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Abstract: Different Artificial Neural Network models have been developed and examined for 

prediction of cocrystal properties based on pure component physical properties only. From the 

molecular weight, melting temperature, melting enthalpy and melting entropy of the pure compounds, 

the corresponding melting properties of the cocrystals and the cocrystal ideal solubility have been 

successfully predicted. Notably, no information, whatsoever about the cocrystals are needed, besides 

the identification of the two compounds from which the cocrystal is formed. In total, thirty co-crystal 

systems of eight different model components, namely, Theophylline, Piracetam, Gabapentin-lactam, 

Tegafur, Nicotinamide, Salicylic acid, Syringic acid and 4,4'-Bipyridine with distinct coformer’s has 

been chosen as the model system’s for the construction of ANN models. In all the cases, 70% of the 

data points has been used to train the model and the rest were used to test the capability of the model 

(as a validation set) as selected through a random selection process. The training process was stopped 

with overall r2 values above 0.986. In particular, the models capture how the coformer structure 

influences on the targeted physical properties of cocrystals.

Key points: Melting enthalpy, Melting entropy, Melting point, Mole fraction solubility, Co-crystals, 

Artificial Neural Networks, Predictive models

Introduction

Co-crystals (CCs) are crystalline molecular complexes comprising two or more neutral 

components that in pure form are solid at room temperature. The components appear in the co-crystal 

in a specific stoichiometry, bonded by non-covalent interactions, especially hydrogen bonding. Co-

crystals are of considerable interest to the pharmaceutical industry because of their ability to modify 

the physical properties of the active pharmaceutical ingredient (API), without affecting the molecular 

structure.1-4 Co-crystal formation has indeed proved to be a useful tool to alter a wide range of 

properties including melting point, hygroscopicity, dissolution rate, thermal stability, solubility and 

hence bioavailability.5-20 For a particular API a wide variety of molecules can be considered as 

coformers in the formation of a cocrystal, based on their hydrogen bonding functionalities. If the 

physical properties of the cocrystal could be predicted without actually having to manufacture the 

cocrystal, that would make the search for suitable coformers much more rapid and efficient.

Among the physical properties of primary interest in characterizing CCs are the melting 

properties. A higher melting point of the CC compared to the parent components demonstrates a 

higher thermal stability. The thermal stability of a particular API can often be improved by 

cocrystallization using coformers having a higher melting point and vice-versa.21, 22 The melting 

temperature could also help us to explain the purity of the solid substances and also improve the 

possibility to set the chemical stability/degradation parameters at various humidity conditions based 

on its melting temperature.23, 24
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The melting enthalpy (ΔHf(Tm)) accounts for the difference in molecular binding and 

conformations between the solid and the molten state. The melting enthalpy is an important parameter 

to explain stability of the co-crystals1 with respect to parent components, and in many cases the 

formation of CCs is enthalpy driven, i.e. the enthalpy change upon formation from the solid pure 

compounds is negative.1 Accordingly, in virtual CC screening methods,25, 26 the melting enthalpy is 

used as an indicator of stability of the CCs. Most recently, the ability to formation of CCs were 

explained on the basis of lattice energy calculations,2, 3 and in most of the cases, CCs predicted to have 

lower lattice energy by a few kcal/mol than the corresponding individual components. Moreover, 

ΔHf(Tm) is useful to set the processing parameters in the pharmaceutical industry, especially, when 

dealing with thermodynamic processes and energetic transformations of the materials at constant 

pressure.4 Such as the conditions for hot-melt extrusion to avoid chemical degradation,5, 6 

advancement of chemical reactions between the drug molecules and excipients,7-10 and for conversion 

of pharmaceutical materials into the granules.11, 12 In the field of crystallization, the ΔHf(Tm) is useful 

to determine crystalline percentage,13 purity and thermal stability of the material.14-16 

In addition to the ΔHf(Tm), the melting entropy is important for the understanding of the 

underlying reasons for CCs stability. Since, the true stability is of course given by the free energy. 

Recently, Si-Wei Zhang et.al27 have found celecoxib-nicotinamide CC, and demonstrated that entropy 

controls the formation process of CCs and the CC is stable only above a transition temperature. 

Herein, the entropy increase is suggested to be due to volume expansion upon co-crystallization. The 

molecules form a tighter hydrogen bonding network, and as a result, hydrophobic functional groups 

will pack more loosely, which cause more rotational and vibrational freedom.27 Also, the formation of 

the sulfamethazine–salicylic acid co-crystal appears to be entropy driven since the enthalpy actually 

increases quite substantially.28

The solid-liquid solubility in different solvents is the basis for the design and the operation of 

the crystallization process in which the CC is purified and given in its physical form. The solubility in 

gastrointestinal fluids is an important factor for the bioavailability of the drug. The solubility depends 

on the stability of the solid phase and on the solute-solvent interactions in the solution. In the standard 

chemical engineering treatment, the stability of the solid phase uses the pure compound melt as the 

reference state, and is thus represented by the Gibbs free energy of fusion at the temperature of 

interest. A thermodynamic analysis show that the activity of the solid can be determined according to 

eq. 1,29 where ΔHf(Tm) is the melting enthalpy at the normal melting point, Tm, is the normal melting 

temperature and both can often be determined by Differential Scanning Calorimetry (DSC). However, 

with respect to CCs of course such determination requires that the cocrystal have been actually 

manufactured. Cp is the heat capacity difference between the pure solute melt and the corresponding 

solid form. 

(1)
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At equilibrium the activity of the solid, as, equals the activity of the solute in the solution. If a Raoults 

law activity coefficient  is defined we can write:

(2)sx a 

Where as is only dependent on the properties of the pure solute, while all the influence of the solvent 

on the mole fraction solubility, x, is captured by the activity coefficient, . In an ideal solution the 
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activity coefficient is equal to unity and the so called ideal solubility can be directly determined from 

the properties of the pure solute. In a simplified treatment the heat capacity terms are neglected 

(which is not always a valid approximation) and the ideal solubility can be estimated from the melting 

enthalpy and the melting temperature only as shown in eq. 3.19, 20

(3)
1 1

ln m
id

m

H
x

R T T

 
  

 

Normally, the activity coefficient is far from unity and thus needs to be accounted for in estimation of 

the actual solubility. Varieties of methods have been developed and are still under development20, 25, 26, 

30 for estimation of activity coefficients. However, as a necessary step in predicting solid-liquid 

equilibria the ideal solubility has to be characterized and this can be done approximately if we can 

predict the melting properties of the cocrystal.

Sofar, there is no simple method for prediction of ΔHf(Tm), ΔSf(Tm), and melting point (Tm), 

of the cocrystal and hence the ideal mole fraction solubility (ln xid) cannot be predicted prior to the 

synthesis of the CC. In our previous studies, a method has been developed for prediction of solid–

state properties of the CCs,31, 32; melting point, crystal lattice energy and crystal density of the CCs 

using Artificial Neural Network (ANN) models. The model provides a high level of accuracy towards 

the prediction of the melting point of the CCs with an average relative error of 1.93%,31, 32 but the 

model needs to incorporate the 1:1 MC–coformer gas phase binding energy as an input parameters. 

This binding energy were calculated using the material studio software programmed by appropriate 

selection of 1:1 MC–coformer synthon, based on crystal engineering principles.

In the present work, we develop a computational methodology which uses three properties of 

MC and three properties of coformer’s, and predict the melting properties: ΔHf(Tm), ΔSf(Tm), Tm and 

the ideal mole fraction solubility of the CCs using a robust machine learning technique of the Matlab 

software program.

Methods and Modelling

Extraction of data from the literature

Eight different MCs, given in Fig. 1, have been selected for which ΔHf(Tm) and Tm values were 

found in the literature, Table 1.33-41 Additionally, all of these molecules have been studied in order to 

improve the physical properties of the solid form via formation of CCs using various GRAS 

coformers. Mostly, the studies succeeded to improve properties like hygroscopicity, tabletability, 

thermal stability, solubility and dissolution rate etc.33-41 and crystallographic information files (cif) of 

the CCs are deposited and made available in the Cambridge Structural Database (CSD) software. In 

total, 30 CCs with known ΔHf(Tm) and Tm values of these eight different MCs, were found and used. 

The properties of 22 coformers are given in Table 2.33-41 Data for the cocrystals are given in the result 

presentation: ΔHf(Tm) values in Table 6, and Tm values in Table 9. The ΔSf(Tm) values of the CCs 

were calculated by dividing the ΔHf(Tm) of the CCs with the respective Tm value of the CCs, and are 

given in Table 7. The thermodynamic parameters were determined by DSC analysis, and it is 

noteworthy that while melting temperatures for CCs are quite commonly found, melting enthalpies 

are much less frequently reported. This is the primary reason why the data bank had to limitiecd to 30 

CC systems. Out of 30 co-crystal systems, 18 systems belong to 1:1 stochiometric ratio complexes, 

seven are forming 1:2 complexes, and the rest are 2:1 complexes.
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Figure 1. Chemical structures of all the eight model components which are used in this study.

Table 1. Model compounds (MCs) used in the study and the data used for the construction of models 

from ANN model–I to ANN model–V.

Name of MC MWMC (g/mol) TmMC (K) ΔHf
MC (Tm) (kJ/mol) ΔSf

MC (Tm) (J/K/mol)
THP 180.16 544.15 29.60 54.40
PIT 142.15 425.15 41.11 96.70
GPL 153.2 359.65 19.00 52.83
TGF 200.16 445.15 20.26 45.50
NA 122.12 401.15 19.59 48.83
SA 138.12 432.15 24.60 56.92

SYA 198.17 480.15 37.75 78.62
4BP 156.19  387.15 24.70 158.14

Table 2. Coformers (CFs,) used in this study and the parameters used for the construction of models 

from ANN model–I to ANN model–V.

Name of the coformer (code) MWCF 

(g/mol)
TmCF (K) ΔHf

CF (Tm) 
(kJ/mol)

ΔSf
CF (Tm) 

(J/K/mol)
Glutaric acid (GTA) 132.12 369.65 20.70 56.00

Diflunisal (DIF) 250.20 483.65 36.00 74.43
Diclofenac (DICFA) 296.15 430.65 40.90 94.97
Myricetin (MYCT) 318.23 630.15 137.80 218.68

L-(+)-Mandelic Acid (LMDA) 152.15 405.15 24.50 60.47
Citric acid (CTA) 192.12 429.15 40.32 93.95

L(+)-Tartaric acid (LTA) 150.09 442.15 36.31 82.12
Benzoic acid (BA) 122.12 395.56 18.60 47.02

4-aminobenzoic acid (4ABA) 137.14 460.15 27.20 59.11
4-Hydroxybenzoic acid (4HBA) 138.12 487.65 30.30 62.13

Fumaric acid (FUA) 116.07 560.15 31.80 56.77
Phloroglucinol (PG) 126.11 405.5 25.90 63.87

Isonicotinamide (INA) 122.12 429.15 17.19 40.07
Flufenamic acid (FFA) 281.23 408.15 26.70 65.42
Niflumic acid (NFA) 282.22 477.15 36.50 76.50

Tolfenamic acid (TFA) 261.71 480.15 41.00 85.39
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Mefenamic acid (MFA) 241.28 503.65 38.70 76.84
Naproxen (NPX) 230.26 426.15 34.20 80.25
Febuxostat (FBX) 316.37 511.65 35.72 69.81

Isoniazid (INZ) 137.14 444.55 27.91 62.79
Urea (URE) 60.06 406.15 14.41 35.48

Fenamic acid (FA) 213.23 456.65 39.70 86.94

Analysis of the data bank

Cocrystal enthalpies and entropies are given per mole cocrystal stoichiometric complex; 1:1 or 1:2 or 

2:1 moles of the coformer and the MC, and the number of molecules in the complex will depend on 

the stoichiometry of the cocrystal. Accordingly, e.g. for a 1:2 cocrystal the complex contains one 

molecule of MC and two molecules of the coformer, and the number of molecules in the complex 

equals three. The melting temperatures of the CCs vary from 357.05 K to 478.07 K, and among the 

eight different MCs, the melting point vary from 359.65 K to 544.15 K In Fig. 2, it is shown that there 

is no clear correlation between the melting point of the CCs and that of the MC or the CF, 

respectively. It should be noted though that the pure compound structures are not systematically 

related. As a comparison, Aakeröy et. al.42 demonstrated that the length of the carbon chain of the 

diacid coformer ranging from succinic acid to dodecanedioic acid influence systematically on the 

melting point and the solubility of the CCs of Bis(pyridinecarboxamido)alkane. It was concluded that, 

the melting point and the aqueous solubility of the five CCs increase as the melting point of the 

coformer increases. 

Figure 2. Correlation between the melting points of MC (K) vs the melting point of the CCs (K) given 

in (a), while the correlation between the melting point of the CF (K) vs the melting point of the CCs 

(K) given as in (b).

The cocrystal enthalpy of melting varies from 9.91 kJ/mol to 279.64 kJ/mol. Overall it is noted that 

the data tend to separate into two groups. All four CCs of PIT, both the CCs of syringic acid, all four 

of TGF and one out of five for NA have clearly high melting enthalpies in the range 179.99 kJ/mol to 

279.64 kJ/mol. All the rest have melting enthalpies below 98.11 kJ/mole. In Fig. 3, it is shown that 

how the melting enthalpy is related to the melting point of the CC and whether there is a link to the 

melting enthalpies of the pure compounds. Different colours are used for the different MCs. In 

general, the ΔHf(Tm) and Tm relates to the packing pattern of the molecules and interactions which 

exist in–between the MC and CF of the CCs. Overall the diagram shows that there is very little 

correlation between the melting enthalpy and the melting temperature of the CCs. In diagrams b – d of 

Fig. 3 is shown how the melting enthalpy of the cocrystal relates to the melting enthalpy of the pure 
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compounds. In Fig 3 d, the melting enthalpy of the cocrystal is plotted against the stoichiometric sum 

of the pure component melting enthalpies. Obviously, there is no correlation between the cocrystal 

melting enthalpy and the melting enthalpies of the pure compounds. For the lower melting enthalpy 

cocrystals, the melting enthalpy is to some extent comparable to the stoichiometric sum of the melting 

enthalpies of the pure components, however not so for the higher melting enthalpy cocrystals.

Figure 3. Analysis of cocrystal melting enthalpies given as kJ/mole of respectively the 1:1/1:2/2:1 

cocrystal complex; a) cocrystal melting enthalpy vs cocrystal melting temperature; b) cocrystal 

melting enthalpy vs melting enthalpy of the MC; c) cocrystal melting enthalpy vs melting enthalpy of 

the coformer; d) cocrystal melting enthalpy vs sum of pure component melting enthalpies according to 

the stoichiometry.

From the Fig. 3, it is understood that, the melting enthalpy of MCs and CFs are within the 

range of 20 – 50 kJ/mol. But, the ΔHf(Tm) of the CCs is higher by a factor from 2 to 10. Partly this 

stems from that the value is per mole of cocrystal complex. To some extent a higher value may reflect 

that the CCs can reach a more dense packing arrangement.

In Fig. 4 is presented the corresponding analysis of the CC melting entropies. Trendlines are 

used to distinguish the different MCs and have the same colour coding as in Fig. 3. The CC entropy 

change upon melting varies from 26.19 J/K/mol to 648.32 J/K/mol. Overall it is noted that the data 

tend to separate into the same two groups as for melting enthalpies. All four CCs of PIT, both the CCs 

of syringic acid, all four of TGF and one out of five for NA have clearly high melting entropies in the 

range from 465.83 J/K/mol to 648.32 J/K/mol. All the rest have melting entropies below 230.31 

J/K/mol. 

In diagrams a – c of Fig. 4, obviously there is very little systematic correlation between the 

cocrystal melting entropy and the melting entropy of either the MC or the coformer, besides the 
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7

observation above on the fact that there is a particular group of high melting entropy cocrystals not 

evenly distributed between the MCs. With the only exception of the cocrystals of gabapentin lactam 

the cocrystal melting entropy is higher than that of any of the individual components. Of course this is 

partly because the cocrystal is per mole stoichiometric complex. As shown in diagram c) for a 

majority of the cocrystals (the lower melting entropy group) the melting entropy is to some extent 

comparable to the sum of the melting entropies of the pure components. 

In Fig. 4b, the trend is that ΔSf(Tm) of the CCs is increasing with increasing ΔSf(Tm) of CF. 

This observation is clearly noticed for the MCs: PIT, GPL, TGF, NA, SA and SYA, while not for 

THP and 4BP. In addition, ΔSf(Tm) of the CCs increases with increasing Tm of the CCs, as found for 

the MCs: PIT, GPL, NA, SYA and 4BP, but not for remaining three: THP, TGF and SA. ΔSf(Tm) of 

the CCs is nearly equal to the sum of the ΔSf(Tm) of the MC and of the CF, especially, for GPL, 4BP, 

SA and three of six CCs of NA. For the other four MCs: THP, PIT, TGF, SYA and three of the CCs 

of NA have a clearly higher entropy than the corresponding sum of the individual components.

Figure 4. Analysis of cocrystal melting entropies given as J/K/mol for respectively the 1:1/1:2/2:1 

cocrystal complex. a) cocrystal melting entropy vs melting entropy of the MC; b) cocrystal melting 

entropy vs melting entropy of the coformer; c) cocrystal melting entropy vs sum of pure component 

melting entropies according to the stoichiometry and d) cocrystal melting entropy vs cocrystal melting 

temperature. 

In Fig. 5 and 6, melting entropies and enthalpies are compared: for MCs in Fig. 5a, for CFs in 

Fig. 5b and for cocrystals in Fig. 6. Obviously, there is overall a clear relation–between these two 

parameters, in accordance with the principle of so called enthalpy-entropy compensation. The 

stronger the bonding in the solid phase compared to the melt, the greater is the reduction of the solid 

phase entropy compared to the melt. 
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Figure. 5. Correlation of ΔHf(Tm) of MC and CF againt the ΔSf(Tm) of the MC (a), and CF (b), 

respectively. 

Figure 6. Correlation of ΔHf(Tm) of CCs against the ΔSf(Tm) of the CCs. The trend lines help to 

distinguish cocrystals of the same MC.

The ideal solubilities at 25 ℃, as calculated by eq 3, for the model compounds, coformers and 

the cocrystals are given in Table 3. In Fig. 7a, the ideal cocrystal solubility is plotted vs the cocrystal 

melting temperature.

Figure 7. The solubility of CCs vs the experimental Tm values of CCs given as (a) while the 

solubility of the CCs vs the solubility of the MCs/solubility of the CFs given as (b) in figure.
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Table 3. The ideal mole fraction solubility at 25 °C. Values calculated from melting data for each 

respective form according to eq. 3.

Name of the CCs (ratio) ln x of MC x of MC ln x of CF x of MC ln x of CCs x of CCs

THP:GTA (1:1) -5.40 0.81 -1.62 26.15 -4.91 0.00737
THP:DIF (1:1) “ “ -5.57 0.95 -8.67 0.00017

THP:DICFA (1:1) “ “ -5.08 1.84  -10.03 0.00004
PIT:MYCT (1:1) -4.95 1.01 -29.29 6.06x10-11 -42.46 3.63x10-19

PIT:LMDA (2:1) “ “ -2.61 11.19 -15.36 0.0000002
PIT:CTA (1:1) “ “ -4.97 1.33 -18.63 8.11x10-09

PIT:LTA (1:1) “ “ -4.77 1.27 -30.94 3.66x10-14

GPL:BA (1:1) -1.31 41.34 -1.85 19.20 -1.05 0.34993
GPL:4ABA (1:1) “ “ -3.86 2.89 -1.81 0.16365
GPL:4HBA (1:1) “ “ -4.75 1.19 -2.33 0.097295
GPL:FUA (2:1) “ “ -6.00 0.29 -0.85 0.42741
TGF:NA (1:1) -2.70 13.45 -2.03 -2.03 -15.70 0.00000015

TGF:PG (1:1) “ “ -2.77 7.90 -17.85  0.00000002
TGF:INA (1:1) “ “ -2.12 14.66 -26.29  3.82x10-12

TGF:4HBA (1:1) “ “ -4.75 1.19 -30.00 9.36x10-14

NA:FFA (1:1) -2.03 16.04 -2.90 15.47 -6.28 0.00187
NA:NFA (1:1) “ “ -5.52 1.13 -5.39 0.004561
NA:TFA (2:1) “ “ -6.27 0.49 -11.88 0.000006
NA:MFA (2:1) “ “ -6.37 0.41 -5.14 0.00585
NA:NPX (1:2) “ “ -4.14 3.67 -7.77 0.00042
NA:FBX (1:1) “ “ -6.01 0.78 -33.44 3.00x10-15

SA:INZ (1:1) -3.08 6.35 -3.71 3.36 -5.74 0.00321
SA:THP (1:1) “ “ -5.40 0.81 -6.63 0.00132
SYA:NA (2:1) -5.77 0.62 -2.03 16.04 -32.57 7.16x10-15

SYA:URE (1:2) “ “ -1.55 12.75 -28.37 4.78x10-13

4BP:FA (1:2) -2.29 15.82 -5.56 0.82 -9.66 0.00006
4BP:NFA (1:2) “ “ -5.52 1.13 -11.70 0.000008
4BP:TFA (1:2) “ “ -6.27 0.49 -9.54 0.000071
4BP:MFA (1:2) “ “ -6.37 0.41 -10.63 0.000024
4BP:FFA (1:2) “ “ -2.90 15.47 -8.77 0.000155

Obviously, the calculated ideal mole fraction solubility of CCs i.e., ln (xid) at 25 ℃ is 

reasonably correlated to the experimental melting point of the CCs. Here one mole of CC relates to 

one mole of CC complex as defined before. The higher the melting point the lower the ideal 

solubility. If the linear relation between melting entropy and melting enthalpy shown in Fig. 6 is 

accounted for the ideal solubility can be given as:

1 1
ln 1

2.35
m m

id m

H S
x S

R T R T

          
  

In Fig. 7b, the ideal solubility of the CCs is plotted against the ideal solubility of the MC on 

the left hand axis (blue), and of the CF on the right hand axis (red). From the graph, it is concluded 

that, there is no correlation in general found between the solubility of CCs and the solubility of MCs 

or the solubility of CFs. 
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10

Artificial Neural Network Modelling

A series of five different ANN models have been constructed to predict physical properties of 

the co-crystals. The relation between the properties of the cocrystals and the properties of the pure 

compounds has been examined in a step wise manner to reach the ultimate goal, i.e., prediction of the 

cocrystal ideal solubility. The cocrystal physical property targeted by each ANN model is as follows:   

ANN model-I: prediction of the ΔHf(Tm)

ANN model-II: prediction of ΔSf (Tm)

ANN model–III: simultaneous prediction of ΔHf(Tm) and ΔSf (Tm)

ANN model-IV: prediction of Tm 

ANN model-V: prediction of the ideal mole fraction solubility

All five ANN models has an input layer which provides input data for the neural network, and an 

output layer that contains the data to be predicted. In between, there is a hidden layer that connects the 

input and the output layer and is where all the computational work would be carried out. In our 

models the hidden layer contains six neurons (nine neurons for model II), weights, a sum function, 

logsig function as an activation function. The output layer contains ΔHf(Tm), ΔSf (Tm), Tm or the 

ideal mole fraction solubility, respectively for ANN model-I, ANN model-II, ANN model-IV and 

ANN model-V, as is represented in Fig. 8. In the case of ANN model-III, both the ΔHf(Tm) and ΔSf 

(Tm) were targeted as output neurons in the output layer, simultaneously. As input neurons, six 

affordable molecular descriptors of both MCs and CFs information have been included in the input 

layer of the neural network to obtain the reasonable level of accuracy. A feed–forward back–

propagation network is used to transfer the information from the input layer to output layer until the 

convergence criterion is reached through the number of epochs (indicating the number of passes 

through the entire training dataset the machine learning algorithm has completed). The mean squared 

error between the experimental and the ANN predicted (output) values of the CCs were minimized by 

using the Gradient Descent method to adjust the number of weight parameters. A logsig function is 

used as an activation function to transfer the total sum of the input neurons into output neurons by 

passing through the number of hidden layers. Before training the model, all the six input neurons and 

output neurons were normalized by dividing with higher number value in each series of molecular 

descriptors, so that they fall within the interval range of 0–1, hence, the predicted output value and 

also expected standard deviation will also fall within the range of 0 - 1.31, 32 Moreover, the obtained 

output values (refer Fig. 9, Fig. 11, Fig. 13, Fig. 15 and Fig. 17) will also set within the interval range 

of one for all the training, validation and test set of each MC. After the successful completion of the 

training process, the actual values of each molecular descriptor in each series were calculated back via 

denormalization process and the targeted values are plotted as experimental values against the 

predicted values by ANN model (refer Fig. 10, Fig. 12, Fig. 14, Fig. 16 and Fig. 18).
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Figure 8. The architecture of the constructed ANN models are given in figure, the size of the model’s 

is 6–6–1 (6 inputs–6 neurons in the hidden layer–one output) for model–I, model-IV and model-V. 

Whereas the size of the ANN model-II is 6–9–1 (6 inputs–9 neurons in the hidden layer–one output), 

and in model-III, both melting enthalpy and melting entropies were targeted simultaneously by 

remaining the number of neurons in the hidden layer as same so the size and architecture of the model 

is 6−6−2.

Table 4. Information about the number of models, the parameters used for the construction of models 

and targeted physical property of the CCs are given in table.

S. No Model Number of input 

parameters

Name of the input 

parameter

Targeted property

1 Model I 6 MWMC, MWCF, TmMC, 

TmCF, ΔHf
MC(Tm) and 

ΔHf
CF(Tm)

ΔHf(Tm)

2 Model II 6 MWMC, MWCF, TmMC, TmCF

ΔSf
MC(Tm) and ΔSf

CF(Tm)
ΔSf (Tm)

3 Model III 6 same as 1 both ΔHf(Tm) and ΔSf 
(Tm), simultaneously

4 Model IV 6 same as 1 Tm
5 Model V 6 same as 1 mole fraction solubility 

(ln (x))

The overfitting of the models were avoided by selecting of one hidden layer, which consists 

of six neurons in the hidden layer of the constructed model–I, model–III, model–IV and model–V as 

shown in Fig. 8, while model–II consists of nine neurons in the hidden layer. The number of hidden 

layers has been chosen according to the Kolmogotov theorem, that demonstrates that less than two 

hidden layers are sufficient to construct a prediction model of the targeted property. A higher number 

than unity leads to overfitting and poor generalization capability of the model. At the same time the 

number of neurons in the hidden layer is systematically varied from lower to higher starting from two 

neurons. A too high number can lead to overfitting of the models, and as a consequence a reduced 

prediction capability (larger deviation between the experimental and the predicted property value). 

More details about the optimization of the number of hidden layers and hidden layer neurons is 

reported elsewhere.31, 32  In the present study, an optimum result were obtained when the hidden layer 

contained six neurons being equal to the number of neurons in the input layer, except for model-II 

where the optimum was found for 9 hidden layer neurons. Thus, the size of the constructed neural 

network models for prediction of ΔHf(Tm), ΔHf(Tm) and ΔSf(Tm) simultaneously, Tm and ln (x) of 

the CCs with a good generalization is 6–6–1, the generalized schematic representation of the models 

are as shown in Fig. 8. The performance of the model does not change beyond six neurons in the 

hidden layer, and consequently the training process has reached the convergence criteria with the 

usage of 68, 1000, 30 and 100 epochs, respectively, for ANN model–I, ANN model–III, ANN model–
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IV and ANN model–V. Therefore, the constructed models are made up of six neurons as operational 

variables, such as, MWMC, MWCF, TmMC, TmCF, ΔHf
MC(Tm) and ΔHf

CF(Tm) in the input layer; six 

neurons in the hidden layer, and one output neuron in the output layer, i.e. ΔHf(Tm), Tm and ln (x) of 

the CCs respectively for ANN model–I, ANN model–IV and ANN model–V. Whereas, two output 

neurons, such as both ΔHf(Tm) and ΔSf(Tm), simultaneously were targeted in the output layer for the 

construction of ANN model–III. Among the six operational variables, three input neurons were 

belonged to MCs such as MWMC, TmMC and ΔHf
MC (Tm); and another three operational variables were 

belongs to CF such as MWCF, TmCF and ΔHf
CF(Tm). In total, 30 CCs of eight different MC’s were used 

for construction of all the five ANN models. Moreover, the 30 CCs data points were divided into three 

sets by selection of random selection process option in the neural network training process: such as i) 

70% of the data used for the training set, and remaining of 30% of data used for both the validation 

set, and for the test set (as new data points for the prediction of targeted property of the CCs). Again, 

in which, 16% of the data points were used for the validation set and remaining 14% of the data points 

were used for the test set (randomly). 

In case of ANN model–II, a good generalization of the model for prediction of ΔSf(Tm) is 

obtained when nine neurons are incorporated in the hidden layer of the ANN model. Hence the size of 

the constructed model is 6–9–1 (6 neurons in the input layer–9 neurons in the hidden layer–ΔSf(Tm) 

as an output neuron). Herein, the number of neurons in the hidden layer of ANN model–II has 

increased (in-comparison to rest of the four models) from 6 to 9, to improve the efficiency of the 

model with respect to prediction of melting entropy. Accordingly, the training process has been 

stopped by use of 92 epochs to reach the convergence criteria. Thus, the ANN model–II is made up of 

six operational variables in the input layer, nine neurons in the hidden layer and melting entropy as an 

output neuron. The six operational variables in the input layer are MWMC, MWCF, TmMC, TmCF, 

ΔSf
MC(Tm) and ΔSf

CF(Tm). Among six operational variables, three input neurons were belonged to 

MCs and the rest of the three input neurons were belonged to coformer. Thereby, the ANN model–II 

has constructed by dividing the data into three sets as explained above for construction of ANN 

model–I.

The training process

The Matlab program offers a machine learning Artificial Neural Network toolbox with an 

automated driving facility of the training process. The tools present in the toolbox were used to train 

and build the ANN models, the ANNmodel–I, ANN model–II, ANN model–III, ANN model–IV and 

ANN model–V are built to predict the ΔHf(Tm), ΔSf(Tm), ΔHf(Tm) and ΔSf(Tm) simultaneously, Tm 

and ln (x) of the CCs, respectively. The outline of the training process, which involved in the 

construction of all of the five models are explained as follows. During the training process, the six 

operational variables of training data fed into the input layer towards the forward direction using 

feed–forward back–propagation algorithm. In this process, each neuron in the hidden layer receives 

information from all the six input neurons in the input layer, which in turn multiplied with appropriate 

weights. Further, the total weighted sum of the input layer has transferred the information as output of 

the hidden layer in the form of nonlinear transformation. Similarly, the output layer gets the 

information from the hidden layer, which are multiplied with appropriate weights and then summed. 

The outcome of the output values of the output layer is the nonlinear transformation of the resulting 

sum obtained from the hidden layer. The obtained output values were compared with the targeted 

experimental output values. The deviation between the output values and targeted output values are 

calculated and propagated back through the back–propagation algorithm to update the connection 

weights, after completion of each training cycle. This process continues until it reaches to the 

convergence criterion with least possible mean square error percent. Notably, the weighted parameters 

Page 12 of 29

ACS Paragon Plus Environment

Crystal Growth & Design

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



13

were not changed during the time of testing examples, such as, each test example will feed into the 

input layer in the feed–forward direction as similar like the feed–forward of the training data. 

Likewise, five models were constructed with a minimal amount of error towards the prediction of 

targeted property of the CCs. The obtained r2 (overall) regression values of all the models are 0.999, 

0.997, 0.986, 0.988 and 0.980 respectively, for model–I, model–II, model–III, model–IV and model–

V. In general, a common problem that arises during the process of training is overfitting of the model 

through memorizing of the training set data points. This is the case where the model produces a very 

good fit to the training set, but a much larger deviation for the validation and the test set. Our final 

models give comparable regression values for the training set, validation set and test set. Thus, there is 

no overfitting of the models.  

But in the case of ANN model–II towards prediction of ΔSf(Tm), the best results were 

prevailed with consideration of nine neurons in the hidden layer of the neural network. Notably, the 

regression value has been improved from 0.952 to 0.999 (see Table 5) through increasing the number 

of neurons from six (used in the ANN model–I) to nine in the hidden layer of the neural network. The 

performance of the model does not change beyond nine neurons. Thus, the architecture of ANN 

model–II, for prediction of ΔSf(Tm) is 6–9–1. Moreover, the model uses the ΔSf
MC(Tm) and ΔSf

CF(Tm) 

(not like other four models) as input neurons instead of ΔHf
MC(Tm) and ΔHf

CF(Tm). The training 

process was stopped with a regression value of 0.999 for the training set and 0.997 for the validation 

set as given in Fig. 11. 

Table 5. Improvement in the performance of the ANN model–II through increasing the number of 

neurons in the hidden layer from six to nine, the obtained r2 values of the training set, validation set, 

test set and overall an average regression value of  the model has listed in the table.

size of the 
hidden layer

obtained r2 value of 
the training set

obtained r2 value of 
the validation set

obtained r2 value 
of the test set

overall r2 value 
of the model

6 0.982 0.873 0.930 0.952
7 0.966 0.988 0.986 0.975
8 0.987 0.980 0.996 0.989
9 0.999 0.997 0.993 0.997

The main difference between the models is that they, based on the same six operational input 

parameters of the parent components, target the prediction of different properties of the co-crystals, 

with model-II being an exception since here the enthalpies of the pure compounds are replaced by the 

corresponding entropies as input data. In addition, in all models the number of hidden layer neurons 

obtained in the model optimization is the same, i.e. six, except for in case of model-II where the 

optimum was found for nine hidden layer neurons. It is noticed that the prediction is somewhat better 

when the output layer only target one parameter. This not surprising, since the optimum for one single 

parameter is likely to be different from that of another single parameter, and if both are targeted at the 

same time the optimization has to find a compromise between the two.

Results and Discussion

ANN Model–I: prediction of ΔHf
CC(Tm)

The capability of the ANN model–I to predict the ΔHf
CC(Tm) of the CCs from the molecular 

weight, the melting temperature and the melting enthalpy of the MC and the coformer is shown in Fig. 

9. The experimental values (after normalization) are represented on the x–axis, whereas the predicted 
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ΔHf(Tm) values using ANN model–I is given on y-axis. The denormalised representation of graph of 

ANN model–I is shown in Fig. 10. The calculated mean squared error for the prediction of ΔHf(Tm) is 

0.103 kJ/mol. The calculated deviation for each CC is given in Table 6. The smallest deviation of 0.01 

kJ/moles obtained for the PIT CC with MYCT coformer (marked as a green color in Table 6), 

whereas the highest deviation is obtained for NA with NFA coformer with a value of –40.21 kJ/mol 

(marked as a red color in Table 6).

Figure 9. ANN model–I: prediction of ΔHf(Tm). normalised regressions, a) training set, b) validation 

set, c) test set and d) overall.
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Figure 10. ANN model–I: quantitative overall performance including all data. Color coding same as 

in previous figures.

Table 6. Experimental vs predicted ΔHf(Tm) values of the CCs obtained by ANN model–I.

Name of the CCs (ratio) Experimental ΔHf
CC (Tm)

(kJ/mol)
Predicted ΔHf

CC (Tm) by ANN
(kJ/mol)

Error value
(kJ/mol)

THP:GTA (1:1) 32.95 37.35 4.4
THP:DIF (1:1) 61.57 60.68 -0.89

THP:DICFA (1:1) 70.68 73.36 2.68
PIT:MYCT (1:1) 279.64 279.65 0.01 

PIT:LMDA (2:1) 179.99 176.72 -3.27
PIT:CTA (1:1) 204.44 202.78 -1.66
PIT:LTA (1:1) 242.39 249.30 6.91
GPL:BA (1:1) 15.72 8.93 -6.79

GPL:4ABA (1:1) 18.42 22.05 3.63
GPL:4HBA (1:1) 20.92 28.60 7.68 

GPL:FUA (2:1) 9.91 8.42 -1.49
TGF:NA (1:1) 183.60 197.44 13.84
TGF:PG (1:1) 183.14 186.65 3.51
TGF:INA (1:1) 221.39 220.13 -1.26

TGF:4HBA (1:1) 267.66 267.17 -0.49
NA:FFA (1:1) 57.07 57.81 0.74
NA:NFA (1:1) 48.06 7.85 -40.21 

NA:TFA (2:1) 98.11 121.17 23.06
NA:MFA (2:1) 50.06 39.31 -10.75
NA:NPX (1:2) 75.78 78.76 2.98
NA:FBX (1:1) 257.16 261.20 4.04
SA:INZ (1:1) 49.35 50.25 0.9
SA:THP (1:1) 46.42 50.04 3.62
SYA:NA (2:1) 241.50 241.64 0.14

SYA:URE (1:2) 217.43 217.17 -0.26
4BP:FA (1:2) 83.10 80.70 -2.4

4BP:NFA (1:2) 96.11 90.59 -5.52
4BP:TFA (1:2) 77.09 73.58 -3.51
4BP:MFA (1:2) 83.10 87.51 4.41
4BP:FFA (1:2) 84.70 90.28 5.58
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ANN Model–II: prediction of ΔSf(Tm) 

The capability of the ANN model–II to predict the ΔSf(Tm) of the CCs, from the molecular 

weight, the melting temperature and the melting entropy of the MC and the coformer is shown in Fig. 

11. The experimental values (normalized) are given on the x-axis whereas the predicted ΔSf(Tm) 

values of ANN model–II is given on the y-axis. The denormalised result is shown in Fig. 12. The 

obtained average deviation is -1.68 J/K/mol. The calculated deviation for each CC is given in Table 7. 

The smallest deviation of 0.13 J/K/mol is obtained for GPL with FUA coformer (marked as a green 

color in Table 7), whereas the highest deviation is obtained for SA with INZ cocrystal with a 

deviation of –62.80 J/K/mol (marked as a red color in Table 7).

Figure 11. ANN model–II: prediction of ΔSf(Tm). normalised regressions, a) training set, b) 

validation set, c) test set and d) overall.
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Figure 12. ANN model–II: quantitative overall performance including all data points. Color coding 

same as in previous figures.

Table 7. Experimental vs predicted ΔSf(Tm) values of the CCs by ANN model–II, which are listed in 

table (J/K/mole of stoichiometric complex).

Name of the CCs (ratio) Experimental ΔSf
CC (Tm)

(J/K/mol)
Predicted ΔSf

CC (Tm) by ANN
(J/K/mol)

Error value
(J/K/mol)

THP:GTA (1:1) 69.71 69.55 -0.16
THP:DIF (1:1) 134.45 136.85 2.41

THP:DICFA (1:1) 153.64 155.21 1.57
PIT:MYCT (1:1) 584.94 584.76 -0.17
PIT:LMDA (2:1) 475.98 473.31 -2.67
PIT:CTA (1:1) 530.81 570.12 39.31
PIT:LTA (1:1) 555.75 555.98 0.23
GPL:BA (1:1) 44.03 50.64 6.61

GPL:4ABA (1:1) 46.73 52.15 5.42
GPL:4HBA (1:1) 50.82 49.74 -1.08
GPL:FUA (2:1) 26.19 26.32 0.13 

TGF:NA (1:1) 485.26 473.11 -12.16
TGF:PG (1:1) 465.83 475.78 9.95
TGF:INA (1:1) 523.94 531.62 7.69

TGF:4HBA (1:1) 648.32 629.35 -18.97
NA:FFA (1:1) 139.20 136.37 -2.83
NA:NFA (1:1) 116.37 116.69 0.32 
NA:TFA (2:1) 230.31 233.40 3.09
NA:MFA (2:1) 125.15 123.15 -2.00
NA:NPX (1:2) 189.57 187.90 -1.67
NA:FBX (1:1) 584.52 583.54 -0.98
SA:INZ (1:1) 117.79 54.99 -62.80 

SA:THP (1:1) 100.55 103.77 3.22
SYA:NA (2:1) 539.19 537.96 -1.24

SYA:URE (1:2) 493.37 492.91 -0.47
4BP:FA (1:2) 198.40 202.29 3.89

4BP:NFA (1:2) 225.11 193.10 -32.01
4BP:TFA (1:2) 179.22 182.02 2.80

4BP:MFA (1:2) 190.31 186.06 -4.25
4BP:FFA (1:2) 211.14 217.65 6.51
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ANN  model–III: simultaneous prediction of ΔHf(Tm) and ΔSf(Tm)

Model–III aims to predict both the ΔHf(Tm) and ΔSf(Tm), simultaneously using the same six 

input parameters which are used for construction of ANN model–I. The training process was stopped 

with the regression value of 0.994 for the training set, 0.963 for the validation set and 0.990 for the 

test set. As a whole, the regression value obtained for the prediction of both the ΔHf(Tm) and ΔSf(Tm) 

is 0.986. The result is shown in terms of normalized values in Fig. 13. In Fig. 14 is given the 

denormalized result, and specific values are listed in Table 8. In both the ΔHf(Tm) (Fig. 14a) and 

ΔSf(Tm) (Fig. 14b), most of the data points fall well onto the trendline. That means, the ANN model–

III is capable of predicting ΔHf(Tm) and ΔSf(Tm), simultaneously in one and the same model. 

However, the regression value of ANN model–III i.e. 0.986, is lower than the values obtained for 

models targeting the individual parmeters only: model–I: ΔHf(Tm) (0.999) and model–II: ΔSf(Tm) 

(0.997).

Figure 13. ANN model–III: prediction of ΔHf(Tm) and ΔSf(Tm) simultaneously, normalised 

regressions, a) training set, b) validation set, c) test set and d) overall. 
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Figure 14. ANN model–III: quantitative overall performance to predict the ΔHf(Tm) (a) and ΔSf(Tm) 

(b) of the CCs.

Table 8. ΔHf (Tm) and ΔSf (Tm) values of CCs, obtained from ANN model–III.

Name of the CCs 
(ratio) 

Exp ΔHf
CC 

(Tm)
(kJ/mol) 

Predicted 
ΔHf

CC (Tm)
(kJ/mol)

Error
(kJ/mol)

Exp ΔSf
CC 

(Tm)
(J/K/mol)

Predicted 
ΔSf

CC (Tm)
(J/K/mol)

Error
(J/K/mol)

THP:GTA (1:1) 32.95 32.05 -0.9 69.71 74.10 4.39
THP:DIF (1:1) 61.57 64.68 3.11 134.45 137.38 2.93
THP:DICFA 

(1:1)
70.68 84.67

13.99
153.64 172.52

18.88
PIT:MYCT (1:1) 279.64 274.30 -5.34 584.94 632.37 47.43
PIT:LMDA (2:1) 179.99 184.42 4.43 475.98 461.80 -14.18
PIT:CTA (1:1) 204.44 222.85 18.41 530.81 556.39 25.58
PIT:LTA (1:1) 242.39 237.16 -5.23 555.75 537.20 -18.55
GPL:BA (1:1) 15.72 17.34 1.62 44.03 43.11 -0.92

GPL:4ABA (1:1) 18.42 16.22 -2.2 46.73 40.71 -6.02
GPL:4HBA (1:1) 20.92 14.68 -6.24 50.82 37.28 -13.54
GPL:FUA (2:1) 9.91 10.91 1 26.19 28.59 2.4
TGF:NA (1:1) 183.60 194.18 10.58 485.26 468.80 -16.46
TGF:PG (1:1) 183.14 188.90 5.76 465.83 457.00 -8.83
TGF:INA (1:1) 221.39 223.82 2.43 523.94 534.22 10.28

TGF:4HBA (1:1) 267.66 273.71 6.05 648.32 635.42 -12.9
NA:FFA (1:1) 57.07 31.01 -26.06 139.20 76.63 -62.57
NA:NFA (1:1) 48.06 44.69 -3.37 116.37 110.93 -5.44
NA:TFA (2:1) 98.11 66.64 -31.47 230.31 170.31 -60
NA:MFA (2:1) 50.06 46.81 -3.25 125.15 119.75 -5.4
NA:NPX (1:2) 75.78 90.13 14.35 189.57 225.62 36.05
NA:FBX (1:1) 257.16 242.92 -14.24 584.52 550.23 -34.29
SA:INZ (1:1) 49.35 22.82 -26.53 117.79 57.64 -60.15
SA:THP (1:1) 46.42 55.42 9 100.55 116.70 16.15
SYA:NA (2:1) 241.50 222.40 -19.1 539.19 548.29 9.1

SYA:URE (1:2) 217.43 276.87 59.44 493.37 602.68 109.31
4BP:FA (1:2) 83.10 79.89 -3.21 198.40 193.26 -5.14

4BP:NFA (1:2) 96.11 104.70 8.59 225.11 260.50 35.39
4BP:TFA (1:2) 77.09 77.04 -0.05 179.22 199.16 19.94
4BP:MFA (1:2) 83.10 75.92 -7.18 190.31 162.28 -28.03
4BP:FFA (1:2) 84.70 84.59 -0.11 211.14 231.00 19.86
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ANN model–IV: prediction of Tm of the CCs

In our previous studies,31, 32 Tm of CCs were predicted using eight parameters as input neurons in the 

input layer of the ANN model, including three properties for the MC and the CF each: MW, Tm and 

binding energy. In addition, 1:1 binding energy of MC-coformer and the ΔpKa value of the CCs 

where estimated and included. Herein, the accuracy of prediction of Tm depends upon estimation of 

the MC-coformer binding energy. ANN model–IV in the present work is constructed based on six 

input neurons, the same used for the construction of ANN model–I, and ANN model–III. The training 

process was stopped with a regression value of 0.988 (overall), and the predicted Tm values and 

obtained error values with respect to experimental values are listed in Table 9. To the best of our 

knowledge, ANN model–IV would be the best model to predict the Tm of the CCs prior to the 

synthesis using only imformation for the pure MC and CF. Among the 30 CCs systems, the best 

prediction value is obtained for PIT with MYCT coformer (highlighted as green color in Table 9), 

whereas, the highest error is obtained for THP with DIF coformer (highlighted with red color in Table 

9).

Figure 15. ANN model–IV: prediction of Tm of CCs, normalised regressions, a) training set, b) 

validation set, c) test set and d) overall.
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Figure 16. ANN model–IV: quantitative overall performance including all data. Color coding same as 

in previous figures. 

Table 9. Tm values of CCs, obtained from ANN model–IV.

Name of the CCs (ratio) Melting point of CCs

(Tm) (K)

Predicted Tm by ANN (K) Error value (K)

THP:GTA (1:1) 472.65 465.468 -7.18
THP:DIF (1:1) 457.95 471.9842 14.03

THP:DICFA (1:1) 460.05 460.1663 0.12
PIT:MYCT (1:1) 478.07 478.0557 -0.01

PIT:LMDA (2:1) 378.15 376.3606 -1.79
PIT:CTA (1:1) 385.15 383.2209 -1.93
PIT:LTA (1:1) 436.15 436.65 0.50
GPL:BA (1:1) 357.05 357.1279 0.08

GPL:4ABA (1:1) 394.15 395.3591 1.21
GPL:4HBA (1:1) 411.65 410.6669 -0.98
GPL:FUA (2:1) 378.45 379.1764 0.73
TGF:NA (1:1) 378.35 377.6275 -0.72
TGF:PG (1:1) 393.15 391.9266 -1.22
TGF:INA (1:1) 422.55 415.3424 -7.21

TGF:4HBA (1:1) 412.85 412.1346 -0.72
NA:FFA (1:1) 410.00 405.5611 -4.44
NA:NFA (1:1) 413.00 420.1614 7.16
NA:TFA (2:1) 426.00 426.5006 0.50
NA:MFA (2:1) 400.00 400.8665 0.87
NA:NPX (1:2) 399.75 387.3084 -12.44
NA:FBX (1:1) 439.95 434.9624 -4.99
SA:INZ (1:1) 418.95 421.0602 2.11
SA:THP (1:1) 461.65 459.5735 -2.08
SYA:NA (2:1) 447.89 446.4457 -1.44

SYA:URE (1:2) 440.70 441.6315 0.93
4BP:FA (1:2) 418.85 419.0523 0.20

4BP:NFA (1:2) 426.95 425.0616 -1.89
4BP:TFA (1:2) 430.15 428.0209 -2.13
4BP:MFA (1:2) 436.65 433.5712 -3.08
4BP:FFA (1:2) 401.15 406.9332 5.78
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In a related investigation,43 a database analysis over melting points of CCs is presented and a 

correlation equation between the thermodynamic characteristics of CCs and those of the individual 

components is developed aiming to predict the melting point of the CCs. The method uses molecular 

descriptors as a basis, such as the molecular polarizability, sum of H-bond acceptor factors and sum of 

H-bond donor factors. Unfortunately, no correlation between the melting points of the CCs and the 

descriptors is observed.

ANN model–V: prediction of ideal mole fraction solubility of CCs

The calculated (eq 3) ideal mole fraction solubilities at 25 ℃ of the CCs varies from 0.4274 to 

3.63x10-19 (see Table 3), and it wasn’t possible to build a model for x as the output parameter. 

However, targeting ln(x) at 25 ℃ as the output parameter, the training process with 30 CCs systems 

using the same six input parameters as used in ANN models I, III and IV, has been done successfully. 

A very good model with a regression value of 0.990 and 0.9536 was obtained respectively for the 

training set, validation set and also for an overall performance of the model (R=0.980) as given in Fig. 

17. The predicted ideal mole fraction solubility values by ANN model–V are compared with 

“calculated (eq 3) values” in Fig. 18. Obviously, in most cases the ideal solubility is well predicted by 

the model. The obtained deviations are listed in Table 10. Among the 30 CCs, the best prediction is 

obtained for PIT: MYCT cocrystal with only 0.01 deviation. The largest deviations are observed for 

some of the nicotinamide cocrystals.

The ideal solubility is entirely a property of the pure solid cocrystal, but as is shown by equation 2 is 

an important factor behind the real solubility in solution. As far as is known to us the ideal solubility 

has not been the target for prediction before, but there is previous work aiming for prediction of real 

cocrystal solubilities in solution.44, 45, 46 Notably though these approaches involves input data for how 

the pure compounds dissolve in the same solvent, and accordingly are different to the work presented 

here both with respect to the complexity of the input data as well with respect to the property being 

the target of the prediction.
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Figure 17. ANN model–V: prediction of ideal mole fraction solubility of CCs, a) training set, b) 

validation set, c) test set and d) overall.

Figure 18. ANN model–V: quantitative overall performance including all data. Color coding same as 

in previous figures. 
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Table 10.  Calculated ln (xid) of CCs vs the predicted ln (xid) of CCs obtained by ANN model–V.

Name of the CCs (ratio) Calculated ln (xid) of CCs Predicted ln (xis) of CCs Error

THP:GTA (1:1) -4.91 -5.28 -0.37
THP:DIF (1:1) -8.67 -8.94 -0.27

THP:DICFA (1:1) -10.03 -9.55 0.48
PIT:MYCT (1:1) -42.46 -42.45 0.01
PIT:LMDA (2:1) -15.36 -16.10 -0.74
PIT:CTA (1:1) -18.63 -20.20 -1.57
PIT:LTA (1:1) -30.94 -30.86 0.08
GPL:BA (1:1) -1.05 -1.93 -0.88

GPL:4ABA (1:1) -1.81 -1.93 -0.12
GPL:4HBA (1:1) -2.33 -2.11 0.22
GPL:FUA (2:1) -0.85 -2.43 -1.58
TGF:NA (1:1) -15.7 -16.96 -1.26
TGF:PG (1:1) -17.85 -17.23 0.62
TGF:INA (1:1) -26.29 -21.62 4.67

TGF:4HBA (1:1) -30 -28.87 1.13
NA:FFA (1:1) -6.28 -5.49 0.79
NA:NFA (1:1) -5.39 -12.03 -6.64
NA:TFA (2:1) -11.88 -11.69 0.19
NA:MFA (2:1) -5.14 -10.77 -5.63
NA:NPX (1:2) -7.77 -4.73 3.04
NA:FBX (1:1) -33.44 -28.23 5.21
SA:INZ (1:1) -5.74 -5.33 0.41
SA:THP (1:1) -6.63 -6.34 0.29
SYA:NA (2:1) -32.57 -30.73 1.84

SYA:URE (1:2) -28.37 -27.82 0.55
4BP:FA (1:2) -9.66 -9.81 -0.15

4BP:NFA (1:2) -11.7 -10.91 0.79
4BP:TFA (1:2) -9.54 -11.26 -1.72
4BP:MFA (1:2) -10.63 -10.53 0.10
4BP:FFA (1:2) -8.77 -9.66 -0.89

Conclusions

Five ANN models have been developed to predict respectively: (I) the melting enthalpy, (II) the 

melting entropy, (III) the melting enthalpy and entropy, (IV) the melting temperature and (V) the ideal 

mole fraction solubility of co-crystals. Six operational variables were identified and used as being the 

most influential parameters for construction of all of five models, and includes molecular weight, 

melting point and melting enthalpy/melting entropy of the model compound and of the coformer. All 

five models gave the regression value between 0.986 and 0.999. Hence, the models are capable of 

predicting these physical properties of cocrystals prior to their synthesis. The models can serve as a 

tool for a first screening of coformers to be evaluated in the laboratory work, and thus make the 

process of finding suitable cocrystals more efficient. The models can also be used to access properties 

for CCs where the melting properties cannot be determined, in example when the cocrystal physically 

or chemically decomposes before reaching the melting point. 
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Analysis and ANN Prediction of Melting Properties and Ideal Mole fraction Solubility of Co-crystals

Rama Krishna Gamidi ab and Åke. C.  Rasmuson*a
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Road, Pune, Maharashtra 411 008, India

Different Artificial Neural Network models have been developed and examined for prediction of 

cocrystal properties based on pure component physical properties only. From the molecular weight, 

melting temperature, melting enthalpy and melting entropy of the pure compounds, the corresponding 

melting properties of the cocrystals and the cocrystal ideal solubility have been successfully predicted. 

The training process was stopped for all the five models with overall r2 values above 0.986. In 

particular, the models capture how the coformer structure influences on the targeted physical 

properties of cocrystals.
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