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Global energy optimization of a molecular system is difficult due to the well-known “multiple minimum”
problem. The rugged potential energy surface (PES) characteristic of multidimensional systems can be
transformed reversibly using potential smoothing to generate a new surface that is easier to search for favorable
configurations. The diffusion equation method (DEM) is one example of a potential smoothing algorithm.
Potential smoothing as implemented in DEM is intuitively appealing and has certain appropriate statistical
mechanical properties, but often fails to identify the global minimum even for relatively small problems. In
the present paper, extensions to DEM capable of correcting its empirical behavior are systematically
investigated. Two types of local search (LS) procedures are applied during the reversing schedule from the
smooth deformed PES to the undeformed surface. Changes needed to generate smoothable versions of standard
molecular mechanics force fields such as AMBER/OPLS and MM2 are also described. The resulting methods
are applied in an attempt to determine the global energy minimum for a variety of systems in different coordinate
representations. The problems studied include argon clusters, cycloheptadecane, capped polyalanine, and
the docking ofR-helices. Depending on the specific problem, potential smoothing and search (PSS) is
performed in Cartesian, torsional, or rigid body space. For example, PSS finds a very low energy structure
for cycloheptadecane with much greater efficiency than a search restricted to the undeformed potential surface.
It is shown that potential smoothing is characterized by three salient features. As the level of smoothing is
increased, unique minima merge into a common basin, crossings can occur in the relative energies of a pair
of minima, and the spatial locations of minima are shifted due to the averaging effects of smoothing. Local
search procedures improve the ability of smoothing methods to locate global minima because they facilitate
thepost factocorrection of errors due to energy crossings that may have occurred at higher levels of smoothing.
PSS methods should serve as useful tools for global energy optimization on a variety of difficult problems
of practical interest.

Introduction

Global optimization is an important issue in the characteriza-
tion of complex systems such as glasses, clusters, and large
biomolecules. Techniques have emerged over the past few
years, all of which exhibit varying degrees of success in
application to well-established global optimization test problems.
The current algorithms can be classified into four overlapping
categories: (1) deterministic methods, (2) stochastic methods,
(3) heuristic methods, and (4) smoothing methods. Selected
methods from each of these four categories have been exten-
sively reviewed.1,2

Deterministic methods include space covering techniques such
as branch-and-bound search,3 systematic search methods,4 and
generalized descent methods.5 These methods are useful for
small problems or for larger systems with well-established
constraints, but will in general fail for large problems due to
the exponential increase in the size of the space to be searched.

Stochastic methods include Bayesian statistical models6 and
simulated annealing.7 An underlying theme in many stochastic
search procedures is the use of Monte Carlo sampling enhanced
by the Metropolis criterion.8 Some notable Monte Carlo
techniques include reweighting methods such as multicanonical
sampling,9 Monte Carlo with minimization (MCM),10 a revision
of MCM referred to as “basin hopping”,11 a molecular dynamics-

minimization procedure also related to MCM,12 mixed Monte
Carlo/stochastic dynamics methods,13 and the random kick
method.14

A widely used stochastic method is simulated annealing7

which is an important tool for global optimization on rugged
energy landscapes. In simulated annealing, the system is
coupled to a heat bath which is initially at some high
temperature. At high temperature the system is characterized
by rapid transitions between high- and low-lying minima. The
temperature is then slowly lowered according to a prescribed
cooling schedule, and the system is allowed to equilibrate at
each level using either a Monte Carlo Metropolis criterion8 or
molecular dynamics in dynamical simulated annealing.15 A
decrease in temperature is associated with an increased likeli-
hood of occupying low energy states and reduced likelihood of
jumping out of minima. The approach is analogous to the slow
cooling or annealing of a system through the transition region
between the liquid and solid phases. The success of simulated
annealing is largely determined by the cooling schedule, the
size of the largest barrier on the potential energy surface (PES),
and the separation between the global minimum and other low-
lying conformations.16,17 While simulated annealing has been
of limited use in the global optimization of proteins and other
biopolymer systems,18 it is thede factostandard for refinement
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of X-ray and NMR-determined structures of biomolecules.19

Adaptive simulated annealing couples a refined choice of
parameters to the Metropolis criterion for increased sampling
of important regions of conformational space20 and has been
applied to predict the conformations of Met-enkephalin and a
14-residue polylysineR-helix.21 A recent variant of simulated
annealing is derived from generalized Tsallis statistics.22 The
classical Boltzmann machinery can be recovered as a special
case of this generalized formalism. Generalized simulated
annealing23 has been revised to satisfy detailed balance and has
been shown to reduce to a steepest descent algorithm at low
temperatures.24 It is still unclear if the use of generalized
statistics will yield significant improvements over the traditional
Boltzmann formulation for larger biomolecules.

Many heuristic algorithms are based on a reduction of the
global problem into smaller subsets for optimization. The
assembly of the smaller optimized parts leads to the final answer.
Algorithms of this type include the build-up procedure,25,26

constrained systematic search algorithms,27 scanning methods
which replace exhaustive enumeration with Monte Carlo
methods,28 and genetic algorithms.29 These methods lead to
the iterative generation of sets of conformations from which
the lowest energy conformer is selected. An important short-
coming of these heuristic methods is the overemphasis of short-
range effects over long-range interactions as determinants of
low-energy conformations.

An emerging concept in global optimization is potential
smoothing. The basic idea is to analytically transform a
multidimensional PES by reducing the number of unique minima
and the heights of barriers. Such a transformation can project
out a catchment region that may be related to the global
minimum. The spirit of smoothing methods is contained in
previous work which showed that short-range potentials generate
large numbers of local minima, and softening these potentials
leads to a reduction in the number of local minima.30,31 This
conceptual framework has been used in the diffusion equation
method (DEM) for potential smoothing developed by Scheraga
and co-workers.32 Important generalizations to DEM include
Gaussian density annealing (GDA and AGDA), and other
Gaussian phase packet dynamics methods developed by Straub
and co-workers.33-35 Methods such as the Monte Carlo
minimization (MCM) of Li and Scheraga10 and “basin hopping”
of Doye and Wales11 fall into the category of PES smoothing,
though the mechanism of smoothing is different from the DEM32

and AGDA34 class of methods discussed in this work.
Smoothing of a PES can also be extended to transform the

Gibbs distribution function and is the basis of the packet
annealing methods of Shalloway.36 The success of a smoothing
algorithm for global optimization is contingent upon a connec-
tion between the deformed and the undeformed surfaces and
sufficient structure underlying the original rough PES. Straub17

and Churchet al.37 have reviewed methods for potential
smoothing and compared the efficiency of smoothing algorithms
with different types of simulated annealing protocols.

We are initiating a series of systematic studies to establish
concepts and quantify metrics to compare and contrast the
efficiency, extent of sampling, CPU intensity, and accuracy of
specific candidates from the four major classes of global
optimization outlined above. In this work we detail methods
to modulate diffusional smoothing as a tool for global optimiza-
tion and use recently developed strategies to generalize its scope
for global optimization.38 These generalizations come under
the category of potential smoothing and search methods which
will be referred to as PSS. The basic ideas presented in this

work can be adapted to generalized smoothing algorithms such
as GDA33 and AGDA.34 Here we concentrate on tuning the
simplest version of potential smoothing,i.e., DEM. The focus
of this work is to develop an understanding of the smoothing
paradigm by applying it to a cross section of molecular
conformation problems. Examples are used to quantitatively
illustrate the features of smoothing a rough PES, the limitations
of the original smoothing protocol, and the efficiency of search
enhanced generalizations on large conformational problems.
Applications studied include (i) varying sizes of argon atom
clusters, (ii) cycloheptadecane, and (iii) regular conformations
of polypeptides.

In the next section we describe in detail the different methods
for implementing potential smoothing. This is followed by a
description of results from the application of PSS. We conclude
with a discussion of the features of potential smoothing,
limitations of the methods used in this work, and possible future
extensions.

Methods

All calculations were performed using the TINKER modeling
package, which implements a self-contained force field engine
providing access to several molecular mechanics force fields.39

We use a modified version of the united-atom AMBER/
OPLS40,41 force field in applications of potential smoothing to
conformational energy surfaces of polypeptides and clusters of
argon atoms. A similarly modified MM242 parameter set was
used in calculations on conformations of cycloheptadecane.

Potential Function and Parametrization. The AMBER/
OPLS and MM2 force fields were modified to obtain analytical
solutions of a diffusion equation corresponding to each energy
term. Modified AMBER/OPLS or MM2 force fields can be
deformed to reduce the number of minima on the potential
energy hypersurface. This is done by controlling the level of
deformation denoted by an independent parameter,t.

The modified AMBER/OPLS force field, which will be
referred to as DOPLS for deformable OPLS, is a function of
the atomic coordinates andt. The DOPLS force field is of the
form

The first two terms are bond stretch and valence angle bending
energies. Torsional terms characterize barriers for internal bond
rotation. A CHARMM-style harmonic improper dihedral term
is included in DOPLS to impose planarity at sp2 atoms and
chirality of sp3 united atoms. In AMBER/OPLS nonbonded
terms include van der Waals energies modeled using a 12-6
Lennard-Jones function and electrostatic energies modeled using
a Coulomb potential for charge-charge interactions. Their
modification in DOPLS is discussed below.

Since it is easy to compute solutions to a diffusion equation
for Gaussian-like initial conditions, energy functions for van
der Waals interactions are approximated as a sum of either two
or four Gaussians. The functional form of the Gaussian
approximation for van der Waals interactions is shown in eq 2.

We use a two-Gaussian approximation in this work for each
pairwise van der Waals interaction. The Gaussians are centered
about the origin and are of opposite sign. Typical van der Waals

Vtotal ) Vbond+ Vangle+ Vtorsion+ Vimproper+ Vvdw + Vcharge

(1)

Vvdw(rij) ) ∑
k)1

ngauss

ak(ij ) exp(-bk(ij )rij
2) (2)
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interactions present large repulsive barriers for values ofrij less
than the radius of the excluded volume shell. Therij ) 0 region
of a Lennard-Jones 12-6 function is rendered inaccessible in
the Gaussian approximation of eq 2 by modulating the height
of the repulsive Gaussian,a1(ij). Parameters for the two Gaussian
approximation are chosen to fit a canonical Lennard-Jones
function with an atomic radius (σ) and a well depth (ε) of one.
We use values of (a1, b1) ) (14 487.1 kcal/mol, 9.051 48 Å)
and (a2, b2) ) (-5.553 38 kcal/mol, 1.225 36 Å) forσ ) 1 Å
andε ) 1.0 kcal/mol. The pairwise Gaussian parameters are
scaled according to theσ and ε values for each pairwise
interaction using the values prescribed by the force field.
DOPLS parameters also include a small nonzero van der Waals
radius on polar hydrogen atoms to avoid fusion of atoms due
to favorable electrostatic interactions. Values ofσ ) 0.5 Å
andε ) 0.010 kcal/mol were used for all polar hydrogen atoms.
This choice has very little effect on the final energy of
reasonable, low-energy structures.

The final component of DOPLS is the inclusion of a
CHARMM43 improper dihedral term of the form

This term imposes planarity at sp2 atoms and correct chirality
at sp3 R-carbon and other tetrahedral atoms. Values ofKΘ were
chosen to best reproduce the low-energy regions of the standard
AMBER/OPLS trigonometric improper torsional term. The
change in functional form was necessary to maintain the desired
planarity and to avoid chirality changes on deformed energy
surfaces.

These modifications to AMBER/OPLS result in only very
small structural and energetic deviations from the original force
field for low energy minima on the undeformed,t ) 0, DOPLS
potential surface. However, each modification is required for
either efficient evaluation or desired limiting behavior as the
amount of deformation of the surface increases with increas-
ing t.

MM2 substitutes out-of-plane bending for the improper
dihedral term and also includes a bond stretch-angle bend cross
term. In addition MM2 replaces the Lennard-Jones function
with a Buckingham exp-6 function for van der Waals interac-
tions. In smoothing applications, the exp-6 potential is replaced
by a Gaussian approximation similar to the form shown in eq
2. Parameters for the two-Gaussian approximation are chosen
to fit the original MM2 function, 290 000 exp(-12.5r*/ r) -
2.25(r*/ r)6. We use values of (a1, b1) ) (3423.562 kcal/mol,
9.692 Å) and (a2, b2) ) (-6.503 kcal/mol, 1.585 Å) forr* )
1 Å andε ) 1.0 kcal/mol. The pairwise Gaussian parameters
are scaled according to ther* and ε values for each pairwise
interaction using the values prescribed by the force field.

Diffusion Equation Method for Smoothing of Potential
Functions. In DEM32 a molecular mechanics potential function
is deformed by iterative application of a smoothing operator.
A multidimensional potential function with its characteristic
roughness is transformed toΥ(r1,r2,...rn;t) using an operator of
the form∂Υ/∂t ) J{r1,r2,...rN}Υ, wheret is a dimensionless
parameter that controls the level of smoothing. The operator
on the right side is a multidimensional diffusion operator. Here
Υ(r1,r2,...rn;0) ) V(r1,r2,...rn) is the original undeformed
potential function. The diffusion operator is applied to each of
the pairwise molecular mechanics terms individually. We
assume that the sum of individually deformed parts is equivalent
to the deformed potential energy function. This assumption is
accurate for distance-dependent potential functions. If a
potential function is written as a sum of pairwise distance-

dependent terms,i.e., V(x) ) ∑i∑j<iVij(|xi - xj|), where|xi -
xj| denotes the distance between atomsi andj, it can be shown
that computing a smoothed form forV(x) requires only the
smoothed form for the pair potentialVij.44 This principle is
strictly valid only for pair potentials that depend on the scalar
distance between atoms. It can be extended to a sum of
distance-dependent molecular mechanics terms provided the
distance ranges are the same for each term.

In applying the diffusion equation to molecular mechanics
functions as initial conditions for diffusion, the pairwise distance
can either be a Cartesian or angular distance. For example,
torsional potentials are smoothed in terms of torsional angles
instead of the 1-4 distance. Smoothing torsional potentials in
terms of torsional angles is qualitatively similar to smoothing
an equivalent potential over the 1-4 distance especially if the
1-2 and 1-3 distances are kept fixed. However, the choice
of smoothing the torsional potential in terms of angular
coordinates is the only tractable way to smooth torsional
potentials in Cartesian space when the 1-2 and 1-3 distances
are not fixed. Details regarding the smoothing of torsional
potentials are presented in Appendix A.

The diffusion equation in one dimension with no sources or
sinks is of the form

Here F is similar to either temperature in heat conduction or
concentration of particles in a diffusion controlled process and
D is a diffusion coefficient in units of Å2. Solutions to a
diffusion equation can be obtained analytically provided we
know the initial value ofF and the boundary conditions. The
general solution to the semiinfinite one-dimensional diffusion
equation shown in eq 4a is

for x ) x0 at t ) 0. If F(x,t) denotes a one-dimensional
distribution of Brownian particles then the rms displacement
of the Brownian particles as a function of time is

implying that the mean squared displacement between Brownian
particles increases linearly with time. This is an important
feature in the use of a diffusion equation formalism for
deforming potential functions.

For instance, during diffusion of a DOPLS Gaussian van der
Waals interaction term the location of the potential minimum
is pushed out to larger values ofr asVvdw(r) is deformed. For
a two-Gaussian approximation to the van der Waals potential
the location of the potential energy minimum may be written
in terms of the Gaussian parameters asrmin ) ln(-b1a1/b2a2).
For nonzero values of the smoothing parametert the location
of the potential energy minimum is shifted and can be written
asrmin ) ln(-bt1at1/bt2at2), whereatk ) ak/(1 + 4t)3/2 andbtk )
bk/(1 + 4t). The ratio-b1a1/b2a2 increases with increasingt,
shifting the location ofrmin. A qualitative description of
potential function smoothing is that pairwise interactions
between localized atoms are altered to be interactions between
diffuse atoms. On smooth surfaces, atoms are delocalized and
the atomic positions are described by probability distributions.
Interactions between the average location of atoms can be

∂F
∂t

) D
∂

2F
∂x2

(4a)

F(x,t) ) 1

[4πDt]1/2
exp(-(x - x0)

2

4Dt ) (4b)

xrms
2 ) x0

2 + 2Dt (4c)

Vimproper)
1/2KΘ(Θ - Θ0)

2 (3)
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computed using the location and width of the Gaussian
distribution for each atom. Interaction between diffuse as
opposed to localized atoms leads to a reduction in the combi-
natorial problem and hence a reduction in the number of
accessible minima.

Coordinate Representations. We study applications of
potential smoothing in three types of spaces: Cartesian (Γvc),
torsional (Γvt), and rigid body (Γvr) space. InΓvt bonds and
angles are kept fixed at their starting positions and conforma-
tional changes come about due to changes in torsional angles.
The DOPLS potential energy function inΓvt is written as

In Γvr different conformations are distinguished by six rigid
body degrees of freedom for each molecule, corresponding to
three translations and three rotations. The potential function is
of the general form

In this work, rigid bodies always correspond to distinct
molecules, so the summand denotes nonbonded interactions
between atoms on different molecules.m is the number of
molecules andni andnj are the number of atoms in each of the
moleculesi and j, respectively.

Diffusion Coefficients To Modulate Smoothing of Potential
Function Terms. In analogy with a classical diffusion equation,
each of the molecular mechanics terms represents a different
initial condition for diffusion. Individual pairwise energy
functions differ in their distance range, energy scales, and pairs
of atoms involved. Scaling the disparate potential energy terms
may be accomplished by choosing a set of empirical diffusion
coefficients to control the rate of diffusion of the different terms.
Diffusion coefficients can be estimated based on a solution to
the appropriate finite one-dimensional diffusion equations in
distance space with the upper and lower bounds stipulated as
shown in Table 1. In all of the applications reported here, the
bond stretch, angle bending, improper dihedral, out-of-plane
bending, and bond-angle cross terms are not smoothed. Dif-
fusion coefficients for the Lennard-Jones and Coulomb terms
are set to one since these are nonbonded interactions and the
range of these potentials is large. Effective diffusion coefficients
for local geometric interactions are scaled relative to values for
the nonbonded terms.

The DOPLS force field contains terms that are naturally
represented in either distance or angular space. Bond stretch,
van der Waals, and electrostatic terms describe pairwise
interactions in distance space. Angle bending, improper dihe-
dral, and torsional terms describe interactions in angular space.

In order to correctly scale the smoothing of these terms a
mapping of variations in angular space onto variations in
distance space is needed. For example, if distances are
measured in angstroms and angles in radians, then in order to
correctly scale the smoothing of different terms an estimate of
the change in radians in angular space in terms of angstroms in
distance space is needed. A second consideration is the different
ranges of potential functions within the same diffusion space.
In distance space, bond stretch terms involve only nearest-
neighbor distances, while nonbonded functions involve larger
distances.

Our analysis of this problem leads to a choice of very small
diffusion coefficients for bond stretch and angle bending terms.
The limit of diffusion coefficients tending to zero is equivalent
to not smoothing the bond and angle terms. Small values for
diffusion coefficients reflect two important considerations: (i)
the limited range of covalent restraint terms and (ii) the intrinsic
nature of restraint terms to impose severe penalties for all
deviations from ideal geometry. This is reasonable since the
objective is to explore conformational space without any
significant rearrangements of covalent geometry,i.e., making
or breaking of covalent bonds. A similar reasoning is used to
justify the use of undeformed bond-angle cross terms and
improper dihedral terms.

Torsional potentials are typically a sum of trigonometric terms
that impose multifold barriers. Unlike bond stretch and angle
bending terms, torsional terms cannot be ignored since these
barriers distinguish between conformations and are considerably
smaller than the barriers imposed by violation of covalent bond
and angle restraints. SettingDtorsion ) 1 leads to the problem
that at fairly small nonzero values for the deformation parameter
t, torsional barriers vanish leading to a nonphysical exploration
of conformational space. Since barriers vanish for small values
of t, typical reversal protocols used in potential smoothing45,46

will not feel these barriers until very small values oft at which
point the method may have already committed to a conformation
with high torsional energy. One solution would be to recast
the torsional potential in terms of a 1-4 distance.46 However,
a 1-4 distance restraint inΓvc can become severely nonphysical
because covalent bonds and angles are merely undeformed and
not rigidly fixed. A simpler method is to compute the rate of
diffusion in torsional space which is then used to estimate an
effective torsional diffusion coefficient in distance space.

The method of choosing empirical diffusion coefficients for
covalent restraint and geometry terms has the desired effect of
controlling their smoothing relative to nonbonded terms. The
current formalism is a generalization of this technique and allows
for increased sampling of conformational alternatives on highly
deformed surfaces since torsional terms do get smoothed, albeit
slowly. A discussion of the methods used to estimate empirical
diffusion coefficients is provided in Appendix B.

Potential Smoothing Protocol. A typical potential smooth-
ing protocol involves the following steps:45-47

1. The conformational energy of a starting structure inΓvc,
Γvt, or Γvr is minimized using a local conjugate gradient or
second derivative minimization method on thet ) 0 undeformed
surface. InΓvt andΓvr we use an optimally conditioned quasi-
Newton method without line searches48 and in Γvc we use a
truncated Newton optimization algorithm49 with a precondi-
tioned linear conjugate gradient solution of Newton’s equations.

2. The value of the control parametert is slowly increased
according to a prescribed smoothing schedule, and conforma-
tional energy is minimized at each step using the methods
discussed in step 1.

TABLE 1: Characterization of the Diffusion Spaces and
Diffusion Coefficients for the Different Energy Terms of a
DOPLS Molecular Mechanics Potentiala

energy
term

diffusion
space

distance
interval

effective
diffusion coeff

Vbond finite (r120,r12max) Dbond) 0.000156 Å2

Vangle finite (r130,r13max) Dangle) 0.0014 radian2

Vtorsion finite (r14(0),r14(π)) Dtorsion) 0.022 radian2

Vvdw semiinfinite (r14(0),∞) Dvdw ) 1.0 Å2

Velectrostatic semiinfinite (r14(0),∞) Dcharge) 1.0 Å2

a In all calculationst is set to a dimensionless parameter that controls
the level of smoothing.

V($1,$2,...,$n) ) Vtorsion+ Vimproper+ Vvdw + Vcharge (5)

V(rbc1,rbc2,...,rbcm) ) ∑
i)1

m

∑
j<i

∑
k)1

ni

∑
l)1

nj

V(i,k),(j,l) (6)
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3. Smoothing of the conformational energy function is carried
out until t ) td, wheretd is the level of smoothing for which all
starting structures from step 1 converge to the same structure
with the same energy. In previous work,45,46 td was chosen to
be the level at which only a single minimum remains on the
deformed surface. This is a special case of our condition to
choosetd.

4. Starting att ) td the deformation is reduced followed by
conformational energy minimization as discussed in step 1. On
highly deformed surfaces only a few minima remain, so the
local optimizer finds a minimum in the same basin as the starting
structure by following the downhill gradient closely. Values
of t are reduced in small intervals∆t chosen according to a
prescribed schedule untilt ) 0. The reversal process is a fully
deterministic procedure and the final value for the conforma-
tional energy att ) 0 is the DEM estimate of the global energy
minimum of the molecule.
This protocol may be repeated for different starting structures
at step 1 to show that the chosentd is sufficiently large to ensure
convergence to the same minimum att ) td. Starting att ) td
implies the reversal protocol has forgotten the initial conforma-
tion and will follow an invariant deterministic path down to
the undeformed surface for a given reversal schedule.

Smoothing Schedule. If td is a chosen large value of the
deformation parameter for forward smoothing andnd is the
number of points betweent ) 0 and t ) td, the smoothing
schedule changes the deformation parameter according to the
formula

for forward smoothing and

for the reversal, wherei ) 1, 2, 3, ...,nd and 2e s e 6 for
different applications. For a given value ofs increasingnd

increases the number of points sampled at smaller values oft.
As will be discussed in the results section the optimal choice
of values fornd ands varies from problem to problem.

Compactness Restraints in Smoothing.Most applications
of smoothing algorithms have used basin functions or confining
potentials to impose compactness conditions during the smooth-
ing process. There are two classes of problems where basin
functions have been used in the past. One example is the
problem of finding the minimum energy configuration of clusters
of Lennard-Jones atoms. In DEM smoothing applications45 a
basin function of the forma exp(-br2) has been used to keep
atoms from drifting out to infinity ast becomes large. The
choice of values fora and b results in the application of
extremely shallow pairwise Gaussians that keep the system
bounded at large values oft. Similarly, Ma and Straub33 have
used a harmonic pair potential to confine the sampling of
conformations to the manifold of compact clusters. Basin
functions or confining potentials are necessary for noncovalent
clusters since they impose boundedness on the problem and are
required to keep the calculations numerically stable.

The use of basin functions in application of smoothing to
connected systems such as peptides or hydrocarbons is question-
able. At large values of deformation, if bonds and angles are
undeformed inΓvc or kept fixed as inΓvt, flexible molecules
sample maximally extended structures. For example, at large
t the values of theφ and ψ torsional angles in peptides are

typically near 180°. Unlike an argon cluster problem there is
no boundedness condition to be imposed. However, basin
functions restrict sampling to a set of compact conformations
and may bias the results of a smoothing protocol due to limited
sampling of conformations and perturbation of the unconstrained
smoothed surface. In our applications of potential function
smoothing we use basin function restraints for Lennard-Jones
clusters and not for peptides and isolated organic molecules.

PSS Methods. An extension of potential smoothing is to
include a local search protocol during the reversal schedule to
search for alternate low-lying minima.38 Local searches allow
for corrections to be made to estimates of the global minimum
at different levels of smoothing. We consider two types of local
searches. One alternative is to perform a search in the vicinity
of the local minimum along a randomly chosen direction or
along normal modes out of the local minimum. A second
method would be to move the system over transitions states
into adjacent low-lying minima. A general local search
algorithm adapted for either of these two methods is as follows:

1. At some chosen value oft ) tl during the reversal we
reduce the level of smoothing by∆t and find a minimum energy
conformation using a local optimization protocol. The energy
at the local minimum is stored asVlocal and its coordinates are
denoted by a vectorRlocal.

2. The system is moved out of the local minimum either
along a set of search directions or to a nearby transition state.
The energy of the system at the new location isVexcite and the
system coordinates are denoted byRexcite.

3. FromRexcite, the system is moved to an alternate location
Rnew by an energy minimization. IfVnew < Vlocal, then this is
the new energy and the system is retained at the new location
Rnew.

4. The system is moved fromRnew to explore the vicinity of
the new local minimum by repeating steps 2 and 3 until a new
lower minimum cannot be found.

5. If a new lower minimum cannot be found, we return to
step 1, reduce the value oft, and continue steps 2, 3, and 4
until t ) 0.
The final t ) 0 estimate for the “global” minimum is lower
than or equal to the minimum obtained from the DEM protocol
without local search.

“Normal Mode” Local Search (NMLS). The algorithm we
use for searches in the vicinity of a local minimum is very
similar to the “two-stage” method proposed by Nakamuraet
al.38 In their work, eigenmodes corresponding to the largest
eigenvalues of the Hessian computed at a local minimum are
followed in order to ensure an uphill climb out of a local
minimum. We use a generalization of their protocol to different
coordinate representations. InΓvc the true vibrational normal
modes are the appropriate mass-weighted eigenvectors of the
Hessian, though this is not strictly true inΓvt or Γvr. However,
we will refer to search along the eigenvectors of the Hessian
matrix as “normal mode” local search (NMLS) regardless of
the coordinate representation.

A point k along a search directioni that satisfies the condition
Vi,k-1 > Vi,k, and Vi,k-1 > Vi,k+1, where theV’s are the
conformational energy values, is chosen to be a new pointRexcite

from which to start a minimization to an alternate minimum.
The condition suggests apparent downhill progress indicating
a possible turning point into a new energy basin. In practice
the minimization can occasionally drop the system back into
Rlocal where it originated.

In Γvc, for connected systems, we use a hybrid scheme for
PSS. All minimizations are done in Cartesian space but the

ti ) td( i
nd

)S
(7)

ti ) td(2nd-i

nd
)S

(8)
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search directions for a guided climb out of the local minimum
are torsional space eigenvectors. The main objective of a local
search is to explore conformational space in the vicinity of the
local minimum. It is sufficient to explore structures on the
manifold of bonds and angles corresponding toRlocal, i.e.,
conformational rearrangements come about from varying tor-
sional angles alone. InΓvr the Hessian is computed in terms
of the 6n rigid body coordinates wheren is the number of rigid
bodies and the eigenvectors of theΓvr Hessian are the search
directions for NMLS.

Transition State Based Search (TSBS).Consider a system
in a local minimum with coordinatesRlocal at some level of
smoothingt. The system can be activated fromRlocal to a nearby
transition state region and quenched to an alternate local
minimumRnew. A subsequent comparison will choose between
Rlocal andRnew depending on which of the two conformational
energy values is lower;i.e., the system reverts toRlocal if Vlocal

< Vnew or remains in the new metastable stateRnew if Vnew <
Vlocal. In order to implement such a method we need to be able
to locate saddle points starting from a local minimum.

Methods that rely on the use of two adjacent minima to locate
intervening saddle points by minimization along an orthogonal
direction, by propagating a reaction path50 or evolving a contour
of tangency,51 are not useful here since we know only one
minimum. Techniques have been developed to locate transition
states using the curvature information at a local minimum.52

We use the activation and relaxation technique (ART) of
Barkema and Mousseau53 to locate saddle points from a
minimum in disordered systems. This method is briefly outlined
below.

Let R1 be the system coordinates at a local minimum. The
system is initially perturbed from this local minimum by
generating a small random displacement away from the mini-
mum, i.e., R* ) R1 + δ. A saddle point is then reached by
iteratively following a new force vector of the form

where∆R ) R* - R1 is a unit vector parallel to the vector
from the original minimum to the new location of the system.
R is a positive nonzero parameter chosen so that 0< R < 1
and used to ensure that the system does not remain trapped in
the local minimum. TheG-vector withR ) 0 points in an uphill
direction perpendicular to and away from the local minimum.
G is nonzero away from a local minimum or a saddle point, so
the simplest strategy is to start at a local minimum and evolve
a trajectory alongG from the local minimum untilG becomes
very small. A trajectory-based method can be computationally
inefficient. One of the problems in using conjugate gradient
minimizers to optimize along the uphill direction parallel toG
is there is no object function associated with the forceG.
Barkema and Mousseau53 suggest the use of a Levenberg-
Marquardt nonlinear least-squares optimization method designed
for following G.

In our experience the simple method of iteratively following
G until it becomes small leads to saddle point regions on an
undeformed energy surface for small peptides inΓvt. The same
method does not work as well inΓvc for peptides and
hydrocarbons since uphill directions often correspond to an
unreasonable disruption of covalent geometries. A potential
drawback of theG-vector formalism for our purposes is that
the saddle point generated is not necessarily a saddle point
adjacent to the local minimum of interest. In using this method
in a smoothing algorithm we check for true saddle point

convergence by using a truncated Newton method49 to refine
the location of the ART saddle point.

Results

The original DEM as well as PS-NMLS and PS-TSBS were
applied to conformational energy optimization problems of argon
atom clusters, capped polyalanine peptides, cycloheptadecane,
and rigid polyalanine helices. Results from these applications
are discussed in detail below.

1. Clusters of Argon Atoms in Γvc. A DEM smoothing
protocol has previously been applied45 to find the global energy
minimum of varying cluster sizes of argon atoms. For these
systems the interatomic interactions are purely van der Waals
interactions. Kostrowickiet al.45 have used a three-Gaussian
fit to model the interaction between argon atoms for a DEM
smoothing study. Two Gaussians represent the Lennard-Jones
interactions between argon atoms. A third Gaussian is used as
a shallow basin function to keep the clusters bounded during
smoothing. In analogous work on potential function smoothing
based on annealing an approximate classical distribution, GDA,
Ma and Straub33 have used a four Gaussian fit for the Lennard-
Jones term and a harmonic restraint potential to restrict the GDA
sampling to the manifold of compact clusters.

Considerable work has been done toward enumerating the
various local and global minima for argon atom clusters of
different sizes.11,54 For cluster sizes larger thann ) 13 the
number of minima has been estimated using a relation of the
form g(n) ≈ exp(a + bn + cn2), wherea ) -2.5167,b )
0.3572, andc ) 0.0286 are parameters derived from a fit to
results from a full enumeration of all the minima forn < 13.
DEM applied to clusters of sizen ) 5-19, 33, and 55 yields
the global minimum forn ) 5-7, 11, 13-15, 33, and 55.45

The lowest energy structures of most argon atom clusters are
related to Mackay icosahedra that show a fivefold symmetry.
However, there are clusters for which the global minimum is
derived from either an fcc symmetry as inn ) 38 or Mark’s
decahedron as inn ) 75, 76, 77, 102, 103, and 104.11

For n ) 8, Kostrowickiet al. have shown that DEM yields
a dodecahedron of triangle faces which is the global minimum
on the undeformed surface of the three Gaussian approximation.
On a true Lennard-Jones surface the global minimum is a
pentagonal bipyramid with two atoms on the outside. It should
be noted that the GDA algorithm of Ma and Straub33 and a
refined AGDA protocol55 also find global minima for different
cluster sizes with varying degrees of success. We applied a
PS-NMLS to argon atom clusters using a three-Gaussian
approximation and parametersε ) 0.2824 kcal/mol andσ )
3.3610 Å. The third attractive Gaussian corresponds to a well
depth of-1.7 kcal/mol and width of 0.000 01Å, which restricts
sampling to compact clusters. We studied all clusters of sizen
) 5-39 andn ) 55. This list includes clusters not reported in
the work of Kostrowickiet al., clusters for which the original
DEM does not recover the global minimum,45 and certain
benchmark “hard” problems such asn ) 38.11,56

In our application of DEM, we usetd ) 300.0 andnd ) 100
ands ) 3 in eqs 7 and 8 and find the global minimum for the
n ) 5-7, 10-16, and 18-19 clusters starting from arbitrary
structures not near the global minimum. All minimizations were
performed using a truncated Newton algorithm49 with an rms
gradient convergence criterion of 0.0001 kcal/mol/Å. We note
that our implementation of the DEM protocol succeeds in
finding the global minimum for then ) 12 and 19 clusters in
contrast to the work of Kostrowickiet al.

A PS-NMLS method was used in an attempt to find the global
minimum for then ) 5-39 andn ) 55 clusters. For then )

G ) -∇V - (1 + R){-∇V‚∆R}∆R (9)
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8 cluster the global minimum energy in Lennard-Jones units is
-19.8222 and the first excited state, a dodecahedron of triangle
faces, has an energy of-19.7649 LJ units. Both the DEM and
PS-NMLS methods recover the first excited state instead of the
global minimum. Forn ) 9 andn ) 17 we found the global
minimum using a PS-NMLS method with the five largest
eigenmodes inΓvc as search directions. Local searches inΓvc

were done for allt < 5.0 during the reversal.
Clusters of sizen ) 38, 75-77, and 102-104 are particularly

challenging problems for global optimization due to the
“multiple funnel” structure of the underlying PES.56 Multiple
funnels refer to potential energy surfaces with multiple similar
low-energy basins and very different conformations. For then
) 38 case the fcc truncated octahedron is the global minimum
with an energy of-173.9284 Lennard-Jones (LJ) units.57 PES
deformation schemes such as the distance scaling method of
Pillardy and Piela57 and the “basin hopping” algorithm of Doye
and Wales11 succeed in finding the global minimum forn )
38. The distance scaling and basin hopping methods generate
smoother potential energy surfaces for improved conformational
searching. Then ) 38 problem is easy for our version of
potential smoothing without local search. The global minimum
structure derived from fcc symmetry can be found from
completely random starting structures. For some other prob-
lems, particularlyn ) 31, 34, and 37 we were unable to find
the global minimum using PS-NMLS.

For then ) 55 case DEM does not find the global minimum
from arbitrary starting structures. This is because att ) td it is
not possible to obtain a unique structure irrespective of the
gradient convergence criterion chosen for the truncated Newton
optimization. It is possible that nonunique conformations at
large deformations are a consequence of errors in numerical
precison. We applied a PS-NMLS protocol to several different
starting structures and a small set of search directions along
the Cartesian eigenvectors and always succeeded in finding the
global minimum. Then ) 13, 55 clusters possess a high degree
of symmetry because of their perfect Mackay icosahedral
structures. For all clusters, the results reported above can be
recovered from completely random starting conformations.
Results from our application of DEM and PS-NMLS protocols
are summarized in Table 2.

2. Oligopeptides inΓvc. DEM and PS-NMLS were applied
to N-acetyl-Ala-Ala-N′-methylamide inΓvc. We first exhaus-
tively enumerated all the minima on the undeformed DOPLS
surface. This was done by combining an extensive grid search
around minimum energy regions to a series of truncated Newton
conjugate gradient minimizations. We used a gradient conver-
gence criterion of 0.0001 kcal/mol/Å. Minimum energy regions
for the grid search were chosen based on the work of
Zimmermanet al.58 The combined grid search procedure finds
a total of 142 unique minima. The four lowest minima including
the global minimum have energies ofVglobal ) -84.1906 kcal/
mol, V2 ) -83.9167 kcal/mol,V3 ) -81.9962 kcal/mol, and
V4 ) -81.9509 kcal/mol.

We characterized the smoothing of the PES by following each
of the 142 minima as a function of increasingt. We used values
of s ) 3, td ) 55.0, andnd ) 400 in eq 7. On thet ) 55.0
surface only a single minimum remains. We observe that the
number of minima reduces from 142 att ) 0 to 1 for t ) 55
through a series of mergers that are a consequence of diminish-
ing barriers between minima. Exhaustive enumeration allows
complete characterization of the smoothing process and evalu-
ation of the requirements for finding the global minimum. An

analysis of smoothing applied to the fully characterized PES of
N-acetyl-Ala-Ala-N′-methylamide will be reported elsewhere.59

An energy crossing between minimum 4 and the global
minimum occurs att ) 0.1372,i.e., V4 < Vglobal for all values
of t g 0.1372. The smoothing process projects out a catchment
region related to minimum 4 for larget, and a DEM reversing
schedule converges to minimum 004 att ) 0, i.e., V4 )
-81.9509 kcal/mol. A NMLS protocol using a search along
five large torsional eigenmodes correctspost factothe conse-
quence of the crossing att ) 0.1302 and converges to the global
minimum. This example illustrates how a local search method
can correct errors due crossings during the smoothing process.

We tested the ability of a PS-TSBS protocol to find the global
minimum forN-acetyl-Ala-Ala-N′-methylamide. In the TSBS
method the first stage is the location of a nearby saddle point
via the G-vector method described earlier. This is followed
by perturbation away from the saddle point along the eigen-
vectors corresponding to the negative eigenvalue in order to
reach the adjacent minimum.

We tuned the TSBS searches to find the global minimum by
correcting for some of the problems inherent to locating
transition states. A point for energy minimization is found after

TABLE 2: Results for PS-NMLS and DEM and Energy
Minimizations Applied to Clusters of Argon Atomsa

cluster
sizen

global
minimum

PS-NMLS
minimum

no. ofΓvc

search
directions
used in

PS-NMLS

5 -9.1039 -9.1039 0
6 -12.7121 -12.7121 0
7 -16.5054 -16.5054 0
8 -19.8222 -19.7649 24
9 -24.1134 -23.2698 5

10 -28.4225 -28.4225 0
11 -32.7660 -32.7660 0
12 -37.9676 -37.9676 0
13 -44.3268 -44.3268 0
14 -47.8452 -47.8452 0
15 -52.3226 -52.3226 0
16 -56.8157 -56.8157 0
17 -61.3180 -61.3180 5
18 -66.5309 -66.5309 0
19 -72.6598 -72.6598 0
20 -77.1770 -77.1770 10
21 -81.6846 -81.6846 10
22 -86.8098 -81.8098 15
23 -92.8445 -92.8445 23
24 -97.3488 -97.3488 15
25 -102.3727 -102.3727 15
26 -108.3156 -108.3156 15
27 -112.8736 -112.8736 15
28 -117.8224 -117.8224 25
29 -123.5874 -123.5874 29
30 -128.2866 -128.2866 55
31 -133.5864 -133.1836 87
32 -139.6355 -139.6355 21
33 -144.8427 -144.8427 20
34 -150.0445 -149.6721 96
35 -155.7566 -155.7566 44
36 -161.8254 -161.8254 23
37 -167.0338 -166.6315 105
38 -173.9284 -173.9284 0
39 -180.0332 -180.0332 23
55 -279.2485 -279.2485 10

a In the tablen denotes the size of the cluster studied. If the number
of search directions for PS-NMLS is zero, then a straight DEM protocol
succeeds at finding the global minimum. All energies are in Lennard-
Jones (LJ) units.
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an NMLS type walk away from the saddle point region indicates
a turn toward a minimum. We found the global minimum using
this method in multiple independent runs starting from random
locations on the network of 142 minima. Because transition
states were located using random perturbations away from local
minima, deviations from a DEM reversal were found at different
values oft for each run.

Despite the success in reproducibly finding the global
minimum, the current TSBS method is unlikely to work for
larger systems. The main disadvantage of the current imple-
mentation of PS-TSBS is that the search process becomes
nonlocal; i.e., the system is moved farther away from the
catchment region of interest than is necessary. However, the
concept of moving the system over transition states remains
attractive and alternate methods to restrict the climb along the
G-vector modulated by information about the appropriate
contour of tangency may be a useful way of refining TSBS
methods. For the rest of this work we use only the NMLS class
of local search enhancements to DEM.

3. CH3CO-(L-Ala)n-NHCH3 in Γvt and Γvc. Nakamura
et al.38 have studied DEM conformational energy minimization
of a capped 9-residue polyalanine chain using a modification
of an AMBER 4.0 force field. They showed that a DEM
protocol fails to find the global minimum, believed to be an
R-helix, while a “two-stage” method recovers a structure slightly
lower in energy than theR-helix that is very similar to the
canonicalR-helix, differing only in a bifurcated “capping”
hydrogen bond at the C-terminus.

We analyzed varying lengths of capped polyalanine sequences
CH3CO-(L-Ala)n-NHCH3 in Γvt. The bonds and angles are
invariant in all of these calculations and were based on idealized
peptide values shown in Table 3. Because the torsional barrier
for deviation away fromω ) 180° is large, theω angle was
kept fixed at 180°, thetransconformation of the peptide bond.
It can be shown thatt ) td ) 10 is a sufficiently large extent
of smoothing for random starting structures to converge to the
same energy and conformation. Through systematic trials we
founds ) 5 to be appropriate for smoothing inΓvt. Values of
nd were varied based on the size of the problem. As the number
of residues,n, is increased beyond 7 for CH3CO-(L-Ala)n-
NHCH3 in Γvt the number of pointsnd betweent ) td andt )
0 is increased. If the decrease in smoothing level∆t is
sufficiently small during the reversing schedule, an NMLS
protocol is reduced to making a binary decisions in multidi-
mensional conformational space. If∆t is not small enough,
then a NMLS protocol may require multiple iterations to
converge to the best alternate minimum. For larger values of
∆t, an alternate minimum may be too far from the local
minimum to be found by a NMLS protocol at the current level
of smoothing.

Results from application of PS-NMLS to chains of CH3CO-
(L-Ala)n-NHCH3 in Γvt for n ) 5-12 are described in Table
4. For all of the chains DEM obtains aγ-turn structure. For
n ) 5 theγ-turn is the DOPLS global energy minimum. For
n ) 6 and 8, we findâ-hairpin structures with nonclassical
reverse turns to be the lowest energy structures. Forn ) 7 and
n ) 9-12, the PS-NMLS method recovers structures very
similar to, and slightly lower in energy than, canonicalR-helices.
Differences between the two types of structures are in the
C-termini where theN-methyl amide hydrogen forms a bifur-
cated hydrogen bond with carbonyl oxygens from the residues
n-1 andn-2. We refer to such structures asR′-helices. Values
for the torsionalφ and ψ are angles are similar to those of
canonicalR-helices.

Each of the PS-NMLS calculations inΓvt for CH3CO-
(L-Ala)n-NHCH3 chains requires approximately a thousand
independent minimizations. It is instructive to compare results
from our PS-NMLS calculations to a random search that uses
the same number of local minimizations. For each of the
CH3CO-(L-Ala)n-NHCH3 chains we set the angleω to be trans
and generated a thousand independent conformations using
random values ofφ andψ between-180° and 180°. Each of
the 1000 starting conformations were minimized using an
optimally conditioned quasi-Newton method without line
searches48 overφ-ψ space to anrmsgradient convergence of
0.0001 kcal/mol/radian. We were unable to find the global
minimum for any of the polyalanine chains studied using this
random search procedure. The same 1000 randomized starting
conformations were used as starting positions for a NMLS local
search optimization on the undeformed surface. Forn ) 5-8
we found the global minimum approximately 35% of the time
and forn ) 9-12 the success in finding the global minimum
ranges from 22-30%. The improved success of NMLS
optimizations on the undeformed surface over a random search
is an indication that the iterative scheme in the search procedure
facilitates improved sampling of conformational space. On
average we required six or more iterations of local search to
converge to the global minimum. The important virtue of the
PS-NMLS over NMLS on the undeformed surface is that forn
) 5-12 all of the 1000 random conformations merge into a
single conformation with the same energy fort ) td ) 10. This
means that the smoothing procedure is completely deterministic
and does not require a large number of independent minimiza-
tions. Also, as the size of the problem increases, the efficiency
of using NMLS on the undeformed surface in finding the global
minimum or lower lying minima is greatly reduced.

TABLE 3: Ideal Geometries Used for Constructing Capped
Polyalanine Chains Using DOPLS Definitions of Atom Types
for Varying Lengths in Γvt

a

bonds bond lengths (Å) angles bond angles (deg)

C-CH3 1.51 CH3-C′-O 122.5
C′dO 1.22 CH3-C′-N 114.4
N-C′ 1.34 C′-N-CRH 121.0
CRH-N 1.46 N-CRH-C′ 111.0
C′-CRH 1.51 CRH-C′-O 122.5
N-HN 1.02 C′-N-H 118.0
C-′CRH 1.54 N-CRH-CH3 109.5
CRH-CH3 1.54 CRH-C′-N 112.7

C′-N-CH3 121.0

a On this manifold the values ofω are kept fixed at 180°.

TABLE 4: Summary of Results from Application of
PS-NMLS to Varying Lengths of CH3CO-(L-Ala)n-NHCH3
Sequences inΓvt

a

n

no. of
flexible
torsions
(φ,ψ)

DEM
energy

(kcal/mol)

PS-NMLS
energy

(kcal/mol)

PS-NMLS
structure

type

energy of
canonical
R-helix in

Γvt

5 10 -179.4897 -179.4897 γ-turn -178.2146
6 12 -212.5233 -217.4073 â-hairpin -215.5294
7 14 -245.5841 -253.8166 R′-helix -253.3204
8 16 -278.6389 -293.4585 â-hairpin -291.4040
9 18 -311.7031 -330.0448 R′-helix -329.7243

10 20 -344.7672 -368.4315 R′-helix -368.1972
11 22 -377.8342 -406.9659 R′-helix -406.7670
12 24 -410.9029 -445.5773 R′-helix -445.4150

a In Γvt the bonds and angles remain fixed and the energy minimiza-
tions find the lowest or global minimum on the manifold of fixed bond
and angles.
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Γvc Calculations. We studied DEM and PS-NMLS confor-
mational energy minimizations inΓvc for different lengths of
CH3CO-(L-Ala)n-NHCH3 chains. Kostrowicki and Scheraga46

have discussed implications of deforming penalty function terms
such as harmonic bond length and bond angle restraint terms
for DEM smoothing. Because we are not interested in
significant rearrangements of covalent geometry, we do not
smooth the bond stretch, angle bending, and improper dihedral
terms for calculations inΓvc. This is different from Γvt

calculations where bond lengths and bond angles are kept fixed.
In Γvc, bonds and angles are allowed to stretch and bend as
they would on the undeformed surface. The bonds and angles
deform at different levels of smoothing to compensate for long-
range effects of nonbonded interactions.

As in Γvt, we settd ) 10.0 in all our calculations. We use a
fixed schedule ofnd ) 100 ands) 3 in eqs 7 and 8 for forward
smoothing and reversing and study capped polyalanine chains
of lengthn ) 5-11 in Vacuo. For all values ofn, DEM again
finds γ-turn structures. PS-NMLS finds a set ofâ-hairpin
structures for each of the sequences studied. Theâ-hairpin
structures found are lower in energy than theR-helices inΓvc

for n ) 5-9.
For instance withn ) 8, thet ) 0 DOPLS energy for a local

minimum corresponding to the canonicalR-helix is -306.8196
kcal/mol. This structure was located using a model-builtR-helix
as the starting conformation and then minimizing to arms
gradient convergence of 0.0001 kcal/mol/Å. A PS-NMLS
protocol yields aâ-hairpin structure that is 7.4179 kcal/mol
lower in energy than thisR-helix. Results of allΓvc calculations
for n ) 5-11 chains of CH3CO-(L-Ala)n-NHCH3 are sum-
marized in Table 5. Figure 1 shows the structures for an ) 8

canonicalR-helix and the lower energyâ-hairpin obtained from
a PS-NMLS inΓvc.

In direct analogy to theΓvt calculation we expected to see
R-helices as the result of PS-NMLS calculations for longer
sequences. Forn ) 10 and 11, an PS-NMLS method does not
find structures lower in energy than theR-helix, but instead
finds â-hairpins that are higher in energy than theR-helix. For
longer chains we performed exhaustive local searches along all
the torsional eigenmodes and found the higher energyâ-hairpins.
We analyzed the reasons for this result by enumerating structures
sampled during local searches. Forn ) 10 there are three
unique minima near the global minimum on the DOPLS surface
in Γvc, a â-hairpin (Vâ ) -387.0713 kcal/mol), the canonical
R-helix (VR ) -387.2196 kcal/mol), and anR′-helix (VR′ )
-387.5620 kcal/mol) which is the global minimum. We studied
the forward smoothing of these three low-energy structures. For
values oft between 0.0051 and 0.1826 the global minimum is
in the catchment region of theâ-hairpin. A comparison of
conformational energies as a function oft for forward smoothing
is shown in Figure 2. TheR′-helix becomes higher in energy
than theâ-hairpin fort of 0.0051 and greater. For allt > 0.1826
the global minimum is theγ-turn basin. The PS-NMLS
converges to the global minimum up to thet ) 0.0051 surface
which is a â-hairpin. At the next smallert value in this
particular protocol,t ) 0.0045, theR′-helix is lower in energy
than theâ-hairpin. PS-NMLS fails to recognize the crossing
of energies for 0.0045< t < 0.0051 when theR′-helix becomes
lower in energy than theâ-hairpin.

We used the NMLS search strategy to enumerate all local
minima sampled from theâ-hairpin andR′-helix minima along
all of the search directions corresponding to the 20 pairs ofφ-ψ
angles att ) 0.0045 andt ) 0.0051. On thet ) 0.0045 surface,
the R′-helix is lower in energy than theâ-hairpin, VR′ )
-383.2723 kcal/mol andVâ ) -383.2569 kcal/mol. Structures
found from a local search were characterized asR-helical if
the distancesri,i+4 between the carbonyl oxygen atoms of residue
i and the amide nitrogen atom of residuei + 4 were between
2.7 and 3.1Å, implyingR-helical hydrogen bonds. If the
structures were such that the distances between the atom pairs
(O9-N2), (O7-N4), (O4-N7), and (O2-N9) were between 2.7
and 3.1 Å, the structure was deemed aâ-hairpin containing
interstrand hydrogen bonds. Of the 23 unique low-energy
structures found from a local search out of theR′-helix local

TABLE 5: Results of DEM and PS-NMLS Applied
to Capped Sequences of Polyalanine,
CH3CO-(L-Ala)n-NHCH3 in Γvc

a

n

DEM
energy

(kcal/mol)

PS-NMLS
energy

(kcal/mol)

canonical
R-helix energy

(kcal/mol)

5 -183.1443 -197.9965 -188.3236
6 -216.9159 -238.3538 -227.1757
7 -250.7094 -272.9906 -266.8064
8 -285.8123 -314.2375 -306.8196
9 -318.3087 -350.0894 -346.9622

10 -352.1148 -387.0713 -387.2196
11 -385.9248 -423.6528 -427.5763

a A schedule ofs ) 3, nd ) 100, andtd ) 10 was used in this study.

Figure 1. (a) Lowest energyR-helical conformations of CH3CO-
(L-Ala)8-NHCH3 in Γvc. (b) Theâ-hairpin structure which is 7.4179
kcal/mol lower in energy than the canonicalR-helix shown in (a) and
is the structure found using PS-NMLS.

Figure 2. Conformational energies of CH3CO-(L-Ala)10-NHCH3 Γvc

as a function of increasing deformationt for a canonicalR-helix (s),
for an R′-helix (---), and for theâ-hairpin found from a PS-NMLS
protocol (‚‚‚). On thet ) 0.0051 surface theâ-hairpin is lower in energy
than theR-helix.
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minimum, almost all show the hydrogen-bonding pattern of an
R-helix. Results of this search are shown in Table 6. Similarly,
a local search out of theâ-hairpin minimum att ) 0.0051 finds
32 unique local minima including the originalâ-hairpin. More
than 90% of the structures show hydrogen-bonding patterns
typical of aâ-hairpins; see Table 7. The lack of overlap in the
conformational energies listed in these two tables show that local
searches out of theR′-helical andâ-hairpin basins sample
conformationally disjoint regions. Similar results were obtained
for calculations on thet ) 0.0051 surface for which theâ-hairpin
is lower in energy than theR′-helix, Vâ ) -382.7399 kcal/mol
versusVR′ ) -382.6904 kcal/mol.

Three important observations from these local search calcula-
tions are as follows: (1) we systematically find more unique
local minima out of theâ-hairpin minimum than theR′-hairpin
minimum, suggesting that theâ-hairpin basin may be broader
than the R-helical basin; (2) the hydrogen-bonding pattern
suggests that the two sets of conformations sampled from a local
search out of anR-helical minimum andâ-hairpin minimum
are disjoint and are separated by a large barrier; (3) local search
cannot surmount the barrier between the narrowR′-helix and
broad â-hairpin regions fort < 0.0051 and stays within the
catchment region of theâ-hairpin all the way back to thet )
0 DOPLS surface.

To test the effect of force field parametrization we repeated
calculations for then ) 5 and 8 capped polyalanine sequences
in Γvc using a deformable version of the CHARMM22 force
field in place of DOPLS. The only modification to the
CHARMM22 energy functions was made in the substitution of
a Gaussian approximation to the 12-6 Lennard-Jones function
for van der Waals interactions. An energy minimized canonical
R-helix for n ) 5 using modified CHARMM22 has an
undeformed surface energy of 85.4704 kcal/mol. A PS-NMLS

protocol finds a structure that is not anR-helix, but which is
lower in energy. The undeformed surface energy for this
structure is 73.7718 kcal/mol. The DOPLS surface minimum
energy structure shows anrmsR-carbon deviation of 1.8268 Å
from the undeformed CHARMM surface minimum energy
structure. The (φ,ψ) angles for the DOPLS and CHARMM22
structures are quite similar. Forn ) 8 the CHARMM22R-helix
energy is 141.8306 kcal/mol. PS-NMLS finds aâ-hairpin
structure with a lower energy of 133.5861 kcal/mol. The
DOPLS surface minimum energyâ-hairpin forn ) 8 shows a
deviation of 1.2175 Å inR-carbon atom positions from the
undeformed CHARMM surface minimum energyâ-hairpin. this
calculation demonstrates that PS-NMLS protocols using both
DOPLS and CHARMM22 force fields give qualitatively similar
results forΓvc calculations on small polyalanine sequences. We
also performed aΓvt calculation using modified CHARMM22
functions for ann ) 12 capped polyalanine sequence. The PS-
NMLS method recovers theR-helix as the global minimum on
the manifold of fixed idealized CHARMM22 bonds lengths and
bond angles.

The efficiency of the PS-NMLS method was compared to a
random search using approximately the same number of local
minimizations, and to NMLS on the undeformed surface from
random starting conformations. Neither of these methods
succeeds in finding the global minimum forn ) 5-9. For n
) 10 the lowest energy conformer found using the random
search method is 17.2 kcal/mol higher in energy than the PS-
NMLS â-hairpin, and the lowest energy conformer found using
the t ) 0 surface NMLS is 6.34 kcal/mol higher in energy than
the PS-NMLS structure.

4. Cycloheptadecane inΓvc. One of the better known
benchmark problems for conformational search is the determi-
nation of low-energy conformations of the highly flexible

TABLE 6: Hydrogen-Bonding Distances for the 23 Unique Local Minimum Energy Structures Sampled in a Local Search out
of the r′-Helical Local Minimum on the t ) 0.0045 Surfacea

i-i+4, distances between carbonyl oxygen (i) and
amide nitrogen (i + 4) atoms if the distances are

>2.7 Å and<3.1 Å

i-j distances between carbonyl oxygen (i) and
amide nitrogen (j) atoms if the distances are

>2.7 Å and<3.1 Å

rank energy 1-5 2-6 3-7 4-8 5-9 6-10 9-2 7-4 2-9 4-7

1 -383.2723 2.87 2.96 2.87 2.91 2.91
2 -382.9076 2.87 2.95 2.88 2.90 2.92 2.95
3 -381.8493 2.92 2.90 2.94 2.90 2.91
4 -380.2025 2.87 2.95 2.89 2.93 2.80
5 -379.6051 2.87 2.98 2.89
6 -379.4903 2.87 2.95 2.90
7 -377.3410 2.81 2.92
8 -375.4960 2.96 2.89 2.92 2.88 3.09
9 -373.6687 2.87 2.95

10 -373.082 2.82
11 -372.6473 2.89
12 -371.9262 2.98 2.79
13 -371.5315 2.88 3.02 2.92
14 -370.9817 2.92 2.83 2.96
15 -369.4312 2.93 2.90 3.02
16 -368.719 2.86
17 -365.4600 2.96 2.90 3.01
18 -362.7182 2.98 2.89 2.83
19 -362.7182 2.98 2.89 2.83
20 -358.1491
21 -357.0376
22 -353.3007
23 -347.6971

a Columns 3-8 of the table correspond to the type of hydrogen bonds that classifyR-helical structures. All the very low energy structures show
typical R-helical hydrogen-bonding pattern. The number ofR-helical hydrogen bonds decreases with increase in conformational energy and the
higher energy structures sampled in this calculation are random coil conformations. The table reflects two important features of the local search
sampling. TheR-helical basin and theâ-hairpin basin are disjoint sets and theR-helical basin is a very narrow deep well reflected in the fewer
number of structures sampled, compared to theâ-hairpin.
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cycloheptadecane.60 This system continues to attract attention
and serve as a test for newly developed search methods.61 While
not a particularly large molecule, cycloheptadecane presents a
difficult challenge due to its great flexibility and the close energy
spacing of the lower lying minima. Extensive analysis via a
variety of search methods has located exactly 263 minima on
the MM2 energy surface within 3.0 kcal/mol of the purported
global minimum. Since the full spectrum of energy minima
for this molecule has not been described in the literature, we
undertook its generation. We used an iterative NMLS protocol
with the MM2 energy function surface to sample the PES of
cycloheptadecane. A local search was carried out from every
unique minimum found on the PES. All symmetry-distinct
minima found in this manner were added to the existing map
and the procedure was repeated until self-consistent conver-
gence. The structures found are unique minima to anrms
gradient per atom of 0.000 01 kcal/mol on the MM2 potential
energy surface42 traditionally used in studies of this system.
Using the iterative NMLS scheme to hop between minima we
found 20 469 unique minimum energy structures with an MM2
energy distribution as shown in Figure 3a. Even with the use
of an efficient truncated Newton minimization method,49

generation of the full distribution required about 13 days of CPU
time on a 250 MHz DEC Alpha workstation. The global
minimum has an MM2 energy of 19.0680 kcal/mol. A second
minimum lies only 0.01 kcal/mol above the global minimum
and has an MM2 energy of 19.0774 kcal/mol. These two

structures are separated by about 0.4 kcal/mol from the third
best and subsequent structures. The low-energy tail of the full
distribution is presented in Figure 3b.

Application of the PS-NMLS algorithm to cycloheptadecane
in Γvc succeeds in finding the second lowest minimum. We
used a maximum deformation oftd ) 25.0 at which point only
one minimum remains on the smoothed surface. Variations in
the reversal protocol (nd ) 100-150, ands ) 2 or 3) coupled
with variation in the number of modes searched during NMLS
(values from 3 to 16) also result in the procedure finding the
second lowest minimum.

The PS-NMLS protocol fails to find the global minimum for
the same reasons that it fails for longer polyalanine chains in
Γvc. In Table 8 we summarize the evolution of minima on the
PES as a function of smoothing. There is a crossing of the
relative energies of the global minimum and the second lowest
minimum for t ≈ 0.0061. If the PS-NMLS is to successfully
converge to the global minimum, the protocol would have to
be able to sample the global minimum for values oft < 0.0061.
Smoothed surfaces at very smallt where the global minimum
is favored closely resemble the original undeformed surface. If
the second lowest minimum and the global minimum are in
widely separated regions of conformational space, a local search
will not be able to sample the global minimum. Further
extensions of PS-NMLS that should be able to find several of
the lowest energy structures of cycloheptadecane, including the
global minimum, are discussed below. Figure 4 shows the

TABLE 7: Hydrogen-Bonding Distances for 32 Unique Local Minima Sampled in a Local Search out of theâ-Hairpin Local
Minimum on the t ) 0.0045 Surfacea

i-i+4, distances between carbonyl oxygen (i) and
amide nitrogen (i + 4) atoms if the distances are

>2.7 Å and<3.1 Å

i-j distances between carbonyl oxygen (i) and
amide nitrogen (j) atoms if the distances are

>2.7 Å and<3.1 Å

rank energy 1-5 2-6 3-7 4-8 5-9 6-10 9-2 7-4 2-9 4-7

1 -383.2569 2.82 2.86 2.88 2.93
1 -383.2569 2.82 2.86 2.88 2.93
2 -381.8750 2.76 2.82 2.87 2.93
3 -380.7871 2.88 2.98 2.90
4 -378.7298 2.86 2.97 2.91
5 -377.0667 3.00 2.90 2.80 2.92‘
6 -376.5693 2.79 2.81 2.94
7 -376.3553 2.85 2.94
8 -376.2071 2.85 2.85 2.86 2.93
9 -375.9423 2.78 2.84 2.95

10 -375.5653 2.80 2.82 2.93
11 -375.0034 2.84 2.90 2.88 2.92
12 -374.3673 2.83 2.85 2.92
13 -373.6144 2.83
14 -372.4078 2.86
15 -372.2050 2.77 2.95 2.86 3.02
16 -372.1612 2.84 2.90
17 -370.1621 2.89
18 -370.0502 2.85 3.02 2.91
19 -369.6184
20 -368.6573 2.82 2.88 2.95
21 -367.5699 3.02 2.81
22 -367.1853 2.83
23 -366.6323 2.88 2.79
24 -365.6136 2.81 2.85 2.87 2.92
25 -365.5884
26 -365.0771 2.82 2.77 2.92
27 -365.0771 2.82 2.77 2.92
28 -361.5149 2.82
29 -360.0044 2.89
30 -359.0971 2.93
31 -359.0971 2.93
32 -352.6797 2.95 2.87 2.99

a The last four columns of the table correspond to hydrogen bonds for aâ-hairpin. All low-energy structures sampled from theâ-hairpin local
minimum show hydrogen-bonding patterns typical ofâ-hairpins. Higher energy structures have fewerâ-hairpin hydrogen bonds and in some cases
show a fewR-helical hydrogen bonds.
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global minimum for cycloheptadecane and the second lowest
energy structure located by the current PS-NMLS.

The cycloheptadecane problem illustrates some of the ad-
vantages of the PS-NMLS method for global optimization. It
has been estimated that an extensive search procedure requires
approximately 10 000 independent minimizations before con-
verging to the global minimum and locating the set of low-
lying minima.61 A typical PS-NMLS run for cycloheptadecane
with nd ) 100,s ) 3, and local search along the three highest
torsional modes finds the second lowest minimum in less than
1 h of CPU time on the computer cited above and requires only
440 energy minimizations. This number can perhaps be reduced
somewhat further by a coarse reversing schedule (reducingnd

with s ) 2) while still yielding the same result as more
exhaustive searching. The large reduction in the number of
independent minimizations compared with other search tech-
niques derives from the improved sampling on smooth surfaces.

We calibrated the NMLS procedure on the undeformed
surface for cycloheptadecane using an iterative NMLS optimiza-
tion scheme starting from 500 independent randomized con-
formations. Each self-consistent run of NMLS on the unde-
formed surface requires approximately 200 minimizations. Only
one of the 500 NMLS runs finds the second lowest minimum,

which is the structure found using PS-NMLS. This result is to
be contrasted with the deterministic nature of the PS-NMLS
protocol that converges to the second lowest minimum without
regard to the starting structure.

5. Optimizations in Γvr. We applied PS-NMLS inΓvr for
docking two rigid canonicalR-helices of CH3CO-(L-Ala)9-
NHCH3. The variables are the six rigid body degrees of
freedom for each helix. Since formation of complexes involves
rigid molecules, we optimize only the intermolecular interactions
in Γvr. Considerable work has been done on energetic ap-
proaches to determine the packing of polyalanineR-helices.62

It was shown that lower energy packing orientations are minor
variations of antiparallel arrangements. These studies also show
that the most important contributions to packing of polyalanine
helices are from van der Waals interactions with minor
contributions from electrostatic interactions. Helix packing has
also been studied based on the packing preferences of side chains
attached to model helical backbones.64-66 These analyses are

Figure 3. (a, top) Energy distribution of the 20.469 unique minima
for cycloheptadecane located using a self-consistent NMLS-based search
to scan the complete potential energy surface. The number of minima
found in each 0.1 kcal/mol energy bin is plotted as a function of
increasing MM2 energy value. (b, bottom) Low-energy tail of (a)
showing the distribution of minima with MM2 energy values less than
3 kcal/mol above the global minimum. The search procedure used to
generate both panels (a) and (b) found 11 minima within 1 kcal/mol of
the global minimum, 68 minima within 2 kcal/mol, and 261 minima
within 3 kcal/mol.

TABLE 8: Evolution of the Lowest 15 Minima of
Cycloheptadecane as a Function of Increased Smoothinga

rank

MM2
energy

(kcal/mol)

t ) 0
energy

(kcal/mol)

t ) 0.001
energy

(kcal/mol)

t ) 0.01
energy

(kcal/mol)

t ) 0.1
energy

(kcal/mol)

1 19.0680 19.6627 20.3561 26.8127 107.1554
2 19.0774 19.7145 20.3994 26.7791 106.3437
3 19.4372 20.0396 20.7415 27.2708 107.9972
4 19.4509 20.0627 20.7548 27.1992 107.4716
5 19.6571 20.2546 20.9480 27.4032 107.7382
6 19.7292 20.3228 21.0136 27.4476 107.7838
7 19.7328 20.3453 21.0324 27.4308 107.2037
8 19.8400 20.4441 21.1275 27.4956 107.1938
9 19.8789 20.4998 21.1875 27.5913 107.4179

10 19.9579 20.5813 21.2675 27.6577 107.3900
11 19.9869 20.6134 21.3122 27.8120 108.2206
12 20.0954 20.7091 21.4031 27.8627 108.1181
13 20.1214 20.7466 21.4321 27.8163 107.4686
14 20.1470 20.7629 21.4537 27.8836 107.8315
15 20.2011 20.8072 21.5034 27.9811 108.3395

a Column 2 shows the MM2 energies for the lowest energy
conformers found using an extensive NMLS-based search technique.
We found 261 unique minima within 3 kcal/mol of the global minimum.
A smoothable variant of the MM2 PES which replaces the Buckingham
potential with a 2-Gaussian approximation has conformational energies
on thet ) 0 surface as shown in column 3. The spacing between and
ordering of conformational energies is similar to the original MM2
surface. Columns 4-6 show the change in conformational energies as
a function of smoothing. Increase in smoothing is characterized by a
reduction in the conformational energy spacing between minima and a
rearrangement of the rank ordering of minima,i.e., for 0.001< t <
0.01 minimum 2 is the lowest in energy.

Figure 4. (a) Global minimum structure for cycloheptadecane with
MM2 energy of 19.0680 kcal/mol. (b) Second lowest energy minimum
and the structure found by PS-NMLS algorithm with MM2 energy of
19.0774 kcal/mol.
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based on either a knobs-in-holes63,65 or ridges-in-grooves64

picture of helix packing.
The orientation of two packed helices with respect to each

other can be computed in terms of two parameters, the distance
of closest approachd and the packing angleΩ. The distance
of closest approach is the shortest distance between two points
on the two helix axes.Ω is the angle between the two helix
axes when projected onto a plane normal to the line of closest
contact. It is computed as the dihedral angle defined by the
pointsNt1, cp1, Nt2, andcp2, whereNti is the N-terminus of helix
i andcpi is the point on helixi which is along the line of contact.
Ω varies from-180° to 180°; i.e., the helices are exactly parallel
if Ω ) 0 and antiparallel ifΩ ) (180°.

For rigid body optimizations the translational coordinates are
defined in terms of the center of mass and the rotations are the
Euler angles that describe independent rotations. We use an
“xyz-convention”66 to define the Euler angles. All calculations
were donein Vacuoand electrostatic terms were excluded.

Γvr was extensively searched to locate minimum energy
conformations for the two polyalanine helices. A grid of 18 000
starting conformations was generated by varying the distance
between the centers of mass, the packing angle between-180°
and 180° in 20° increments, and the rotation angles about each
helix axis from 0° to 360° in 40° increments. The network of
18 000 structures includes an even sampling about the parallel,
antiparallel, and perpendicular orientations. The conformational
energy for each of these starting structures was minimized and
duplicate minima removed to yield a set of 1093 unique minima.
We used a quasi-Newton method for all minimizations with an
rms gradient convergence criterion of 0.0001 kcal/mol/degree
of freedom. The distribution of energies for the 1093 confor-
mations is shown in Figure 5. The global minimum from this
grid search has an interhelical van der Waals energy ofV )
-16.4124 kcal/mol,d ) 7.16 Å, andΩ ) 153.33°. These
values correspond to an antiparallel arrangement of the helices
with an approximately 30° twist and denotes a “class a” type
of packing of helices described by Waltheret al.65 which is
typical for helices from globular proteins. Table 9 show values
of d, Ω, andV12 for the 15 lowest minima found from the grid
search.

PS-NMLS was tested to see if it could find the global
minimum energy conformation for docking the two polyalanine

helices. We used a maximum deformation oftd ) 4.0 beyond
which the calculation is numerically unstable without use of a
constraining basin function. We setnd ) 150 ands ) 3 for
the smoothing schedule. Local searches are performed for all
values of t < td during the reversing schedule along the 12
eigenvectors corresponding to the 12 degrees of freedom inΓvr.
The global minimum on thet ) 4.0 surface has orientation
parameters ofD ) 20.90 Å andΩ ) 125.86°. Upon returning
to the undeformed surface, the PS-NMLS method finds the
global minimum obtained from the grid search. This result is
obtained reproducibly from any arbitrary starting structure. The
global minimum conformation of the docked polyalanine helices
is shown in Figure 6.

Discussion
Features of Potential Smoothing.We illustrate some typical

features of the potential smoothing paradigm using one-
dimensional slices of a rugged PES shown in Figures 7 and 8.

Figure 5. Distribution of interhelical conformational energies for the
1093 unique minima found from an extensive grid search over 18 000
unique starting positions for two rigid capped CH3CO-(L-Ala)10-
NHCH3 R-helices. The global minimum has an energy of-16.4124
kcal/mol.

TABLE 9: Fifteen Lowest Energy Conformers for Docked
Polyalanine Helices in Descending Order of Interhelical
Energiesa

minimum
interhelical energy

(kcal/mol) Ω (deg) d (Å)

1 -16.4124 153.33 7.1624
2 -16.2582 149.82 6.9569
3 -16.0996 159.79 7.1126
4 -16.0570 146.58 6.9445
5 -16.0258 -32.93 6.9680
6 -15.8974 -28.92 7.1235
7 -15.7974 -25.24 7.0791
8 -15.5851 155.42 7.2866
9 -15.2452 157.45 7.3249

10 -15.5117 153.96 7.1943
11 -14.9027 161.98 7.0153
12 -14.8666 151.80 7.4602
13 -14.7943 158.09 7.1202
14 -14.5419 150.36 7.1636
15 -14.4517 -26.56 6.7842

a The table shows the values for the interhelical energies, the packing
anglesΩ, and the distance of closest approachd.

Figure 6. Conformation of the global energy minimum for the packing
of two capped, right-handedR-helices of sequence CH3CO-(L-Ala)10-
NHCH3.

Global Energy Optimization J. Phys. Chem. B, Vol. 102, No. 48, 19989737



The process of transforming a potential surface via smoothing
is characterized by three kinds of events: mergers, crossings,
and shifting of minima.

Two unique minima on the undeformed surface can merge
into a common basin at some level of smoothing. The multiple
minimum problem is circumvented by reducing the number of
minima through a series of such mergers with increasingt.
Consider a smoothing levelt ) t1 where two formerly distinct
minima Mi and Mj merge into the same basin identified by a
common structure and conformational energy. If att ) t1 )
∆t during a smoothing reversal protocol the two minima
reappear and a minimization leads toMi, then we label the basin
at t ) t1 asMi; i.e., Mj merges intoMi at t ) t1. If Mi andMj

are equal in depth and width on the undeformed surface then a
merger of these two minima results from eliminating the barrier
and an equal translation of the two minima into the new basin.
If the energy gap between the two minima is pronounced, then
the higher lying minimum slides into the broader basin of the
lower lying minimum; i.e., the position of the new single
minimum is close to the location of the lower minimum from
the undeformed surface. Figure 9 shows the rate at which the
number of minima are reduced for cycloheptadecane as function
of increasing deformation. For a smoothing process fully
characterized by mergers, as shown in Figure 7, the minimum
that is projected out on a highly smoothed surface is related to
the global minimum and a reversal protocol will find the global
minimum.

A second feature of potential smoothing is the crossing of
relative energies of two minima. Two unique minima A and B

on the undeformed surface can have conformational energies
VA andVB such thatVA < VB for somet ) t1. For t2 ) t1 +
∆t these two minima persist as unique conformations but their
relative energies can be reversed so thatVA > VB. The effect
of crossings on a reversal schedule is shown in Figure 8. As
the deformation is slowly reduced, minima that merged at a

Figure 7. One-dimensional schematic of the effect of a smoothing
protocol on a potential energy surface. The original PES is transformed
by successive application of a smoothing operator, where the extent of
smoothing is dictated by a control parametert. The unsmoothed original
surface (t ) 0), the surface at an intermediate level of smoothing (t )
t1) and a highly smoothed surface (t ) tlarge) are shown. As the surface
is transformed, higher lying minima merge into catchment regions of
low-lying minima and barriers between minima are progressively
lowered. Open circles are starting or intermediate points on each surface.
Solid circles are local minima. Dashed arrows show the result of local
optimization ending at a local minimum. Solid arrows represent
adiabatic movement from a local minimum on one surface to the
corresponding starting point on a rougher surface. A simple smoothing
protocol consists of repeated cycles of local optimization followed by
adiabatic transfer to the next surface.

Figure 8. Schematic of a more realistic potential smoothing protocol
for molecular search problems. This figure shows a crossing between
the two surviving minima on thet ) t2 surface. A reversing schedule
encounters the first bifurcation att ) t2. At this level of smoothing the
protocol favors basin B over basin A due to a crossing of relative
energies which is an artifact of the averaging process. If bifurcations
are sampled where the relative energies of the alternative basins are
inverted from thet ) 0 surface, then the simple method will not
converge to the global minimum. Betweent ) t2 andt ) 0 there exist
values oft for which the energy ordering resembles that of the original
PES. A local search process coupled to the smoothing schedule can
potentially recognize errors due to earlier energy crossings. For example,
a local search represented by the dotted arrow on thet ) t1 surface
would correctly decide that basin A should be favored over basin B.

Figure 9. Reduction in the number of minima for cycloheptadecane
as a function of increasing PES deformation. On the undeformed surface
there are 20 469 unique minima. These minima merge into a single
minimum on thet ) 25 PES. The figure shows a plot of the log10 of
the number of unique minima remaining on the PES as a function of
increasing smoothing,t.
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higher level of smoothing reappear at distinct locations and
separated by a small barrier;i.e., the reversal protocol sees a
bifurcation. In Figure 8 the minimum in basinB is lower in
energy than minimumA on the t ) t2 surface. Because the
lower minimum att ) t2 is an artifact of a previous energy
crossing at somet1 < t < t2, the DEM reversal procedure will
remain trapped in basin B and not converge to the global
minimum. There has been some speculation that crossings are
related to the free energy characteristics of the undeformed
surface;46 i.e., the minimum energy basin that becomes energeti-
cally favored at larget is related to the free energy minimum
on the PES. This proposal is reasonable because narrow deep
wells merge into minima defined by broader shallow wells.
Generally, the minima that survive on largely deformed surfaces
tend to be entropically favored.

A third feature of smoothing is shifting in the location of
minima and an initial increase in conformational energies
associated with minima as the level of smoothing increases. This
is a direct consequence of changing the local curvature of
minima and lowering barriers, so minima become more shallow
and the basins become broader with an increase in deformation.
Figures 7 and 8 show this shifting property as a function of an
increase in smoothing.

Figure 8 also shows how a PSS protocol works in correcting
certain kinds of energy crossings. Att ) t1 a reversal protocol
will first locate minimum B. Local search starting from this
minimum will explore neighboring basins. If basin A is adjacent
to basin B on the smoothed surface, then a normal mode or
transition state directed activation followed by minimization can
locate the lower energy minimum A. Subsequent return to the
undeformed surface will then correctly locate the global
minimum in basin A. If the crossing between a pair of
minimum energy basins is introduced for a large value oft then
a local search protocol will most likely find the lower alternate
minimum during the reversal. If there are other crossings on
surfaces of very smallt, a local search may not be able to correct
the energy crossing because the barrier heights and surface
roughness are already comparable to those of the undeformed
PES. In essence, “local” search has a greater range of
convergence and can correct crossing errors over larger portions
of conformational space on smoother surfaces. This reasoning
explains why PS-NMLS inΓvc finds very low energy minima,
but not the absolute global minima, when applied to longer
chains of capped polyalanine and cycloheptadecane. For
crossings built in at very small values oft, a reasonable degree
of local search may not be able to sample the global minimum
region.

Potential smoothing can be thought of as a projection method;
i.e., an important catchment region is projected out by reducing
barriers between minima. In direct contrast, barriers are present
throughout a simulated annealing protocol and the global
minimum is located by generating a trajectory that uses thermal
activation to move over barriers. Since the number of barriers
to be negotiated by simulated annealing grows exponentially
with the size of the system, projection methods are in principle
more efficient for larger problems.

Other Variants of Search-Enhanced Potential Smoothing.
We have shown in this work that two types of secondary search
schemes can be coupled to DEM for improved sampling of
conformational space. NMLS or TSBS methods are not the
only search methods that can be coupled to potential smoothing
for improved searching. Increased sampling on a smooth PES
could also be facilitated by a trajectory- or quench-based search
mechanism. These include molecular dynamics (MD),67 meth-

ods to promote conformational variation such as poling,68 local
enhanced sampling (LES),69 and Monte Carlo minimization
(MCM)10 or basin hopping.11

Wawaket al.70,71have coupled an MCM method to two types
of potential smoothing algorithms, DEM and the distance scaling
method of Pillardy and Piela.57,72 MCM-enhanced potential
smoothing algorithms were used successfully forab initio
prediction of crystal packing of hexasulfur and benzene
molecules.71 Smooth surfaces generated by either DEM or DSM
were searched using the basin hopping MCM algorithm.
Minima generated using MCM on a smooth surface can be
followed back to the undeformed surface using a DEM or DSM
reversal protocol.

Computational Efficiency: PS-NMLS versus DEM. In a
system with no distance cutoffs on the range of nonbonded
interactions, the CPU time for a single energy/gradient calcula-
tion scales asO(N2), whereN is the size of system. An efficient
local optimization procedure will typically require CPU time
that scales as roughlyO(N3). The CPU time for DEM scales
approximately as 2nd[O(N3)], wherend is the number of points
along the smoothing schedule. As described above, local search
algorithms are essential for correcting errors due to energy
crossings between minima. The CPU time in PS-NMLS
increases relative to DEM due to the increase in the number of
extraO(N3) minimization calculations. The increase is deter-
mined by the number of search directions chosen and the number
of points along the reversal schedule for which local searches
are performed. In the most extreme case, all possible normal
modes,O(N) of them in general, could be searched. The CPU
time for this kind of extensive local search PS-NMLS scales as
O(N4). For many problems, we have had success in locating
very low or global minimum energy structures using as few as
3-5 search modes, reducing the computational complexity to
a small multiple of that for DEM. We are currently developing
various time saving strategies for implementing PS-NMLS
protocols, one of which is outlined below. Other improvements
to PS-NMLS, including coupling local search methods to
adiabatic Gaussian density annealing (AGDA)35,55and generat-
ing families of low-energy structures instead of a single estimate
of the global minimum, are also in progress.

Selecting Smoothing Windows for Local Searches.An
obvious method for increasing computational efficiency is based
on shortening the smoothing window over which NMLS is
performed. Table 10 shows the largest value of deformation,
termedtdetour, at which NMLS found alternate lower minima
for varying lengths of polyalanine chains inΓvt. Values for
tdetourincrease as a function of the length of the chain, which is
appropriate since the conformational energy surfaces for the
larger peptides become increasingly rough and crossings can
occur on highly deformed surfaces. Figure 10 shows shows a
plot of tdetouras a function of peptide chain length,n. The linear

TABLE 10: Smoothing Parameters t ) tdetour at Which
Alternate Minima Were Obtained Using a NMLS Protocol
in Γvt for Varying Lengths of Capped Polyalanine
CH3CO-(L-Ala)n-NHCH3 Chains

n tdetour nd

6 0.0223 200
7 0.0391 200
8 0.0577 300
9 0.0792 300

10 0.0854 50
11 0.1061 350
12 0.1179 350

a td ) 10.0 ands ) 5 in eq 8 of the text.
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least-squares fit to this data givestdetour ) 0.016n - 0.0716
with a correlation coefficient of 0.995. An accurate estimate
of tdetour provides an upper bound on the window oft values
for which NMLS will be efficacious. For example, polyalanine
of lengthn ) 8 has atdetourvalue of 0.0577. Then a PS-NMLS
protocol withnd ) 300,s ) 5, andtd ) 10.0 will require about
a factor of 3 fewerO[N3] minimizations using the abovetdetour

value instead of 5.0 as an upper bound on the range oft values
where NMLS will be used. This will translate directly into a
factor of 3 savings in overall CPU time required.

Summary. Our results demonstrate that potential smoothing
coupled to appropriate modulation and control mechanisms can
be a useful tool for global optimization problems. This assertion
is substantiated through the successful application of a set of
local search enhanced potential smoothing protocols to a cross
section of conformational problems that vary in size and
complexity of the underlying PES. We have also analyzed
limitations of a class of local search methods used to correct
errors inherent in smoothing protocols, and demonstrated in
simple terms the effect of smoothing on a typical rough PES.
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Appendix A

In this section we list formulas for diffusional smoothing of
DOPLS and MM2 potential function terms. The original
undeformed functional forms are the initial conditions for
diffusion.

1. Bond Length and Bond Angle Terms. For a one-
dimensional harmonic potential of the formKb(x - x0)2 the
diffusion equation solution is of the formKb(x - x0)2 +
2KbDbondt.

2. Torsional Energy Terms. Torsional energies are com-
puted as a sum of one-, two-, and threefold sinusoidal barriers.
The functional form is1/2∑jVj(1 + cos(jω + φ)), whereVj is
the amplitude (one-half the barrier height),φ is the phase factor
which determines the location of the minima, andω is the

torsional angle. The diffusion equation solution for torsional
potentials is of the form1/2∑jVj(1 + cos(jω + φ) exp-
(-Dtorsionj2t)). This is a solution to a diffusion equation in
torsional space in terms of the angular coordinatesω.

In Γvt the torsional potential can be rewritten in terms of a
1-4 distance,r14, using the relation

whereA is the minimum value of ther14 distance atω ) 0 and
B is the maximal distance forω ) 180. This form is valid
only when the 1-2 and 1-3 distances remain fixed. Substitu-
tion into the original torsional potential,1/2∑jVj(1 + cos(jω +
φ)), gives an expression for the energy as a higher order
polynomial in r14. The smoothing of polynomial functions
results in smoothed functions that are polynomials of the same
degree as the undeformed function, as illustrated for the covalent
terms discussed above. Similarly, the smoothed forms for
trigonometric functions are trigonometric functions scaled by a
function of the smoothing parameter. Therefore, the qualitative
nature of a smoothed 1-4 distance potential for the torsions is
similar to smoothed form in terms of the torsions, provided the
1-4 distance potential is a good approximation to the Fourier
series torsional potential.

In Γvc, however, the 1-4 distance potential becomes very
complicated because the change in 1-4 distance is coupled to
changes in the 1-2 and 1-3 distances. It is not possible to
obtain a closed form for the undeformed potential in terms of
the 1-4 distance. We therefore smooth the torsional potential
in torsional space and scale the smoothed potential relative to
its distance space counterparts,i.e., the nonbonded electrostatic
and van der Waals terms, through a choice of diffusion
coefficients.

3. van der Waals Potential. A two-Gaussian approximation
to a 12-6 Lennard-Jones or exp-6 Buckingham function is
written as a sum of two Gaussians centered about the origin.
The form of these Gaussians isFvdw(rij,t)0) ) aij exp(-bijrij

2).
The three-dimensional distance space diffusion equation inrij

∈ (0,∞) is of the form

The solution is of the form

4. Coulomb Potential. For a Coulomb potentialV(rij) )
1/rij as “initial condition” in three dimensions, the diffusion
equation solution is of the form

This formula, adapted from the work of Amara and Straub34

and Moréand Wu,73 satisfies the three-dimensional distance
space diffusion equation of the form

Figure 10. A first-order least-squares fit to the smoothing parameter
tdetouras a function ofn for application of PS-NMLS to CH3-(L-Ala)n-
NHCH3 sequences inΓvt for (n ) 5-12). The fit could be used to
implement windowing schemes to estimate smoothing values for which
an NMLS search protocol is to be used inΓvt. Restricting local search
to a limited window oft values allows a reduction in computational
overhead by eliminating unnecessary and redundant local searches.
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Appendix B

Many of the standard molecular mechanics potential energy
functions such as CHARMM, AMBER, or OPLS can be written
in the general form

In potential smoothing, each of these terms is transformed
according to a diffusion equation of the form

which is the one-dimensional analog of the multidimensional
diffusion operator. HereFR(x,0) ) VR(x) andR refers to one
of the six terms in eq B1. Using an equation of the form (B2)
with identical diffusion coefficientsD for each of the energy
functions is equivalent to claiming that each of these functions
has similar distance ranges and energy scales. Values for
effective diffusion coefficients can be chosen to scale the relative
smoothing of each of the energy functions.

The bond term and the nonbonded van der Waals and
Coulomb interactions are written in terms of Cartesian distances
between the atoms that are part of these interactions. The angle
term and torsional terms can be written in terms of the
corresponding angular coordinates. From the standpoint of a
classical diffusion equation, each of the terms represents
different initial conditions for diffusion. The range of the
potentials determines the extent of diffusion space within which
the solutions of eq B2 need to be obtained. One way to impose
different diffusion spaces would be to set appropriate inner and
outer boundary conditions for the different initial conditions in
eq B1. An alternative method is to compute effective diffusion
coefficients for each of the terms in (B1) that are determined
by the range of the interaction potential. The effective coef-
ficients may be scaled relative to the values for the van der
Waals and Coulomb terms which are set to unity since these
nonbonded interactions are of longer range than the local
geometry terms.

Effective diffusion coefficients can be computed by a simple
comparison of the extents of diffusion spaces. We setD ) 1
for the nonbonded terms which have the largest diffusion extents
in diffusion space. In descending order the extent in distance
space for the torsions, angles, and bonds follow the order ofrnb

> r torsion > rangle > rbond. Accordingly, the diffusion of the
geometry terms scaled relative to the nonbonded terms follows
the relation

We setDnb ) 1 and choosernb andrgeomto correspond to typical
upper limits in the DOPLS force field for the nonbonded
distance and individual geometry distances. One set of choices
for these values leads to the diffusion coefficients shown in
Table 1. It should be stressed that this is purely an empirical
choice, but a necessary one because it draws an exact analogy
with the mechanism of diffusion and provides a simple method
for modulating the smoothing of diverse potential function terms
within a molecular mechanics formulation.
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