Analysing the IOBC Authenticated Encryption
Mode

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
c.mitchell@rhul.ac.uk

Abstract. The idea of combining a very simple form of added plaintext
redundancy with a special mode of data encryption to provide data in-
tegrity is an old one; however, despite its wide deployment in protocols
such as Kerberos, it has largely been superseded by provably secure au-
thenticated encryption techniques. In this paper we cryptanalyse a block
cipher mode of operation called IOBC, possibly the only remaining en-
cryption mode designed for such use that has not previously been ana-
lyzed. We show that IOBC is subject to known-plaintext-based forgery
attacks with a complexity of around 2™3, where n is the block cipher
block length.

1 Introduction

This is perhaps the last chapter in a long and rather unfortunate story!, namely
that of ‘special’ modes of operation for block ciphers, designed to offer ‘low cost’
combined integrity and confidentiality protection by combining encryption with
the addition of simple (or fixed) redundancy to the plaintext. The underlying
idea is to design the mode so that modifying the ciphertext without invalidating
the added redundancy is impossible without knowledge of the encryption key. It
is a long story since the idea dates back over 30 years, and a sad story because
one by one these special modes of operation have been shown to fail to meet
their objectives.

Such modes are the theme of section 9.6.5 of Menezes, van Oorschot and
Vanstone’s landmark book [1]. As they point out, the starting point for the
development of such modes is the observation that encryption alone does not
guarantee integrity. This, combined with the observation that the ‘obvious’ ap-
proach of encrypting the data and then separately computing a MAC involves
twice the work, leads to the alternative notion of adding detectable redundancy
before encrypting so that it can be detected after decryption. Two main methods
for adding redundancy have been proposed:

— add a fixed block at the end of the plaintext, which may be public or secret
(in the latter case the block acts as an auxiliary key);

! Since ACISP has played its own part in this developing tale, it seems fitting to
present this final chapter at ACISP 2013.

— append to the plaintext some easily computed and simple (public) function
of the plaintext.

In either case we refer to the block added to the end of the plaintext as a Ma-
nipulation Detection Code (MDC). Whichever approach is adopted, the method
for computing the MDC needs to be simple, or it offers no advantage over the
more conventional ‘encrypt then MAC’ approach.

Note that there is a third, related, approach which remains viable and is, in-
deed, increasingly used; this involves computing a keyed function of the plaintext
(a sort of ‘weak MAC’) which is then encrypted to make it secure. The plaintext
itself may or may not be encrypted. Indeed, one example of such an approach,
namely GCM/GMAC [2], has a proof of security and has been standardized [3,
4]. The main differences between GCM (and other related techniques) and the
approaches we are concerned with here is that GCM uses a ‘standard’ encryption
method and, of course, GCM has a proof of security.

At this point we observe that the general approaches described above possess
an intrinsic weakness if the method of adding redundancy is public?. Suppose an
attacker persuades the legitimate originator of protected messages to encrypt a
message containing a correct MDC somewhere in the middle (where the MDC
is correct in the sense that it is a correct MDC on the data that precedes it).
The attacker will then be able to delete all ciphertext blocks following the en-
crypted MDC, and such a change will not be detectable. Despite this weakness,
using an appropriate encryption mode combined with a public method for adding
verifiable redundancy to a message has been widely used for message integrity
protection — e.g. in Kerberos (see, for example, [5]). We thus restrict our atten-
tion in the remainder of the paper to the case where the MDC is a secret value
(this is the approach proposed for use with the IOBC mode, which forms the
main subject of this paper).

Regardless of the nature of the MDC, the method of encryption needs to be
chosen with great care. Using a stream cipher or CBC mode encryption is clearly
totally insecure, since a ciphertext produced with such a technique can readily be
manipulated in such a way that large parts of the recovered plaintext, including
the end of the plaintext, remains unchanged. A simple modified version of CBC
called Plaintext Cipher Block Chaining (PCBC) [6,7], in which the feedback
chaining variable is the exclusive-or of the immediately preceding ciphertext
and plaintext blocks, was proposed back in the 1980s to avoid this problem. This
scheme was used in Kerberos version 4 [7] to provide combined encryption and
integrity protection. The weakness of PCBC for use as an integrity-protection
mode was first pointed out by Kohl [6]. As is simple to verify, Kohl showed that
interchanging two of the ciphertext blocks of a PCBC-encrypted message does
not affect the decryption of the final block, i.e. it is extremely simple to make
undetectable changes to messages. Note that this is actually a stronger attack
than is implied by Menezes, van Oorschot and Vanstone [1] who refer only to
the danger of known-plaintext attacks.

2 This problem appears to be part of the cryptographic folklore — it was pointed out
to the author by Bart Preneel in the late 1990s

Menezes, van Oorschot and Vanstone [1] describe a slightly different mode,
confusingly also referred to as PCBC (this time for Plaintext-Ciphertext Block
Chaining), in which the feedback chaining variable is the modulo 2" sum of
the immediately preceding ciphertext and plaintext blocks. This technique was
also described as long ago as 1982 by Meyer and Matyas [8]. Unfortunately,
despite its long history, the latter version of PCBC was shown to possess major
weaknesses when used with an MDC for integrity protection in a 2005 ACISP
paper [9]. M-PCBC, a further variant of PCBC due to Sierra et al. [10], was
also shown to fail to offer appropriate MDC protection in the same ACISP 2005
paper [9]. Another variant of PCBC was proposed by Gligor and Donescu [11];
however, this latter scheme, known as iaPCBC, was shown to possess serious
vulnerabilities by Ferguson et al. [12]. Yet another scheme, called PES-PCBC,
was proposed by Zuquete and Guedes [13] but, as observed by Recacha [14]
as well the authors themselves [15], PES-PCBC is subject to known-plaintext
attacks.

Indeed, to the author’s knowledge, almost all the proposals for such special
modes have been cryptanalyzed, with one exception — a scheme proposed in
1996 called Input and Output Block Chaining (IOBC) [14]. One possible reason
why IOBC has escaped attention is that until recently the only available de-
scription was in Spanish. However, recently an English language translation of
the original 1996 paper® has been made available by the author, and it is this
translation that has been used as the basis of this paper. It is interesting to note
that IOBC has, nevertheless, had an impact on the cryptographic literature. A
modified version of IOBC, called EPBC, was published in 1997 [15] and was
subsequently cryptanalyzed in 2007 [16].

Finally we observe that, although the history of the area sketched above may
give the impression of an ordered and coherent narrative, the truth is somewhat
different. Ideas, and sometimes attacks, appear to have been put forward in-
dependently of one another, and one role of this introduction is to try to pull
together the main developments in the area.

The remainder of the paper is structured as follows. Section 2 provides details
of the operation of IOBC and its use for integrity protection. This is followed in
section 3 by certain observations on the properties of IOBC and its component
functions. This sets the stage for section 4, in which a known plaintext forgery
attack against IOBC when used for integrity protection is described. A brief
discussion of possible fixes to IOBC is given in section 5, before a certificational
chosen-plaintext attack on IOBC is outlined in section 6. Concluding remarks
are provided in section 7.

3 http://inputoutputblockchaining.blogspot.com.es/

2 The Recacha IOBC Mode

We next describe the operation of the IOBC block cipher mode of operation*. We
base our description on Recacha’s 1996 paper [14], although we use the notation
of Mitchell [16].

2.1 Initial Assumptions

We suppose that IOBC is to be used with an n-bit block cipher, i.e. a block cipher
operating on plaintext and ciphertext blocks of n bits. We further suppose that
n is a power of two, and put n = 2™ (as is the case for all standardized block
ciphers [17]). We write e (P) for the result of block cipher encrypting the n-
bit block P using the secret key K, and dx(C) for the result of block cipher
decrypting the n-bit block C using the key K. Finally we suppose the plaintext
to be protected is divided into a sequence of n-bit blocks (if necessary, having
first been padded): Py, Py, ..., P;.

2.2 Initialization Vectors

The scheme uses two secret n-bit Initialization Vectors (IVs), denoted by Fy and
Go. The nature of the intended restrictions on their use is not altogether clear.
However, one suggestion in the original Recacha paper [14] is that they should
be generated as follows.

Suppose K’ is an auxiliary key used solely for generating the IVs. Suppose
also that S is a sequence number, managed so that different values are used for
every message. Then Fy = ex(S) and Gy = ek (Fp). For the purposes of this
paper we assume that Fy and G are always generated this way, and thus the
scheme can be thought of as employing a pair of block cipher keys and a non-
secret, non-repeating, sequence number (which must be carefully managed to
prevent accidental re-use of sequence number values). Note that special measures
will need to be taken if the same key is to be used to encrypt communications
in both directions between a pair of parties. Avoiding sequence number re-use
in such a case could be achieved by requiring one party to start the sequence
number they use for encryption at a large value, perhaps halfway through the
range.

2.3 Operation
The IOBC encryption of the plaintext Py, Ps, ..., P; operates as follows:
Gi=P,oF,_, (1<i<t),

Ci = Fi @g(Gi_l), (2 <:< t),

4 PES-PCBC (briefly mentioned in section 1) is the same as IOBC with the exception
that in PES-PCBC the function g is the identity function.

where C; = F1 ® Gg, @ denotes bit-wise exclusive-or, and g is a function that
maps an n-bit block to an n-bit block, defined below. The operation of the mode
(when used for encryption) is shown in Figure 1. Note that we refer to the values
F; and G; as ‘internal’ values, as they are computed during encryption, but they
do not constitute part of the ciphertext.

Fig. 1. IOBC encryption

The function g is defined as follows. Suppose X is an n-bit block, where
n = 2™. Suppose also that X = L||R where L is the leftmost 2™~ — 1 bits of
X and R is the rightmost 2! + 1 bits of X (and, as throughout, || denotes
concatenation). Then

9(X) = (>1 (D)II(>1 (R))
where >; denotes a rightwards (cyclic) shift by 4 bit positions.
Decryption operates similarly. We have:

F,=Ci®g(Gi—1), (2<i<t),
Gi=dg(F;), (1<i1<1),
and F; = C1 ® Gy, where d denotes block cipher decryption.

2.4 Additional Remarks

As described above, we assume throughout that the IVs Fy and G are derived
by ECB-mode-encrypting a sequence number using a secondary key. Thus the

ciphertext blocks will be a function of this serial number (as well as the pair of
keys used). We thus write [S], C, Ca, ..., C; for a sequence of ciphertext blocks,
meaning that C,Cy, ..., Cy were encrypted using the sequence number S. This
is logical, since the sequence number will need to be sent or stored with the
ciphertext to enable correct decryption.

Finally observe that IOBC should only be used with relatively short mes-
sages. That is, as specified by Recacha [14] (and for reasons which become clear
below), a message to be encrypted using IOBC shall contain at most n?/2 — 1
plaintext blocks, where n is the plaintext block length. Thus for n = 64 and
n = 128, the two most commonly used block lengths, a message shall contain at
most 2047 and 8191 blocks, respectively.

2.5 Using IOBC for Integrity Protection

As already implied, IOBC is designed for combined confidentiality and integrity
protection. Confidentiality comes simply by encrypting the data using IOBC
mode. Integrity is achieved by adding an MDC to the end of the plaintext —
what Recacha [14] refers to as an Integrity Check Vector (ICV). After decryption
of an IOBC-protected message, the receiver must check that the ICV is correct,
and must reject the message if it is not.

Recacha recommends use of a secret ICV of length n/2. This ICV must
clearly be known to the intended recipient, and should therefore be regarded as
forming part of the key (along with the key K used in IOBC computations and
the key K’ used to derive the IVs).

3 Preliminary Observations

We first establish some simple results on the operation of the IOBC scheme.
The first Lemma derives directly from a discussion in section 6 of [16]. It is also
implicit in the discussions of Recacha [14].

Lemma 1. Suppose [S],Cy,Cs,...,Cy and [S'],C1,C%,...,C} are IOBC en-
crypted versions of the plaintext sequences Py, Pa,..., P, and P{,P5,...,P],, re-
spectively. If the ciphertext:

S, Ct,C5, .. CF o =
[$1,C1,Chy ..., ClL_1,Co® g(Gl_1) ® g(Gy-1), Copi1y -, Ct
is submitted for IOBC decryption (where 1 < u and 1 < v < t, and G,—1 and
Gl are values computed during the encryption of the respective sequences of

blocks), then the resulting sequence of plaintext blocks Py, Py, ..., Py, ., will be
equal to

P{,le,...7P1:71,PrUEBF1/L,1@F’U717P’U+13P’U+27"'7Pt'

Proof We first note that it follows immediately from the definitions that
Ff =F/ and Gf =G} (1 <i<wu—1), where F/ and G} are the internal values
generated during the encryption process that yielded the ciphertext message
C1,Ch,...,Cl,. Hence PF =P/ (1 <i<u-—1).

We now consider the decryption of C;. We have:

EFr=C; ®g(Gr_,) (from section 2.3)
=C,®g(Gy_1) D 9(Gy1) ® g(G_q) (by defn. of C})
=C, ®g(Gy—1) (since GX_, =G._;)

= F, (from section 2.3).
Hence G}, = G,. Finally we have:

P =G ®F;_, (from section 2.3)
=G, ® F,_, (from above)
=P,&F,_ ,®F, ;1 (from section 2.3).

We now consider the decryption of Cj ;. We have

wi1 = Chi1 ®9(Gy,) (from section 2.3)

u

= Cuy1 D g(Gy) (by defn. of C, | and from above)

= Fyy1 (from section 2.3).
Hence G7, | = Gyy1. Finally, we have

Py, =G ®F,; (from section 2.3)
=Gpt1 @ F, (from above)

= P,+1 (from section 2.3).

The same argument shows that P;,, = P, for every i > 1, and the desired
result follows. 0

Remark 1. Lemma 1 suggests a way in which it may be possible to forge an
IOBC-encrypted message so that the final block will contain the correct ICV.
However, the problem remains of discovering ¢g(G!,_;) ® g(G,—1) (as used in
constructing the message in the statement of the lemma). Recacha [14] discusses
this very point, and explains that making this difficult motivates the inclusion of
the function ¢ in the design of IOBC — that is, if g was not included (as is the
case for PES-PCBC), then simple forgeries could be achieved by manipulating a
single encrypted message for which part of the plaintext was known. We revisit
this point later, and show that ¢ is not as effective in achieving the goal as
intended.

We next give some elementary observations on the operation of IOBC.

Lemma 2. Suppose [S],C1,Cs,...,C: is the encryption of Py, Pa,. .., P; using
I0BC, and that F; and G; are as defined in section 2.3. Then:

(i) Cit1® Pjpa = g(Gj) + Gjyo, 1<j<t—2;
(it) @1 ¢" " (Cazio1 ® Piyzi) = g°(Gy) ® Cyan, 1< j<t—=21<k<
(t—4)/2.
Proof (i) follows immediately from the definition of the operation of IOBC.
(ii) follows by inductively applying (i), observing that g is a bit permutation,
and hence a linear function, and so it distributes across the bitwise exclusive-or
operation (). O

Remark 2. Tt is not hard to see that if g*(G;) = G; for some k, then Lemma 2(ii)
could be combined with Lemma 1 to yield a forgery attack (given a ciphertext
message with corresponding known plaintext). This point is made by Recacha
[14], who explains that the bit permutation g has been chosen so that the smallest
integer ¢ > 1 such that ¢’ is the identity permutation is n?/4 — 1. The restriction
on the maximum length of messages that can be encrypted using IOBC, as
defined in section 2.4, prevents this problem arising in practice. However, as we
show next, in some cases g* is ‘close’ to the identity permutation for significantly
smaller values of k.

We conclude this section by giving certain properties of the function g. We
examine two special cases of particular practical importance, i.e. where n is
either 64 or 128. We first consider the case n = 64.

Lemma 3. If X is a randomly selected 64-bit block then:
Pr(X = ¢34 (X)) = 2722

Proof As in section 2.3, put X = Lx||Rx, where Lx and Ry are 31-bit and
33-bit blocks, respectively. Let Y = ¢g34!(X), and, analogously, let Y = Ly ||Ry-.
We first observe that Lx = Ly . This follows immediately from the definition
of g and the observation that 341 = 31 x 11, i.e. it is a multiple of 31.
Secondly, we show that Pr(Rx = Ry) = 2722. To establish this, first observe
that 341 = 10 x 33 + 11, i.e. Ry =>11 (Rx). Since 33 = 3 x 11, it follows that
Ry = Rx if and only if Rx = Z||Z||Z, where Z is an arbitrary 11-bit string.
There are clearly 2!! such strings Z, and hence the probability that Ry = Rx
is 211 /233 and the claim follows. This establishes the desired result.]
An analogous result holds for n = 128, as follows.

Lemma 4. If X is a randomly selected 128-bit block then:
PI'(X — 91365(X)) — 2742.

Proof As previously, let X = Lx||Rx, where Lx and Rx are 63-bit and 65-
bit blocks, respectively. Put Y = ¢'3%°(X), and define Ly and Ry analogously
to the proof of the previous lemma.

Since 1365 = 21 x 65 it follows that Ry = Rx. Also, since 1365 = 21 x 63+42,
and since 21|42 and 21|63, we have Ly = Lx if and only if Lx = Z||Z||Z, where
Z is an arbitrary 21-bit string. The result now follows. O

Remark 3. Similar results can be achieved for any n = 2™ since, for every m,
either 2™ — 1 or 2™ 4 1 is a multiple of 3.

4 A Known-Plaintext Forgery Attack on IOBC

The main elements of the attack are now in place. We suppose that the attacker
has access to a number of ciphertext messages all encrypted using the same key,
and that the attacker also knows large parts of the plaintext for these messages.
The precise number of messages required for the attack will depend on the
message lengths and the value of n. We look at two special cases of particular
importance.

4.1 The Case n = 64

We start by considering the case n = 64, as applies for standardized block ciphers
such as 3DES, MISTY1 and CAST-128 [17]. In this case the definition of IOBC
requires that messages encrypted using IOBC contain at most 2047 blocks.

Suppose the attacker has obtained a ciphertext message [S],C1,Cs,...,Cy
where t > 685. Suppose also that the attacker knows the corresponding plaintext
blocks Py, Ps, ..., P; (in fact, the attack we describe does not require the attacker
to know all the plaintext blocks, as will become clear). Using Lemma 2(ii) with
j = 1 and k = 341, the attacker can use knowledge of Cs,Cy,...,Cgs2 and
P3, Ps, ..., Psg3 to compute ¢>*(G1) @ Gess.

The attacker now constructs a new ciphertext message [S], C5,C5, ..., C} 4o
equal to the following sequence of blocks:

[S], C1, Cesa @ g***(G1) @ g(Ges3), Cess, - - -, Ci.

Note that g**2(G1) @ g(Ges3) can be obtained simply by applying g to ¢3! (G1)®
Goss-

By Lemma 3, the probability that g3*(G1) ® g(Gess) = g(G1) @ g(Gess) is
2722 assuming that the encryption algorithm generates randomly distributed
ciphertext blocks. If this event occurs, then, by Lemma 1, the result of IOBC
decrypting [S], CT,C5, ..., C;_gso will be equal to:

Py, Pegy @ Iy @ Figs, Pess, Psses - - -5 Py

That is, since ¢ > 685, the final plaintext block will contain the correct ICV, i.e.
[S],C5,C5, ..., CF_sgo will be a successful forgery.

The above attack, which essentially involves cutting out 682 consecutive ci-
phertext blocks from a valid message and modifying the ciphertext block imme-
diately after the removed portion, will yield a successful forgery with probability
2722 In the example above, the removed ciphertext blocks were Cy, Cs, . . ., Cgss,
but essentially the same attack will work by removing any sequence of 682 con-
secutive ciphertext blocks as long as it does not include the first block or the final
two blocks. Thus, for example, a message containing 1808 blocks (well short of
the maximum of 2047) could be used to construct 1024 = 2'° different possible
forgeries, each of which would have a probability of 2722 of being accepted as
legitimate. A simple argument shows that 1000-2000 encrypted messages of this

length could therefore yield 221-222 forgeries, at least one of which is likely to
be accepted.

We therefore conclude that the IOBC integrity protection mechanism can,
in this case, be defeated with potentially as few as 1000—2000 known plaintexts
and 221222 queries to a decrypting party.

4.2 The Case n = 128

We next consider the case n = 128, as applies for standardized block ciphers such
as AES, Camellia and SEED [17]. In this case the definition of IOBC requires
that messages encrypted using IOBC contain at most 8191 blocks.

An exactly analogous approach will clearly work here as for the n = 64 case,
except that in this case we need to omit 2730 consecutive ciphertext blocks from
a valid message, and make appropriate modifications to the ciphertext block
immediately following the omitted sequence. In this case, the probability of the
forged message being accepted will be 2742 (from Lemma 4). As in the 64-bit
case, a single message could yield a number of possible forgeries. For example, a
6829-block message could be used to generate 2'2 different possible forgeries. A
total of 241242 forgery attempts will be required to have a good chance of having
at least one forgery accepted, potentially requiring 22°-23° known plaintexts (if
they have an average length of around 7000 blocks).

This is a rather large number, but significantly less than the 264 which is the
design goal.

4.3 Other Values of n

The same general approach will work for any value of n (see Remark 3), yield-
ing a known-plaintext-based forgery attack with complexity approximately 27/3
decryptions and somewhat less than 2"/3 known plaintexts.

5 Can IOBC be Fixed?

It is not hard to see that the attacks in section 4 could be prevented by further
limiting the maximum length of message that can be encrypted using IOBC
mode. However, unless the limit is made very small, less effective versions of the
attack described in section 4 will still apply, where the exact results will depend
on the factorisation of 2™ — 1 and 2™ + 1.

For example, for the n = 64 case (i.e. m = 6) we know that, for randomly
chosen blocks (X, Y) of 33 and 31 bits respectively, Pr(¢%(X) = X) =273 and
g”(Y) =Y. That is a forgery attack with a success probability of 273° could be
launched using a ciphertext (with known plaintext) of length only 100 blocks.

Of course, it may be possible to devise significantly more secure schemes by
choosing g to be more complex, but this would reduce the attractiveness of the
scheme. After all, the only reason to adopt this approach instead of ‘encrypt
then MAC’ (which is provably secure) is to reduce the complexity of protecting
the message to that of encryption plus a small delta.

6 A Chosen-Plaintext Forgery Attack

All the attacks we have considered so far can be avoided if only relatively short
messages are encrypted. Moreover, these attacks take advantage of special prop-
erties of the function g. As a result, it is of at least theoretical interest to know
the level of security provided by IOBC mode regardless of the length of plaintext
messages and of the choice of g.

We thus conclude the main part of the paper by sketching a certificational
chosen-plaintext-based forgery attack which serves to limit the security of IOBC
regardless of length limits for plaintexts (and the choice of g). Suppose that
[S],C4,Ca,...,Cy and [S'],C1,CY, ..., C} are IOBC encrypted versions of the
plaintext sequences Py, Ps,..., P, and P{, P;, ..., P}, respectively. Suppose also
that Pil = Pj and Pi,+l = Pj+1.

It is not hard to see that if Cj = C; and Cj,; = Cj;1 then, with very
high probability, we have Fj_; = F;_1, and hence Gj_; = G;_1 and Gj | =
Gj+1. If such an event occurs, then, by Lemma 1, the constructed ciphertext
message [S'],C1,C5,...,Cl_1,Cj,Cjt1,. .., Cy will very conveniently decrypt to
P,Py,...,P_{,P;j,Pji1,..., P, i.e. a MAC forgery has been constructed. By
the usual ‘birthday paradox’ probabilistic arguments, to find such an event sim-
ply requires around 2"/2 chosen plaintexts to be encrypted, each containing the
same consecutive pair of plaintext blocks. In fact, the number of required chosen
plaintext encryptions can be reduced to significantly less than 2"/2 by including
many occurrences of the fixed pair of plaintext blocks in each chosen plaintext.

That is, regardless of the lengths of plaintext messages and the choice of
g, forgery attacks on IOBC are possible if of the order of 2"/? messages are
encrypted using the same key.

7 Summary and Conclusions

The analysis in this paper suggests that IOBC does not offer an adequate level
of security for routine use as the basis of a combined integrity and confidentiality
technique. In fact, use of the ‘add redundancy and then encrypt using a special
mode’ approach to provide combined integrity and confidentiality protection is
no longer ‘state of the art’, and so this is arguably not a major development. The
main significance is that, as mentioned in section 1, IOBC was the only remaining
proposed block cipher mode for simultaneous confidentiality and integrity pro-
tection known to the author which had not already been shown to suffer from
forgery attack issues. Hence this paper serves to bring a cryptographic chapter
to a tidy close.

As discussed in many other places, if both confidentiality and integrity pro-
tection are required, then either encryption and a MAC should be combined in
an appropriate way, or a dedicated ‘authenticated encryption’ mode should be
used — see, for example, ISO/IEC 19772 [3]. Indeed, a wide variety of provably
secure schemes are available.

Acknowledgements. The author would like to thank Francisco Recacha for
his very helpful explanations and corrections, and also the anonymous referees
for comments which have helped to improve the presentation of this paper.

References

1. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

2. McGrew, D.A., Viega, J.: The Galois/Counter mode of operation (GCM). Avail-
able at:
http://www.mindspring.com/dmcgrew/gem-nist-6.pdf (May 2005)

3. International Organization for Standardization Geneve, Switzerland: ISO/IEC
19772:2009, Information technology — Security techniques — Authenticated en-
cryption mechanisms. (February 2009)

4. International Organization for Standardization Geneve, Switzerland: ISO/IEC
9797-3:2011, Information technology — Security techniques — Message Authen-
tication Codes (MACs) — Part 3: Mechanisms using a universal hash-function.
(2011)

5. Dent, A.W., Mitchell, C.J.: User’s Guide to Cryptography and Standards. Artech
House (2005)

6. Kohl, J.T.: The use of encryption in Kerberos for network authentication. In
Brassard, G., ed.: Advances in Cryptology — CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings. Volume 435 of Lecture Notes in Computer Science., Springer-
Verlag, Berlin (1990) 35-43

7. Steiner, J., Neuman, C., Schiller, J.: Kerberos: an authentication service for open
network systems. In: Proceedings: Usenix Association, Winter Conference, Dallas
1988, USENIX Association, Berkeley, California (February 1988) 191-202

8. Meyer, C.H., Matyas, S.M.: Cryptography: A new dimension in computer data
security. John Wiley and Sons, New York (1982)

9. Mitchell, C.J.: Cryptanalysis of two variants of PCBC mode when used for mes-
sage integrity. In Boyd, C., Gonzalez Nieto, J.M., eds.: Information Security and
Privacy, 10th Australasian Conference, ACISP 2005, Brisbane, Australia, July 4-6
2005, Proceedings. Number 3574 in Lecture Notes in Computer Science, Springer-
Verlag, Berlin (2005) 560-571

10. Sierra, J.M., Hernandez, J.C., Jayaram, N., Ribagorda, A.: Low computational
cost integrity for block ciphers. Future Generation Computer Systems 20 (2004)
857-863

11. Gligor, V.G., Donescu, P.: Integrity-aware PCBC encryption schemes. In: Security
Protocols, 7th International Workshop, Cambridge, UK, April 19-21, 1999, Pro-
ceedings. Volume 1796 of Lecture Notes in Computer Science., Springer-Verlag,
Berlin (2000) 153-171

12. Ferguson, N., Whiting, D., Kelsey, J., Wagner, D.: Critical weaknesses of iaPCBC.
(November 1999)

13. Zuquete, A., Guedes, P.: Transparent authentication and confidentiality for stream
sockets. IEEE Micro 16(3) (May/June 1996) 34-41

14. Recacha, F.: IOBC: Un nuevo modo de encadenamiento para cifrado en bloque.
In: Proceedings: IV Reunion Espanola de Criptologia, Valladolid, September 1996.
(1996) 85-92

15.

16.

17.

Zuquete, A., Guedes, P.: Efficient error-propagating block chaining. In Darnell,
M., ed.: Cryptography and Coding, 6th IMA International Conference, Cirences-
ter, UK, December 17-19, 1997, Proceedings. Number 1355 in Lecture Notes in
Computer Science, Springer-Verlag, Berlin (1997) 323-334

Mitchell, C.J.: Cryptanalysis of the EPBC authenticated encryption mode. In
Galbraith, S.D., ed.: Cryptography and Coding, 11th IMA International Confer-
ence, Cirencester, UK, December 18-20, 2007, Proceedings. Volume 4887 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin (2007) 118-128
International Organization for Standardization Geneéve, Switzerland: ISO/IEC
18033-3:2010, Information technology — Security techniques — Encryption algo-
rithms — Part 3: Block ciphers. 2nd edn. (2010)

