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1.  Introduction 

 

Among the most successful approaches used in face recognition we can mention eigenspace-based 

methods, which are mostly derived from the Eigenface-algorithm9. These methods project the input 

faces onto a reduced dimensional space where the recognition is carried out, performing a holistic 

analysis of the faces. Different eigenspace-based approaches have been proposed. They differ mostly 

in the kind of projection/decomposition method been used and in the similarity matching criterion 
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employed, which show different statistical properties. The aim of this paper is to present an 

independent, comparative study among some of these different approaches, focusing on the 

confirmation of the theoretical properties. We believe that to carry out an independent study is 

important, because comparisons are normally made using the own implementations of the research 

groups that have proposed each method (e.g. in FERET contests), which does not consider completely 

equal working conditions (e.g. exactly the same preprocessing steps). Very often, more than a 

comparison between the capabilities of the methods, a contest between the abilities of the research 

groups is performed. Additionally, not all the possible implementations are considered (e.g. p 

projection methods with q similarity criteria), but only the ones that some groups have decided to use.  

This comparative study considers the use of three different projection methods (Principal 

Component Analysis, Fisher Linear Discriminant and Evolutionary Pursuit) and five different 

similarity-matching criteria (Euclidean-, Cosines- and Mahalanobis-distance, Self-Organizing Map 

and Fuzzy Feature Contrast). The pre-processing aspects of these approaches (normalization, 

illumination invariance, geometrical invariance, etc.) are not going to be addressed in this study. The 

mentioned methods are described in section 2, and the comparative study is presented in section 3. In 

section 4 some conclusions are given. 

 
2.  Eigenspace-based Approaches 

 

Eigenspace-based approaches approximate the face vectors (face images) with lower dimensional 

feature vectors. The main supposition behind this procedure is that the face space (given by the feature 

vectors) has a lower dimension than the image space (given by the number of pixels in the image), and 

that the recognition of the faces can be performed in this reduced space. These approaches consider an 

off-line phase or training, where the face database is created and the projection matrix, the one that 

achieve the dimensional reduction, is obtained from all the database face images. In the off-line phase, 

also calculated are the mean face and the reduced representation of each database image. These 

representations are the ones to be used in the recognition process. 
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2.1.  General Approach 

 

Figure 1 shows the block diagram of a generic eigenspace-based face recognition system. A 

preprocessing module transforms the face image into a unitary vector and then performs a subtraction 

of the mean face (  x ). After that, the resulting vector x is projected using the projection matrix 

W ∈RN × m  that depends on the eigenspace method been used (see section 2.2). This projection 

corresponds to a dimensional reduction of the input, starting with vectors x in RN  (when N is the 

dimension of the image vectors) and obtaining projected vectors q in Rm  with m<N (usually m<<N). 

The Similarity Matching module compares the similarity of the reduced representation of the query 

face vector q with the reduced vectors kp , mk R∈p  that represent the faces in the database. By using a 

given criterion of similarity (see section 2.3), this module determines the most similar vector pk  in the 

database. The class of this vector is the result of the recognition process, i.e. the identity of the face. In 

addition, a Rejection System for unknown faces is used if the similarity matching measure is not good 

enough (see description in 2). 

 
2.2.  Projection/Decomposition Methods 
 

Principal Components Analysis - PCA 
 

PCA is a general method to identify the linear directions in which a set of vectors are best 

represented and after that to make a dimensional reduction of them. In 1987 Sirovich and Kirby7 used 

Principal Component Analysis (PCA) in order to obtain a reduced representation of face images. Then, 

in 1991 Turk and Pentland9 used the PCA projections as the feature vectors to solve the problem of 

face recognition, using the Euclidean distance as the similarity function. In order to obtain the 

eigenfaces, we first need to obtain the projection axes having the largest variance of the projected face 

images. Then, we repeat this procedure in the orthogonal space that is still uncovered, until we realize 
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that there is no more variance to take into account. The theoretical solution of this problem is well 

known and is obtained by solving the eigensystem of the correlation matrix R ∈RN × N : 

 
 { }txxxxR )()(E −−=  (1) 
 

where x  represents the normalized image vector, x  is the mean face image, and N is the original 

vector image dimension. The eigenvectors of this system represent the projection axes or eigenfaces, 

and the eigenvalues represent the projection variance of the corresponding eigenface. Then by sorting 

the eigenfaces in descending order of eigenvalues we have the successive projection axes that solve 

our problem. 

The main problem is that   R ∈RN × N  is too big for a reasonable practical implementation and then 

we need to estimate the correlation matrix using a database with NT face images (the training set), by 

taking the corresponding averages in the training set. Let [ ])()()( 21 xxxxxxX −−−= NTL  be the 

matrix of the normalized training vectors. Then, the R  estimator will be given by   R = XXT . We could 

say that the number of eigenfaces must be less than, or equal to, NT, because with NT training images 

all the variance must be projected into the hyperplane subtended by the training images. In other 

words the rank of R  is less than, or equal to, NT. The correlation matrix could have several null or 

negligible eigenvalues depending on the linear dependence of the vectors in the training set. In 

addition, the eigensystem of   XTX ∈RNT × NT  has the same non-zero eigenvalues of R , because 

  X XTX vk = λk X v k  represents both systems at the same time. 

Now we can solve the reduced eigensystem of     XTX ∈RNT × NT . The corresponding eigenvalues are 

the same eigenvalues of the original system, and the eigenfaces are represented by wk = X v k , and to 

normalize they must be divided by λk . 

To improve the dimensional reduction, it is recommendable to neglect the components with small 

projection variances. If we ignore some components, the mean square error of the given representation 

is the sum of the eigenvalues not used in the representation. Therefore, a good criterion would be to 

choose only m components, such that the normalized Residual Mean Square Error8: 
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is less than, say, 5%. 

 
Fisher Linear Discriminant - FLD 

 

 FLD searches for the projection axes on which the face images of different classes are far from 

each other (similar to PCA), and at the same time images of a same class are close to each other. In 

order to define the mathematical structure under FLD, first we define the parameter   γ (u)  to be 

maximized on the successive projection axes as: 
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where u  represents any unitary projection vector in the image space, and )(ubs  and )(uws  are given 

by: 
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where m  is the global mean vector, )(P iC  is the probability associated to class iC , )(im  is the average 

vector of iC  and )(ix  is a vector associated to class iC . In this way, )(ubs  measures the separation 

between the individual class means with respect to the global mean face, and )(uws  measures the 

separation between vectors of each class with respect to their own class mean. Alternatively, when 

scatter matrices are defined by: 
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then: 
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At this point it is not difficult to demonstrate that the solution of our maximization problem is the 

solution of the generalized eigensystem1: 

 
k

wk
k

b wSwS λ= . (9) 
 

Here kw ’s are the fisherfaces and kλ ’s are the successive γ  parameters associated with each 

fisherface. The system given by (9) is conventionally solved by writing k
k

k
bw wwSS λ=−1 . Notice that 

this eigensystem does not have orthogonal eigenvectors because bw SS 1−  is not symmetric in general, 

so the fisherfaces would not be an orthogonal projection set. Other implementation problems are: the 

matrices bS  and wS  are too big, and also wS  could be singular and then non-invertible. An easy way 

to solve these two problems is to use a PCA decomposition previous to the FLD procedure. Then, the 

size of the scatter matrices would be small enough and depending on the criterion for dimensional 

reduction used, wS  will became non-singular. In this case, the eigensystem (9) will give reduced 

eigenvectors kv , that need to be transformed into the true eigenvectors kw  using EFFF WVW = , where 

EFW  and FFW  are the PCA and Fisher projection matrices, respectively. 

With two classes we need only one γ  to describe the between/within class scatter, then the 

projection space might have just one dimension. In the general case with NC classes, we need NC-1 

values of γ , and this corresponds to the dimension of the projection space. Given that (6) is the sum 

of NC matrices of rank one or less, NC-1 of them are independent, and this gives NC-1 possible values 

of non-zero γ ’s in (8) 1. Thereafter we could adjust the criterion for the Fisher-space dimensional 

reduction. In analogy with PCA a good criterion would be to choose only m components (m ≤ NC-1) 

depending on the normalized Residual Fisher Parameter: 
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Considering m given by a very small RFP, say RFP(m)<10-5%, will mean that the NC-1 components 

are chosen in practice. The advantage of FLD against PCA is that the information kept in the 

dimensional reduction is better for recognition purposes. However, there are some drawbacks. For 

example, FLD uses the particular class information, so it is recommended to have many images per 

class in the training process, or at least a good characterization of each one. In other words, in PCA the 

convergence of the R estimator depends mostly on the total number of target images NT, but in FLD 

the convergence of the scatter matrices estimators depends also on the numbers of target images per 

class. The main drawback of FLD is that it could be over-adjusted on the target images, and then the 

recognition system may have lack of good generalization that may be reflected in the resulting 

system’s recognition rate. 

 
Evolutionary Pursuit - EP 

 

The eigenspace-based adaptive approach proposed in 4, searches for the best set of projection axes 

in order to maximize a fitness function, measuring at the same time the classification accuracy and 

generalization ability of the system. Because the dimension of the solution-space of this problem is too 

large, it is solved using a specific kind of Genetic Algorithm called Evolutionary Pursuit (EP). In the 

proposed representation, we are going to call the projection axes (image vectors) as EP-faces. 

 In order to obtain the EP-faces first an initial dimensional reduction is done using PCA, and then 

the Whitening Transformation (equivalent to a Mahalanobis metric system, see 2.3) is used. In the 

Whitened-PCA space several rotations between pair of axes are applied and a subset of the rotated 

Whithened-PCA axes is selected. This transformation is coded using a chromosome representation. 

The chromosome structure uses 10 bits for each angle kα  (between 0 and 2/π ), and a number of bits 

ia  equal to the number of Whithened-PCA components (m) in order to select a subset of axes. Notice 

that the number of possible rotations between axes would be 2/)1( −mm , so the number of bits for 
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each chromosome is mmm +− )1(5 , and the size of the genome-space (too large to search it 

exhaustively) is mmm +− )1(52 . 

Each chromosome represents certain projection system. Then in order to evaluate this system the 

following fitness function is used: 

 
  ζ (αk ,ai )   = ζa(α k , ai ) + λ ζ s (αk , ai )  . (11) 

 
  ζa (αk , ai )  measures the accuracy,   ζs (α k , ai )  measures the generalization ability, and λ  is a positive 

constant that determines the importance of the second term against the first one. The generalization 

ability is computed as (remember bS  given by (6)): 

 

  
ζs (α k , ai ) = m( i) − m( )T m(i ) − m( )

i =1

NC

∑  . (12) 

 
Here m is the global mean and   m( i)  is the mean of the class Ci . Although the accuracy measure 

  ζa (αk , ai )  proposed in 4 is the recognition rate of training face images as the top choice, in our 

implementation we used the top 2 identity because with the top choice it was too easy to obtain a 

100% recognition rate. 

As usual, in order to find the maximal value of the fitness function, a random set of chromosomes 

is randomly set and the GA procedure iterates until the system converges. The operators used to create 

a new set of chromosomes per iteration are: proportionate selection (pre-selection of parents in 

proportion to their relative fitness); two-point crossover (exchange the selection between the crossover 

points); and fixed probability mutation (each bit of the chromosome is given a fixed probability of 

flipping). Details of this procedure can be found in 4. 

 
2.3.  Similarity Matching Methods 
 

The main objective of similarity measures is to define a value that allows the comparison of 

feature vectors (reduced vectors in eigenspace frameworks). With this measure the identification of a 
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new feature vector will be possible by searching the most similar vector into the database. This is the 

well-known nearest-neighbor method. One way to define similarity is to use a measure of distance, 

d(x,y), in which the similarity between vectors, S(x,y) is inverse to the distance measure. In the next 

sub-sections two distance measures are shown (Euclidean and Mahalanobis) and three similarity 

measures (Cosine, SOM and FFC). 

 
Euclidean Distance 
 

  d (x, y) = (x − y)T(x − y)  .  (13) 

 
Cosine Distance 
 

yx
yxyxyx

T

),cos(),( ==S  . (14) 

 
Mahalanobis Distance  
 

  d (x, y) = x − y( )T
R−1 x − y( ) ;       R: correlation matrix. (15) 

 

From a geometrical point of view this distance has a scaling effect in the image space. Taking into 

consideration the face image subset, directions in which a greater variance exist are compressed and 

directions in which a smaller variance exist are expanded. It can be proved that in the PCA space the 

Mahalanobis distance is equivalent to the Euclidean distance, weighting each component by the 

inverse corresponding eigenvalue (see demonstration in 5), and it is often called Whitening (PCA) 

Transformation. 

 
SOM Clustering 

 

Self-Organizing Maps (SOM) 3 are used as an associative network to match the projected query 

face with the corresponding projected database face (see Figure 2). The use of a SOM to implement 



 10 

this module could improve the generalization ability of the system. The SOM approach uses reference 

vectors im , the so-called SOM codewords, to approximate the probability distribution of the faces in a 

2D map. In the training phase of the SOM a clustering of the reduced vector faces is carried out. 

Thereafter the SOM is transformed in an associative network by labeling all of its nodes. To find the 

reference vectors, first the best matching node is found. 

After that a labeling algorithm allows to associate a fixed face identity for each node in the map. 

The label of the node associated with a new vector will be the result of identification. Therefore, in 

this case the similarity measure is given by the Euclidean distance between the new vector and the best 

matching node. 

 
Fuzzy Feature Contrast – FFC 
 

 
{ }∑

=

=
m

i
iimin),S

1

)()( ,( yxyx µµ { }∑
=

−−
m

i
iimax

1
0,)()( yx µµα { }∑

=

−−
m

i
iimax

1
0,)()( xy µµβ     (16) 

 
where )(xiµ  is a membership function associated with the i-component of vector x ∈Rm . 

This similarity measure, originally proposed in 6, is a fuzzy implementation of the Feature 

Contrast model from Tversky. The first sum measures the common features (intersection) and the 

others represent the distinctive features (difference in the two possible ways). The positive parameters 

α and β adjust the contrast of the three kind of features. By choosing α≠β, it is possible to introduce 

asymmetries in the subject-referent comparison. This model assumes that all features are independent. 

This can be assumed in PCA and WPCA, but not in FLD and EP. In our implementation we normalize 

each feature of PCA (in WPCA it is not necessary) and we chose µi )(x  linear between –1 and 1, with 

ix  normalized. 

 
3.  Comparison among the approaches 

 

This section is focused in the comparison of eigenspace-based face recognition systems using the 

projection methods and similarity measures previously presented. Two different face image databases 
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were used in order to test the recognition ability of each system: the Yale University Image Database 

and FERET. For further analysis, the most important properties of each database are: the total number 

of images, the number of images per class and the statistical representativeness of the given sets of 

images. In this sense the Yale Database is a small database (150 images) in comparison with FERET 

(762 selected images), but the Yale Database has more images per class (10) than FERET (4 frontal 

images) and it contains more representative images for each class (center-light, w/glasses, happy, left-

light, w/no glasses, right-light, sad, sleepy, surprised, and wink). As it was mentioned in section 2, the 

statistics estimated by PCA should be more reliable than the ones of FLD, specially when few images 

per class are used. Nevertheless the performance of FLD can still overcome PCA using few images 

per class, subject to the statistical representativeness of the given sets of images. The main purpose of 

EP is to take advantage of the generalization ability of PCA and the discriminant ability of FLD. The 

similarity measures SOM and FFC are expected to improve the generalization ability in the 

recognition process. The generalization ability of a given system should be manifested in the 

experiments as the ability to maintain a recognition rate when reducing the number of images used in 

the training process. 

 
3.1.  Experiments using the Yale Face Image Database 
 

In order to compare the described methods we have first made several experiments using the Yale 

University Face Image Database11. We used 150 images of 15 different classes. First, we preprocessed 

the images manually by masking them in windows of 100 x 200 pixels and centering the eyes in the 

same relative places. In Table 1 we show the results of several experiments using different kind of 

representations and similarity matching methods. For each experiment we used a fixed number of 

training images, using the same type of images per class, according to the Yale database specification. 

In order to obtain representative results we take the average of 20 different sets of images for each 

fixed number of training images. All images not used for training are used for testing. 
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We can see that the best results are obtained with the FLD representation, and the difference 

against other representations decreases when the number of training images per class decreases, 

showing that the FLD discrimination ability strongly depends on the number of training images per 

class. The best results are almost always obtained with FLD-cosine. The systems that seem to be as 

efficient as FLD-cosine are the SOM based. 

The best results using FFC were obtained employing an asymmetric subject-referent comparison: 

α=0.5 β=5. This means that in the question “how is the subject face similar to the referent face?” the 

answer focuses more on the features of the referent (the unknown face). The generalization ability of 

the systems is not well measured in these experiments because the number of selected axes is about 

the same as the number of classes (15). That affects the EP representation method as well as the FFC 

and SOM similarity matching methods. 

 
3.2.  Experiments using FERET 
 

In order to test the described methods using a large database, we made several experiments using 

FERET database10. We use a target set with 762 images of 254 different classes (3 images per class), 

and a query set of 254 images (1 image per class). Eyes location is included in FERET database for all 

the images being used. Then the preprocessing consists of centering and scaling images so that eyes 

position is kept in the same relative place. In Table 2 we show the results of experiments using 

different kind of representations and similarity matching methods. In this table the SOM similarity 

measure was not included because in these tests the number of classes (254) is much larger than the 

number of images per class (2 or 3), and the training process is very difficult. It is very unlikely that 

new images will be correctly classified in a SOM net in which very few nodes are labeled with the 

correct identity. 

We can see that the best experimental results are obtained with the FLD representation, which is 

similar to the case when a small database is used. One of the main differences with the case of small 

databases is that the results obtained using FFC similarity measure considerably increases its 
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recognition rate. The best results for FFC similarity measure were obtained employing an asymmetric 

subject-referent comparison: α=1, β=2 (in this way the answer still focus more on the features of the 

referent). This confirms our previous hypothesis that large number of classes will force generalization 

ability on this system. Also we could see that FLD-cosine works better than other systems, showing us 

that the FLD dimensional reduction works better than other projection methods. We can also see that 

the EP-systems always performed worse than the FLD systems. At the same time, we find that when 

the number of axes selected is of the same order of the number of classes, then the accuracy pursuit 

(mostly dependent on the top 2 match) seems to fail and then FLD exhibits some advantages. The 

worst results seem to be obtained with Whitening-PCA-Euclidean and Whitening-PCA-SOM. We also 

see that the changes in the norms of the vectors seem to confuse the recognition ability. 

 
3.3.  Computational Complexity 
 

Another important issue in comparing the different projection methods is the computational cost of 

the training processes. In PCA the computational cost is mainly due to the process of determining   R, 

which is   O( NT 2 ⋅ N ) , and for solving the eigensystem, which requires   O( NT 3 )  computation. If we 

suppose that the number of training images NT is much smaller than the number of pixels per image N, 

then the computational cost of PCA is just the cost of determining R, i.e.,   O( NT 2 ⋅ N ) . In our 

implementation of FLD we require the computation of PCA to reduce the dimension to   m1 (  m1 < NT ), 

so an additional cost of   O( m1
2 ⋅ NC ) is involved due to the process of determining the scatter matrices, 

and the cost for solving the general eigensystem is )( 3
1mO . Nevertheless the additional cost in FLD is 

usually much smaller than the cost of PCA,   O( NT 2 ⋅ N ) . Finally, EP requires much more computations 

because this process must iterate until a given convergence criterion is accomplished. The 

computational complexity of EP strongly depends on the implementation but it usually takes more 

than 10 times the time of the PCA procedure. 
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The computational cost of on-line operation is mainly required by the comparison with database 

vectors, which is   O( NT ⋅ m ), except when the SOM-based similarity measure is used. In this case the 

cost is   O( (number of nodes) ⋅ m ) . The numerical stability of different methods depends mostly of the 

numerical algorithms used for solving the eigensystems. Either in PCA or FLD this is not a critical 

problem because it always involves the management of symmetric matrices. 

In the experiments performed in this work the computation time of FLD was very similar to that of 

PCA when using Yale Database and it took approximately 1.4 the time of PCA when using FERET 

Database. The computation time of EP was about 40 times more than that of PCA when using Yale or 

FERET Database. The computation time of on-line operation was very similar for all the similarity 

measures presented here.  

 
4.  Conclusions 
 

Eigenspace-based approaches have shown to be efficient in order to deal with the problem of face 

recognition. Although these methods have proved their goodness in several works, we believe that 

there is a necessity of a general evaluation to understand their differences and similarities. In this sense 

our goal was to provide a unified vision over the most thriving eigenspace approaches. 

We made an extensive analysis of different eigenspace-based approaches, separating the 

representation problem from the similarity matching method employed, and using databases with 

small and large number of classes. We also used the Whitening Transformation as a Mahalanobis 

metric system before the initial PCA processing, in order to match PCA and FLD against EP. In terms 

of recognition rates we saw that the FLD projection method and the cosine similarity matching work 

better, and that the whitening-cosine based methods seem to keep their recognition ability with fewer 

target images. Even if the EP projection method and the FFC similarity measure did not show the best 

recognition abilities, they showed a good performance and a good generalization ability in the tests 

using FERET database, in which the other systems could not overcome the adjustment of few 

projection axes (in relation to the number of classes). It must be noted that in these experiments a 
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problem persists when using FFC because of the non-complete supposition of independence 

between features. As future work we are going to test other projection methods, like Independent 

Component Analysis (ICA) and Kernel-PCA (KPCA), to solve this problem. 

An important aspect of this work was to change the standard similarity matching methods for a 

SOM. In this way the structure of the identification system (see Figure 1) changes because we do not 

need the database reduced representation anymore (see Figure 2). Now this information would be 

appropriately included in the SOM reference vectors (codewords). In our experiments we realize that 

this kind of identification system works as good as the standard ones, in terms of recognition rates 

with a small database. An interesting feature of this approach is the possibility to adapt itself to 

changes in the faces. This has a direct application in adaptive security access systems where the 

persons to be recognized would be continuously observed by the system. Specifically, when a person 

arrives the neural system will carry out the recognition, and after that the SOM will perform one 

training iteration and the labeling procedure of the nodes will be re-applied. In this way the SOM map 

will adapt itself to changes in the features of faces like beard, hair, or even age evolution. In this sense 

this system represents a robust and adaptive identification system. 

As future work we are focusing on the extension of this study, considering other kind of 

eigenspace-based approaches. We are interested in exploring the so-called differential approaches, 

which allow the application of statistical analysis in the recognition process, by working with 

differences between face images rather than with face images. 
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Table 1. Mean recognition rates using different numbers of training images per class, and taking the 
average of 20 different training sets. The small numbers are the standard deviation of each recognition 
rate. All results consider the top 1 match for recognition. Yale Database. 
 

projection images whitening whitening whitening whitening

method per class euclidean cos( · ) SOM FFC

87,9 86,0 84,6 77,1 64,7 79,3 64,7 77,1
6,2 6,8 7,0 10,1 9,4 11,6 10,5 10,1

91,5 91,6 90,3 83,9 91,9 92,6 92,1 85,6
6,6 6,5 6,7 9,3 5,8 5,6 6,2 8,3

81,2 85,3 83,7 77,2 - - - -
9,0 8,7 9,8 8,0

88,7 87,1 86,0 78,5 69,5 83,2 66,1 78,5
3,8 4,1 5,1 8,1 8,9 9,0 10,5 8,1

92,2 91,7 90,3 85,1 92,3 92,4 92,1 85,4
5,7 6,2 6,4 9,1 4,7 5,7 5,3 8,5

84,1 87,7 86,7 78,7 - - - -
5,7 6,6 7,6 6,8

87,3 86,7 84,8 77,6 72,9 84,4 66,7 77,6
3,9 3,9 3,6 5,2 5,5 5,6 6,5 5,2

90,3 91,1 90,3 84,4 90,4 91,0 90,1 82,9
4,5 5,0 4,4 5,9 4,2 4,4 4,7 5,7

83,6 86,9 85,0 74,7 - - - -
4,6 4,7 5,0 6,0

86,6 85,4 82,0 77,9 75,0 84,8 67,4 77,9
4,0 3,9 5,6 4,6 5,6 5,4 6,9 4,6

89,0 90,4 87,4 80,7 88,9 89,9 88,7 81,5
3,6 4,0 4,0 6,3 3,1 3,9 3,9 3,4

81,1 86,9 82,5 75,9 - - - -
4,3 3,7 3,7 4,4

82,7 80,8 76,2 71,1 75,6 82,1 60,8 71,1
5,9 5,9 7,9 5,9 4,9 4,6 7,3 5,9

81,5 82,2 79,4 69,3 80,7 82,8 78,8 73,6
5,6 5,8 5,8 8,6 4,7 4,9 5,8 6,2

77,8 81,2 76,0 70,0 - - - -
5,6 5,3 7,3 7,4

PCA

FISHER

E.P.

E.P.

PCA

FISHER

E.P.

FISHER

E.P.

PCA

FISHER

FFC

14

35

14

14

26

axes euclidean cos( · ) SOM

14

13

46

14

56

14

15

34

14

18

4

3

6

5

2

PCA

FISHER

E.P.

PCA
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Table 2. Mean recognition rates for standard approaches using FERET database 
images with 3 images per class in the target set. All results consider the top 1 
match for recognition. 

 

projection images whitening whitening whitening

method per class euclidean cos( · ) FFC

87.0 88.6 85.0 74.4 89.4 85.0

91.3 94.1 92.1 85.8 92.1 92.1

91.0 93.1 91.0 - - -

81.9 83.7 80.7 62.3 86.0 80.7

79.5 88.2 85.2 79.5 88.2 85.2

80.3 85.8 83.3 - - -

E.P. 115

FFC

PCA 212

FLD 108

axes euclidean cos( · )

PCA

FLD

E.P.

180

73

96

3

2
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Figure Captions 

 
Figure 1: Block diagram of a given eigen-space face recognition system. 

 
Figure 2: Block diagram of an eigen-space face recognition system using SOM clustering. 
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Figure 1: Block diagram of a given eigen-space face recognition system. 
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Figure 2: Block diagram of an eigen-space face recognition system using SOM clustering. 


