
 Open access Journal Article DOI:10.1109/TCSI.2005.858488

Analysis and architecture design of variable block-size motion estimation for
H.264/AVC — Source link

Ching-Yeh Chen, Shao-Yi Chien, Yu-Wen Huang, Tung-Chien Chen ...+2 more authors

Institutions: National Taiwan University

Published on: 27 Mar 2006 - IEEE Transactions on Circuits and Systems I-regular Papers (IEEE)

Topics: Memory bandwidth, Motion estimation and Gate count

Related papers:

 Overview of the H.264/AVC video coding standard

 A VLSI architecture for variable block size video motion estimation

 Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder

 On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture

 A new diamond search algorithm for fast block-matching motion estimation

Share this paper:

View more about this paper here: https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-
1sux9twj1m

https://typeset.io/
https://www.doi.org/10.1109/TCSI.2005.858488
https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m
https://typeset.io/authors/ching-yeh-chen-rwpzz38dml
https://typeset.io/authors/shao-yi-chien-17em0nyw8q
https://typeset.io/authors/yu-wen-huang-37d1qybbld
https://typeset.io/authors/tung-chien-chen-110o9lndfj
https://typeset.io/institutions/national-taiwan-university-2rx6qi8g
https://typeset.io/journals/ieee-transactions-on-circuits-and-systems-i-regular-papers-3utfcwp8
https://typeset.io/topics/memory-bandwidth-hkfexgwk
https://typeset.io/topics/motion-estimation-3fj0tj8b
https://typeset.io/topics/gate-count-ppy5a6pd
https://typeset.io/papers/overview-of-the-h-264-avc-video-coding-standard-4wlxplmuzt
https://typeset.io/papers/a-vlsi-architecture-for-variable-block-size-video-motion-3jevat1m7l
https://typeset.io/papers/analysis-and-architecture-design-of-an-hdtv720p-30-frames-s-t9vvgg1ls6
https://typeset.io/papers/on-the-data-reuse-and-memory-bandwidth-analysis-for-full-2d85htzflr
https://typeset.io/papers/a-new-diamond-search-algorithm-for-fast-block-matching-2cr62kcrqh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m
https://twitter.com/intent/tweet?text=Analysis%20and%20architecture%20design%20of%20variable%20block-size%20motion%20estimation%20for%20H.264/AVC&url=https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m
https://typeset.io/papers/analysis-and-architecture-design-of-variable-block-size-1sux9twj1m

578 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

Analysis and Architecture Design of Variable
Block-Size Motion Estimation for H.264/AVC

Ching-Yeh Chen, Shao-Yi Chien, Yu-Wen Huang, Tung-Chien Chen, Tu-Chih Wang, and
Liang-Gee Chen, Fellow, IEEE

Abstract—Variable block-size motion estimation (VBSME) has
become an important video coding technique, but it increases the
difficulty of hardware design. In this paper, we use inter-/intra-
level classification and various data flows to analyze the impact of
supporting VBSME in different hardware architectures. Further-
more, we propose two hardware architectures that can support
traditional fixed block-size motion estimation as well as VBSME
with less chip area overhead compared to previous approaches. By
broadcasting reference pixel rows and propagating partial sums
of absolute differences (SADs), the first design has the fewer ref-
erence pixel registers and a shorter critical path. The second de-
sign utilizes a two-dimensional distortion array and one adder tree
with the reference buffer that can maximize the data reuse between
successive searching candidates. The first design is suitable for low
resolution or a small search range, and the second design has ad-
vantages of supporting a high degree of parallelism and VBSME.
Finally, we propose an eight-parallel SAD tree with a shared ref-
erence buffer for H.264/AVC integer motion estimation (IME). Its
processing ability is eight times of the single SAD tree, but the ref-
erence buffer size is only doubled. Moreover, the most critical issue
of H.264 IME, which is huge memory bandwidth, is overcome. We
are able to save 99.9% off-chip memory bandwidth and 99.22%
on-chip memory bandwidth. We demonstrate a 720-p, 30-fps so-
lution at 108 MHz with 330.2k gate count and 208k bits on-chip
memory.

Index Terms—Block matching, H.264/AVC, motion estimation
(ME), variable block size, very large scale integration (VLSI) ar-
chitecture.

I. INTRODUCTION

F
OR VIDEO coding systems, motion estimation (ME) can

remove most of temporal redundancy, so a high compres-

sion ratio can be achieved. Among various ME algorithms,

a full-search block matching algorithm (FSBMA) is usually

adopted because of its good quality and regular computation.

In FSBMA, the current frame is partitioned into many small

macroblocks (MBs) of size . For each MB in the current

frame (current MB), one reference block that is the most similar

to current MB is sought in the searching range of size

Manuscript received November 1, 2004; revised April 18, 205 and July 7,
2005. This paper was recommended by Associate Editor Y.-K. Chen.

C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, and L.-G. Chen are
with the DSP/IC Design Laboratory, Graduate Institute of Electronics En-
gineering and Department of Electrical Engineering II, National Taiwan
University, Taipei 10617, Taiwan, R.O.C. (e-mail: cychen@cc.ee.ntu.edu.tw;
shoayi@cc.ee.ntu.edu.tw; yuwen@cc.ee.ntu.edu.tw; djchen@cc.ee.ntu.edu.tw;
lgchen@cc.ee.ntu.edu.tw).

T.-C. Wang is with the DSP/IC Design Laboratory, Graduate Institute of
Electronics Engineering and Department of Electrical Engineering II, National
Taiwan University, Taipei 10617, Taiwan, R.O.C., and also with Chin Fong
Machine Industrial,50445 Chang Hua, Taiwan, R.O.C.

Digital Object Identifier 10.1109/TCSI.2005.858488

in the reference frame. The most common used criterion of the

similarity is the sum of absolute differences (SAD)

SAD

Distortion (1)

Distortion

cur ref (2)

where cur and ref are pixel values in the cur-

rent MB (current pixel) and reference block (reference pixel),

respectively, is one searching candidate in the search

range, Distortion is the difference between the cur-

rent pixel and the reference pixel, and SAD is the total

distortion of this searching candidate. The row (column) SAD

is the summation of distortions in a row (column). After all

searching candidates are examined, the searching candidate that

has the smallest SAD is selected as the motion vector of the cur-

rent MB. Although FSBMA provides the best quality among

various ME algorithms, it consumes the largest computation

power. In general, the computation complexity of ME varies

from 50% to 90% of a typical video coding system. Hence, a

hardware accelerator of ME is required.

Variable block-size motion estimation (VBSME) is a new

coding technique and provides more accurate predictions

compared to traditional fixed block-size motion estimation

(FBSME). With FBSME, if an MB consists of two objects with

different motion directions, the coding performance of this MB

is worse. On the other hand, for the same condition, the MB can

be divided into smaller blocks in order to fit the different motion

directions with VBSME. Hence, the coding performance is

improved. VBSME has been adopted in the latest video coding

standards, including H.263 [1], MPEG-4 [2], WMV9.0 [3],

and H.264/AVC [4]. For instance, in H.264/AVC, an MB with

a variable block size can be divided into seven kinds of blocks

including 4 4, 4 8, 8 4, 8 8, 8 16, 16 8, and 16

16. Although VBSME can achieve a higher compression

ratio, it not only requires huge computation complexity but also

increases the difficulty of hardware implementation for ME.

Traditional ME hardware architectures are designed for

FBSME, and they can be classified into two categories. One is

an inter-level architecture, where each processing element (PE)

is responsible for one SAD of a specific searching candidate, as

shown in (1), and the other is an intra-level architecture, where

each PE is responsible for the distortion of a specific current

pixel in the current MB for all searching candidates, as shown

1057-7122/$20.00 © 2006 IEEE

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 579

Fig. 1. Hardware architectures of (a) 1DInterYSW, (b) 2DInterYH, and (c) 2DInterLC, where N = 4, P = 2, and P = 2.

in (2). For example, Yang et al. proposed a one-dimensional

(1-D) inter-level semisystolic architecture [5], and Komarek

and Pirsch proposed a two-dimensional (2-D) intra-level sys-

tolic architecture, AB2, in [6].

In this paper, we not only use inter-/intra-level classifica-

tion and various data flows to analyze the impact of supporting

VBSME in different hardware architectures but also propose

two hardware architectures, Propagate Partial SAD and SAD

Tree, that can support VBSME as well as FBSME with less chip

area overhead compared to previous techniques. After analyzing

the impact of supporting VBSME in different hardware archi-

tectures, we discuss the hardware design challenges of integer

motion estimation in H.264/AVC for D1 size as an example.

Because of multiple reference frames and VBSME, integer mo-

tion estimation in H.264/AVC not only requires large computa-

tion complexity but also needs huge memory bandwidth. Based

on the previous analysis, we utilize SAD Tree to design a hard-

ware architecture and reduce the required memory bandwidth

for H.264/AVC integer motion estimation.

The remainder of this paper is organized as follows. In

Section II, six previous hardware architectures of ME are

surveyed first, and we propose two hardware architectures for

FBSME. Next, we analyze the impact of supporting VBSME

in different hardware architectures and directly extend the six

previous works and our two architectures to support VBSME.

In Section III, we give an example to provide the quantified

comparisons of the eight hardware architectures for FBSME

and VBSME, respectively. After that, based on our analysis

results, we develop a hardware architecture for H.264/AVC

integer motion estimation as an example in Section IV. Finally,

a conclusion is given in Section V.

II. IMPACT OF SUPPORTING VBSME IN DIFFERENT

HARDWARE ARCHITECTURES

In this section, six representative previous works of ME

hardware architectures for FBSME are introduced in the begin-

ning. They are the works of Yang et al.[5], Yeo and Hu [7], Lai

and Chen [8], Komarek and Pirsch [6], Vos and Stegherr [9],

and Hsieh and Lin [10]. These six architectures are significant

works, and many hardware architectures are proposed based

on them. For example, reference [11] is the extension of [5].

Reference [12] is proposed based on [9], and reference [13]

combined [10] with multilevel successive elimination algorithm

[14], [15]. Reference [16] is the extension of [6]. Besides pure

inter-/intra-level architectures, there are other kinds of architec-

tures such as AS2 in [6] and a tree-based architecture in [17],

which are hybrids of inter- and intra-level architectures. For the

sake of simplicity, we only discuss the pure inter-/intra-level

architectures, and the others can be easily extended based on

our analysis.

Moreover, we also propose two intra-level hardware archi-

tectures and analyze the impact of supporting VBSME in these

hardware architectures based on various data flows in this sec-

tion. The direct extensions of the eight architectures are also pro-

posed. In the following discussion, we assume that the block size

is and that the search range is and

in the horizontal and vertical directions.

A. Work of Yang et al.

Yang et al. implemented the first VLSI motion estimator in

the world, as shown in Fig. 1(a), which is a 1-D inter-level hard-

ware architecture (1DInterYSW). The number of PEs is equal to

580 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

Fig. 2. Hardware architectures of (a) 2DIntraVS, (b) 2DIntraKP, and (c) 2DIntraHL, where N = 4, P = 2, and P = 2.

the number of searching candidates in the horizontal direction,

. Reference pixels are broadcasted into all PEs. By selec-

tion signals, the corresponding reference pixel is selected and

inputted into each PE. Current pixels are propagated with prop-

agation registers, and the partial SAD is stored in each PE. In

each cycle, each PE computes the distortion and accumulates

the SAD of a searching candidate. In this architecture, the most

important concept is data broadcasting. With broadcasting tech-

nique, the memory bit width which is defined as the number of

bits for the required reference data in one cycle is reduced sig-

nificantly, although some global routings are required.

B. Work of Yeo and Hu

Fig. 1(b) shows a 2-D inter-level hardware architecture which

is proposed by Yeo and Hu (2DInterYH). 2DInterYH consists

of PEs and is similar to 1DInterYSW. Reference

pixels are broadcasted into PEs, and current pixels are propa-

gated with propagation registers. The partial SADs are stored

and accumulated in PEs, respectively. Because of broadcasting

reference pixels in both directions, the number of PEs has to

match the MB size. Hence, the search range is partitioned into

regions, and each region is computed by

a set of PEs. The characteristic of 2DInterYH is broad-

casting in two directions at the same time, which can increase

the data reuse.

C. Work of Lai and Chen

Lai and Chen also proposed another 1-D PE array that im-

plemented a 2-D inter-level architecture with two data-inter-

lacing reference arrays (2DInterLC). The hardware architec-

ture is shown in Fig. 1(c) and is similar to 2DInterYH except

for two aspects. Reference pixels are propagated with propa-

gation registers, and current pixels are broadcast into PEs. The

partial SADs are still stored and accumulated in PEs. Besides,

2DInterLC has to load reference pixels into propagation regis-

ters before computing SADs. The latency of loading reference

pixels can be reduced by partitioning the search range in 2DIn-

terLC. For example, the search range can be partitioned into

parts for a shorter latency.

D. Work of Vos and Stegherr

A 2-D intra-level architecture is proposed by Vos and Stegherr

(2DIntraVS), as shown in Fig. 2(a), where the number of PEs is

equal to the MB size. Each PE corresponds to a current pixel,

and current pixels are stored in PEs, respectively. The important

concept of 2DIntraVS is the scanning order in searching can-

didates, which is known as the snake scan. In order to realize

this, a great deal of propagation registers are used to store refer-

ence pixels, and the data in propagation registers can be shifted

in upward, downward, and right directions. These propagation

registers and the long latency for loading reference pixels are

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 581

Fig. 3. (a) Concept, (b) hardware architecture, and (c) detailed architecture of a PE array with a 1-D adder tree using Propagate Partial SAD architecture, where
N = 4.

the tradeoffs for the reduction of memory usages. The compu-

tation flow is as follows. First, the distortion is computed in each

PE, and partial-row SADs are propagated and accumulated in

the horizontal direction. Second, an adder tree is used to accu-

mulate the -row SADs to be SAD. The accumulations of row

SADs and SAD are done in one cycle. Hence no partial SAD is

required to be stored.

E. Work of Komarek and Pirsch

Komarek and Pirsch contributed a detailed systolic mapping

procedure by the dependence graph (DG). By using different

DGs, including different scheduling and projections, different

systolic hardware architectures can be derived. AB2 (2DIn-

traKP) is a 2-D intra-level architecture, as shown in Fig. 2(b).

Current pixels are stored in corresponding PEs. Reference

pixels are propagated PE by PE in the horizontal direction. The

partial-column SADs are propagated and accumulated in

the vertical direction first. After the vertical propagation, these

-column SADs are propagated in the horizontal direction.

In each PE, the distortion of a current pixel in the current MB

is computed and added with the partial-column SAD which is

propagated in PEs from top to bottom in the vertical direction.

In the horizontal propagation, these -column SADs are

accumulated one by one by adders and registers.

F. Work of Hsieh and Lin

Hsieh and Lin proposed another 2-D intra-level hardware ar-

chitecture with a search range buffer (2DIntraHL), as shown in

Fig. 2(c). 2DIntraHL consists of PE arrays in the vertical di-

rection, and each PE array is composed of PEs in a row. In

2DIntraHL, reference pixels are propagated with propagation

registers one by one, which can provide the advantages of serial

data input and increasing the data reuse. Current pixels are still

stored in PEs. The partial-column SADs are propagated in the

vertical direction from bottom to up. In each computing cycle,

each PE array generates distortions of a searching candidate

and accumulates these distortions with partial-column SADs

in the vertical propagation. After accumulation in the vertical di-

rection, -column SADs are accumulated in the top adder tree

in one cycle. The longer latency for loading reference pixels and

large propagation registers are the penalties for the reduction of

memory bandwidth and memory bit width.

G. Proposed Propagate Partial SAD

We propose a 2-D intra-level architecture called the Propa-

gate Partial SAD [18]. Fig. 3(a) and (b) shows the concept and

hardware architecture of Propagate Partial SAD, respectively.

The architecture is composed of PE arrays with a 1-D adder

tree in the vertical direction. Current pixels are stored in each

PE, and two sets of continuous reference pixels in a row

are broadcasted to PE arrays at the same time. In each PE

array with a 1-D adder tree, distortions are computed and

summed by a 1-D adder tree to generate one-row SAD, as shown

in Fig. 3(c). The row SADs are accumulated and propagated

with propagation registers in the vertical direction, as shown in

the right-hand side of Fig. 3(b).

The detailed data flow of Propagate Partial SAD is shown in

Fig. 4. The reference data of searching candidates in the even

and odd columns are inputted by Ref. Pixels 0 and Ref. Pixels 1,

respectively. After initial cycles, the SAD of the first searching

candidate in the zeroth column is generated, and the SADs of

the other searching candidates are sequentially generated in the

following cycles. When computing the last searching can-

didates in each column, the reference data of searching candi-

dates in the next columns begin to be inputted through another

reference input. Then, the hardware utilization is 100% except

582 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

Fig. 4. Detailed data flow of the proposed Propagate Partial SAD architecture, where N = 4 and P = P = 2.

Fig. 5. (a) Concept, (b) hardware architecture, and (c) scan order and memory
access of the proposed SAD Tree architecture, where N = 4.

the initial latency. In Propagate Partial SAD, by broadcasting

reference pixel rows and propagating partial-row SADs in the

vertical direction, it provides the advantages of fewer reference

pixel registers and a shorter critical path.

H. Proposed SAD Tree

Fig. 5(a) shows the concept of the proposed SAD Tree archi-

tecture. The proposed SAD Tree is a 2-D intra-level architecture

and consists of a 2-D PE array and one 2-D adder tree with prop-

agation registers, as shown in Fig. 5(b) and (c). Current pixels

are stored in each PE, and reference pixels are stored in propa-

gation registers for data reuse. In each cycle, current and

reference pixels are inputted to PEs. Simultaneously, contin-

uous reference pixels in a row are inputted into propagation reg-

isters to update reference pixels. In propagation registers, refer-

ence pixels are propagated in the vertical direction row by row.

In SAD Tree architecture, all distortions of a searching candidate

are generated in the same cycle, and by an adder tree,

distortions are accumulated to derive the SAD in one cycle.

In order to provide a high utilization and data reuse, the snake

scan is adopted and reconfigurable data path propagation reg-

isters are developed in the proposed SAD Tree, as shown in

Fig. 5(c), which consists of five basic steps from A to E. The

first step, A, fetches pixels in a row and the shift direction of

propagation registers is downward. When calculating the last

candidates in a column, one extra reference pixel is required to

be inputted, that is, step B. When finishing the computation of

one column, the reference pixels in the propagation registers are

shifted left in step C. Because the reference data have already

been stored in the propagation registers, the SAD can be directly

calculated. The next two steps, D and E, are the same as steps A

and B except that the shift direction is upward. After finishing

the computation of one column in the search range, we execute

step C and then go back to step A. This procedure will iterate

until all searching candidates in the search range have been cal-

culated. The detailed data flow is shown in Fig. 6. By snake scan

and reconfigurable propagation registers, the data reuse between

two successive searching candidates can be maximized, and the

hardware utilization is approaching 100%.

I. Impact of Variable Block-Size Motion Estimation in

Hardware Architectures

There are many methods to support VBSME in hardware ar-

chitectures. For example, we can increase the number of PEs

or the operating frequency to do ME for different block sizes,

respectively. One of them is to reuse the SADs of the smallest

blocks, which are the blocks partitioned with the smallest block

size, to derive the SADs of larger blocks. By this method, the

overhead of supporting VBSME is only the slight increase of

gate count, and the other factors, such as frequency, hardware

utilization, memory usage, and so on, are the same as those

of FBSME. When this method is adopted, the circuit for the

SAD calculation is the only difference between FBSME and

VBSME for hardware designs. Hence, the impact of supporting

VBSME in hardware architectures is dependent on the different

data flows of partial SADs. In inter-level architectures, the data

flow of partial SADs is simple, where the partial SADs are

stored in each PE. In intra-level architectures, there are two

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 583

Fig. 6. Detailed data flow of the proposed SAD Tree architecture, where N = 4 and P = P = 3.

kinds of data flows of partial SADs, i.e., propagating with propa-

gation registers or no partial SADs. In the following, the impact

of supporting VBSME with three different data flows is ana-

lyzed. We assume that the size of an MB is , and it can

be divided into smallest blocks of size .

1) Data Flow I—Storing in PEs: In inter-level architectures,

each PE is responsible for computing the distortion and accumu-

lating the SAD of a searching candidate, as shown in Fig. 7(a).

The partial SADs are stored in PEs. When supporting VBSME,

the number of partial SADs is increased from one to . In order

to store these partial SADs, more data buffers are required in

each PE, as shown in Fig. 7(b). Besides, there are extra two

-to-1 and 1-to- multiplexers in each PE for the selection

of partial SADs. All PEs of inter-level architectures, including

1DInterYSW, 2DInterYH, and 2DInterLC, should be replaced

with that in Fig. 7(b) to support VBSME. The number of bits

for the data buffer in each PE is increased from to

, where and are the number

of pixels in one block, and 8 is the word length of one pixel. For

example, if an MB is 16 16 and can be divided into 16 4 4

blocks, the size of the data buffer is increased from 16 b to 16

12 b in one PE.

2) Data Flow II—Propagating With Propagation Reg-

isters: In intra-level architectures, partial SADs can be

accumulated and propagated with propagation registers. Each

PE computes the distortion of one corresponding current pixel

in current MB. By propagation adders and registers, the partial

SAD is accumulated with these distortions. The hardware

architecture of Propagate Partial SAD is a typical example,

as shown in Fig. 3(b), where the partial SADs are propagated

in the vertical direction. When supporting VBSME, more

propagation registers are required to store partial SADs of the

smallest blocks. In each propagating direction, the number

of propagation registers are times of that in the original for

the smallest blocks in the other direction. For example, in

Fig. 8(a), when supporting VBSME, because there are four

Fig. 7. Hardware architecture of inter-level PE with Data Flow I for (a)
FBSME, where N = 16, and (b) VBSME, where N = 16 and n = 4.

smallest blocks in the horizontal direction, we have to prop-

agate four partial SADs of the smallest blocks in the vertical

direction at the same time in order to reuse them. Therefore,

the propagation registers are duplicated four copies, and the

number of propagation registers increases from 16 to 64.

Furthermore, some extra delay registers are required in order

to synchronize the timing of the SADs of the smallest blocks, as

584 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

TABLE I
PARALLELISM, CYCLES, LATENCY, AND DATA FLOW OF EIGHT HARDWARE ARCHITECTURES

Note: The analysis is based on a video coding system with macroblock pipelining architecture.

Fig. 8. Hardware architecture for VBSME of (a) the proposed Propagate

Partial SAD architecture with Data Flow II and (b) the proposed SAD Tree

architecture with Data Flow III, where N = 16 and n = 4.

shown in Fig. 8(a). In each propagating direction, the number of

delay registers is equal to . That is, in

Fig. 8(a), there are four delay register arrays. In each delay reg-

ister array, the top smallest block requires delay

registers, the second smallest block requires

delay registers, the third smallest block requires

delay registers, and the bottom smallest block does not require

delay registers. Totally, there are delay

registers. In addition to Propagate Partial SAD, 2DIntraHL also

propagate the partial SADs in the vertical direction, and in 2DIn-

traKP, the partial SADs are propagated in two directions. In

these three architectures, extra propagation and delay registers

are required in their propagating directions when VBSME is

supported.

3) Data Flow III—No Partial SADs: In intra-level architec-

tures, it is possible that no partial SADs are required to be stored,

such as SAD Tree. Each PE computes the distortion of one cur-

rent pixel for a searching candidate, and the total SAD is accu-

mulated by an adder tree in one cycle, as shown in Fig. 5(a). Be-

cause there is no partial SAD in this architecture, there is no reg-

isters overhead to store partial SADs when supporting VBSME.

The adder tree is the one to be reorganized to support VBSME,

as shown in Fig. 8(b), that is, we partition the 2-D adder tree in

order to get the SADs of the smallest blocks first, and then based

on these SADs, to derive the SADs of large blocks. Although

there is no additional register overhead, the adder tree additions

required to support VBSME do require additional area.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we discuss the performances of the six

previous works and our two proposed hardware architectures,

Propagate Partial SAD and SAD Tree, in a video coding system

with MB pipelining architectures, where several MBs are

processed at the same time but in different functional modules,

such as ME and reconstruction. First of all, we summarized the

characteristics of eight ME hardware architectures in Tables I

and II. In Table I, the number of PEs, required cycles, and

latency are discussed to show the degree of parallelism and

utilization, and the data flow of partial SADs are listed to

categorize the impact of supporting VBSME in each hardware.

In Table II, the current buffer, reference buffer, and memory

bit width are used to evaluate the tradeoff between data buffer

and memory usage. Note that because we reuse the SADs of

the smallest blocks to derive the SADs of larger blocks, the

impact of supporting VBSME in hardware architectures is only

the increase of chip area. The other factors are the same for

FBSME and VBSME.

Besides the theoretical analysis in Table I and II, an example

is also given to provide a practical comparison in Table III . The

specifications of ME are as follows. The MB size is 16 16,

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 585

TABLE II
DATA BUFFER AND MEMORY BIT WIDTH OF EIGHT HARDWARE ARCHITECTURES

Note: (:) is the worst case.

TABLE III
COMPARISON OF EIGHT HARDWARE ARCHITECTURES FOR FBSME AND VBSME IN SIX CRITERIA

and the search range is and . The frame

size is D1 size, 720 480. When VBSME is supported, a MB

can be partitioned at most to 16 4 4 blocks. We use Ver-

ilog-HDL and SYNOPSYS Design Compiler with ARTISAN

UMC 0.18- m cell library to implement each hardware archi-

tecture. Because the timing of the critical path in some archi-

tectures is too long, which means the maximum operating fre-

quency is limited without modifying the architecture, the frame

rate is set as only 10 fps. The discussions of these experimental

results are shown below.

A. Area and Required Frequency

The required frequency is dominated by the degree of par-

allelism in a hardware architecture. The smaller the degree of

parallelism is, the higher the required frequency is. In Table I

and III, because the degree of parallelism in 1DInterYSW is the

smallest, the required frequency is the highest. On the contrary,

because 2DInterYH and 2DInterLC have the largest degrees of

parallelism among eight hardware architectures, their required

frequencies are the smallest.

There are two columns of chip area in Table III. One is for

FBSME and the other is for VBSME. The area consists of

PE array, Current Buffer and Reference Buffer. Therefore, for

Fig. 9. Hexagonal plot for the comparison of motion estimation hardware
architecture.

FBSME, the area of 1DInterYSW is the smallest. The area of

2DInterLC is larger than that of 2DInterYH because of the huge

reference buffer, as shown in Table II. For the same reason,

the area of 2DIntraVS is also larger than that of proposed SAD

586 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

Fig. 10. Hexagonal plots of eight hardware architectures for fixed block-size motion estimation and variable block-size motion estimation. (a) 1DInterYSW. (b)
2DInterYH. (c) 2DInterLC. (d) 2DIntraVS.

Tree. The impact of supporting VBSME is apparently observed

in the other column of area, the area for VBSME, in Table III.

Among these eight hardware architectures, all inter-level archi-

tectures with Data Flow I increase gate count dramatically. The

chip area is five times that in FBSME at least. In intra-level

architectures with Data Flow II, the increase in gate count is

much smaller, and the ratio increases from 9.8% to 46.3%. If

intra-level architectures have Data Flow III, the area overheads

are 0.2% and 5.8% for the proposed SAD Tree and 2DIntraVS,

respectively.

Due to the characteristics of inter-level architectures, the chip

area overhead of inter-level architectures for VBSME is large. In

three inter-level architectures, the overhead of 2DInterLC is the

smallest because of a lot of propagation registers in 2DInterLC

compared to other architectures. A similar condition occurs in

the comparison of 2DIntraHL and Propagate Partial SAD, so

the chip area overhead of supporting VBSME in 2DIntraHL is

smaller than that in Propagate Partial SAD. 2DIntraKP has the

largest chip area overhead in three intra-level architectures with

Data Flow II, because the partial SADs are propagated in two

directions. In 2DIntraVS, although there is no partial SAD to be

stored, the partial SADs are accumulated by propagation. Then

there is a long critical path in 2DIntraVS. In SAD Tree, SAD is

directly summed by a 2-D adder tree, so the chip area overhead

of 2DIntraVS is larger than that of SAD Tree. Moreover, the

chip area overhead of SAD Tree is also the smallest in the eight

hardware architectures.

B. Latency

The latency is defined as the number of start-up cycles that a

hardware takes to generate the first SAD. The latency is more

important for a video coding system than single ME module,

because the latency affects the effect of parallel computation. In

a video coding system, we usually use a large degree of paral-

lelism to achieve real-time computation. However, if a module

has a long latency and it cannot be shortened by parallel archi-

tectures, then the effect of parallel computation is reduced, that

is, a shorter latency is better for video coding systems. There

are two factors to affect the latency. One is the type of a hard-

ware architecture. In inter-level architectures, the latency is at

least , as shown in Tables I and III. Conversely, there is

no constraint in intra-level architectures. The other factor to af-

fect the latency is the memory bit width and reference buffer, as

shown in Table II. If there is a large reference buffer but fewer

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 587

Fig. 10. (Continued.) Hexagonal plots of eight hardware architectures for fixed block-size motion estimation and variable block-size motion estimation. (e)
2DIntraKP (f) 2DIntraHL. (g) Propagate Partial SAD. (h) SAD Tree.

memory bit width, for example, 2DIntraVS or 2DIntraHL, the

architecture takes more initial cycles to load reference data into

the reference buffer. Compared to these hardware architectures,

the other intra-level architectures, such as proposed Propagate

Partial SAD and SAD Tree, have shorter latencies.

C. Utilization

In general, inter-level architectures can continuously compute

MB by MB, so the initial cycles can be neglected and the utiliza-

tion will be 100%. For instance, if the frame-level pipeline [19]

is adopted, the hardware utilization of ME module will be 100%.

However, this feature is not necessary for a video coding system

with MB pipelining architectures, because MB pipelining inter-

rupts the computation of motion estimation. Therefore, we de-

fined the utilization as Computing cycles/Operating cycles for a

MB. Then, the utilization is dominated by the operating cycles.

The operating cycles include three parts, latency, computing cy-

cles, and bubble cycles. Computation cycles are the number of

cycles when we can get one SAD at least. That is, if the uti-

lization is 100%, we can get one SAD in each cycle at least.

Fewer operating cycles will let the penalty of the latency be ap-

parent. The more bubble cycles are, the lower the utilization is.

2DInterYH, and 2DInterLC are two examples which have low

utilizations because of their fewer operating cycles, as shown

in Tables I and III. In our proposed two hardware architectures,

there are shorter latencies and no bubble cycles, so their utiliza-

tions can achieve 99.8%.

D. Memory Usage

Memory usage consists of two parts, i.e., memory bit width

and memory bandwidth. Memory bit width is defined as the

number of bits which a hardware has to access from memory in

each cycle, and memory bandwidth is redefined as the number

of bits which a hardware has to access from memory for an

MB. Memory bandwidth affects the loading of a system bus

without on-chip memory or the power of on-chip memory, and

memory bit width is the key to the data arrangement of on-chip

memories. Memory bit width and bandwidth are affected by

the data reuse scheme and operating cycles. From Table II, be-

cause 2DIntraHL and 2DIntraVS have larger reference buffers

to reuse reference pixels, the required memory bit widths and

bandwidths are fewer. In 2DInterYH and 2DInterLC, because

of their high degrees of parallelism as shown in Table I, the

large memory bit widths are required. However, the memory

588 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

bandwidths are much fewer because of their fewer operating cy-

cles. The data reuse schemes in 2DIntraKP and the proposed two

hardware architectures are similar, and the differences of these

three architectures are the different data reuse schemes when

changing columns.

E. Hexagonal Plot

Fig. 9 is a hexagonal plot. It is used to visualize the charac-

teristics of ME hardware architectures. The six design criteria

in Table III are shown in the hexagonal plot, in which the closer

the point is to the center, the worse the performance is. There-

fore, the advantages and disadvantages of ME hardware archi-

tectures can be observed easily in a hexagonal plot. Note that,

in various video coding systems or hardware system platforms,

the weighting of each axis will be very different, and we can use

these hexagonal plots to select the optimal architecture based on

different constraints for the system integration.

In Fig. 10, there are two lines in one hexagonal plot. One is

the solid line for FBSME, and the other is the dotted line for

VBSME. From Fig. 10, we can easily observe the characteris-

tics of each hardware and see that the similar architectures has

similar hexagonal plots and characteristics. 1DInterYSW pro-

vides low hardware cost, high utilization, smaller memory bit

width, and short latency. The hexagonal plots of 2DInterYH and

2DInterLC are similar because they are 2-D inter-level archi-

tectures with large propagation registers and provide lower re-

quired frequencies and lower memory bandwidths. In addition,

2DIntraHL and 2DIntraVS are 2-D intra-level architectures with

large propagation registers so they have good performances in

the memory usages, and similar hexagonal plots. The hexag-

onal plots of 2DIntraKP, the proposed SAD Tree, and Propagate

Partial SAD are very alike. However, because the worst case is

shown in the dimension of memory bit width, the memory bit

width of Propagate Partial SAD looks worse than others, and,

in the normal case, the performance of Propagate Partial SAD

is much better than Fig. 10(g).

For VBSME, the changes of hexagonal plots are also depen-

dent on the data flow of partial SADs, as shown in Fig. 10. The

axis of area in three inter-level architectures are changed largely

in Fig. 10(a)–(c). In intra-level architectures, the changes in the

axis of area are not apparent. SAD Tree almost has the same per-

formance because its chip area overhead for supporting VBSME

is only 0.2%.

IV. HARDWARE ARCHITECTURE OF H.264 INTEGER MOTION

ESTIMATION (IME)

In this section, based on the above analysis, we propose an

ME hardware for H.264/AVC IME as an example. Our specifi-

cation is that two frame sizes are supported in our specification.

One is the D1 Format with four reference frames, 30 fps. In the

previous frame, the search range is [64, 64) and [32, 32)

in the horizontal and vertical directions. In the rest frames, the

search range is [32, 32) and [16, 16) in the horizontal and

vertical directions. The other is 720 p with one reference frame,

30 fps. The search range is the same as that of the previous frame

in D1 Format.

Fig. 11. Motion vector predictor for (a) the 4� 8 block, (b) the 16� 16 block,
and (c) the modified motion vector predictor for all blocks.

TABLE IV
NUMBER OF REGISTERS INM -PARALLEL PROPAGATE PARTIAL SAD AND

M-PARALLEL SAD TREE

In our specification, the computation complexity of H.264 is

2.4 tera instructions per second and 3.8 tera bytes per second

in D1 Format and dominated by IME, which is estimated by

instruction profiling of reference software, JM7.3 [20] and

the simulation environment is P4-1.8 GHz and 1 GB memory

with Redhat Linux 6.2. In general, the ultra large computation

complexity can be solved by the parallel computation, but

the huge external memory bandwidth cannot. Therefore, the

huge memory bandwidth is a difficult challenge for hardware

design. In addition, there are two problems. First, because of

VBSME and Lagrangian mode decision, the data dependency of

the motion vector predictor prohibits the parallel computation

between the smaller blocks in an MB. Second, when a high

processingability isnecessary, thehardwarecostofMEhardware

architectures with high degrees of parallelism must also be

discussed. In the following subsections, we propose a hardware

architecture for H.264/AVC IME to reduce memory bandwidth

and solve the problems mentioned above.

A. Hardware Architecture Design

1) Modified Algorithm: First, we divide the computation of

ME into two parts, integer-pixel ME and fractional-pixel ME

(FME), and propose two individual hardware accelerators for

IME and FME [21], respectively. This is because the utilization

of hardware accelerators can be significantly improved by this

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 589

Fig. 12. Hardware architecture of H.264 integer motion estimation. (a) Architecture of SAD Tree with subsample and truncation and VBS Adder Tree. (b) Share
reference buffer with reconfigurable data paths and data sharing. (c) Overview of H.264 integer motion estimation.

way, and in this paper, we only focus on the part of IME. Second,

in the original Lagrangian mode decision, the MV predictor of

a block is the medium MV among the MVs of top, top-right,

left neighboring 4 4 blocks, as shown in Fig. 11(a) and (b),

but, in the parallel computation of hardware architectures, the

coding modes of the neighboring 4 4 blocks can not be

decided in parallel, especially when the block size is 4 4.

Hence, the parallel computation conflicts with the Lagrangian

mode decision in VBSME. In order to solve this conflict, we

modify the MV prediction of Lagrangian mode decision. The

median of the MVs of the top-right, top, top-left blocks is

used instead of the original. The modified MV prediction is

shown in Fig. 11(c). By this modification, not only does the

parallel computation in an MB become feasible, but the quality

is also maintained [22].

2) Hardware Architecture With -Parallelism: Based on

the analysis in Sections II and III, our proposed two hardware

architectures have better performances for VBSME and provide

a small chip area and high utilization. We select them to further

discuss the impact of parallelism, because a high degree of par-

allelism is required for our specification. In our specification,

we require eight sets of Propagate Partial SAD or SAD Tree to

achieve the realtime computation. Therefore, eight sets of Prop-

agate Partial SAD and SAD Tree, which can process eight suc-

cessive candidates in a row at the same time, are combined as

Eight-Parallel Propagate Partial SAD and Eight-Parallel SAD

Tree, respectively.

When -parallel architectures are required, the propagation

registers for partial SADs cannot be shared, and they should

be duplicated. However, if the registers are used to store ref-

erence pixels, the registers can be shared in different PE ar-

rays, and only a few extra registers are required. For example,

in Eight-Parallel Propagate Partial SAD, eight sets of propaga-

tion registers for partial SADs are required, but, in Eight-Par-

allel SAD Tree, the number of registers for storing reference

pixels is only increased to 16 pixels in one row. Then, the in-

creasing ratio is only , not 8. Table IV shows the

number of required registers in these two architectures with dif-

ferent degrees of parallelism. The increasing ratio of M-parallel

Propagate Partial SAD is much larger than that of M-parallel

SAD Tree. Hence, SAD Tree is much more suitable for high res-

olution or large computation complexity. Although Propagate

Partial SAD has no advantages of a high degree of parallelism,

for low resolution or small computation complexity, Propagate

Partial SAD still has a similar performance and shorter critical

path compared to SAD Tree.

3) Applied Techniques for Hardware Cost Reduction: Due

to a high degree of parallelism, the required chip area is huge

even if the proposed SAD Tree has the smallest chip area.

We adopt several techniques to reduce the hardware cost and

memory bandwidth. The first is the subsample [23]. The pattern

of the subsample is interleaved and is similar to the pattern of

chess. The second method is pixel truncation [24]. We only

preserve 5-b precision for all current and reference pixels.

Fig. 12(a) shows the modified SAD Tree with subsample and

pixel truncation and a variable block-size adder tree (VBS

Adder Tree), which is used to reuse the SADs of the smallest

blocks to derive the SADs of larger blocks. The shared refer-

ence buffer of Eight-Parallel SAD Tree not only can provide the

required reference pixels for eight sets of SAD Tree, as shown

590 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

Fig. 13. Comparison of RD curves between JM7.3 and our proposed encoder. (a) The comparison of modified motion vector prediction in Racecar. (b) The
comparison of modified motion vector prediction in Taxi. (c) The comparison of pixel truncation in Racecar. (d) The comparison of our proposed encoder.

in Fig. 12(b), but also save the on-chip memory bandwidth.

A moving window is also adopted to save the computation

complexity and reduce on-chip memory bandwidth. The search

range is partitioned into four regions, i.e., [64,15], [48,31],

[32,47], and [16,63] in the horizontal direction. According

to an MV predictor, one of four regions is selected and the

searching candidates in this region are computed. Besides,

Level C Search Area Reuse [25], [26] and on-chip frame

boundary padding are applied to reduce the off-chip memory

bandwidth.

4) Hardware Architecture of IME: Fig. 12(c) shows the

whole architecture of H.264 IME. IME Controller controls the

actions of all submodules. On-Chip Padding is responsible for

the extension of a frame boundary. Upper Ref. & MV SRAM

and RefMV Buffer are used to store MVs of the top MB row

to generate an MV predictor. MV cost in Lagrangian mode

decision is calculated in MV Cost Gen.. Router is used to re-

order the order of the data which are read from Luma Ref. Pels

SRAMs. Ref. Pels Array is the data buffer for storing reference

pixels to reuse reference pixels and reduce the memory access.

41-Parallel Eight-Input Comparator Array is responsible for

finding optimal 41 MVs, which have the smallest cost for

different block sizes.

B. Experimental and Implementation Results

1) Experimental and Implementation Results: Fig. 13(a)

and (b) shows the comparisons of RD curves between JM7.3

and our proposed motion vector prediction. We have tested

many sequences from QCIF to HDTV, and two of them are

Racecar (720 288, 30 fps) and Taxi (672 288, 30 fps).

At high bit rates (larger than 1 Mb/s), the quality loss is near

zero, and, at a low bit rate, the quality is degraded 0.1 dB.

The results of pixel truncation are shown in Fig. 13(c). Based

on the simulation results, the degradation of 5-b precision is

little, but that of 4-b precision is from 0.1 to 0.2 dB. Finally,

the RD curve of our encoder chip is shown in Fig. 13(d). The

test sequences are Crouching Tiger Hidden Dragon and Crew.

The former is D1 Format, and the latter is HDTV Format. The

coding performance of our encoder chip is competitive with

that of JM7.3. Moreover, because we also refine the Lagrangian

multiplier, our performance is better than that of the original at

a very high bit rate.

In the hardware implementation, our specification is stated

in the beginning of Section IV. In SDTV, the block size can be

from 16 16 to 4 4. In HDTV, although our proposed IME

architecture can support all kinds of block sizes, we only sup-

port the block modes which block sizes are larger than or equal

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 591

Fig. 14. Memory reduction of H.264 IME.

to 8 8 due to the limit of FME [22]. Verilog-HDL and SYN-

OPSYS Design Compiler with ARTISAN UMC 0.18- m cell

library are used to design the hardware. Because SAD Tree can

support VBSME with less overhead and many techniques for

the reduction of hardware cost are applied, the total gate count

of H.264/AVC IME is only 330.2 K gates, and the operating fre-

quency is 81 MHz at SDTV or 108 MHz at HDTV. The on-chip

memory size is 208 kb.

2) Memory Bandwidth: Fig. 14 shows the required off-chip

and on-chip memory bandwidth of four reference frames in our

D1 specification. In Fig. 14, five data reuse schemes are dis-

cussed, and the related data are theoretical value, not the sim-

ulated results. The first data reuse scheme is the simplest one.

There is only one RISC in the hardware without any cache. Be-

cause of no on-chip memories as the search area cache, refer-

ence pixels are inputted directly from off-chip memories and

no on-chip memory bandwidth is required. The second scheme

is one RISC with Search Area Cache. By use of the on-chip

memory, 866.6 Mbytes/s of the off-chip memory bandwidth is

required, but the on-chip memory bandwidth is increased to

138.4 Gbytes/s. However, this tradeoff is worth it because the

access of off-chip memories takes much more power and cy-

cles than those of on-chip memories, in general. The third data

reuse scheme is the second one with Level C Search Area Reuse,

and then the off-chip memory bandwidth can be reduced again.

Thus, only 152.2 Mbytes/s of the off-chip memory bandwidth is

necessary. On the other hand, because of the data reuse in SAD

Tree, the on-chip memory bandwidth is only 8.9 Gbyte/s. In the

fourth data reuse scheme, on-chip frame boundary padding is

adopted, so the off-chip memory bandwidth is reduced again.

As for on-chip memory bandwidth, by Eight-Parallel SAD Tree,

1.8 Gbytes/s of the on-chip memory bandwidth is required. Fi-

nally, because the moving widow is applied in the fifth data

reuse scheme, the on-chip memory bandwidth is reduced to 1.4

Gbytes/s.

In summary, we saved 99.9% off-chip memory bandwidth

compared to the data reuse scheme of RISC. Compared to the

general data reuse scheme, Level C Search Area Reuse, the

off-chip memory bandwidth is reduced to 89.6%. Furthermore,

99.22% on-chip memory bandwidth is saved by our proposed

Eight-Parallel SAD Tree and moving window.

V. CONCLUSION

In this paper, we not only propose two hardware architec-

tures but also analyze the impact of supporting VBSME in hard-

ware architectures. Base on our analysis, the impact of sup-

porting VBSME is dependent on the data flow of partial SADs

in a hardware architecture. In general cases, inter-level architec-

tures have large penalties when supporting VBSME, because the

number of registers and hardware circuits for calculating partial

SADs in VBSME are increased largely. In intra-level architec-

tures, there are two cases. If the partial SADs are propagated

and accumulated, extra propagation and delay registers are re-

quired. If there is no partial SAD in intra-level architectures, the

chip area overhead of supporting VBSME is less than others.

Moreover, we also utilize a hexagonal plot to show the char-

acteristics of a hardware architecture. By the hexagonal plots,

the advantages and disadvantages of each hardware architecture

are shown apparently. Therefore, based on different system con-

straints, we can easily select the optimal architecture by use of

the hexagonal plots.

Our proposed hardware architectures, Propagate Partial SAD

and SAD Tree, can support FBSME as well as VBSME. Prop-

agate Partial SAD has the advantages of fewer reference pixel

registers and a shorter critical path by broadcasting reference

pixel row and propagating partial SADs. SAD Tree utilizes a 2-D

PE array with one adder tree and the reconfigurable reference

buffer, which can maximize the data reuse between successive

searching candidates. Our proposed two hardware architectures

can provide low cost, high utilization and less area overhead

when supporting VBSME compared to six previous approaches.

Moreover, Propagate Partial SAD is suitable for the low resolu-

tion or small search range, and SAD Tree has advantages when

a high degree of parallelism is required.

In the last part of this paper, a hardware architecture for

H.264/AVC IME was also proposed. A modified algorithm is

proposed to solve the data dependency of motion vector predic-

tion in Lagrange mode decision. Pixel truncation, subsample,

and moving window are applied to reduce the hardware cost. By

the proposed Eight-Parallel SAD Tree, on-chip memory with

Level C Search Area Reuse, and On-Chip Frame Boundary

Padding, the most critical issue of H.264/AVC IME, which

592 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 2, FEBRUARY 2006

is large memory bandwidth, is solved. The 99.9% off-chip

memory bandwidth and 99.22% on-chip memory bandwidth

are significantly reduced. We use Verilog-HDL and SYN-

OPSYS Design Compiler with ARTISAN UMC 0.18- m cell

library to implement the hardware. The total gate count of this

design is 330.2 K, and the on-chip memory size is 208 kb. The

design can achieve full frame rate for D1 Format with four

reference frames at 81 MHz and for a 720-p stream with one

reference frame at 108 MHz.

REFERENCES

[1] Video Coding for Low Bit Rate Communication, Feb. 1998.
[2] Information Technology-Coding of Audio-Visual Objects—Part 2: Vi-

sual, ISO/IEC 14 496-2, 1999.
[3] S. Srinivasan, J. Hsu, T. Holcomb, K. Mukerjee, S. L. Regunathan, B.

Lin, J. Liang, M.-C. Lee, and J. Ribas-Corbera, “Windows media video
9: overview and application,” Signal Process.: Image Commun., vol. 19,
pp. 851–875, Sep. 2004.

[4] Draft ITU-T Recommendation and Final Draft International Standard

of Joint Video Specification, May 2003.
[5] K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the

motion compensation block-matching algorithm,” IEEE Trans. Circuits

Syst., vol. 36, no. 10, pp. 1317–1325, Oct. 1989.
[6] T. Komarek and P. Pirsch, “Array architectures for block matching al-

gorithms,” IEEE Trans. Circuits Syst., vol. 36, no. 10, pp. 1301–1308,
Oct. 1989.

[7] H. Yeo and Y. H. Hu, “A novel modular systolic array architecture for
full-search block matching motion estimation,” IEEE Trans. Circuits

Syst. Video Technol., vol. 5, no. 5, pp. 407–416, Oct. 1995.
[8] Y. K. Lai and L. G. Chen, “A data-interlacing architecture with two-

dimensional data-reuse for full-search block-matching algorithm,” IEEE

Trans. Circuits Syst. Video Technol., vol. 8, no. 2, pp. 124–127, Apr.
1998.

[9] L. De Vos and M. Stegherr, “Parameterizable VLSI architectures for the
full-search block-matching algorithm,” IEEE Trans. Circuits Syst., vol.
36, no. 10, pp. 1309–1316, Oct. 1989.

[10] C. H. Hsieh and T. P. Lin, “VLSI architecture for block-matching motion
estimation algorithm,” IEEE Trans. Circuits Syst. Video Technol., vol. 2,
no. 2, pp. 169–175, Jun. 1992.

[11] J. F. Shen, T. C. Wang, and L. G. Chen, “A novel low-power full search
block-matching motion estimation design for H.263+,” IEEE Trans. Cir-

cuits Syst. Video Technol., vol. 11, no. 7, pp. 890–897, Jul. 2001.
[12] N. Roma and L. Sousa, “Efficient and configurable full-search block-

matching processors,” IEEE Trans. Circuits Syst. Video Technol., vol.
12, no. 12, pp. 1160–1167, Dec. 2002.

[13] V. L. Do and K. Y. Yun, “A low-power VLSI architecture for full-search
block-matching motion estimation,” IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 4, pp. 393–398, Aug. 1998.
[14] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elim-

ination algorithm for block matching motion estimation,” IEEE Trans.

Image Process., vol. 9, no. 3, pp. 501–504, Mar. 2000.
[15] M. Brünig and W. Niehsen, “Fast full-search block matching,” IEEE

Trans. Circuits Syst. Video Technol., vol. 11, no. 2, pp. 241–247, Feb.
2001.

[16] S. F. Chang, J. H. Hwang, and C. W. Jen, “Scalable array architecture
design for full search block matching,” IEEE Trans. Circuits Syst. Video

Technol., vol. 5, no. 4, pp. 332–343, Aug. 1995.
[17] H. M. Jong, L. G. Chen, and T. D. Chiueh, “Parallel architectures for

3-step hierarchical search block-matching algorithm,” IEEE Trans. Cir-

cuits Syst. Video Technol., vol. 4, no. 4, pp. 407–416, Aug. 1994.
[18] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G. Chen, “Hardware ar-

chitecture design for variable block-size motion estimation in MPEG-4
AVC/JVT/ITU-T H.264,” in Proc. IEEE Int. Symp. Circuits Syst., 2003,
pp. 796–799.

[19] S. Kittitornkun and Y. H. Hu, “Frame-level pipelined motion estimation
array processor,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no.
2, pp. 248–251, Feb. 2001.

[20] (2003, Aug.) Joint Video Team Reference Software JM7.3. [On-
line]http://bs.hhi.de/suehring/tml/download/

[21] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Analysis and design of mac-
roblock pipelining for H.264/AVC VLSI architecture,” in Proc. IEEE

Int. Symp. Circuits Syst., 2004, pp. 273–276.
[22] Y. W. Huang, T. C. Chen, C. H. Tsai, C. Y. Chen, T. W. Chen, C. S. Chen,

C. F. Shen, S. Y. Ma, T. C. Wang, B. Y. Hsieh, H. C. Fang, and L. G. Chen,
“A 1.3 tops H.264/AVC signle-chip encoder for HDTV applications,” in
Proc. IEEE Int. Solid-State Circuits Conf., 2005, pp. 128–129.

[23] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,” in Proc. Nat.

Telecommun. Conf., New Orleans, LA, 1981, pp. G5.3.1–G5.3.5.
[24] Z. He and M.-I. Liou, “Reducing hardware complexity of motion es-

timation algorithms using truncated pixels,” in Proc. IEEE Int. Symp.

Circuits Syst., 1997, pp. 2809–2812.
[25] J. C. Tuan, T. S. Chang, and C. W. Jen, “On the data reuse and memory

bandwidth analysis for full-search block-matching VLSI architecture,”
IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72, Jan.
2002.

[26] M.-Y. Hsu, “Scalable module-based architecture for MPEG-4 BMA mo-
tion estimation,” master’s thesis, Dept. Elect. Eng., National Taiwan
Univ., Taipei, Jun. 2000.

Ching-Yeh Chen was born in Taipei, Taiwan,
R.O.C., in 1980. He received the B.S. degree in
electrical engineering, National Taiwan University,
Taipei, Taiwan, R.O.C., in 2002, where he is cur-
rently working toward the Ph.D. degree.

His research interests include intelligent video
signal processing, global/local motion estimation,
scalable video coding, and associated VLSI archi-
tectures.

Shao-Yi Chien was born in Taipei, Taiwan, R.O.C.,
in 1977. He received the B.S. and Ph.D. degrees in
electrical engineering, National Taiwan University
(NTU), Taipei, in 1999 and 2003, respectively.

From 2003 to 2004, he was a Member of the
Research Staff with Quanta Research Institute,
Tao Yuan Shien, Taiwan. In 2004, he joined the
Graduate Institute of Electronics Engineering and
Department of Electrical Engineering, NTU, as an
Assistant Professor. His research interests include
video segmentation algorithm, intelligent video

coding technology, image processing, computer graphics, and associated VLSI
architectures.

Yu-Wen Huang was born in Kaohsiung, Taiwan,
R.O.C., in 1978. He received the B.S. degree in
electrical engineering and the Ph.D. degree from
National Taiwan University (NTU), Taipei, Taiwan,
R.O.C., in 2000 and 2004, respectively.

He joined MediaTek, Inc., Hsinchu, Taiwan, in
2004, where he develops integrated circuits related
to video coding systems. His research interests
include video segmentation, moving object detection
and tracking, intelligent video coding technology,
motion estimation, face detection and recognition,

H.264/AVC video coding, and associated VLSI architectures.

CHEN et al.: ANALYSIS AND ARCHITECTURE DESIGN OF VARIABLE BLOCK-SIZE MOTION ESTIMATION FOR H.264/AVC 593

Tung-Chien Chen was born in Taipei, Taiwan,
R.O.C., in 1979. He received the B.S. degree in
electrical engineering and the M.S. degree in elec-
tronic engineering from National Taiwan University,
Taipei, Taiwan, R.O.C., in 2002 and 2004, respec-
tively, where he is working toward the Ph.D. degree
in electronics engineering.

His major research interests include motion
estimation, algorithm and architecture design
of MPEG-4 and H.264/AVC video coding, and
low-power video coding architectures.

Tu-Chih Wang was born in Taipei, Taiwan, R.O.C.,
in 1975. He received the B.S., M.S., and Ph.D. de-
grees in electrical engineering from Nation Taiwan
University, Taipei, Taiwan, R.O.C., in 1997, 1999,
and 2003, respectively.

His main research interests include video coding
technology, DSP architecture, and media processor
architecture. He is currently with Chin Fong Machine
Industrial, Chang Hua, Taiwan, R.O.C.

Liang-Gee Chen (S’84–M’86–SM’94–F’01) was
born in Yun-Lin, Taiwan, R.O.C., in 1956. He re-
ceived the B.S., M.S., and Ph.D. degrees in electrical
engineering from National Cheng Kung University,
Tainan, Taiwan, R.O.C., in 1979, 1981, and 1986,
respectively.

He was an Instructor (1981–1986) and an Asso-
ciate Professor (1986–1988) with the Department of
Electrical Engineering, National Cheng Kung Uni-
versity. In the military service during 1987 and 1988,
he was an Associate Professor with the Institute of

Resource Management, Defense Management College. In 1988, he joined the
Department of Electrical Engineering, National Taiwan University, Taipei, From
1993 to 1994, he was a Visiting Consultant with the DSP Research Depart-
ment, AT&T Bell Laboratories, Murray Hill, NJ. In 1997, he was a Visiting
Scholar with the Department of Electrical Engineering, University of Wash-
ington, Seattle. Currently, he is a Professor with National Taiwan University.
Since 2004, he has also been the Executive Vice President and the General Di-
rector of Electronics Research and Service Organization (ERSO) with the In-
dustrial Technology Research Institute (ITRI). His current research interests are
DSP architecture design, video processor design, and video coding system. He
was an Associate Editor of the Journal of Circuits, Systems, and Signal Pro-

cessing from 1999 until recently, and he served as the Guest Editor of The

Journal of VLSI Signal Processing Systems for Signal, Image, and Video Tech-

nology in November 2001.
Dr. Chen is a member of Phi Tan Phi. He was the general chairman of the 7th

VLSI Design CAD Symposium. He is also the general chairman of the 1999
IEEE Workshop on Signal Processing Systems: Design and Implementation.
He has served as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY since June 1996 and an Associate Ed-
itor for the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS from since January 1999. He is also the Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS. Since 2002, he
has also been an Associate Editor for PROCEEDINGS OF THE IEEE. He was the
recipient of the Best Paper Award from the ROC Computer Society in 1990 and
1994 and Long-Term (Acer) Paper Awards each year from 1991 to 1999. He was
the recipient of the Best Paper Award of the 1992 Asia-Pacific Conference on
Circuits and Systems in VLSI design track, the Annual Paper Award of the Chi-
nese Engineer Society in 1993, and the Outstanding Research Award from the
NSC and the Dragon Excellence Award for Acer, both in 1996. He was elected
an IEEE Circuits and Systems Distinguished Lecturer from 2001 to 2002.

