
SoSyM manuscript No.
(will be inserted by the editor)

Analysing Refactoring Dependencies

Using Graph Transformation

Tom Mens1, Gabriele Taentzer2, Olga Runge2

1 Software Engineering Lab

Université de Mons-Hainaut

B-7000 Mons, Belgium

e-mail: tom.mens@umh.ac.be
2 Technische Universität Berlin

D-10587 Berlin, Germany

e-mail: {gabi,olga}@cs.tu-berlin.de

Received: date / Revised version: date

Abstract Refactoring is a widely accepted technique to improve the structure of

object-oriented software. Nevertheless, existing tool support remains restricted to

automatically applying refactoring transformations. Deciding what to refactor and

which refactoring to apply still remains a difficult manual process, due to the many

dependencies and interrelationships between relevant refactorings. In this paper,

we represent refactorings as graph transformations, and we propose the technique

of critical pair analysis to detect the implicit dependencies between refactorings.

The results of this analysis can help the developer to make an informed decision of

which refactoring is most suitable in a given context and why. We report on several

experiments we carried out in the AGG graph transformation tool to support our

claims.

Key words refactoring, graph transformation, critical pair analysis, dependency

analysis, AGG

1 Introduction

Refactoring is a commonly accepted technique to improve the structure of object-

oriented software [1,2]. For all common object-oriented languages and program-

ming environments integrated support for applying refactorings is readily avail-

able. Even at the level of design models, support for model refactoring is starting

to emerge [3–7].

Nevertheless, there are still a number of problems if we want to apply refac-

torings as automatically as possible. To illustrate these problems, consider the fol-

lowing scenario.

2 Tom Mens et al.

Assume that we have a tool that allows us to detect opportunities for refactor-

ing [8]. Such a tool will detect badly structured code based on code smells [1,9],

metrics [10,11] or other techniques. It will use this information to propose a set

of refactorings that can be used to improve the software structure. The developer

then has to choose interactively which refactorings he would like to apply, and use

a refactoring tool to apply these refactorings.

A problem with the above scenario is that the set of refactorings that will be

proposed to the developer may be quite large, so that it is difficult to determine

which refactorings in this set will be most beneficial. The problem becomes even

worse since there may be implicit dependencies between the proposed refactor-

ings. Applying any one of the suggested refactorings may prohibit the application

of other refactorings that have been selected by the developer.

Therefore, the goal of this paper is to explore automated techniques to deter-

mine what are the implicit dependencies between a list of refactorings. In this way,

we can help the developer to decide in which order the refactorings need to be ap-

plied (due to sequential dependencies between them), and which refactorings are

more appropriate. In this article, a refactoring is considered to be more appropriate

if it gives rise to fewer potential conflicts.1

The above analysis will allow the developer to get precise answers to the fol-

lowing concrete questions when selecting a concrete refactoring in a list of pro-

posed refactorings:

– What are the alternatives of a selected refactoring (i.e., other mutually exclu-

sive refactorings that address the same design smell)?

– Which other refactorings need to be applied first in order to make the selected

refactoring applicable?

– Which other refactorings are still applicable after applying the selected refac-

toring?

Being able to answer these questions will allow the developer to perform “what

if” scenarios and will allow him to get a better insight into the effect of applying a

refactoring.

In order to achieve the above goal, we first of all need a precise formal spec-

ification of refactorings. We rely on graph transformation theory for this purpose.

Next we need to be able to analyse mutual exclusion and sequential dependencies

between refactorings. To this aim, we make use of critical pair analysis [12–14]

of graph transformations. For our experiments, we used AGG2, a general purpose

graph transformation tool that supports critical pair analysis on typed attributed

graph transformations.

1 Alternatively, appropriateness could be expressed as a function of software quality. Dif-

ferent refactorings improve different quality aspects, and can be considered to be more

appropriate if they address the particular quality aspect the software developer intends to

improve.
2 The most recent version of AGG can be downloaded from

http://tfs.cs.tu-berlin.de/agg.

Refactoring dependency analysis 3

2 Motivating Example

As a running example throughout this article, we use a simplified version of a Lo-

cal Area Network simulation (LAN) that has been adopted at various universities

to teach object-oriented design and refactoring techniques [15]. The class hierar-

chy for this LAN is shown in Figure 1. We used the standard notation of UML

class diagrams, enhanced with information to express message sends (e.g. calls

this.send(p)), variable accesses (e.g. accesses Packet.sender) and

variable updates (e.g. updates Packet.sender). Observe the need for dy-

namic method lookup in calls this.send(p) for the subclasses Work-

station, PrintServer and FileServer. The message send is found in

their common superclass Node via the method lookup mechanism. Also observe

the need for dynamic (i.e., late) binding in the method send of class Node which

calls this.accept(p). send is a so-called template method3 that relies on

the method accept whose implementation is not specified by Node, but de-

ferred to its subclasses. During program execution, the implementation of one of

the accept methods in the subclasses will be used depending on the dynamic

context in which the message was sent.

Node Packet

Node receiver
Node sender

nextNode

send(Packet p) {
 calls this.accept(p) ;
 accesses nextNode }

FileServer

save()
accept(Packet p) {
 calls this.send(p) ;
 calls this.save() ;
 accesses Packet.receiver }

PrintServer

print()
accept(Packet p) {
 calls this.send(p) ;
 calls this.print();
 accesses Packet.receiver }

Workstation

originate() {
 updates Packet.sender }
accept(Packet p) {
 calls this.send(p) ;
 accesses Packet.sender }

Fig. 1 Motivating example: simplified class diagram of a LAN simulation. Node is an

abstract superclass that cannot be instantiated.

A software developer may want to improve the structure of the design in Fig-

ure 1 by applying a variety of different refactorings. Below we present and moti-

vate some of these:

T1 Rename Method print in class PrintServer to new name process.

This refactoring should be performed in combination with the following one.

T2 Rename Method save in class FileServer to new name process. This

new name is deliberately the same as in T1, since it prepares for the application

of refactoring T4 explained below.

3 Template Method is a well-known object-oriented design pattern. For more details on

this matter, we refer to [16].

4 Tom Mens et al.

T3 Create Superclass Server for PrintServer and FileServer. The pur-

pose of this refactoring is to show that the classes PrintServer and File-

Server are similar in nature. They can both accept a packet sent by another

node in the network and process it in a specific way.

T4 Pull Up Method accept from classes PrintServer and FileServer

to the superclass Server that was created by T3. This refactoring is only

possible thanks to the renamings performed by T1 and T2, which had as a

deliberate side effect that the implementation of accept in both subclasses

PrintServer and FileServer became identical, a prerequisite for being

able to pull up the method.

T5 Move Method accept from class PrintServer to class Packet. This

refactoring is motivated by the fact that accept directly accesses the vari-

able receiver in class Packet. Moving the method accept to Packet

facilitates the implementation of active packets, which are packets that are re-

sponsible themselves for deciding to which destination they should be sent and

what they should perform at this destination. Typical examples are broadcast

packets that send information to a given set of nodes in the LAN, and collecting

packets that collect information from a given set of nodes in the LAN.

T6 Move Method accept from class FileServer to class Packet. The mo-

tivation for this refactoring is the same as for the previous one.

T7 Encapsulate Variable receiver in class Packet. This refactoring is useful

for increasing modularity, by avoiding direct accesses of the local state of a

packet. Thanks to such encapsulation, it becomes possible to change the inter-

nal representation of the packet independent of its external clients.

T8 Add Parameter p of type Packet to method print in class PrintServer.

In order to print the information stored in a packet, it is necessary to pass

this packet as a parameter.

T9 Add Parameter p of type Packet to method save in class FileServer.

The motivation for this refactoring is the same as for T8.

Even though the LAN simulation is a very simple example, the list of refactor-

ings proposed above is already quite large. In addition, there may be many implicit

or explicit interactions between these refactorings:

– Some of the proposed solutions (e.g., T4 and T5) are mutually exclusive, be-

cause they are incompatible with one another. Obviously, one cannot pull up

a method to a superclass, and at the same time move this method to another

unrelated class. This scenario is depicted in Figure 2.

– Some of the refactorings are sequentially dependent, in the sense that they rely

on other refactorings that have to be applied before. This is for example the

case for T4, which relies on all previous refactorings T1, T2 and T3.

– It is also possible to have pairs of refactorings where each refactoring in the

pair can be applied in isolation, but when combined together they can only

applied in a certain order. This is for example the case with T1 and T8 (and

similarly, with T2 and T9). They can both be applied separately to Figure 1,

but we can only apply them together in a specific order. Indeed, if we first

add a parameter to the method print and afterwards decide to rename the

Refactoring dependency analysis 5

method print, there is no problem. If we try it in the opposite order, we will

not be able to add a parameter to the method print as this method has been

renamed.

T6
(Move Method)

T4 (Pull Up Method)

Server Packet

Node receiver

FileServer

process()

accept(Packet p) {

 calls this.send(p) ;

 calls this.process() ;

 accesses Packet.receiver }

PrintServer

process()

accept(Packet p) {

 calls this.send(p);

 calls this.process();

 accesses Packet.receiver }

Server Packet

Node receiveraccept(Packet p) {

 calls this.send(p) ;

 calls this.process() ;

 accesses Packet.receiver }

PrintServer

process()

Server Packet

Node receiver

accept(FileServer f) {

 calls f.send(p) ;

 calls f.process() ;

 accesses receiver }

FileServer

process()

PrintServer

process()

accept(Packet p) {

 calls this.send(p);

 calls this.process();

 accesses Packet.receiver }

FileServer

process()

Fig. 2 Example of a mutual exclusion relationship between refactorings Pull Up

Method and Move Method. Server is an abstract superclass of PrintServer and

FileServer that cannot be instantiated. Its sole purpose is to capture the commonalities

between its subclasses. After applying the Pull Up Method refactoring, the method accept

becomes a template method in Server since it relies on another method process whose

implementation is dynamically deferred to the subclasses.

It should be clear from this motivating example that automated support is

needed to detect, for a given list of refactorings, which of these refactorings are

mutually exclusive (and why), and which refactorings are sequentially dependent

from each other. For example, it would be nice if we could automatically com-

pute the Table 1 summarising all dependencies concerning the situation illustrated

above (and more).

This table provides a lot of useful information to the software developer. For

example, one can see at a glance that T4 has a lot of sequential dependencies; T4,

T5 and T6 are in conflict to one another; and T7 is the only refactoring in the list that

does not interfere with any of the other refactorings. The information in the table

also allows us to suggest an optimal way to apply the refactorings. For example,

it is possible to apply the refactorings in the following order without giving rise

to conflicts: T8, T1, T9, T2, T3, T4, T7. Notice that T5 and T6 do not appear in this

sequence as they are in mutual exclusion with T4.

3 Suggested Solution

In order to automatically compute the information displayed in Table 1, we will

specify a representative selection of refactorings by graph transformation rules.

6 Tom Mens et al.

T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 × ← ≫

T2 × ← ≫

T3 × ←

T4 → → → × × ×

T5 × × ×

T6 × × ×

T7 ×

T8 ≪ ×

T9 ≪ ×

Table 1 Refactoring dependency table. × denotes mutual exclusion between two refactor-

ings,← denotes a sequential dependency, and≫ denotes an asymmetric conflict.

Concrete contexts (e.g., a program or a design model) will be represented by ab-

stract syntax graphs. Basing refactoring specification on graph transformation in

this way, we can use the techniques of critical pair analysis [12–14] and sequential

dependency analysis. The first technique can be used to identify mutual exclusions

and asymmetric conflicts as identified in Table 1, whereas the second technique can

be used to detect sequential dependencies between refactorings.

An advantage of these analysis techniques is that they can be performed at an

abstract level first, relying only on the abstract refactoring specifications, without

taking into account the concrete context in which they will be applied. Once a

concrete program is provided that needs to be refactored, the abstract analysis can

be applied straightforwardly in this concrete refactoring context. The benefit of this

approach is that the abstract analysis, which is the most time-consuming operation,

needs to be performed only once, when the refactoring specifications are provided.

3.1 Conflict analysis of refactoring specifications

Critical pair analysis was first introduced for term rewriting, and later generalised

to graph rewriting [17,18]. The idea of critical pair analysis is quite simple. We

explain it here in the context of refactoring. Given a predefined set of generic

refactoring specifications (such as Pull Up Method, Encapsulate Variable, Move

Method, Create Superclass, and so on), all pairs of such specifications are anal-

ysed for potential conflicts. A critical pair is detected when it is possible to find a

minimal critical context to which both refactorings in the pair can be applied in a

conflicting (i.e., mutually exclusive) way.

A critical pair analysis algorithm has been implemented in the AGG tool.4

Applying it to a selection of 11 representative refactorings, we get the results dis-

played in Figure 3. For each conflicting pair of refactorings, a strictly positive

number is shown in this figure, corresponding to the actual number of critical situ-

ations that can be computed between a given pair of refactorings. This number can

4 AGG is the only available graph transformation tool that supports critical pair analysis.

Refactoring dependency analysis 7

be higher than one if the two considered refactorings conflict in different ways.

By clicking on a number in the conflict table, all corresponding detailed conflict

situations will be displayed to the user. We will explain this critical pair analysis

in more detail in Section 6.

Fig. 3 Critical pair analysis of the refactoring specifications.

While the critical pair analysis shown in Figure 3 is very useful to show con-

flicts in principal, it is too conservative in practice, in the sense that it computes

all potential conflicts. In the context of a concrete scenario (such as the one in

Figure 1, for example), only a small fraction of these conflicts will actually occur.

Therefore, the obvious and straightforward solution is to consider the critical pair

analysis as some kind of preprocessing stage which needs to be carried out only

once. Whenever we provide a concrete context, we only need to filter the set of

computed critical pairs to find out which of the potential conflicts are actual con-

flicts that match in this concrete context. After this filtering phase, we expect to

get as results all the mutual exclusions and asymmetric conflicts that are shown in

Table 1.

3.2 Conflict analysis of refactoring applications

In a second phase, we can consider concrete conflicts and sequential dependencies

as they occur when analysing the refactoring possibilities for a concrete context

(i.e., the syntax graph of a concrete program or design model).

Applicability analysis: First of all, we can determine which refactorings are ap-

plicable in a concrete context. For example, in the context of Figure 1, refactor-

ing T4 is not immediately applicable (because the method bodies of accept are

8 Tom Mens et al.

not identical, and because the superclass Server is missing). But after applying

refactorings T1, T2 and T3, T4 does become applicable. On the other hand, after

T4, refactorings T5 and T6 are not applicable anymore.

We see that there are different reasons for refactorings not being applicable. Either

they sequentially depend on other ones that have to be applied first, or they mu-

tually exclude each other. Moreover, certain refactorings are never applicable in a

given context. For example, refactoring Pull Up Variable is not applicable in the

context of Figure 1, as none of the subclasses in the example contain variables that

can be pulled up. Because we specified refactoring applications by graph transfor-

mations, AGG can perform this applicability analysis automatically, and it reports

for each context graph the set of refactoring rules that are applicable. After this

analysis, the user can even browse through all possible matches of each applicable

rule in the concrete context graph.

Parallel conflict analysis: As we discussed above, critical pairs of refactoring

specifications describe potential conflicts. Given a concrete context, we can further

analyse which of these potential conflicts actually occur in this context. To this ex-

tent, we first check which refactorings are applicable and then look up the potential

conflicts of applicable refactorings to find out which of these real conflicts occur in

the given context. For example, the results of the critical pair analysis in Figure 3

show how refactorings Move Method and Pull Up Method give rise to different

conflicts. One of these potential conflicts is an actual conflict in the context of Fig-

ure 1, since we found in Table 1 that refactoring T4 (Pull Up Method accept) is

mutually exclusive with refactorings T5 and T6 (Move Method accept). Parallel

dependency analysis is also supported by AGG. See Section 7 for more details.

Sequential dependency analysis: Based on the applicability analysis of refactor-

ings we can also analyse which refactorings are sequentially dependent of each

other. For example, considering our motivating example we find that refactoring

T4 is not applicable in the beginning but it becomes applicable after applying refac-

torings T1, T2 and T3. After having applied a refactoring in a concrete context, the

applicability check can be triggered manually to find out whether new refactorings

become applicable, or existing refactorings stop being applicable.

In the version of AGG that we used for our experiments, sequential dependency

analysis was not yet supported. As of version 1.3 of AGG, however, sequential de-

pendency analysis is supported, which means that also this part of the refactoring

analysis can be automated.

4 Graph representation of object-oriented models

To be able to use the technique of critical pair analysis, we need to specify object-

oriented refactorings as graph transformations. Before we can do this, however,

we need to agree on how object-oriented models (or programs) can be specified

as graphs. More specifically, we will use directed, attributed graphs. Additionally,

Refactoring dependency analysis 9

these graphs must be typed to be able to determine whether or not a graph is well-

formed. To this extent, we also need to specify a type graph that corresponds to

the meta model to which all concrete graphs need to conform.

Fig. 4 Type graph representing the object-oriented meta model.

The notion of a type graph has been formally introduced in [19]. The (at-

tributed) type graph for our object-oriented meta model is shown in Figure 4. It

expresses the basic object-oriented concepts (such as classes, methods and vari-

ables), their attributes (such as name and visibility), and their relationships (such as

generalization, containment, typing, variable accesses, variable updates and mes-

sage sends) with associated multiplicities. Note that gen-edges represent the usual

generalisation relationship, whereas tgen-edges represent their transitive counter-

part. Dynamic binding of message sends can be modelled with this type graph by

a node of type Message with one sender (a node of type Method linked to the

Message via an edge of type sentBy) and multiple potential receivers (all nodes

of type Method linked to the Message via an edge of type sentTo).

To keep the paper (and especially the pictures) readable, we have deliberately

restricted ourselves to a simplified meta model. For example, we did not model

interfaces, abstract classes, abstract methods and the like. Even associations (such

as nextNode in Figure 1) are not represented explicitly, but modelled as variables

instead.

Figure 5 represents the LAN example of Figure 1 as a graph conforming

to the type graph of Figure 4. Observe how the mechanism of late binding is

represented statically: method send contained in class Node sends a message

acceptwith three potential receivers, the methods accept defined in subclasses

Workstation, PrintServer and FileServer, respectively.

Note that not all possible well-formedness constraints can be expressed in the

type graph. In AGG, this problem can be resolved by adding additional global

graph constraints. For example, we expressed the following constraints in this way:

– no two classes should have the same name

– no two methods contained in the same class should have the same name

10 Tom Mens et al.

Fig. 5 Concrete graph representing the LAN example. In this figure, we omitted all tgen-

edges because they coincide with gen-edges. In general, tgen-edges can be derived from the

gen-edges by repeatedly applying two straightforward graph transformations specifically

implemented for this purpose.

– no two variables contained in the same class should have the same name

– If there are multiple methods with the same name in the same class hierarchy,

any message sent to one of these methods should also be sent to all other meth-

ods with the same name in the hierarchy (since it is impossible to determine

the actual receiver method statically due to the mechanism of dynamic method

binding)

The concrete graph constraints can be looked up on the AGG home page.

5 Specification of object-oriented refactorings

Since programs (or design models) are specified as type graphs, refactorings can be

expressed as typed graph transformations. A graph transformation t : G =⇒p(m)

H is defined as a pair consisting of a graph production rule p : L → R and a

match m : L → G. The rule p specifies how its left-hand side (LHS) L has to be

transformed into its right-hand side (RHS) R. The match m specifies an occurrence

of this LHS in the graph that needs to be transformed. Note that there may be more

than one possible match. As shown in [14], one can easily extend this definition to

come to a notion of typed graph transformations that respects the type constraints

imposed by the type graph (without multiplicities).

As a concrete example, the transformation Encapsulate Variable in Figure 6

can be applied to a class containing a variable of a particular type. It changes the

Refactoring dependency analysis 11

Fig. 6 Graph transformation for the Encapsulate Variable refactoring. The upper middle

pane represents the LHS, the upper right pane represents the RHS, and the upper left pane

represents one of the NACs. The bottom panes are used to specify constraints between

variables used in the NAC and LHS.

visibility of a variable in a class from public to private. It also introduces a new

setter method and getter method for this variable in the class. The return type of

the getter method, as well as the parameter type of the setter method, must be the

same as the type of the encapsulated variable. The rest of the class structure is

preserved. This is visualised by assigning numbers 1 to 5 to nodes and edges in

the LHS and RHS. Nodes and edges that have the same number in the LHS and

RHS are preserved by the transformation. All nodes and edges in the RHS that

do not have a number assigned (such as the setter and getter method) are newly

introduced.

Because the graphs that we use are attributed, the values of node and edge

attributes in the graph may be modified by the transformation. This is for example

the case in Figure 6 with the attribute visibility of variable node 1, whose

value is modified from public to private.

Another crucial feature of AGG is the ability to specify negative application

conditions (NACs) [20] that capture the negated preconditions of a transforma-

tion. In the refactoring community, preconditions are frequently used to specify

the applicability constraints of a refactoring [21–24].

In a graph transformation setting, NACs can be considered as a kind of forbid-

den subgraphs. For example, the transformation rule Encapsulate Variable con-

tains the following NACs (only one of them is shown in Figure 6):

– NAC No Setter expresses that the class containing the variable to be refactored

must not contain a setter method for this variable, since this method will be

added by the transformation. To express this, we need to specify an attribute

condition relating the name s of the method in the NAC to the corresponding

setter method name v in the RHS using the condition s.equals("set"+v).

12 Tom Mens et al.

– NAC No Getter forbids the existence of a getter method in the class where the

variable is to be encapsulated. An attribute condition relates the name s of the

method in the NAC to the corresponding getter method name g in the RHS

using the condition g.equals("get"+v).

– NACs No Getter In Ancestors and No Setter in Ancestors are the same as No

Getter and No Setter, but for all the ancestor classes of the class containing the

variable to be encapsulated.

– NACs No Getter In Descendants and No Setter in Descendants are the same

as No Getter and No Setter, but for all the descendant classes of the class

containing the variable to be encapsulated.

Besides the Encapsulate Variable refactoring explained above, we implemented

many other refactorings from Martin Fowler’s refactoring catalog [1] as typed at-

tributed graph transformations with NACs. The complete list is given below. The

most interesting refactorings are presented in the following figures, leaving out

most of the NACs.

Fig. 7 Graph transformation rule for Move Method. Only one of its NACs is shown in the

left pane.

– Move Method moves a public method from a class to another class, not neces-

sarily belonging to the same inheritance hierarchy. The graph transformation

rule is shown in Figure 7. Note that this rule is an oversimplification as it does

not capture the difference between dynamic message sends and static message

sends. To be complete, moving a method to another class that does not have a

common ancestor with the source class should also entail the replacement of all

dynamic messages to and from this method by static messages. In the current

implementation of this refactoring, we opted for a more conservative definition

where moving a method is prohibited if there are still dynamic message sends

to or from this method.

– Move Variable moves a public variable from a class to another class, not nec-

essarily belonging to the same inheritance hierarchy. The graph transformation

rule is very similar to the one for Move Method.

– Pull Up Method moves a public or protected method from a class to a super-

class that resides one level up the inheritance hierarchy. The graph transforma-

tion rule is shown in Figure 8. An attribute condition is used to prevent private

methods from being pulled up.

Refactoring dependency analysis 13

– Pull Up Variable moves a public or protected variable from a class to a super-

class that resides one level up the inheritance hierarchy. The graph transforma-

tion rule is similar to the one for Pull Up Variable.

– Create Superclass creates an intermediate abstract superclass for a given class.

The graph transformation rule is shown in Figure 9.

– Rename Method changes the name of a method in a class to a new one which is

unique within this class. The graph transformation rule is shown in Figure 10.

– Rename Variable changes the name of a variable in a class to a new one which

is unique within this class. The graph transformation rule is similar to the one

for Rename Method.

– Rename Class changes the name of a class to a new unique name. The graph

transformation rule is similar to the one for Rename Method.

– Add Parameter adds a new parameter to a given method.

– Remove Parameter removes an unused parameter from a given method.

Fig. 8 Graph transformation rule for Pull Up Method. The attribute condition

!vis.equals("private") specifies that only public or protected methods can be

pulled up.

Fig. 9 Graph transformation rule for Create Superclass. Note that this transformation re-

tains all existing transitive generalization edges, and introduces some extra ones.

14 Tom Mens et al.

Fig. 10 Graph transformation rule for Rename Method.

One should note that we deliberately did not implement all details of each

refactoring in our graph transformations, since it was not our intent to build a

full-fledged refactoring tool, but rather to perform a feasibility study that would

show that the most expected conflicts between parallel refactorings can be de-

tected by critical pair analysis. For this purpose, we chose a rather abstract graph

representation that abstracts from all implementation details. Moreover, we de-

cided to restrict Create Superclass, Pull Up Variable and Pull Up Method to a

single subclass rather than a set of subclasses. We also did not express all neces-

sary preconditions for each refactoring, as this would only make the analysis more

difficult and computation intensive. For example, in the case of Pull Up Method,

many more preconditions are required than the ones we actually implemented: the

method should not directly access attributes from its defining class; the method

should not call other methods in its defining class that are not understood by its

superclass; the method should not perform super calls. For a detailed treatment of

all these preconditions for this and other refactorings, we refer to [25].

Although, in theory, some of the simplifications we made may lead to false

negatives during conflict detection, in practice, it turned out that all of the con-

flicts we expected to occur were actually detected. Furthermore, also unexpected

conflicts were reported, such as the conflicts between renaming and move refac-

torings. Roughly considering these conflicts one could argue that even renamed

variables/methods could be moved and should not cause conflicts. But we will

see that the analysis will report a conflict, since the move refactoring binds the

variable/method name which is changed after renaming. Thus, the analysis can

sharpen the view on interdependencies between different refactorings.

6 Conflict analysis of refactoring rules

Critical pair analysis is known from term rewriting and can be used to check if a

rewriting system can contain conflicting computations. Critical pair analysis has

been generalized to graph rewriting in [17] and is formally presented for typed

attributed graph transformation in [18]. Critical pairs formalize the idea of showing

a conflicting situation in a minimal context. From the set of all critical pairs we can

extract the objects and links which cause conflicts or dependencies. Let us now

Refactoring dependency analysis 15

take a closer look at the idea of critical pair analysis. We start by providing some

definitions.

Definition 1 (conflicting graph transformations) Two graph transformations t1 :
G =⇒p1(m1) H1 and t2 : G =⇒p2(m2) H2 are in conflict if t1 cannot be per-

formed after t2 (i.e., rule p1 cannot be applied to H2) or vice versa (i.e., rule p2

cannot be applied to H1).

Definition 2 (critical pair) A critical pair is a pair of conflicting graph transfor-

mations t1 : G =⇒p1(m1) H1 and t2 : G =⇒p2(m2) H2 such that G is a minimal

graph. G is minimal if there is not a proper subgraph G′ of G such that there are

conflicting transformations t′1 : G′ =⇒p1(m′

1
) H ′

1 and t′2 : G′ =⇒p2(m′

2
) H ′

2 with

m′

i(x) = mi(x) for all x ∈ Lpi
and i = 1, 2.

To construct minimal critical graphs we basically consider all overlapping graphs

of the left-hand sides of two rules with the obvious matches. If one of the rules

contains NACs, extensions of the left-hand sides by parts of the corresponding

NACs have to be considered for the construction of overlapping graphs in addition.

The reasons why graph rules can be in conflict are threefold:

1. One rule application deletes a graph object (i.e., a node or edge) which is in

the match of another rule application.

2. One rule application generates graph objects that give rise to a graph structure

that is prohibited by a NAC of another rule application.

3. One rule application changes attributes being in the match of another rule ap-

plication.

As an example of two graph transformation rules that are in conflict, consider

Pull Up Method of Figure 8 and Move Method of Figure 7. These are in conflict,

because they give rise to a number of critical pairs. One of these conflicts is visu-

alised in Figure 11. Intuitively, the conflict arises because we move a method to a

new class, while in parallel we pull up the same method to another class.

AGG supports critical pair analysis for typed attributed graph transformations.

Given a set of graph transformation rules, it computes a table which shows the

number of critical pairs for each pair of rules (see, for example, Figure 3).

In the case of Pull Up Method versus Move Method explained above, four

critical pairs are reported. Two of the critical graphs computed by AGG for this

situation are shown in Figure 15. They show critical overlapping graphs of the left-

hand sides of the rules in Fig. 8 and 7. Both critical graphs report similar conflict

situations that correspond to the conflict illustrated in Figure 11. The additional

two conflicts not depicted are less interesting, since they report possible conflicts

that cannot occur in our setting. This is due to the fact that AGG’s critical pair al-

gorithm abstracts away from concrete attribute interrelations. Since arbitrary Java

expressions can be used for attribute conditions and computations, it just reports

general conflicts on attribute usage, i.e., one rule application changes an attribute

that another rule application uses. Acting in this way, it happens that some of the

possible conflicts reported can never become real conflicts. Most of this kind of

16 Tom Mens et al.

Fig. 11 Example of a conflict between graph transformations Move Method and PullUp-

Method.

potential conflicts can be filtered out by specifying additional multiplicity con-

straints in the type graph and by further graph constraints postulating existence or

non-existence of certain graph structures. In this way, the underlying meta model

can be better adapted. More details to this topic can be found in the user manual

on the AGG web page.

We applied the critical pair analysis algorithm of AGG to the selection of refac-

torings presented in Section 5. We observed that, for many pairs of refactorings,

duplicate critical pairs were reported for the same conflict. Therefore, we improved

the algorithm to disregard meaningless critical pairs by taking into account the up-

per bounds of the multiplicity constraints in the type graph of Figure 4. The results

of this improved algorithm are shown in Figure 3. All critical pairs can be consid-

ered in detail on the AGG web page.

It is important to note here that the critical pairs that are detected by the algo-

rithm rely on the chosen meta model (type graph) as well as on the specification

of the refactorings. Since we made some simplifications to both in our feasibility

study, the number of detected critical pairs is likely to increase if we would apply

it to a more realistic refactoring suite.

Nevertheless, the obtained results correspond mainly to what we expected. For

example, we expected a certain similarity between the conflicts generated by Move

Method and Pull Up Method (resp. Move Variable and Pull Up Variable) since they

both move a method (resp. variable) to another location. We also expected similar

conflicts for Move Variable and Move Method, as well as for Pull Up Variable and

Pull Up Method. Finally, we expected many similarities between Rename Class,

Rename Variable and Rename Method.

For a detailed discussion of the analysis we performed on the computed critical

pairs, we refer to [26]. We will report our most important observations here. A

first observation is that parallel applications of the same rule at the same match are

always in conflict. But this conflict is always solvable by performing only one of

these equal rule applications. In other words, the diagonal of the critical pair table

Refactoring dependency analysis 17

would always contain critical pairs which are obvious. Because of this, we decided

to filter them out in Figure 3 in order not to unnecessarily clutter the results.

A second important observation is the presence of asymmetric conflicts in some

cases. Especially conflicts of this kind were unexpected in the beginning of our

analysis, since they are less obvious. An asymmetric situation indicates that it is

possible to apply two transformations in a particular order, but not the other way

around. Such information is very important to us, as it can be considered as a

special kind of sequential dependency that allows us to reduce the set of refactor-

ings that should be suggested to the software developer in a given context. More

specifically, if we know that refactoring T1 can be applied after refactoring T2 but

not the other way around, then we will only propose T2 in the list of suggested

refactorings. The asymmetric conflicts that can be found in the conflict table of

Figure 3 are that Add Parameter and Remove Parameter can be applied before

Move Method, Pull Up Method or Rename Method but not after.

As a third important observation of the critical pair analysis, we can conclude

that there is a preferred order in which to apply refactorings in order to reduce the

number of actual conflicts in a refactoring sequence. For example, based on the

asymmetry in the critical pair table of Figure 3 we can avoid many conflicts by

applying the following heuristics. Apply refactorings Add Parameter and Remove

Parameter as early as possible, because in the table there are more conflicts re-

ported in columns 7 and 8 than in rows 7 and 8. Apply renamings (Rename Class,

Rename Method and Rename Variable) as late as possible, because in the table

there are more conflicts reported in rows 9, 10 and 11 than in columns 9, 10 and

11.

7 Conflict analysis of refactoring applications

In AGG, it is possible to check which of the refactorings are applicable to a con-

crete input graph G: A refactoring is applicable if there exists at least one match of

its left-hand side (taking into account the NACs) in G. The list of all refactorings

that are applicable to the graph in Figure 5 is shown in Figure 12. It is obtained by

using AGGs menu item “Check Rule Applicability”. Pull Up Variable and Remove

Parameter are reported as non-applicable because, in the considered input graph,

none of the subclasses have variables, and because all methods having parameters

are called by others, thus prohibiting their removal.

Considering a specific graph like the one in Figure 5, not all reported crit-

ical pairs are relevant in this context, since not all refactorings are applicable.

Therefore, AGG supports the analysis of conflicts in concrete instance graphs

by selecting only the relevant critical pairs and showing how the corresponding

conflict graphs are matched to the instance graph. To analyse our sample refac-

torings closer we take the concrete instance graph of Figure 5, apply refactorings

T1, T2 and T3 of Section 2, and get the resulting instance graph shown in Fig-

ure 13. Figure 14 shows all critical pairs that are relevant in the context of this

instance graph. Looking closer we see that concrete conflicts are reported for ap-

plying Move Method twice as well as for applying Pull Up Method in combination

18 Tom Mens et al.

Fig. 12 Refactorings that are applicable to the LAN graph of Figure 5 are shown in black,

the others are shown in gray.

with Move Method. In other words, the conflicts we expected in Section 2 are also

derived by our formal dependency analysis.

Fig. 13 The instance graph in Figure 5 after applying refactorings T1, T2 and T3. Observe

the use of tgen-edges to denote the transitive generalization relationship: there is a tgen-edge

from FileServer and PrintServer to their indirect superclass Node.

Now we consider the actual conflicts between refactorings Move Method and

Pull Up Method closer. There are 4 possible conflict situations reported for the in-

stance graph in Figure 13. Two of them lead to relevant conflicts. The correspond-

ing minimal conflict graphs are shown in Figure 15. Taking the second conflict

Refactoring dependency analysis 19

Fig. 14 Critical pairs relevant for the instance graph in Figure 13. Rows and columns 3 and

8 are displayed in gray because Pull Up Variable and Remove Parameter are not applicable

(see Figure 12). All other changes with respect to the critical pair table of Figure 3 are also

displayed in gray. More specifically, in the instance graph, no critical pair is reported for the

combinations (4,6), (6,4), (6,11) and (11,6).

graph (indicated by (2) in the Figure), we can embed it into the instance graph

of Figure 13 in different ways. One of these embeddings, corresponding to the

conflict between T4 and T6 is highlighted in Figure 13 in green (gray).

Fig. 15 Conflicts of Move Method and Pull Up Method which can occur in the graph in

Figure 13

20 Tom Mens et al.

Besides analysing pairs of refactorings (at abstract or concrete level), we can

of course also apply the refactoring transformations directly in AGG. Figure 16

shows the result of applying the sequence of refactorings T8, T1, T9, T2, T3, T4, T7

of Section 2. Note that T5 and T6 have not been applied in this sequence because

they have a critical pair conflict with T4. In this case, the most obvious resolution

strategy would be to replace T5 and T6 by a single new transformation “Move

method accept from class Server to class Packet”.

Fig. 16 Result of applying the sequence of refactorings T8, T1, T9, T2, T3, T4, T7 to the

LAN graph of Figure 5.

Please note that the sequential dependencies we analysed in our sample refac-

toring scenario in Table 1 are not observable in our formal specification of refac-

torings based on graph transformations. This is mainly due to the fact that we

modelled only a restricted variant of the Pull Up Method and Pull Up Variable

refactorings. More specifically, in the graph transformation rules we only specified

the case where a method/variable is pulled up from a single subclass. One would

need a similar rule for pulling up from two subclasses, from three subclasses, and

so on. In the general case, we need an additional mechanism that allows us to

specify an infinite set of transformation rules. Although this seems to be feasible

from a theoretical point of view using amalgamated graph transformation [27], this

concept is not yet supported by AGG.

Refactoring dependency analysis 21

8 Related work

In [14], the formalism of critical pairs was explained and related to the formal

property of confluence of typed attributed graph transformations. In [13], critical

pair analysis is used to detect conflicting requirements in independently developed

use case models. In [12], critical pair analysis has been used to increase the effi-

ciency of parsing visual languages by delaying conflicting rules as far as possible.

In [28], graph transformation dependency analysis has been used for the purpose

of detecting and resolving inconsistencies in design models.

The problem that has been addressed in this paper is a well-known problem in

the context of version management, and is referred to as software merging [29].

Two other approaches that rely on graph transformation to tackle the problem of

software merging were proposed by Westfechtel [30] and Mens [31]. Like our

approach, they attempt to detect structural merge conflicts. The novel contribution

of the current paper, however, is the use of critical pair analysis to address this

problem. Also the application to refactoring transformations is new.

Refactoring is a very active research domain [2]. Formal approaches have

mainly been used to prove that refactorings preserve the behaviour of the program.

Graph transformations have also been used to express refactorings [5,32–35]. To

our knowledge, no attempt has been made to try and detect conflicts between refac-

torings applied in parallel.

A recent research trend is to apply refactoring techniques to models as opposed

to programs. Boger et al. developed a refactoring browser integrated with a UML

modelling tool [4]. It supports refactoring of class diagrams, state chart diagrams,

and activity diagrams. Sunyé et al. formally defined some state chart refactorings

using OCL pre- and post conditions [3]. Van Gorp et al. proposed a UML exten-

sion to express the pre- and post conditions of program refactorings using OCL

[5,36], enabling an OCL empowered CASE tool to verify nontrivial pre and post

conditions, to compose sequences of refactorings, and to use the OCL query en-

gine to detect bad code smells. Such an approach is desirable as a way to refactor

design models independent of the underlying programming language. Correa and

Werner built further on these ideas, and implemented refactorings in OCL-script,

an extension of OCL [7]. Porres implemented model refactorings as rule-based

update transformations in SMW, a scripting language based on Python [6]. Zhang

et al. developed a model transformation engine that integrates a model refactor-

ing browser that automates and customises various refactoring methods for either

generic models or domain-specific models [37].

9 Conclusion and Future Work

In the context of software refactoring, and to a lesser extent model refactoring,

there are plenty of tools available that automate the process of applying refac-

toring transformations. Such tool support is missing, however, when it comes to

suggesting a set of refactorings that can be used to improve the software structure,

and assisting the developer to select the most appropriate refactoring. One of the

22 Tom Mens et al.

reasons for this lack of tool support is the fact that there can be many implicit

dependencies between refactorings. A pair of refactorings may be mutually exclu-

sive, the application of a refactoring may depend on another one, or it may prohibit

the application of another one.

The goal of this paper was to gain a deeper insight in these refactoring depen-

dencies, and provide formally-founded tool support to analyse them. To achieve

this, we represented software (programs or models) as typed attributed graphs that

respect a type graph representing the object-oriented meta model. We specified

refactorings as parameterised typed attributed graph transformation rules. Refac-

toring preconditions were specified by means of so-called negative application

conditions.

To analyse dependencies between refactorings, we fed the above specifications

into AGG, a state-of-the-art graph transformation tool. Its most salient feature (for

the purpose of this article) is its built-in critical pair analysis algorithm. In this

article we successfully explored how critical pair analysis can help a software de-

veloper to detect and analyse conflicts and dependencies between refactorings. It

provides a first, but crucial, step towards better automated tool support for refac-

toring.

Obviously, a lot of work remains to be done. For example, some of the conflict

situations that we expected to occur were not detected because our specification of

refactorings was not sufficiently complete. In the experiments we carried out, each

refactoring was specified by a single graph transformation rule. A full specification

of some refactorings would require more than one rule, and sometimes even an

infinite number of rules.5 Currently, complex refactorings which are described by

a set of rules to be applied in a controlled order are possible in AGG, but on

the basis of Java programs only. Thus in this case, a refactoring is performed as

“programmed graph transformation”. Furthermore, we are exploring whether and

how we could use and implement graph transformation schemes and amalgamated

graph transformations for this purpose [27].

While it was possible to automate the parallel dependency analysis of refac-

torings to a large extent with AGG, sequential dependency analysis still remains a

largely manual process. Therefore, we are currently trying to include better support

in AGG to automate this process.

Another open issue is how to deal with conflicts after they have been detected.

From a formal point of view, one can rely on the technique of confluence analy-

sis. We are currently exploring how to use this technique to incorporate conflict

resolution strategies for refactorings.

For the proof of concept performed in this article, we deliberately made a num-

ber of simplifications to the object-oriented meta model that was represented as a

type graph. To be more realistic, we need to enhance this type graph to model other

kinds of object-oriented constructs such as local variables, super sends, interfaces,

and so on. This will also require changes to the refactoring rules, and may even

imply new refactorings. Note that a more sophisticated type graph will require the

5 The same problem has been identified in [32].

Refactoring dependency analysis 23

use of type graphs with inheritance (similar to the way specialisation is used in the

UML meta model). Therefore, this feature needs to be added to AGG as well.

Last but not least, the critical pair analysis takes a lot of time to compute. In

order to make the approach more high-performance and, as such, more scalable

to real-world situations, we are currently trying to improve the efficiency of the

critical pair algorithm. Initial results on how to achieve this have been reported in

[38].

References

1. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

(1999)

2. Mens, T., Tourwé, T.: A survey of software refactoring. Transactions on Software

Engineering 30 (2004) 126–139

3. G. Sunyé, Pollet, D., LeTraon, Y., J.-M. Jézéquel: Refactoring UML models. In: Proc.

UML 2001. Volume 2185 of Lecture Notes in Computer Science., Springer-Verlag

(2001) 134–138

4. Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for UML. In: Proc. 3rd

Int’l Conf. on eXtreme Programming and Flexible Processes in Software Engineering.

(2002) 77–81 Alghero, Sardinia, Italy.

5. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-

consistent UML refactorings. In Stevens, P., Whittle, J., Booch, G., eds.: UML 2003 -

The Unified Modeling Language. Volume 2863 of Lecture Notes in Computer Science.,

Springer-Verlag (2003) 144–158

6. Porres, I.: Model refactorings as rule-based update transformations. In Stevens, P.,

Whittle, J., Booch, G., eds.: UML 2003 - The Unified Modeling Language. Volume

2863 of Lecture Notes in Computer Science., Springer-Verlag (2003) 159–174

7. Correa, A., Werner, C.: Applying refactoring techniques to UML/OCL models. In:

Proc. Int’l Conf. UML 2004. Volume 3273 of Lecture Notes in Computer Science.,

Springer Verlag (2004) 173–187

8. Tourwé, T., Mens, T.: Identifying refactoring opportunities using logic meta program-

ming. In: Proc. 7th European Conf. Software Maintenance and Re-engineering (CSMR

2003), IEEE Computer Society Press (2003) 91–100

9. van Emden, E., Moonen, L.: Java quality assurance by detecting code smells. In: Proc.

9th Working Conf. Reverse Engineering, IEEE Computer Society Press (2002) 97–107

10. Marinescu, R.: Using object-oriented metrics for automatic design flaws in large scale

systems. In Demeyer, S., Bosch, J., eds.: Object-Oriented Technology (ECOOP’98

Workshop Reader). Volume 1543 of Lecture Notes in Computer Science., Springer-

Verlag (1998) 252–253

11. Simon, F., Frank Steinbrückner, Lewerentz, C.: Metrics based refactoring. In: Proc.

European Conf. Software Maintenance and Reengineering, IEEE Computer Society

Press (2001) 30–38

12. Bottoni, P., Taentzer, G., Schürr, A.: Efficient parsing of visual languages based on crit-

ical pair analysis and contextual layered graph transformation. In: Proc. IEEE Symp.

Visual Languages. (2000) 59–60

13. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional require-

ments in a use case-driven approach. In: Proc. Int’l Conf. Software Engineering, ACM

Press (2002) 105–115

24 Tom Mens et al.

14. Heckel, R., Jochen Malte Küster, Taentzer, G.: Confluence of typed attributed graph

transformation systems. In: Graph Transformation. Volume 2505 of Lecture Notes in

Computer Science., Springer-Verlag (2002) 161–176
15. Demeyer, S., Janssens, D., Mens, T.: Simulation of a LAN. Electronic Notes in Theo-

retical Computer Science 72 (2002)
16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Languages and Systems. Addison-Wesley (1994)
17. Plump, D.: Hypergraph Rewriting: Critical Pairs and Undecidability of Confluence.

In Sleep, M., Plasmeijer, M., van Eekelen, M.C., eds.: Term Graph Rewriting. Wiley

(1993) 201–214
18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph

transformation. In Parisi-Presicce, F., Bottoni, P., Engels, G., eds.: Proc. 2nd Int’l Conf.

Graph Transformation (ICGT’04), Rome, Italy. Volume 3256 of Lecture Notes in Com-

puter Science. Springer (2004) 161–177
19. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26

(1996) 241–265
20. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with Negative Application Con-

ditions. Fundamenta Informaticae 26 (1996) 287–313
21. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-

Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-

Champaign (1992)
22. Roberts, D., Brant, J., Johnson, R.E.: A refactoring tool for Smalltalk. Theory and

Practice of Object Systems 3 (1997) 253–263
23. Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, University of Illinois at

Urbana-Champaign (1999)
24. Tichelaar, S., Ducasse, S., Demeyer, S., Nierstrasz, O.: A meta-model for language-

independent refactoring. In: Proc. Int’l Symp. Principles of Software Evolution, IEEE

Computer Society Press (2000) 157–169
25. Tichelaar, S.: Modeling Object-Oriented Software for Reverse Engineering and Refac-

toring. PhD thesis, University of Bern (2001)
26. Mens, T., Taentzer, G., Runge, O.: Detecting structural refactoring conflicts using crit-

ical pair analysis. Electronic Notes in Theoretical Computer Science (2004)
27. Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description and

Application to Communication-Based Systems. PhD thesis, TU Berlin (1996) Shaker

Verlag.
28. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model inconsis-

tencies using transformation dependency analysis. In Nierstrasz, O., Whittle, J., Harel,

D., Reggio, G., eds.: Model Driven Engineering Languages and Systems. Volume 4199

of Lecture Notes in Computer Science., Springer-Verlag (2006) 200–214
29. Mens, T.: A state-of-the-art survey on software merging. Transactions on Software

Engineering 28 (2002) 449–462
30. Westfechtel, B.: Structure-oriented merging of revisions of software documents. In:

Proc. Int’l Workshop on Software Configuration Management, ACM Press (1991) 68–

79
31. Mens, T.: Conditional graph rewriting as a domain-independent formalism for soft-

ware evolution. In: Proc. Int’l Conf. Agtive 1999: Applications of Graph Transforma-

tions with Industrial Relevance. Volume 1779 of Lecture Notes in Computer Science.,

Springer-Verlag (2000) 127–143
32. Van Eetvelde, N., Janssens, D.: Extending graph rewriting for refactoring. In: Graph

Transformations. Volume 3526 of Lecture Notes in Computer Science., Springer-

Verlag (2004) 399–415 Proc. Second Int’l Conf. Graph Transformation (ICGT), Rome,

Italy, September-October 2004.

Refactoring dependency analysis 25

33. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Specifying Integrated Refactoring with

Distributed Graph Transformation. In Pfaltz, J., Nagl, M., Boehlen, B., eds.: Applica-

tion of Graph Transformations with Industrial Relevance (AGTIVE’03). Volume 3062

of Lecture Notes in Computer Science., Springer (2004) 220–235

34. Bottoni, P., Parisi-Presicce, P., Taentzer, G.: Specifying Coherent Refactoring of Soft-

ware Artefacts with Distributed Graph Transformations. In v. Bommel, P., ed.: Trans-

formation of Knowledge, Information, and Data: Theory and Applications, Idea Group

Publishing (2005)

35. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings with

graph transformations. Software Maintenance and Evolution: Research and Practice

17 (2005) 247–276

36. Schippers, H., Van Gorp, P., Janssens, D.: Leveraging UML profiles to generate plugins

from visual model transformations. Electronic Notes in Theoretical Computer Science

(2004)

37. Jing Zhang, Yuehua Lin, J.G.: Generic and Domain-Specific Model Refactoring using

a Model Transformation Engine. In: Model-driven Software Development - Research

and Practice in Software Engineering. Springer Verlag (2005)

38. Lambers, L., Ehrig, H., Orejas, F.: Efficient detection of conflicts in graph-based model

transformation. In: Proc. International Workshop on Graph and Model Transformation

(GraMoT’05). Volume 152 of Electronic Notes in Theoretical Computer Science., El-

sevier Science (2006) 97–109

