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Abstract
The concentration of greenhouse gas emissions is considered to increase, and this can undermine the access to basic resources that are necessary for
leading a healthy life such as access to food, water, health and environment. Environmental health is closely linked to human health and the world is
witnessing an exponential increase in the trend of the greenhouse gas emissions which pose significant threat to both the environment and human health.
Hence, this study contributes to the health-environment discourse and uses an unbalanced panel data on 46 European countries from 2005 to 2015 to
investigate the impact of carbon emissions and non-renewable energy on infant and under-5 mortality rates. Consistent findings from static and dynamic
analyses reveal that: (1) carbon emissions exhibit mortality-inducing properties; (2) non-renewable energy show mortality-reducing properties; (3) persistency
in mortality rates exist; (4) the exacerbating (reducing) impact of emissions (non-renewable energy) dwindles (increases in absolute values) at higher
distributions of mortality rates; and (5) Euro Union countries show lower mortality rates relative to non-Euro Union members. Policy recommendations are
discussed.

JEL Classification: I00, I10, I15, I18, I19

1. Introduction
Environmental health is closely linked to human health and the world is witnessing an exponential increase in the trend of greenhouse gas emissions (GHG)
which pose significant threat to the environment and human health (Mujtaba and Shahzad, 2020). Several studies have shown that increase in output growth
can help an economy raise its health funds as well as expenditures for the protection of the environment. To be more specific, rapid economic growth has
resulted in exponential increase in emissions throughout the world and the occurrence of diseases have also amplified (Badulescu et al.,2019). Thus, rapid
economic growth is undermining the health status of individuals in both developed and developing countries (Alimi et al.,2019). There are several factors that
determine human health such as safe drinking water, clean air, sufficient food and secure shelter and climate change (Geels et al, 2015; Orru et al. 2019;
Kushta et al, 2021). The World Health Organisation (WHO) therefore emphasizes on access to safe water and sanitation services, clean air and housing
conditions (Badulescu et al., 2019) as a pre-cursor to ensuring good health and longevity.

The World Health Organization (2018) projected that in 2030-2050 about 250,000 deaths annually can be attributed to climate change. This seems to be a
probability given the pattern of the GHG emissions during the last decades. Although countries have been implementing climate mitigation policies in their
respective territories, the world has witnessed a rise in GHG emissions by 2.2% per year between 2000 to 2010 compared to only 1.3% during 1970-
2000 (Edenhofer,2015).  Among the greenhouse gas emissions, carbon emission which is linked to intense consumption of nonrenewable energy resources is
one of the major drivers behind global warming and environmental degradation with negative impact on human health (Nathaniel and Adeleye, 2021). During
1970-2010, approximately 78% of total greenhouse gas emissions were attributed to carbon emissions from fossil fuel combustion and industrial processes
(Edenhofer, 2015). Furthermore, the concentration of GHG emissions is projected to increase the world temperature by 2°C and 3°C in the upcoming 50 years
which can undermine access to basic resources that are necessary for leading a healthy life such as access to food, water, health and environment. Also, the
direct effect of climate change can be seen from the rising sea level as well as the increase in heat waves (GEA,2012). The indirect effect of climate change on
health can be realized in the form of changes in nutrition and development of infectious diseases (Pablo-Romero et al.,2016; Orru et al., 2013). 

Energy, on the other hand, is necessary for economic growth, productivity as well as human development. The need to replace fossil fuels with renewable
resources is more urgent than ever which will not only help economies achieve sustainability in terms of environment but also in terms of economic
perspective since a healthy population is crucial to economic productivity and sustainable development (WHO,2002). It is clear that as the world population
continues to increase, the quest for energy increases. However, if these energy requirements are met by continuously burning fossil fuel, it will in turn affect the
world population who will suffer injuries and deaths due to fossil fuel combustion. Furthermore, the empirical literature documents that nonrenewable energy
(NRE) consumption is associated with adverse human capital impact (Anser et al. 2020; Shobande, 2020; Asghar et al. 2020; Sarkodie et al., 2019) which
ought to be further investigated and serves as the motivation for this study.

The focus on Europe is germane. The United States Environmental Protection Agency (2017) reports that European Union countries are one of the top carbon
emitters after USA and China and the effect of climate change has mostly been felt in the region through the heat waves. Although, European countries have
invested considerably to increase the quality of their environment by building renewable and clean energy technologies, the impacts of emissions and
pollution on human health in these countries is still significant which is posing burden on their health budgets as well (Geels et al., 2015; Orru et al, 2013, 2015;
Kushta et al., 2021). Global warming is considered to be the new health threat for Europe (McKee and Jacobson, 2000) and some studies document the
environmental impact of environmental pollution and climate change on health, adolescent and premature mortalities in Europe. Aside contributing negatively
towards human health, the hot temperatures resulting from global warming has widespread effects in the region (Caruso et al., 2020; Sarofin et al., 2017;
Barreira et al 2017; Meehl and Tebaldi, 2004; Robine et al., 2008). From an integrated assessment model, Geels et al. (2015) showed that a positive
relationship between changes in climate, air pollution and premature deaths such that reductions in emissions cause a large significant decrease in mortality.
Using comparative analysis, Orru et al (2013) showed that increase in climate change causes increase in the concentration of ground-level ozone which is
associated with respiratory morbidity and mortality. This is similar to the findings of Anderson et al (2004) who conclude that acute health effects such as
respiratory and cardiovascular disease are the resultant outcomes of increasing ground-level ozone (Bell et al., 2005; Gryparis et al., 2004; Ito et al., 2005; Levy
et al., 2005), and chest tightness and asthma (Mortimer et al., 2002; Amann et al., 2005). Similarly, increase in ambient ozone levels is associated with
increase in hospital admissions for respiratory diseases and chronic obstructive pulmonary diseases (Burnett et al., 1997; Anderson et al., 1997; Peters et al.,
1999) 

The noticeable lacuna in these studies is the non-consideration of the impact carbon emissions and non-renewable energy in addition to other socio-economic
factors that may affect infant and under-5 mortalities in Europe. This is the gap our paper sets to fill. Therefore, we extend these studies by engaging a
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comprehensive examination of infant and under-5 mortalities in Europe. In addition, we probe the discourse on the effects of atmospheric pollution using
carbon dioxide emissions (Ari et al., 2018; Shahbaz et al., 2019; Churchill et al., 2018; Nkengfack et al., 2020) which is a component of greenhouse gas (GHG)
and non-renewable energy consumption. Given these, we contribute to the health-environment literature by investigating the intrinsic nexus of carbon
emissions, energy usage and a set of socio-economic variables on infant and under-5 mortality rates in Europe. The objectives of the study are threefold: (1)
show whether carbon emissions and nonrenewable energy independently impact infant and under-5 mortality rates; (2) if the impact is significantly different
across the dis-aggregated groups; and (3) if mortality rate is persistent. To achieve these objectives, we use an exclusive data on 46 European countries dis-
aggregated into Euro Union and non-Euro Union countries from 2005 to 2015. We deployed a blend of three static and dynamic estimation techniques – panel
spatial correlation consistent least squares dummy variable (PSCC-LSDV), system generalised method of moments (GMM), and quantile regressions - to
ascertain the robustness of our results and to explore if there are significant differences between the two groups. To the best of knowledge, this is the first
study to adopt this approach. Our results hold when we control for time varying common shocks and regional fixed effects. For the most part our results are
consistent. We find that carbon emissions display mortality-increasing properties, non-renewable energy reduces mortality rates, persistency in mortality rates
exist and Euro Union countries show lower mortality rates than non-Euro Union members. The rest of the study is structured as follows: Section 2 discusses
the empirical literature; Section 3 outlines the data and model; Section 4 interprets the results and Section 5 concludes with policy recommendations.

2. Literature Review
The impact of carbon emissions and environmental degradation on health indicators have been examined extensively in the empirical literatures (Mehrara &
Nasibparast, 2013; Ali & Audi, 2016; Kolasa-Więcek & Suszanowicz, 2019; Hossain et al., 2020; Shobande, 2020). These studies can be grouped into three
strands of the literature. The first deals with the relationship between the life expectancy and environment, the second documents the association between
mortality and environment and the third strand argues on the relationship between the environment and health expenditures. From the first strand, it has been
conclusively argued that environmental degradation can lead to lower life expectancy.  For instance, Ali and Audi (2016) deployed the ARDL technique and
found that environmental degradation and life expectancy have significant negative relationship in Pakistan. Using similar approach, Hossain et al. (2020)
showed that life expectancy and environmental degradation exert negative relationship in Bangladesh. Employing neural network approach, Kolasa-Więcek
and Suszanowicz (2019) investigated the correlation between life expectancy and air pollution in Europe. The most frequent correlation in their analysis was
observed for fine particles, indicating that fine particles have greater influence compared to other pollutants on European residents. 

As has been already mentioned, second strand of literature deals with the relationship between the environment and mortality. Mehrara and Nasibparast
(2013) examined the factors determining child mortality for developing countries using Bayesian Model Averaging approach. The results revealed that per
capita GDP as well as literacy rate negatively affect child mortality rate. Erdoğan et al. (2019) used infant mortality and life expectancy as health indicators to
analyse how they are affected by carbon emissions in Turkey. The study found that a rise in carbon emissions increases infant mortality rate and
simultaneously decreases life expectancy. Similarly, Owusu and Sarkodie (2020) examined the association among ambient particulate matter and ozone,
mortality and welfare cost for 195 countries and found strong evidence for the impact of air pollution on premature deaths, mortality and daily adjusted life
years. Most of the aforementioned studies use carbon emissions as a proxy for environmental degradation. However, Jian et al. (2017) constructed an
environmental quality index and assessed its effects on mortality rate for USA. This index was created out of 5 variables such as land, water, built, air and
socio demographics. Findings revealed that if environmental quality is poor, mortalities increase. In another study, Patel (2018) found that infant mortality
increased monotonically due to poor air quality among non-Hispanics whites and blacks. Detailed examination of the dynamic interdependence among
health, carbon emissions and economic growth was carried out by Katrakilidis et al. (2016) for Greece. Employing the Kuznets-type models, their causality
result identified causal effects from income to infant mortality and carbon emissions.

The third strand of literature deals with the environmental quality and health expenditures. Ahmad et al. (2018), considered carbon emissions from coal,
natural gas and petrol as measures of environmental degradation and explored how the increase in these emissions can affect health quality of China. They
found long-run negative impact of these emissions on health status. Yu et al. (2016), on the other hand, analysed Chine’s provinces to see if there is any
relationship between health care spending and environmental indicators. They found that public health expenditure is positively related to economic growth
and environmental quality. In a different framework, Farooq et al. (2019) found that carbon emissions increase health issues for 30 Chinese provinces. The
study also found that population is an effective determinant of health issues. Recently, Zeeshan et al. (2021) attempted to analyse the asymmetric
relationship among carbon emissions, pollution, and household health expenditures in China. Using nonlinear autoregressive distributed lag (NARDL), they
found positive impacts on health spending due to positive shocks of carbon emissions and environmental pollution in long- and short-runs but they found that
health spending is negatively affected by the negative shocks. On 15 ECOWAS countries, Alimi et al. (2019) analysed how national healthcare expenditure,
private and public health care expenditure can be affected via environmental quality. Employing panel data techniques, the study found that environmental
pollution, proxied by carbon emissions, positively affect the overall health expenditure and public healthcare expenditure. Taking this into account, Badulescu
et al. (2019) used European countries to demonstrate how environmental pollution along with non-communicable diseases and economic growth can
determine health expenditures. Economic growth was found to be a critical determinant for health expenditures in both the short- and long run. However, the
result was mixed for the effect of carbon emissions on health expenditures. 

A cross country analysis of 51 countries based on income groups was carried out by Chaabouni et al. (2016) who examined the causal relationship between
carbon emissions, health expenditures and economic growth. The result showed that health expenditures and economic growth, carbon and economic growth
are bi-directionally related. Shahzad et al. (2020) showed that renewable energy consumption negatively and significantly affected the health expenditures in
Pakistan similar to the findings of Ullah et al. (2020). Empirical studies have also been carried out using OECD countries to determine relationship between
health status and other indicators including environmental quality. Mujtaba and Shahzad (2020) analysed the relationship among economic growth,
environmental pollution and public health for OECD countries. Their result revealed that carbon emission and renewable energy Granger-cause healthcare
spending in OECD economies. Lastly, Wang et al. (2019) also investigated the OECD countries to examine long run association among GDP, carbon and health
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care expenditure. The results revealed that healthcare and GDP are bi-directionally related for Germany and USA. Results of New Zealand and Norway showed
two-way relationship between healthcare spending and CO2 emissions while for Canada, Germany and USA, bidirectional causality was found between GDP
growth and carbon emissions.  What is missing in the literature is a comprehensive, cross-country analysis of impact of carbon emissions, non-renewable
energy and other socio-economic factors that influence infant and under-5 mortality rate in Europe. We differ by engaging more robust analyses using
aggregated and dis-aggregated sample, static and dynamic estimation techniques to interrogate these inter-woven relationships.

3. Data And Empirical Approach
3.1       Data

This study fills a gap in the literature by interrogating the health-environment dynamics in Europe. To achieve the stated objectives, an unbalanced panel data
of 46 European countries is used from 2005 to 2015. The study uses a total of ten variables. Two dependent variables – infant (MINF) and under-5 (MU5)
mortality rates; two key explanatory variables – carbon emissions (CO2PC) and nonrenewable energy (ENUPC) and six control variables - per capita GDP (PC);
female secondary school enrolment (SECF), health expenditure per capita (HEXPC), urbanization (URB), access to basic sanitation (BSAN) and inflation rate
(INFL). All variables are sourced from World Bank (2020) World Development Indicators. On a priori expectations, carbon emissions, nonrenewable energy,
inflation, and urban population are expected to increase mortality rates. Hence, positive coefficients are expected. Whereas, per capita income, female
secondary school enrolment, health expenditures, basic sanitation, are expected to reduce mortality rates. Table 1 details the variables description, sources
and expected signs.

 Table 1                            Variables Description and Expectations

Code Variables Expectations

MINF Mortality rate, infant (per 1,000 live births) N/A

MU5 Mortality rate, under-5 (per 1,000 live births) N/A

CO2PC CO2 emissions (metric tons per capita) +

ENUPC Non-renewable energy consumption per capita -

PC GDP per capita (constant 2010 US$) -

HEXPC Current health expenditure per capita (current US$) -

SECF School enrolment, secondary, female (% gross) -

INFL Inflation, consumer prices (annual %) +

BSAN People using at least basic sanitation services (% of population) -

URB Urban population (% of total population) +

Note: MINF = infant mortality rates; MU5 = under-5 mortality rate; CO2PC = carbon emissions per capita; ENUPC = non-renewable energy per capita; PC =
GDP per capita (constant 2010); HEXPC = health expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access
to basic sanitation; URB = urban population; N/A = not applicable.
 Source: Authors' Compilations.

3.2       Models and Specifications

To address the first and second objectives, mortality rate (infant and under-5) model is expressed as a function of carbon emissions, non-renewable energy,
and a set of control variables. Adapting, Adeleye, Adedoyin, and Nathaniel (2020) and Adeleye, Gershon, Ogundipe, Owolabi, Ogunrinola, and Adediran (2020),
the equation is stated as:

Where M represents infant mortality/under-5 mortality rate; ln denotes natural logarithm; Z is a vector of control variables (PC, HEXPC, SECF, INFL, BSAN, URB);
ηi, ψ are parameters to be estimated;     is time dummy that controls for yearly variations of the dependent variable;    is the error term. To control for outliers
and establish an elasticity relationship, all variables except for INFL are transformed into their natural logarithms to capture elasticities, account for skewness
and nonlinear relationship between the outcome and explanatory variables. The variables are as defined in Table 1. 

To address the third of objective of investigating the persistency of mortality rates, equation [1] is augmented to include the lagged values of mortality rates
and the equation is expressed as:

Where yi, ξ are parameters to be estimated; d is time dummy that controls for yearly variations of the dependent variable; v is the error term. Lastly, to check if
the outcomes of Equation [1] differ by union classification, the sample is divided into two distinct groups[1]: (i) Euro Union members[2] and (ii) non-Euro Union
members. 

3.3       Estimation Techniques
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This study follows Shobande (2020) and employs both static and dynamic models to investigate the health-environment dynamics. These techniques have
been used various panel data studies (Adeleye & Eboagu, 2019; Adusei, Adeleye, & Okafor, 2020; Niebel, 2014). For the static model, panel spatial correlation
consistent least squares dummy variables techniques (PSCC-LSDV) along with the two-step system GMM is used to analyse the dynamic model. The PSCC
estimator uses the Driscoll and Kraay (1998) robust standard errors technique and corrects the standard errors of the coefficient estimates for possible
dependence (Cameron & Trivedi, 2005; Hoechle, 2006). The underlying algorithm routines the OLS/WLS[1] and fixed effects (within) regression and computes
spatial correlation consistent standard errors for linear panel models. The LSDV technique, also known as the fixed effects, have the advantage of accounting
for heterogeneities across the panel observations using dummy variables. 

In the event that the dependent and independent variables may be not strictly exogenous, the two-step system generalized methods of moments (Sys-GMM) is
used to analyse the dynamic model. Sys-GMM also controls for endogeneity, heteroscedasticity and omitted variables (Arellano & Bond, 1991; Blundell &
Bond, 1998; Roodman, 2014). Endogeneity broadly refers to situations in which an explanatory variable is correlated with the error term. Li (2016) noted that
endogeneity problem creates problem for true relationships among variables. Instrument variables are also used to control problems like endogeneity as
suggested by Anderson and Hsiao (1982). Many recent studies like Noman, Gee and Isa (2020) and Bashir, Khan, Jones & Hussain (2020) studies financial
stability variable as endogenous.  Kim (2017) also used GMM model to control endogeneity problem in banking sector. Huq, Ashraf, Gupta, and Zheng (2018)
used two-step GMM by modelling the financial stability of banks. Arellano and Bond (1991) first induced the GMM that used instruments variables and
Hansen (1982) used lagged variable of dependent variables in GMM to obtain robust estimations. Finally, in the event that the dependent variables exhibit
non-normal distributions such that the impact of the covariates change along their conditional distribution, it becomes relevant to deploy a suitable technique
that models this scenario. The most appropriate is the quantile regressions proposed by Koenker and Basset (1978); Koenker and Hallock (2001); Koenker
(2005). This technique is also more robust in the presence of outliers or weaker linear correlation between variables (Brida et al., 2020). 

4. Results And Discussion
4.1       Summary Statistics

Presented in Table 2 is the detailed summary of the model variables which includes the full sample statistics, as well as the statistics for countries in the
European Union (EU) and those outside the union. The mean values of infant mortality rate and under-5 mortality rate of children per 1000 live births within
the full sample consideration are 6.52 and 7.645 respectively. This shows that for every recorded 1000th births, there are about 7 infants and approximately 8
under-5 children’s mortalities. The European countries’ healthcare focus on child life according to the sample statistic above reveal that only about 4 infants
and 5.127 children below age 5 die at birth, when compared to 1000 children born within the same sample period. For the non-EU nations, about twice the
number of infant (9.795) and under-5 (11.283) deaths per 1000 live births are observed. Also, the average values of carbon emissions, non-renewable energy
per individual, income, health expenditure by government, enrolment and inflation rates, sanitation, urban population as well as natural resources rent are
reported as seen on Table 2 for the full sample, EU and non-EU zones respectively.

4.2       Pairwise Correlation Analysis

Table 3 displays the pairwise correlations evidenced in the data and the associations are statistically significant at the 1%, 5% and 10% levels, respectively. All
the variables with the exception of inflation rate (INFL) show statistically significant with infant mortality and under-5 mortality rates. Due to the high
collinearity coefficient of 0.946 between PC and HEXPC both variables are excluded in subsequent analyses to test the robustness of our results.

Table 2       Summary Statistics

 Variable Full Sample     European Union Non-European Union

 Mean  Std. Dev.  Min  Max  Mean  Std. Dev.  Min  Max  Mean  Std. Dev.  Min  M

MINF 6.52 5.813 1.7 44.6 4.252 2.039 1.8 15.2 9.795 7.654 1.7 44

MU5 7.645 6.64 2.2 52.5 5.127 2.404 2.2 18 11.283 8.788 2.2 52

CO2PC 6.772 3.516 1.299 24.825 7.746 3.614 3.353 24.825 5.491 2.933 1.299 12

ENUPC 3373.846 2569.326 679.862 18178.14 3557.21 1483.373 1591.668 9428.811 3096.321 3630.706 679.862 18

PC 27262.08 24094.51 2061.547 111968.4 32478.54 21528.33 5607.713 111968.4 20480.69 25569.95 2061.547 91

HEXPC 2475.279 2310.227 79.332 10014.71 2776.047 1958.296 254.53 7639.851 1986.529 2725.078 79.332 10

SECF 103.576 16.136 76.098 174.678 107.439 17.031 83.272 174.678 96.22 11.06 76.098 12

INFL 3.839 5.518 -4.478 59.22 2.312 2.319 -4.478 15.402 6.067 7.671 -2.41 59

BSAN 95.26 5.935 71.619 100 96.382 5.133 75.091 99.995 93.723 6.594 71.619 10

URB 69.493 13.196 42.49 97.876 71.128 12.066 51.533 97.876 67.256 14.332 42.49 93

Note: MINF = infant mortality rates; MU5 = under-5 mortality rate; CO2PC = carbon emissions per capita; ENUPC = nonrenewable energy per capita; PC = GDP 
capita (constant 2010); HEXPC = health expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access to basic san
URB = urban population.
 Source: Authors' Computations 
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Table 3        Correlation Analysis

Variables 1 2 3 4 5 6 7 8 9 10 11

(1) lnMINF 1.000

(2) lnMU5 0.998*** 1.000

(3) lnCO2PC -0.625*** -0.615*** 1.000

(4) lnENUPC -0.741*** -0.729*** 0.788*** 1.000

(5) lnPC -0.801*** -0.803*** 0.664*** 0.768*** 1.000

(6) lnHEXPC -0.815*** -0.824*** 0.568*** 0.709*** 0.976*** 1.000

(7) lnSECF -0.573*** -0.570*** 0.337*** 0.468*** 0.543*** 0.550*** 1.000

(8) INFL 0.312*** 0.328*** -0.089* -0.099** -0.358*** -0.438*** -0.199*** 1.000

(9) lnBSAN -0.725*** -0.735*** 0.459*** 0.467*** 0.603*** 0.648*** 0.382*** -0.260*** 1.000

(10) lnURB -0.564*** -0.561*** 0.555*** 0.708*** 0.691*** 0.641*** 0.593*** -0.081* 0.518*** 1.000

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively; ln = natural logarithm; MINF = infant mortality rates; MU5 =
under-5 mortality rate; CO2PC = carbon emissions per capita; ENUPC = nonrenewable energy per capita; PC = GDP per capita (constant 2010); HEXPC =
health expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access to basic sanitation; URB = urban
population; TNRR = total natural resource rent.
 Source: Authors' Computations 

4.3       Results from Static Models

4.3.1    PSCC-LSDV Results, Full Sample

Controlling for yearly variation of the dependent variable, results from PSCC-LSDV technique are presented in Table 4. Columns [1] and [2] show that infant
and under-5 mortality rate is exaggerated by the incident of carbon emissions across the model specifications. These outcomes support Mutizwa and
Makochekanwa (2015), Fotourehchi (2016), Ahmad et al. (2016), Adedotun et al. (2018), and Erdogan et al. (2019). However, contrary to Anser et al., (2020)
and Asghar et al., (2020), non-renewable energy consumption exhibit mortality-reducing properties. This can be explained by the fact that European
economies' higher share of energy still come from fossil fuel sources whose extraction of materials from these non-renewable resources are then utilized to
improve the health outcomes. Also, the control variables with the exception of urbanization, have significant reducing impact on mortality rates. 
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Table 4       PSCC-LSDV Results, Full Sample

Variables Main Model Robustness Model

[1] [2] [3] [4]

lnMINF lnMU5 lnMINF lnMU5

lnCO2PC 0.0537*** 0.0395** 0.0454** 0.0369*

(3.57) (2.55) (2.25) (1.86)

lnENUPC -0.4534*** -0.4092*** -0.5982*** -0.5572***

(-35.23) (-37.45) (-39.12) (-37.72)

lnPC -0.1200** -0.0876*

(-2.33) (-1.85)

lnHEXPC -0.0890* -0.1202**

(-1.70) (-2.52)

lnSECF -0.3538*** -0.3089*** -0.5544*** -0.5343***

(-6.00) (-5.33) (-23.61) (-21.95)

INFL -0.0073** -0.0055* 0.0054 0.0077

(-2.22) (-1.81) (0.82) (1.18)

lnBSAN -2.7914*** -2.7070*** -3.5549*** -3.5137***

(-20.66) (-21.19) (-16.12) (-15.96)

lnURB 0.6940*** 0.6716*** 0.5387*** 0.5268***

(29.07) (36.12) (17.71) (18.69)

Euro Union -0.2474*** -0.2243*** -0.2673*** -0.2382***

(-10.18) (-10.29) (-7.53) (-7.03)

Constant 18.7124*** 17.9451*** 23.1050*** 22.7125***

(21.07) (20.86) (22.85) (22.15)

VIF 5.92 5.92 2.02 2.02

Time Dummies Yes Yes Yes Yes

No. of Obs. 390 390 407 407

R-Squared 0.872 0.878 0.843 0.841

F Statistic 41309.923 65552.458 25200.988 20038.360

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively; ln = natural logarithm; MINF = infant mortality rates; MU5 =
under-5 mortality rate; CO2PC = carbon emissions per capita; ENUPC = nonrenewable energy per capita; PC = GDP per capita (constant 2010); HEXPC =
health expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access to basic sanitation; URB = urban
population.
 Source: Authors' Computations 

 

For robustness checks, PC and HEXPC are excluded from the analyses due to high collinearity and the bloating of the variance inflation factors (VIF). The
results shown in columns [3] and [4] are not significantly different from those of columns [1] and [2] thereby sustaining our earlier findings. We therefore
conclude that while carbon emission aggravates infant and under-5 mortality rates, nonrenewable energy exerts mortality-reducing impact. Furthermore, using
non-Euro Union members as the base dummy[1], the intercept coefficients of Euro Union countries are consistently negative which imply that countries in the
European Union have lower mortality rates than non-Euro Union members. Lastly, the model’s goodness-of-fit show that the R-squared ranges around 0.87 and
indication that about 87% variation in mortality rates is explained by the regressors. Also, the F-statistics shows that all the regressors are jointly significant in
explaining mortality rates.

4.3.2    PSCC-LSDV Results, Sub-Samples

To further probe the discourse, the sample is divided into two - Euro Union and non-Euro Union samples. A cursory observation of the results shown in
columns [5] to [8] reveals some significant differences and interpretation is limited to the variables of interest – carbon emissions, and non-renewable energy.
Though negative, the impact of carbon emissions on both sub-samples is statistically not significant for the main models. This outcome may not be
unconnected to Europe’s stance in promoting environmentally friendly initiatives. While non-renewable energy use shows statistically significant mortality-
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reducing properties across both samples. The switch to cleaner energy may contribute to reducing the impact of non-renewable energy on the incidence of
mortality rates in Europe. These are important findings and contributions to the literature.

For robustness checks, PC and HEXPC are excluded from the analyses due to high collinearity and the bloating of the variance inflation factors (VIF). With the
exception of carbon emission which indicates a statistically significant negative impact for Euro Union countries, the remaining results shown in columns [9]
to [12] are not significantly different from those of columns [5] to [8] thereby sustaining our earlier findings. Contrary to the full sample outcomes, we conclude
that both carbon emissions and non-renewable energy exert mortality-reducing impact. These findings are significant additions to the body of knowledge.

Table 5    PSCC-LSDV Results, Sub-Samples

Variables Main Model Robustness Model

Euro Euro Non-Euro Non-Euro Euro Euro Non-Euro Non-Euro

[5] [6] [7] [8] [9] [10] [11] [12]

lnMINF lnMU5 lnMINF lnMU5 lnMINF lnMU5 lnMINF lnMU5

lnCO2PC 0.0063 -0.0010 -0.0172 -0.0248 -0.0577*** -0.0590*** 0.0171 0.0083

(0.50) (-0.08) (-0.43) (-0.64) (-3.98) (-4.44) (0.42) (0.21)

lnENUPC -0.1391*** -0.1072** -0.5129*** -0.4790*** -0.2713*** -0.2503*** -0.6575*** -0.6203***

(-3.45) (-2.77) (-22.90) (-28.16) (-8.61) (-8.66) (-28.10) (-28.01)

lnPC -0.4396*** -0.4139*** 0.0917 0.1111

(-7.37) (-7.06) (0.92) (1.29)

lnHEXPC 0.1911*** 0.1591** -0.3074*** -0.3224***

(3.17) (2.67) (-3.10) (-3.82)

lnSECF -0.1129 -0.0838 -1.0762*** -0.9577*** -0.1692* -0.1593* -1.6537*** -1.5748***

(-0.89) (-0.64) (-5.55) (-6.21) (-1.98) (-1.84) (-10.35) (-9.72)

INFL 0.0219*** 0.0223*** -0.0122*** -0.0102*** 0.0351*** 0.0371*** 0.0042 0.0064

(4.53) (4.62) (-3.64) (-3.38) (7.12) (7.04) (0.68) (1.05)

lnBSAN -3.3026*** -3.1619*** -2.3545*** -2.4200*** -3.6875*** -3.6005*** -3.5806*** -3.6288***

(-16.70) (-17.46) (-5.72) (-6.55) (-19.37) (-19.46) (-11.66) (-11.92)

lnURB 0.2558*** 0.2525*** 1.2054*** 1.2141*** 0.1264** 0.1212** 1.1035*** 1.1260***

(4.02) (4.03) (13.63) (17.38) (2.14) (2.14) (10.80) (12.18)

Constant 20.1826*** 19.3359*** 17.8823*** 17.4141*** 20.8727*** 20.4688*** 26.3112*** 25.9491***

(15.18) (14.96) (8.46) (9.03) (24.38) (23.93) (14.40) (13.95)

VIF 5.49 5.49 8.63 8.63 2.04 2.04 2.43 2.43

Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes

No. of Obs. 271 271 119 119 271 271 136 136

R-Squared 0.815 0.825 0.939 0.946 0.764 0.768 0.882 0.881

F Statistic 45195.883 107264.922 780.975 1046.176 1197.225 991.080 37675.366 28788.093

Note: ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively; ln = natural logarithm; MINF = infant mortality rates; MU5 =
under-5 mortality rate; CO2PC = carbon emissions per capita; ENUPC = nonrenewable energy per capita; PC = GDP per capita (constant 2010); HEXPC =
health expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access to basic sanitation; URB = urban
population.
 Source: Authors' Computations 

4.4       Results from GMM Dynamic Models

Controlling for possible endogeneity of the variables, omitted variables and heteroscedasticity, the results from the two-step system GMM are displayed in
Table 6. Vividly noticeable, is the statistical significance (at 1 percent level) of the one period lag of the explained variables, infant mortality rate (MINF) and
under-5 mortality rate (MU5) respectively which suggests that mortality rate is increasingly persistent in the region. The signs and statistical significance of
non-renewable energy align with those from the PSCC-LSDV models while the coefficient of carbon emissions is mostly positive but statistically significant in
one out of four models. Overall, this study submits that: (1) mortality rate is persistent; (2) carbon emission show mortality-inducing properties; and (3) non-
renewable energy exert mortality-reducing characteristics.

Table 6 2-Step System GMM Results, Full Sample
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Main Models   Robustness Models

[13] [14] [15] [16]

Variables lnMINF lnMU5 lnMINF lnMU5

l.lnMINF/l.lnMU5 0.933*** 0.940*** 0.867*** 0.917***

(0.016) (0.014) (0.011) (0.016)

lnCO2PC 0.016 0.029 0.057* 0.051

(0.018) (0.030) (0.030) (0.038)

lnENUPC -0.056*** -0.090** -0.051* -0.034

(0.017) (0.037) (0.027) (0.044)

lnPC -0.035** -0.022

(0.015) (0.016)

lnHEXPC 0.046*** 0.038***

(0.012) (0.009)

lnSECF -0.209*** -0.211*** -0.292*** -0.197***

(0.041) (0.038) (0.072) (0.051)

INFL -0.002*** -0.001*** -0.003*** -0.003***

(0.001) (0.000) (0.001) (0.001)

lnBSAN -0.203 0.182 -0.495*** 0.230

(0.133) (0.202) (0.128) (0.264)

lnURB 0.096* 0.045 0.055 -0.092

(0.049) (0.064) (0.086) (0.101)

Constant 1.983*** 0.627 3.860*** 0.553

(0.568) (0.794) (0.573) (1.038)

Time Dummies Yes Yes Yes Yes

Observations 355 355 371 371

AR(2)/Hansen 0.734/0.132 0.588/0.092 0.838/0.377 0.369/0.109

Instruments/Groups 30/39 30/39 30/41 30/41

Wald Statistics 1.010e+06 2.001e+06 204896 457583

Note: *** and * denote statistical significance at the 1% and 10% levels, respectively; ln = natural logarithm; MINF = infant mortality rates; MU5 = under-5
mortality rate; CO2PC = carbon emissions per capita; ENUPC = nonrenewable energy per capita; PC = GDP per capita (constant 2010); HEXPC = health
expenditure per capita; SECF = female secondary school enrolment; INFL = inflation rate; BSAN = access to basic sanitation; URB = urban population.
 Source: Authors' Computations 

4.5       Results from Simultaneous Quantile Analysis

For brevity, the interpretations focus only on the impact of carbon emissions and non-renewable energy across different quantiles of infant and under-5
mortality rate. Table 7 and 8 reveals that across the distribution, carbon emission exacerbates both infant and under-5 mortalities though with more
significance on the infant mortality rate model. Supporting earlier results from the PSCC-LSDV and system GMM techniques, close scrutiny of the results in
Table 7 reveals that the percentage of increase on mortality rate from a percentage increase in carbon emissions ranges between 0.483% at the 0.05 quantile
to 0.424% at the 0.95 quantile. This finding support earlier literature on the devastating impact of emissions on human health (Ergogan et al., 2019; Sarkodie
et al., 2019; Owusu & Sarkodie, 2020). We observe that the impact, though positive and statistically significant at the 1% level declines at higher distribution of
infant mortality rate. The plausible explanation is that modern technology and the adoption of renewable technology by richer countries in Europe dampen the
hazardous effects of carbon emissions. Contrarily, the positive impact of emissions on under-5 mortalities (Table 8) is about 0.42% and significant only at the
0.70 and 0.80 quantiles. Like the pattern observed in Table 7, the positive effect of carbon emissions on under-5 mortality reduces across the quantiles, though
mostly statistically not significant. Also, non-renewable energy shows mortality-reducing problems. The elasticity of impact on infant mortality is statistical
significance at the 0.30 to 0.95 quantiles. That is, energy consumption contributes to the reduction of mortality rate by 0.297% to 0.493%, on average, ceteris
paribus. Cursory observation also shows that at higher distribution of infant mortality rate, the mortality-reducing effect of non-renewable energy increases in
absolute terms. Again, the most plausible explanation could be the departure from non-renewable energy to adoption of cleaner and environmentally friendly
energy sources. Similar to the outcomes of carbon emission on under-5 mortality rate, the negative impact of emissions on under-5 mortality rate is evident
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only at the 0.70 and 0.80 quantiles with the effect ranging between -0.404% and 0.424%. Also, the reducing-effect increases (in absolute terms) across the
quantiles, though mostly statistically not significant. Due to the high collinearity between PC and HEXPC, we estimated the quantile models backing out these
two variables. The results which are shown in Appendix Table 1B and 1C are not significantly different from Table 7 and 8.

Table 7 Distributional Effects of Carbon Emissions and Non-renewable Energy Consumption on Infant Mortality Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

lnCO2PC 0.483*** 0.478*** 0.471*** 0.466*** 0.460*** 0.453*** 0.447*** 0.442*** 0.439*** 0.433*** 0.424**

(0.168) (0.144) (0.117) (0.099) (0.084) (0.077) (0.085) (0.097) (0.110) (0.135) (0.171)

lnENUPC -0.217 -0.241 -0.273 -0.297** -0.322** -0.356*** -0.387*** -0.408*** -0.425*** -0.455** -0.493*

(0.252) (0.216) (0.175) (0.148) (0.126) (0.116) (0.128) (0.146) (0.164) (0.202) (0.257)

lnPC -0.580** -0.521** -0.444** -0.386** -0.323** -0.242* -0.166 -0.113 -0.073 0.000 0.093

(0.289) (0.247) (0.200) (0.170) (0.145) (0.134) (0.147) (0.167) (0.188) (0.232) (0.296)

lnHEXPC -0.166* -0.188** -0.217*** -0.238*** -0.261*** -0.291*** -0.319*** -0.338*** -0.353*** -0.380*** -0.414***

(0.095) (0.081) (0.066) (0.056) (0.048) (0.044) (0.048) (0.055) (0.061) (0.076) (0.097)

lnSECF -0.355 -0.307 -0.244 -0.197 -0.146 -0.080 -0.018 0.025 0.058 0.117 0.193

(0.231) (0.197) (0.160) (0.135) (0.116) (0.107) (0.117) (0.133) (0.150) (0.185) (0.236)

INFL 0.002 0.003 0.003 0.003 0.004* 0.004** 0.005** 0.005* 0.005* 0.005 0.006

(0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004) (0.004)

lnBSAN -1.353 -1.420 -1.507* -1.573** -1.644*** -1.736*** -1.822*** -1.882*** -1.928** -2.010** -2.116*

(1.249) (1.076) (0.869) (0.735) (0.625) (0.572) (0.633) (0.726) (0.816) (1.005) (1.274)

lnURB -2.419** -2.495*** -2.592*** -2.665*** -2.745*** -2.848*** -2.944*** -3.011*** -3.063*** -3.155*** -3.273***

(1.019) (0.877) (0.709) (0.600) (0.510) (0.467) (0.516) (0.592) (0.666) (0.820) (1.039)

Observations 390 390 390 390 390 390 390 390 390 390 390

Note: *** p<0.01, ** p<0.05, * p<0.1
Standard errors in ( )

Table 8         Distributional Effects of Carbon Emissions and Non-renewable Energy Consumption on Under-5 Mortality Rate
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

VARIABLES 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

lnCO2PC 0.454 0.450 0.447 0.442 0.438 0.433 0.427 0.424*** 0.421*** 0.415 0.411

(1.725) (1.554) (1.333) (1.077) (0.871) (0.592) (0.293) (0.146) (0.139) (0.439) (0.657)

lnENUPC -0.201 -0.222 -0.250 -0.282 -0.307 -0.343 -0.381 -0.404* -0.424** -0.467 -0.495

(2.595) (2.337) (2.005) (1.620) (1.310) (0.891) (0.441) (0.220) (0.209) (0.660) (0.988)

lnPC -0.577 -0.532 -0.474 -0.407 -0.353 -0.279 -0.198 -0.151 -0.109 -0.018 0.040

(2.946) (2.654) (2.277) (1.839) (1.488) (1.011) (0.501) (0.250) (0.238) (0.750) (1.123)

lnHEXPC -0.175 -0.191 -0.211 -0.235 -0.254 -0.280 -0.309* -0.326*** -0.341*** -0.373 -0.394

(0.963) (0.868) (0.744) (0.601) (0.486) (0.331) (0.164) (0.082) (0.078) (0.245) (0.367)

lnSECF -0.313 -0.280 -0.238 -0.188 -0.149 -0.095 -0.035 -0.000 0.031 0.097 0.140

(2.353) (2.120) (1.819) (1.469) (1.188) (0.808) (0.400) (0.200) (0.190) (0.599) (0.897)

INFL 0.002 0.003 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.006 0.006

(0.045) (0.041) (0.035) (0.028) (0.023) (0.016) (0.008) (0.004) (0.004) (0.012) (0.017)

lnBSAN -1.363 -1.413 -1.478 -1.554 -1.614 -1.697 -1.789 -1.842* -1.889* -1.991 -2.057

(12.888) (11.608) (9.960) (8.043) (6.508) (4.423) (2.191) (1.094) (1.038) (3.277) (4.908)

lnURB -2.640 -2.692 -2.759 -2.837 -2.899 -2.985 -3.079* -3.134*** -3.182*** -3.288 -3.355

(10.005) (9.011) (7.731) (6.244) (5.052) (3.433) (1.701) (0.849) (0.806) (2.544) (3.810)

Observations 390 390 390 390 390 390 390 390 390 390 390

Note: *** p<0.01, ** p<0.05, * p<0.1 Standard errors in (
)

5. Conclusion And Policy Recommendations
This study aligns with the 2030 United Nations Sustainable Development Goals 3 and 11 which aim to promote healthy lives as well as wellbeing and make
cities and human settlements sustainable, resilient and safe, respectively. It exclusively contributes to the health-environment discourse by using mortality
rates, carbon emissions and non-renewable energy to investigate these intrinsic relationships for an unbalanced sample of 46 European countries from 2005
to 2015. For the full sample, consistent findings from the PSCC-LSDV, system GMM and quantile regressions reveal that carbon emissions exacerbate infant
and under-5 mortality rates while non-renewable energy exhibit mortality-reducing properties. Noticeably, the mortality-increasing impact of emissions reduces
while that from non-renewable energy increases at higher distribution of mortality rates. For the sub-samples, we find that emissions significantly (robustness
model) reduce mortality rate in the Euro Union countries relative to non-Euro countries. In addition, non-renewable energy exhibit mortality-reducing properties
in both sub-samples but with higher elasticity in non-Euro countries. Lastly, the results from the GMM estimations affirm the persistency of infant and under-5
mortality rates in the data.

Some policy recommendations. Although we have found that non-renewable energy consumption reduces the mortality rate, it should be noted that
renewables have the capacity to curb the effects of carbon emissions and, therefore, increase both health and environmental quality. Besides, excessive
extraction of non-renewable resources can make a country vulnerable towards shocks. Hence, it is important to promote green solutions to attain friendly and
sustainable environment in European countries. Green solutions involve replacing fossil fuel or non-renewable resources with renewable energy technologies
and obtaining energy efficiency. Both these two tools (being energy efficient and developing renewables) can improve the climate and human health by
replacing the harmful emission gases and air pollutants such as PM2.5 (Buonocore et al., 2016). The renewables are not only effective alternatives to fossil
fuels, but they also contain numerous positive externalities. By reducing the human beings’ exposure to respiratory and cardiovascular diseases that arises
from fossil fuel burning, renewables offer significant positive benefit to the health sector. Since our objective was to look at the effect of carbon emissions on
health, we did not include regulatory control in our model. For further studies, the role of regulatory control on the health-environment dynamics may be taken
up.
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