

lower-level goal of typing a syntactically correct command. Consequently, in order for

the user to eliminate the higher-level goal, i.e., delete a file, they have to refer back to

the previous action taken – ‘del my.doc’; or follow up with a DIR command to check the

right file was deleted. In addition, the two experiments carried out by one of the authors

(Ryu, 2003) demonstrated the importance of the notion of goal elimination process

through feedback.

Whenever it is assumed that a goal will be eliminated in the interaction specification,

a designer should see if the goal could be deleted by the system effect. The implicit

feedback may not provide sufficient information that the goal has been achieved, in

which case users will be compelled to take action to check whether the goals were

completed.

3.3. Misleading cues for goal elimination

In an old automatic teller machine (ATM), many people used to leave their cash card

in an ATM after withdrawing cash (Byrne, 1995). This error comes from the

inappropriate task procedure, i.e., ‘withdrawing money, and then taking out the card’.

Indeed, as the users have cash in hand they believe that the overall goal (i.e.,

withdrawing money) has already been achieved and inadvertently leave their card in an

ATM. This example illustrates the second kind of goal elimination problem. That is, a

strong cue (i.e., cash in hand) before the overall goal is completed would eliminate the

subsequent goal (i.e., take out the cash card).

Cyclic Interaction Theory

 320

A sensible way to remove this ‘super-goal kill-off’ phenomenon by misleading cues

(Byrne, 1995; Wharton, Bradford, Jeffries, & Franzke, 1992) on an ATM is to modify the

interaction procedure from ‘Withdraw money Take out card’ to ‘Take out card

Withdraw money’ that is adopted in the present ATMs. As a consequence, the user

cannot retrieve the money from an ATM until they take out the card.

First phase: preparation
• Step 1. Examine system effects in the system specification that are

designed to eliminate the current goals.
• Step 2. List the system effects and the goals eliminated

Second phase: walkthrough
To check goal-elimination problems, the questions are composed of two parts

that will be answered in parallel, i.e., iteratively. The subquestions are
interdependent because the two types of goal-elimination problems are frequently
co-existing. The two questions are partly redundant which helps the practitioners
identifying more goal-elimination problems from the user’s perspective.

• Q1. Missing cues for goal elimination: Do system effects sufficiently
allow the user to recognise (rather than recall) that the goal has been achieved?

• Q2. Misleading cues for goal elimination (Super-goal kill-off): Do system
effects prompt the user to eliminate the overall goal even though subsequent
interactions are needed?

Third phase: walkthrough verification
Finally, the goal-elimination problems identified from the walkthrough questions

should be reviewed critically whether they are following goal-elimination design
heuristics. Special attention is directed to how well the system effects matches to
the following heuristics:

• Provide clear feedback regarding completed goals
• Don’t rely on user’s recall of the previous action to eliminate goals.
• Rearrange interactions so that a higher-level goal is accomplished at the

end of interactions.

Fig. 12: The low-level interaction walkthrough to identify goal-elimination problems.

In summary, goal-elimination problems can be classified into two categories: (i)

implicit goal-elimination arising from missing cues; (ii) irrelevant goal-elimination from

misleading cues. The two kinds of goal elimination problems can be detected by

examining subgoals which are eliminated in each interaction specification and then

determining whether all the elimination arise from system effects.

Figure 12 shows a walkthrough for tracking down goal elimination problems. Having

followed these steps, the designer will find that the assumptions made for the

interaction would not be reasonable because of the implicit goal-elimination process.

In conclusion, this section has discussed how one can identify four kinds of effect-

goal problem. In fact, effect-goal problems make the user’s task performance even

worse. In the first category, i.e., the appropriate goal is not suggested, it is difficult to

complete the task because the effect does not reduce the knowledge demands on the

H. Ryu and A. Monk

 321

user (Norman, 1988), so that the user may need to recall events in the past. In the

second category, when inappropriate goals are suggested, the problems will divert the

user from the overall goal and may lead to an action that is not relevant to the overall

goal. In the third category, where the completed goal is not eliminated, there is a

dramatic effect on the task performance in that it will compel users to redo the task. In

the fourth category, where an incomplete goal is deleted, this is related to the super-

goal kill-off phenomenon (Wharton et al., 1992). This may lead the user to prematurely

believe that the ultimate goal has been achieved.

4. Goal-action problems

Early studies of interface design (e.g., Payne & Green, 1986; Young, 1983) have

claimed that the adequate connection between goal and action is one of the most

important design issues. In particular, Payne and Green (1986) have emphasised that

similar goals should be accomplished by similar action sequences, establishing a

predictable relationship between the goal and the action, i.e., goal-action matching.

Fig. 13: Ejecting compact disk in the old Macintosh environment (Mac OS B1-8.6).

An example of the goal-action matching problem can be found in an old version of the

Macintosh desktop environment (e.g., Mac OS B1-8.6). Consider Figure 13. To eject a

compact disk users had to drag the disk icon to the trash can. Novice users on the Mac

environment, particularly familiar users of Windows™, may be wary of dragging their

compact disk icon to the trash can icon to eject it, because this is the same way one

Cyclic Interaction Theory

 322

deletes a file. Even though the two goals are obviously different, the two actions are

almost the same.

Indeed, the primary criticism of this Mac environment is the affordances of objects

(Djajadiningrat et al., 2002; Gibson, 1979; Norman, 1999). That is, affordances of the

trash can icon and the other icons (compact disk and file) do not tell any difference

between the two goals, i.e., ejecting or deleting.

(a) (b)

Fig. 14. (a) Delete a file or folder in the new Macintosh environment (Mac OS X). In
contrast, (b) the trash can icon is automatically changed into the eject icon as a
floppy or a compact disk is dragging to the icon.

To some extent, this problem is eliminated in the new Macintosh environment (e.g.,

Mac OS X) by providing objects with different affordances. See Figure 14. In contrast to

the previous Mac environment, the trash can is automatically changed into the eject

icon as a floppy disk is dragged. This modification allows the user to construct two

different kinds of goal-action matching in terms of the recognition of the objects:

Eject (Floppy Eject icon), and Delete (File Trash can icon). At the same time the

system remains consistent with previous Mac OS.

As the example above shows, goal-action problems are commonly observed on the

occasions where unpredictable actions are designed to accomplish the current goal.

The analysis considers the following unpredictable actions: (i) the weak affordance of

the correct action; and (ii) the strong affordance of the incorrect action.

The first case results in the user being able to take any other action due to the weak

affordance of the correct action (or the object designed for the correct action). The

second case results in an incorrect action. Either possibility involves unnecessarily

complex actions. That is, the first case may compel the user to look for documentation,

the latter will require that the user has to redo the task.

H. Ryu and A. Monk

 323

4.1. Weak affordance of the correct action

The first type of goal-action matching problem refers to an instance where the

affordance of the correct action is not clear. As a consequence, a user may make

considerable efforts to find the correct action. The problem of the old Macintosh

environment stated above can be explained by the ‘Trash can’ icon having a weak

affordance as a cue for the correct action for ejecting a floppy disk.

Consider another working example where one wants to set the clock on a portable

MP3 player (e.g., AIWA™ CDC-MP3). Figure 15 depicts the control panel of the MP3

player. By holding down the jog dial for two seconds, the clock (AM 12:00) appears in

the display. In order to set the hour the user has to press button ‘▲’, then rotate the jog

dial to change the hour. In contrast, the user has to press button ‘▼’ to set the minute,

then rotate the jog dial. The goal-action matching seems to be very arbitrarily assigned.

This way of interaction is very confusing as the ‘▲/▼’ buttons normally afford

increment or decrement.

Fig. 15: AIWA™ CDC-MP3. In the clock-setting mode, the ‘▲/▼’ buttons are used
to initially indicate hour or minute, not for increasing or decreasing the figures on
the display.

If the recall of the correct object for the relevant action fails to happen, the user either

guesses and tries incorrect actions or looks for assistance from other resources such

as the documentation (Mack & Montaniz, 1994). A sensible way to reduce this weak

goal-action matching is to employ a consistent way of performing a particular task. For

instance, in order to set the clock the user rotates the jog dial until the required time is

displayed and then activates it by holding down the jog dial for a predefined time. This

procedure may avoid a further recall of each object, thus supporting goal-action

consistency as suggested by Payne et al. (1986).

Cyclic Interaction Theory

 324

4.2. Strong affordance of the incorrect action

The second case of goal-action matching problem refers to occasions where the

affordance of the incorrect action is too strong, so that the incorrect action may

frequently be selected. In order to avoid incorrect actions through strong affordance, for

example, the common GUI environment deactivates certain menu options, thereby

restricting the user from choosing incorrect actions.

Consider a working example where one wants to tune the radio waveband on a

commercial audio player, AIWA™ RX 408. The player has a control labelled ‘MODE’

that one would think would tune the wave band. Yet, the control labelled ‘MODE’ only

changes the mode from ‘Tape Mode’ to ‘Radio Mode’, and vice versa. Instead, a

different control ‘RADIO ON’ changes the waveband between AM and FM. The

difficulty in tuning the waveband arises from the inadequate label (i.e., RADIO ON),

facilitating the selection of the incorrect control ‘MODE’. The designer seems to

consider that the affordance of control ‘RADIO ON’ would indicate more directly the

radio function rather than control ‘MODE’ does. Yet, it is not so easy for the user to

select the correct control ‘RADIO ON’, partly because the correct ‘RADIO ON’ button

has a weak affordance to be selected, and partly because the incorrect ‘MODE’ button

has a strong affordance.

A sensible way to reduce the difficulty is to use a different identifier for the ‘MODE’

button such as ‘TAPE ON/OFF’, thereby restricting the user to choosing the ‘Mode’

button to tune in the waveband.

First phase: preparation
• Step 1. Examine actions in the system specification that are designated

for the current goal set.
• Step 2. Examine system effects in the system specification that indicate

the actions.
• Step 3. List the actions, the system effects and the current goal set

Second phase: walkthrough
To check goal-action problems, the questions are composed of two parts that

will be answered in parallel, i.e., iteratively. The subquestions are interdependent
because the two types of goal-action problems are frequently co-existing. The
two questions are partly redundant which helps the practitioners identifying more
goal-action problems from the user’s perspective.

• Q1. Weak affordance of the correct action: Can the user associate the
action with the affordance of the corresponding object?

• Q2. Strong affordance of the incorrect action: Do system effects prompt
the user to take an incorrect action from the strong affordance of the
corresponding object?

Third phase: walkthrough verification
Finally, the goal-action problems identified from the walkthrough questions

should be reviewed critically whether they are following goal-action matching

H. Ryu and A. Monk

 325

design heuristics. Special attention is directed to how well the actions on the
system matches to the following heuristics:

• Avoid arbitrary and ambiguous goal-action matching.
• Don’t assign any irrelevant goal to objects with other affordances.
• Provide strong affordance of the correct action

Fig. 16: The low-level interaction walkthrough of goal-action problems

In summary, it may be difficult for the user to find the correct action in a particular

situation. This can be explained by goal-action problems. This is a problem if the user

cannot correctly match the goal-action, i.e., if the correct action has an inappropriate

affordance (no or weak indication of the effect of the action); or the incorrect action has

strong affordance (the strong indication misleads the user).

To pinpoint the two kinds of goal-action problems in a proposed design, the designer

must be able to provide a credible answer for their proposed design with the procedure

as depicted in Figure 16. The procedure suggests that the two kinds of goal-action

problems can be detected by examining the action in each interaction specification,

and then determining whether the action can be triggered by the strong affordance of

the display for the action.

This section has discussed how one can identify two kinds of goal-action problems

with the notion of affordance. Goal-action mismatching accompanies complex actions.

The problem of complex action is that users tend to forget the correct action. Therefore,

complex actions should be avoided when the user may have insufficient knowledge to

choose the correct action. For example, wizard applications (see Figure 8) will lessen

the possibility of goal-action problems, because most work by the strong affordances of

the display for the correct actions.

5. Conclusions and Discussion

This paper has developed an analytic framework of human-computer interaction, by

setting out a way of thinking about cyclic interaction theory. The walkthrough

approaches represented in Figure 7, 11, 12, and 16 were also developed to identify the

classes of interaction problems according to cyclic interaction theory.

Cyclic interaction theory (Monk, 1998, 1999) has made it possible to envision

interactions between the user and the environment in a relatively simple way. Three

classes of interaction problems have been proposed and described. First, action-effect

problems can be equally thought as mode problems in which the same action leads to

Cyclic Interaction Theory

 326

different system effects, categorising them into hidden mode problems, partially hidden

mode problems, and misleading mode signals. Unexpected effects caused by

inappropriate mode settings have been discussed. Second, effect-goal problems have

been set out as goal-reorganisation problems, weighing up missing or misleading cues.

Unpredicted goal construction and elimination caused by poor system specification has

been described. It may be difficult or almost impossible to analyse these problems in

that user goals are reorganised in the course of interactions and are not likely to be

observable. Though it may be true to some extent, a specific assumption of a goal

reorganisation process may produce detailed accounts that do match observed

behaviour. Finally, two goal-action problems have been explained in terms of the

concept of affordance. It has provided a possibility of understanding how the user

would match their current goals with actions (or objects) in the system. Of course, one

design error may result in interaction problems in several of these classes because the

influence of each problem propagates rapidly through the interaction cycle. For

instance, effect-goal problems may be detected where a user is expected to have

difficulties in selecting the subsequent correct action, and that this could be

equivalently considered as a goal-action problem.

Whilst this classification of interaction problems is no mutually exclusive nor

exhaustive in explaining all interaction problems posed in the HCI research, they

provide a brief base by which to contribute not only to an understanding of user’s

possible attitudes and responses to the system (or user interface), but also to the

substantive HCI research seeking to understand specific interaction problems.

The low-level interaction analysis presented here has two different potential uses.

One use is in the process of design. The other is in generating a modelling approach

with the potential of extending HCI theory.

5.1. Cyclic interaction theory as a modelling tool

In this paper, there is no specific interaction specification presumed. This is partly

because it is beyond the scope of this paper, and partly because different designers

have their own preference for a specific type of interaction specification. For instance,

they may describe interactions using state transitions or formal notations (e.g., Dix,

1987; Harel, 1988; Monk, 1999). More recently, some designers are very keen on

using UML (Unified Modelling Language), which is a general-purpose notational

H. Ryu and A. Monk

 327

language for specifying and visualizing complex software, especially large, object-

oriented projects.

Indeed, the main purpose of this paper is to apply cyclic interaction theory for

identifying low-level interaction problems for an interactive version of their design, not

to propose a modelling tool. It may result in a weak aspect of this paper in that there is

no thorough mechanism specified with detailed explanation of each interaction

specification. This paper sets out a research idea, for future study of models of cyclic

interaction for improved this low-level interaction analysis. Further, at least the low-level

interaction should be described on both the system and the user side at the same time

and at the same level. That is, in order to interact with the system a user model must

also generate low-level actions such as keystrokes and button presses. If this kind of

model is developed, the analyses presented here can be further formalised (Ryu &

Monk, 2004a).

5.2. Cyclic interaction theory as a design tool

From a theoretical point of view, the paper exploits only cyclic interaction theory, too

easily clearing the findings of recent and important HCI theories that underline the

situated and pragmatic nature of the human-computer interaction. Actually, we do not

intend to trivialise other works. Instead we aim to provide a practical framework to

evaluate low-level interactions with the practitioner, which we see what the cyclic

interaction theory can provide.

In this context, the low-level account of user behaviour has a value in analysis of the

potential interaction problems introduced at the design stage. For example, the mode

detection walkthrough, given in Figure 7, makes it possible to reason about the cycles

of interaction required to reduce mode problems in a highly moded interface. This

analysis has a very similar purpose to the Cognitive Walkthrough (CW) analysis

(Wharton et al., 1992) in that it also analyses interaction at the level of recognition and

action cycles. In both cases the analysis focuses on the issue of direct concern to the

designer, that is, identifying points in the human-computer interaction where the system

may lead to inappropriate action, recognition or goals (Monk, 1999). However,

sometimes following the steps in the CW is not simple. In such situations, the CW does

not help the designer get insights into what is understandable and how things make

sense from the users’ point of view (Bertelsen, 2004). Thus, the simple question about

visibility may be difficult to answer without detailed knowledge about how users

Cyclic Interaction Theory

 328

interpret what they see. By contrast, this low-level account of interaction problems can

make explicit what problem a process results in, as well as what triggers that problem.

It is thus possible for the designer to build interactive versions of the design so as to

assess the assumptions made or being made regarding the interaction between the

user and the system.

Hence, a main advantage of this paper is to provide the designer with the ability to

evaluate their design when reasoning about new tasks and new systems. Any potential

design could be checked against the assumptions that make explicit: the effects on the

system of the different actions needed; what the user must perceive in the display; and

the goals that have to be generated. To this end, the designer must be able to provide

a credible answer to their proposed design as to why they assume the interaction

behaviour of the user and the system as depicted in their system specification. If the

answer to any one of these questions is negative, then this may indicate a potential

low-level usability problem.

6. Future work

This paper provided a promising alternative to analyse low-level interactions in

human-computer interaction tasks, simulating the user’s behaviour. However, the

user’s behaviour cannot be independent of ‘technology-in-use’. We see that

technologies should be seen ‘in use’, inside activity settings meaningful to the user, in a

broader context. Making hypotheses about the technology’s use or simulating it, which

is purported in this paper, without clarifying the conditions of such a simulation, brings

to results of uncertain validity.

In this context, this paper may oversimplify the problems of the human-computer

interaction without empirical data that support the conclusions and the walkthrough

approach. For this purpose, we are currently working on establishing empirical

understandings of this work more thoroughly.

7. References

Apple computer. (1992). Macintosh Human Interface Guidelines. Reading: Addison-

Wesley.

Bertelsen, O. W. (2004). The activity walkthrough: an expert review method based on

activity theory. Paper presented at the NordiCHI, Tampere, Finland.

H. Ryu and A. Monk

 329

Byrne, M. D. (1995). A Working Memory Model of a Common Procedural Error (GIT-

CS-95/06). Atlanta, GA: Georgia Institute of Technology.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer

Interaction. Hillsdale, NJ: Erlbaum.

Dix, A. J. (1987). Formal Methods and Interactive Systems: Principles and Practice.

The University of York, York.

Dix, A. J. (1991). Formal methods for interactive systems. London: Academic Press.

Dix, A. J. (2001). Excel mode error [Personal Web]. Retrieved 11, 05, 2004, from the

World Wide Web: http://www.comp.lancs.ac.uk/computing/users/dixa/

casestudy/excel-mode/

Djajadiningrat, T., Overbeeke, K., & Wensveen, S. (2002). But how, Donald, tell us

how? on the creation of meaning in interaction design through feedforward and

inherent feedback. Paper presented at the DIS 2002, London.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA:

Houghton-Mifflin.

Harel, D. (1988). On visual formalisms. Communications of the ACM, 31, 514-530.

Hutchins, E. (1996). Cognition in the Wild (Second ed.). Cambridge, Massachusetts:

MIT Press.

Mack, R. L., & Montaniz, F. (1994). Usability Inspection Methods. In R. L. Macks (Ed.),

Usability Inspection Methods (pp. 295-339). New York: John Wiley.

Monk, A. (1986). Mode errors - a user-centered analysis and some preventative

measures using keying-contingent sound. International Journal of Man-Machine

Studies, 24(4), 313-327.

Monk, A. (1998). Cyclic interaction: a unitary approach to intention, action and the

environment. Cognition, 68(2), 95-110.

Monk, A. (1999). Modelling cyclic interaction. Behaviour & Information Technology,

18(2), 127-139.

Monk, A. F. (2000). Noddy's Guide to Consistency. Interfaces(45), 4-7.

Nardi, B. A. (Ed.). (1997). Context and Consciousness: Activity Theory and Human-

Computer Interaction. Cambridge, MA: The MIT Press.

Norman, D. A. (1986). Cognitive Engineering. In S. W. Draper (Ed.), User Centered

System Design (pp. 29-61). Hillsdale, NJ: Lawrence Erlbaum.

Norman, D. A. (1988). The Psychology of Everyday Things: Basic Books.

Norman, D. A. (1999). Affordance, conventions, and design. ACM Interactions, 38-42.

Cyclic Interaction Theory

 330

Payne, S. J., & Green, T. R. G. (1986). Task-action grammars: a model of the mental

representation of task languages. Human-Computer Interaction, 2, 93-133.

Polson, P. G., Lewis, C., Rieman, J., & Wharton, C. (1992). Cognitive walkthroughs - a

method for theory-based evaluation of user interfaces. International Journal of

Man-Machine Studies, 36(5), 741-773.

Ryu, H. (2002). Will it be upper-case or will it be lower-case: can a prompt for text be a

mode signal? Paper presented at the CHI 2002, Minneapolis, MN.

Ryu, H. (2003). Modelling cyclic interaction: an account of goal-elimination process.

Paper presented at the CHI 2003, Ft. Lauderdale, FL.

Ryu, H., & Monk, A. (2004a). An interaction model: from a user model to an

environment model. Paper presented at the OZCHI, Wollongong, Austrailia.

Ryu, H., & Monk, A. (2004b). Will it be a capital letter: signalling case mode in mobile

devices. Interacting with Computers, Revised.

Suchman, L. A. (1987). Plans and Situated Actions: The Problem of Human-Machine

Communication. New York: Cambridge University Press.

Vicente, K. (2004). The Human Factor: Revolutionzing the Way People Live with

Technology. New York: Routledge.

Wharton, C., Bradford, J., Jeffries, R., & Franzke, M. (1992). Applying Cognitive

Walkthroughs To More Complex User Interfaces: Experiences, Issues, And

Recommendations. Paper presented at the CHI.

Wright, P. C., Fields, R. E., & Harrison, M. D. (2000). Analyzing human-computer

interaction as distributed cognition: the resources model. Human-Computer

Interaction, 15(1), 1-41.

Young, R. M. (1983). Surrogates and mappings: two kinds of conceptual models for

interactive devices. In D. Gentner, and Stevens, A.L (Ed.), Mental models:

Hillsdale.

