

Analysing the impact of a
communication assist in a
multiprocessor system-on-chip

Arno Moonen1, Marco Bekooij2, Rene van den Berg2, Jef van Meerbergen1,3

1University of Technology, Eindhoven, The Netherlands
2NXP Semiconductors, The Netherlands
3Philips Research, Eindhoven, The Netherlands

ES Reports
ISSN 1574-9517

ESR-2007-05
21 June 2007

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2007 Technische Universiteit Eindhoven, Electronic Systems.
All rights reserved.

http://www.es.ele.tue.nl/esreports
esreports@es.ele.tue.nl

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems
PO Box 513
NL-5600 MB Eindhoven
The Netherlands

Analysing the impact of a communication assist

in a multiprocessor system-on-chip

Arno Moonen1, Marco Bekooij2, René van den Berg2, and Jef van Meerbergen1,3

1 University of Technology, Eindhoven, The Netherlands
2 NXP Semiconductors, The Netherlands

3 Philips Research, Eindhoven, The Netherlands
a.j.m.moonen@tue.nl

Abstract. In an embedded multiprocessor system the min-

imum throughput and maximum latency of real-time appli-

cations are usually derived given the worst-case execution

time of the software tasks. Derivation of the worst-case exe-

cution time becomes easier if it is independent of the avail-

able communication bandwidth. In this paper we show that

the worst-case execution time of tasks does not depend on

communication bandwidth if a Communication Assist (CA)

is applied, despite that memory ports are shared. Further-

more we show that adding a CA increases the processor

utilization and reduces the required communication band-

width. Finally we show that the difference between the mea-

sured and computed worst-case processor utilization is less

than 6%, for our MP3 playback application.

1 Introduction

Embedded multiprocessor systems are widely used for

multimedia applications that process data streams. Exam-

ples of these applications are channel demodulation and au-

dio processing. These applications often have firm real-time

requirements, because they suffer from steep quality degra-

dation if the throughput and latency requirements are not

met.

Applications that process data streams can be repre-

sented by a task graph. The tasks are for performance and

power-efficiency reasons, typically distributed over a num-

ber of processors. In order to meet the throughput and

latency requirements, the system designer must show at

design-time that a schedule exists that satisfies these con-

straints. This schedule is constructed given the worst-case

execution times of the tasks [6, 15]. The worst-case exe-

cution time is the maximum time between start and finish

of one execution of a task. The worst-case execution time

does not include the time a task has to wait for input data

and output space. It is desirable that the multiprocessor ar-

chitecture enables the derivation of a tight worst-case exe-

cution time, since a too conservative worst-case execution

time can result in a significantly over-dimensioned system.

We focus on a multiprocessor system with a distributed

memory such that each processor has low access latency to

its local memory. A processor can write data via a com-

munication infrastructure in the local memory of another

processor. The processor is stalled until the communication

infrastructure accepts the data that needs to be transferred.

Predicting the number of processor stall cycles can be diffi-

cult because this depends on the traffic pattern generated by

the processor (which is often input data dependent) and the

availability of the communication infrastructure (which de-

pends on traffic generated by other processors). Therefore,

predicting a tight bound on the worst-case execution time is

also difficult. The derivation of a worst-case execution time

should be easy and generically applicable. Derivation be-

comes easier if the execution time of a task does not depend

on the speed at which the communication infrastructure ab-

sorbs and transfers data.

In this paper an architecture is described in which the

shared data is first stored in a local memory and then

transferred to the communication infrastructure by an au-

tonomous DMA controller. This autonomous DMA con-

troller is called a Communication Assist (CA) [3]. Its pur-

pose is to offload the processor from pushing data into the

communication infrastructure. Instead of the processor the

CA is stalled until the communication infrastructure accepts

the data.

Adding a CA adds costs. (i) End-to-end latency, because

data is first stored locally before it is transferred. Therefore,

it is suitable for applications that can tolerate additional la-

tency, as is often the case for applications that process data

streams. (ii) Memory, we need two buffers instead of one.

(iii) Power consumption, because data is first stored locally

before it is transferred.

The architecture with a CA has some important advan-

tages. (i) The worst-case execution time of a task is de-

coupled from the communication. It is decoupled because

the input and output buffers are located in the local mem-

ory of the processor and the task only starts its execution if

sufficient input data and output space is available. There-

fore is the worst-case execution time of a task independent

of the traffic generated by other processors. (ii) A CA can

decrease the worst-case execution time (instead of the pro-

cessor the CA is stalled until the communication infrastruc-

ture accepts the data). (iii) The communication infrastruc-

ture can be designed for the average communication band-

width requirements because the CA can send the data in

small messages at a regular interval, whereas in the archi-

tecture without a CA the communication infrastructure is

designed to absorb the communication bursts as fast as pos-

sible. The more relaxed communication bandwidth require-

ments can lead to a lower clock frequency of the communi-

cation infrastructure, potentially compensating the increase

of power consumption caused by first storing data locally

before transmitting.

The aim of this paper is to show that despite sharing

the local memory port the upper bound on the number of

processor stall cycles is independent of the communication

pattern and the absorption and transfer rate of the commu-

nication infrastructure if a CA is applied. We show this by

means of analytical expressions for the upper bound on the

number of processor stall cycles. We see this as a key con-

tribution of this paper.

The outline of this paper is as follows. We first de-

scribe the related work in Section 2. Section 3 explains how

throughput and end-to-end latency can be derived. The ref-

erence architecture without a CA is described in Section 4

and the architecture with a CA is described in Section 5.

Expressions for the upper bound on the number of proces-

sor stall cycles are derived in Section 6. With these upper

bounds the impact of the CA is investigated for an MP3 ap-

plication, in Section 7. Finally, the conclusions are stated in

Section 8.

2 Related work

The worst-case execution time of a task is an input to

system level analysis. System level analysis is necessary to

verify that end-to-end performance requirements are met.

The worst-case execution time of a task is determined by

analysis of the program flow [7]. During the static program

analysis a fixed delay is accounted for accessing the mem-

ory, but this delay can vary due to arbitration at the memory

port and interconnect. In [9, 8] all effects that have an in-

fluence on the transaction are taken into account in deriving

the worst-case execution time of a task. This analysis is an

iterative process due to the cyclic dependency between the

worst-case execution times of tasks and interference in the

communication infrastructure. They claim that convergence

of the iterative process is ensured but do not provide a proof

in their paper. This paper follows a different approach. We

decouple the computation and communication by using a

CA, making the worst-case execution time analysis easier

because we only need an upper bound on the number of lo-

cal memory accesses and don’t need any knowledge about

the access pattern.

The worst-case execution time of a task can be decoupled

from the communication if the input and output buffers are

located local at the processor and the task only starts its ex-

ecution if sufficient input data and output space is available.

In the Æthereal [2] and SonicsMX [11] network-on-chip the

decoupling buffers are implemented in hardware and have a

fixed size. There are three important reasons why the sys-

tem designer wants to have these buffers implemented in

memory. (i) The bursts of data produced by the processor

can exceed the capacity of a hardware buffer. (ii) Random

access within an element of the buffer can be required. (iii)

It is desirable that the buffer capacity can be changed by

adapting the software, because the required FIFO capacity

is application dependent.

When the buffers are implemented in the memory lo-

cal to the processor, a CA is required to transfer the data

from the buffer to the communication infrastructure. In

[3, 10, 1, 12] such a CA has already been introduced and in

[14] an implementation of a CA is described for a CA that

supports four communication streams. Although the goal of

the CA is similar (to offload the processor with communica-

tion tasks), we are not aware of a paper in which the effect

of the CA on the worst-case execution time is quantified. In

this paper we present such a quantitative analysis. Further-

more, we show that the worst-case execution time of a task

is independent of the communication if a CA is applied.

3 Throughput analysis

In this section we describe the analysis to derive the end-

to-end performance of an application that processes a data

stream. First, the application is described as a task graph.

Secondly, a schedule is constructed for this task graph. Fi-

nally, from this schedule the minimum throughput and max-

imum latency are derived.

An application is represented by a task graph G =
(T,C) with T a finite set of tasks and C a finite set of chan-

nels. A task ti ∈ T has a finite set of input ports Ii and a

finite set of output ports Oi, with Ii ∩ Oi = ∅. Tasks are

repetitively executed. A task cannot start before sufficient

data is available at its inputs and sufficient space is available

at its outputs. The fact that a task waits until sufficient space

is available at its outputs leads to an efficient mechanism to

prevent buffer overflow. The upper bound on the execu-

tion time of task ti is represented by τ(ti) ∈ N number of

clock cycles. The upper bound on the number of processor

stall cycles during one execution of task ti is represented by

σ(ti) ∈ N number of clock cycles. The worst-case execu-

tion time is defined as τ(ti) + σ(ti). The upper bound on

the number of accesses to the local memory made by the

processor during one execution of task ti is represented by

α(ti) ∈ N.

A channel connects an output port of a task to an input

port of a task. The channel cj that is connected to port p
is denoted by cj(p) ∈ C. The synchronization granularity

of a channel is a token. A token is a container in which

a predefined amount of data can be stored. The number

of data words that can be stored in a token is denoted by

η(cj) ∈ N. During one execution of a task λ(p) tokens are

consumed or produced from port p, with λ(p) ∈ N. We call

λ(p) the quantum of port p.

We use a generic (producer-consumer) application to

show that the computation and communication are decou-

pled with a CA, but the technique is applicable for any ar-

bitrary application graph. The application is represented by

the task graph in Fig. 1. The tasks t1 and t2 are represented

by the nodes and the communication channel c1 is repre-

t1 t2
1 c1 1

Figure 1. Task graph of a streaming application.

time
t2

t1 t1 t1

t2

τ(t1) + σ(t1) + τ(t2) + σ(t2)

τ(t1) + σ(t1)

re
so

u
rc

e pr
1

pr
2

Figure 2. Constructed schedule for the application.

sented by the edge. The quantum of the output port r ∈ O1

of task t1 is λ(r) = 1. The quantum of the input port s ∈ I2

of task t2 is λ(s) = 1.

The task graph in Fig. 1 along with the worst-case execu-

tion times allows us to determine a schedule from which the

throughput and end-to-end latency are derived. A computed

schedule is depicted in Fig. 2. Task t1 is executed on pro-

cessor pr1 and task t2 is executed on processor pr2. The k-th

execution of task t2 can start its execution after the k-th exe-

cution of task t1 is finished. The schedule in Fig. 2 requires

a channel capacity of at least 2 tokens such that task t1 can

produce a token while task t2 consumes the previously pro-

duced token. According to the schedule in Fig. 2, task t1 can

execute immediately after it finished its previous execution.

Therefore the minimum throughput on channel c1 is one to-

ken per τ(t1) + σ(t1) clock cycles. A tighter bound on the

worst-case execution time of task t1 will result in a higher

guaranteed throughput of the application. The maximum

end-to-end latency is the sum of the worst-case execution

time of task t1 and t2, i.e. τ(t1) + σ(t1) + τ(t2) + σ(t2).

4 Reference architecture without a CA

In this section we describe an architecture template

where the processor pushes the data into the communica-

tion infrastructure. The architecture template is based on

the sea-of-dsp architecture presented in [13].

The architecture template consists of tiles and a commu-

nication infrastructure. A tile consists of a processor (pr),

a memory (mem) and an arbiter (ar). The arbiter grants the

processor or the communication infrastructure access to the

memory. The application in Fig. 1 is mapped onto the mul-

tiprocessor instance in Fig. 3. Task t1 is executed on proces-

sor pr1, task t2 is executed on processor pr2 and the com-

munication channel c1 is implemented with a FIFO buffer.

This FIFO buffer is located in the memory of tile 2 and it

is implemented as a circular buffer [4], in such a way that

memory consistency is guaranteed. Processor pr1 will gen-

erate remote write accesses during the execution of task t1.

The remote write accesses are posted, which means that the

processor does not have to wait for an acknowledgement

that data has arrived in the remote memory. Therefore, it

tile 1 stallpr
1

mem

FIFO

stall

mem

tile 2 pr
2t1 t2

communication infrastructure

ar ar

Figure 3. Multiprocessor architecture without a CA.

can continue doing useful work while the communication

infrastructure is transferring the data. Task t2 reads its in-

put data from the FIFO, which is located in its own local

memory.

Processor pr1 and pr2 can be stalled while executing task

t1 and t2. There are two reasons for these processor stalls.

(i) The processor is stalled if it performs a remote write

access while the communication infrastructure is occupied.

This depends on the pattern of remote write calls and how

fast the communication infrastructure accepts data (which

depends on the allocated bandwidth to the remote mem-

ory). (ii) The processor can be stalled if it performs a lo-

cal memory access while the communication infrastructure

also wants to access the memory. The number of processor

stalls depends on the arbitration between the processor and

the communication infrastructure.

The architecture puts high pressure to the communica-

tion infrastructure, because a higher allocated bandwidth

reduces the number of processor stall cycles. In the next

section we will show that the architecture with a CA will

enable the allocation of a lower communication bandwidth.

5 Architecture with a CA

In this section we introduce an architecture where data is

first stored locally and then transferred to the remote mem-

ory by a CA.

The application in Fig. 1 is mapped onto the architecture

with a CA, as depicted in Fig. 4. Task t1 is executed on

processor pr1 and task t2 is executed on processor pr2. The

communication channel c1 contains two FIFOs, one FIFO

in tile 1 and one FIFO in tile 2. The output data of task t1 is

first stored in the FIFO which is located in the memory of

tile 1. The CA transfers the data from the FIFO in tile 1 to

the FIFO in tile 2 via the communication infrastructure. Fi-

nally, task t2 reads the input data from its local FIFO which

pr
1

mem

FIFO

stall

mem

tile 2 pr
2t1 t2

communication infrastructure

ar ar

CA

stalltile 1

CAFIFO

Figure 4. Multiprocessor architecture with a CA.

time
t2

τ(t1) + σ(t1)

t1 t1 t1t1

t2

C1,2

re
so

u
rc

e

τ(t1) + σ(t1) + τ(C1,2) + τ(t2) + σ(t2)

pr
1

pr
2

Figure 5. Schedule of the implementation with a

CA.

is located in the memory of tile 2.

The task of the CA is to offload the processor from push-

ing data into the communication infrastructure. The proces-

sor only accesses its shared local memory. The processor

can be stalled if it performs a local memory access while

the CA also wants to access the memory. The number of

processor stalls depends on the arbitration between the pro-

cessor and the CA.

The schedule of task t1, task t2 and the communication

between tile 1 and tile 2 is shown in Fig. 5. This schedule

requires a capacity of two tokens for both FIFOs. From this

schedule we conclude that the end-to-end latency in the ar-

chitecture with a CA is larger then in the architecture with-

out a CA. The end-to-end latency is the sum of worst-case

execution time of task t1 and t2 and the time to transfer the

data between the FIFO in tile 1 and the FIFO in tile 2 (C1,2).

The number of stalls of pr1 and pr2 is low if the allocate

bandwidth from the processor to its local memory is large

for both arbiters. The allocated bandwidth for the CA to

access the memory should be large enough to transport the

data according to the specified throughput. Therefore, the

tasks t1 and t2 can write to the FIFO in bursts and the CA

can be forced to spread the remote write accesses over time,

as depicted in Fig. 5. An additional advantage is that the

traffic pattern in the communication infrastructure becomes

more regular, which allows for a lower bandwidth allocated

in the communication infrastructure.

6 Upper bound on the number of processor
stall cycles

6.1 Remote write accesses

In the architecture without a CA, a processor generates

remote write accesses to communicate between processors.

If the processor issues a remote write access and the com-

munication infrastructure does not immediate accepts the

data then the processor is stalled.

Nevertheless an upper bound on the number of stall cy-

cles can be given if the communication infrastructure and

the arbiter guarantee a minimum throughput. In this paper

the maximum time before the communication infrastructure

accepts one word is M clock cycles, with M ∈ N. Note that

M is dependent of the allocated bandwidth in the commu-

nication infrastructure (which depends on the occupation of

the communication infrastructure) and the allocated band-

width to the remote memory (which depends on the arbitra-

tion at the memory port). When the processor accesses its

local memory then it would take only one clock cycle. This

duration of a memory access of one clock cycle is already

taken into account in the execution time τ(ti). Therefore,

one remote write access results in at most (M − 1) stall

cycles. An upper bound on the number of processor stall

cycles during one execution of task ti is given by:

σ(ti) ≤ (M − 1) ·
∑

p∈Oi

(λ(p) · η(c(p))) (1)

With
∑

p∈Oi
(λ(p) · η(c(p))) the total number of remote

write accesses of task ti. From (1) it follows that the

worst-case number of processor stall cycles depends on the

amount of data communicated. Therefore, the upper bound

on the number of stalls is dependent on the ratio between

communication and computation. We define the commu-

nication computation ratio ρ as the number of accesses to

write output data divided by the upper bound on the execu-

tion time in clock cycles. In our architecture the communi-

cation computation ratio of a task ti is given by:

ρ(ti) =

∑

p∈Oi
λ(p) · η(cj(p))

τ(ti)
, 0 ≤ ρ(ti) ≤ 1 (2)

The value of ρ(ti) is zero if every cycle on the processor

is spent on computation and ρ(ti) is one if every cycle on

the processor is spent on communication. Equation (2) can

be substituted in (1). Therefore, in a multiprocessor archi-

tecture without a CA, the upper bound on the number of

processor stalls due to remote write accesses is:

σ(ti) ≤ (M − 1) · τ(ti) · ρ(ti) (3)

6.2 Local memory sharing

In both architectures (with and without a CA), the local

memory of a processor is shared. Therefore, the processor

can be stalled when accessing its local memory.

During one execution of a task the worst-case number of

memory accesses from the communication infrastructure to

the local memory can be large, due to three reasons. (i) The

actual execution time of a producing task can be smaller

then the worst-case execution time. In this case the produc-

ing task can execute a number of times during one execution

of the consuming task, i.e. if there is sufficient space in the

FIFO. (ii) The quantum of the output port of the produc-

ing task can be large compared to the quantum of the input

port of the consuming task. (iii) A number of tasks can be

mapped onto one processor. In this case, a large token of

one task can arrive during the execution of another small

task.

The maximum number of processor stall cycles during

the execution of a task can be limited by selecting an ap-

propriate arbitration scheme. The arbitration scheme of the

arbiter in the tile must have three characteristics. (i) A low

latency for the local memory accesses of the processor. (ii)

A guaranteed throughput for the communication infrastruc-

ture to access the memory. (iii) It must be simple and cost-

efficient. Hosseine-Khayat and Bovopoulos [5] proposed

a bus arbitration scheme that is conform to these three re-

quirements. The arbitration has a period, which is called the

service cycle time. Each service cycle is divided into a fixed

number of time slots. A portion of the time slots is reserved

for communication. This ensures that memory bandwidth

for communication is guaranteed. In this paper the reserved

time for communication is one time slot. One time slot is

equal to one clock cycle and the service cycle time is N
clock cycles, with N ∈ N. If the service cycle time N = 5
then it is guaranteed that the communication infrastructure

or CA can access the memory at least once every five cy-

cles. In which slot it can access the memory depends on the

access requests of the processor.

Given this arbitration scheme, the processor can access

the memory (N − 1) times within the service cycle N .

Therefore, the upper bound on the number of stalls during

one execution of task ti is given by:

σ(ti) ≤

⌈

1

N − 1
· α(ti)

⌉

(4)

We will normalize the number of local memory accesses

(α(ti)) to the execution time. This gives us a metric on how

much the memory bandwidth is occupied by the processor.

We define a(ti) as the normalized number of memory ac-

cesses when executing task ti:

a(ti) =
α(ti)

τ(ti)
, 0 ≤ a(ti) ≤ 1 (5)

The value of a(ti) is zero if the processor does not access

the memory and a(ti) is one if the processor generates a

memory access every clock cycle. Equation (5) can be sub-

stituted into (4). Therefore, the upper bound on the number

of stalls for task ti is:

σ(ti) ≤

⌈

1

N − 1
· τ(ti) · a(ti)

⌉

(6)

7 Case study

In this section we describe a case study for which we

compute the lower bound on the processor utilization for

the architecture with and without a CA. Furthermore, the

tightness of the derived bound for the architecture with a

CA is verified by means of cycle true simulation.

The case study is an MP3 decoder application that con-

sists of four tasks. The first task is a block reader that reads

the input data from a compact disc and transfers the data in

large chucks to the tile where the MP3 decoder is executed.

The capacity of the input FIFO of the MP3 decoder is large.

The MP3 task decodes the compressed audio stream and

t MP3 SRC

τ(t) 467899 791
α(t) 112898 431
a(t) 0.24 0.54∑

p∈O∪I
λ(p) · η(c(p)) 2305 3

ρ(t) 0.0049 0.0038

without a CA

M 10 10
N 10 10
σ(t) (Eq. (3) + Eq. (6)) 33290 75
τ(t) + σ(t) 501189 866
u(t) (Eq. (7)) 0.93 0.91

with a CA

N 10 10
σ(t) (Eq. (6)) 12545 48
τ(t) + σ(t) 480444 839
u(t) (Eq. (7)) 0.97 0.94

Table 1. Computation of the WCET (τ(t)+σ(t)) and

lower bound on the processor utilization (u(t)) for

the MP3 and SRC tasks.

outputs 1152 stereo samples per execution. The decoded

audio stream has a sample frequency of 48KHz. The SRC

task, which is executed on a separate tile, converts this audio

stream to a sample frequency of 44.1KHz and outputs one

stereo sample per execution. The sample rate conversion is

necessary because the DA converter, which is the final task,

is designed for a sample frequency of 44.1KHz. The MP3

and SRC tasks are executed on two different Digital Signal

Processors (DSP).

We define the processor utilization to compare the archi-

tecture with and without a CA. The processor utilization is

a suitable metric for comparing the architectures because it

makes the number of processor stall cycles relative to the

execution time. The processor utilization is defined as the

utilization of the processor when executing a specific task.

The processor utilization u(ti), when executing task ti, is

defined as:

u(ti) =
τ(ti)

τ(ti) + σ(ti)
, 0 < u(ti) ≤ 1 (7)

The lower bound on the processor utilization is computed

for the DSPs where the MP3 and SRC tasks are executed.

These bounds are computed for the multiprocessor archi-

tecture with and without a CA, as shown in Table 1. The

execution time of the MP3 task (τ(MP3)) is much larger

than the execution time of the SRC task (τ(SRC)), but the

MP3 task processes 1152 samples (which are 2304 data

words plus one synchronization word) while the SRC task

processes only one sample (which are two data words plus

one synchronization word). Therefore, the communication

computation ratios (ρ(t)) are similar (0.0049 for the MP3

task and 0.0038 for the SRC task). In the multiprocessor ar-

chitecture without a CA, the processor can be stalled when

writing data to the communication infrastructure and when

accessing its local memory. The upper bound on the num-

ber of processor stall cycles is computed with (3) and (6).

In the multiprocessor architecture with a CA, the processor

can only be stalled when accessing its local memory. There-

computed
measured

N

u
(M

P
3
)

1098765432

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

Figure 6. Processor utilization u(MP3) as a func­

tion of the service cycle N .

fore the upper bound on the number of processor stall cy-

cles is computed with (6). The difference in the number of

processor stall cycles increases if the communication com-

putation ratio increases (i.e. if ρ(ti) increases then σ(ti) in

(3) increases). Therefore, the impact of the CA on the guar-

anteed processor utilization increases if the communication

computation ratio increases. For this paper, M and N are

assumed to be 10. The processor utilization when execut-

ing the MP3 task is at least 0.93 on the architecture without

a CA and at least 0.97 on the architecture with a CA. The

processor utilization when executing the SRC task is at least

0.91 on the architecture without a CA and at least 0.94 on

the architecture with a CA.

In the architecture without a CA the communication in-

frastructure can accept a new data word every 10 processor

cycles. Assuming a processor frequency of 125MHz and

a 24bit data bus, the allocated bandwidth in the communi-

cation infrastructure is 37.5MByte/sec. However, in the ar-

chitecture with a CA we allocate for the average communi-

cation bandwidth, which is approximately 0.288MByte/sec

(one stereo sample of 6byte at a sample frequency of

48KHz) between the MP3 and SRC task.

We measured the processor utilization u(MP3) for dif-

ferent configurations of the service cycle N . Both the mea-

sured processor utilization as well as the with (6) and (7)

computed lower bound are shown in Fig. 6. An indication

for the accuracy of the computed lower bound is the dif-

ference between the computed lower bound and the mea-

sured processor utilization. From Fig. 6 we conclude that

this difference is less than 6%. Furthermore, the measured

processor utilization is already 100% given a service cycle

N of seven clock cycles. Therefore, it seems that when pro-

cessing this particular stream the bursts from the DSP to the

memory are at most six clock cycles. We have seen a simi-

lar maximum burst size for other audio applications. There-

fore, typically the CA has sufficient available bandwidth for

accessing the memory. For example, the normalized num-

ber of memory accesses (a(t)) is 0.24 and 0.54 for the MP3

and SRC tasks, respectively, as shown in Table 1.

8 Conclusions

In this paper we evaluated a multiprocessor architecture

with a CA and compared it with an architecture without a

CA. We conclude based on analytical expressions that the

bound on the number of processor stall cycles is indepen-

dent of the absorption and transfer rate of the communica-

tion infrastructure if a CA is applied. We have shown that

the impact of the CA on the guaranteed processor utiliza-

tion increases if the communication computation ratio in-

creases. In our case study the communication computation

ratio is very low (0.5%), therefore, the impact of the CA

on the guaranteed processor utilization is only 4%. But, in

the architecture with a CA, the communication bandwidth

requirements of the communication infrastructure are much

less than in the case without a CA (0.288MByte/sec com-

pared to 37.5MByte/sec). It is shown by means of cycle true

simulation that the computed lower bound on the processor

utilization in the architecture with a CA has an accuracy

of at least 6% for our case study. The end-to-end latency

in the architecture with a CA is increased, but the experi-

ence is that many multimedia applications that process data

streams can tolerate this additional latency.

References

[1] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. v.
Meerbergen. Predictable embedded multiprocessor system design. In Proc.
Int’l Workshop on Software and Compilers for Embedded Systems (SCOPES),
2004.

[2] M. Coenen, S. Murali, A. Ruadulescu, K. Goossens, and G. De Micheli. A
buffer-sizing algorithm for networks on chip using tdma and credit-based end-
to-end flow control. In Proc. Int’l Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2006.

[3] D. Culler, J. Singh, and A. Gupta. Parallel computer architecture: a hard-
ware/software approach. Morgan Kaufmann Publishers, Inc., 1999.

[4] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data
synchronization scheme for embedded hw-sw shared-memory systems. In
Int’l Symposium on System Synthesis (ISSS), 2001.

[5] S. Hosseine-Khayat and A. Bovopoulos. A simple and efficient bus man-
agement scheme that supports continuous streams. ACM Transactions on
Computer Systems, 1995.

[6] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer, 1997.

[7] Y.-T. S. Li and S. Malik. Performance analysis of real-time embedded soft-
ware. ISBN 0-7923-8382-6, Kluwer academic publishers, 1999.

[8] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano.
Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip. In Proc. Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2006.

[9] S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of communicating
tasks in mpsocs. In Proc. Int’l Conf. on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2006.

[10] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip interconnect
woes through communication-based design. In Proc. Design Automation
Conference (DAC), 2001.

[11] Sonics. Datasheet SonicsMX SMART Interconnect.
http://www.sonicsinc.com.

[12] S. Stuijk, T. Basten, B. Mesman, and M. Geilen. Predictable embedding of
large data structures in multiprocessor networks-on-chip. In Proc. Euromicro
Symposium on Digital System Design (DSD), 2005.

[13] R. van den Berg and H. Bhullar. Next generation philips digital car radios,
based on a sea-of-dsp concept. In Proc. Int’l Conf. on Global Signal Process-
ing (GSPx), 2004.

[14] J. Wickstrom. Design and implementation of a communication assist in a real-
time multiprocessor system. Master’s thesis, Chalmers University of Technol-
ogy, 2005.

[15] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient computation of
buffer capacities for cyclo-static real-time systems with back-pressure. In
Proc. Symposium on Real-Time and Embedded Technology and Applications
(RTAS), 2007.

