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Abstract

Information about delays can enhance service quality in many industries. Delay in-

formation can take many forms, with different degrees of precision. Different levels

of information have different effects on customers and so on the overall system. The

goal of this research is to explore these effects. We first consider a queue with balk-

ing under three levels of delay information: No information, partial information (the

system occupancy) and full information (the exact waiting time). We assume Pois-

son arrivals, independent, exponential service times, and a single server. Customers

decide whether to stay or balk based on their expected waiting costs, conditional

on the information provided. By comparing the three systems, we identify some

important cases where more accurate delay information improves performance. In

other cases, however, information can actually hurt the provider or the customers.

We then investigate the impacts on the system of different cost functions and weight

distributions. Specifically, we compare systems where these parameters are related

by various stochastic orders, under different information scenarios. We also explore

the relationship between customer characteristics and the value of information. The

results here are mostly negative. We find that the value of information need not

be greater for less patient or more risk-averse customers. After that, we extend our

analysis to systems with phase-type service times. Our analytical and numerical re-

sults indicate that the previous conclusions about systems with exponential service

times still hold for phase-type service times. We also show that service-time vari-

ability degrades the system’s performance. At last, we consider two richer models of

information: In the first model, an arriving customer learns an interval in which the

system occupancy falls. In the second model, each customer’s service time is the sum

of a geometric number of i.i.d. exponential phases, and an arriving customer learns
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the total number of phases remaining in the system. For each information model, we

compare two systems, identical except that one has more precise information. We

study the effects of information on performance as seen by the service provider and

the customers.
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Chapter 1

Introduction

Nowadays there are increasing possibilities, enabled by new technologies, to pro-

vide useful delay information to customers, to enhance the values of the services

they receive. For example, in a call center, the provider can announce the expected

waiting time to each caller; standard call-center software can do this automatically.

In transportation and e-shopping, a customer can easily learn the order status and

the estimated shipping time. A quote for production services normally includes a

lead-time estimate. In a busy hospital emergency room, information about the antic-

ipated wait is important to an anxious patient. Delay notification is also widely used

in traffic-flow control and has even been suggested for control of computer networks

(Kelly, 2000).

With developments in technology and managerial practice, it is becoming easy for

the provider to acquire and convey to customers fairly accurate information about

anticipated delays due to congestion. Such information can directly affect customer

satisfaction and also influence customers’ behavior. Information can take many forms,

with different degrees of precision. Different levels of information have different effects

on customers’ decisions and thus the overall arrival process. A basic research question

arising is: Is more information good?

Since there are two parties in the system, the service provider and the customers,

the above question actually has two sides: Is more information good for the service

provider? And, is more information good for customers? These two parties’ interests

may conflict: A server could try to increase his profit by overloading his capacity and

thus hurt customers’ welfare. A further research question is: Are the provider’s and
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the customers’ incentives aligned with more information? These are basic research

questions which the dissertation aims to address.

An overview of customer psychology in waiting situations, including the impact of

uncertainty, can be found in Maister (1984). There is some empirical evidence about

customers’ reactions to delays. Taylor (1994) shows that delays affect customers’

overall service evaluations. Hui and Tse (1996) and Kumar et al. (1997) study the

relationship between information and customer satisfaction. Munichor and Rafaeli

(2005) examine the impact on customers’ waiting-time perceptions of the use of

various waiting-time fillers. Zhou and Soman (2003) examine the determinants of

reneging behavior.

There is a substantial literature on queues with impatient customers. Models

with balking and reneging (leaving after waiting for some time) can be found in

many books, e.g. Kulkarni (1995). Recent works on this topic include Bae, Kim and

Lee (2001), Zohar et al. (2002), and Ward and Glynn (2003).

The literature on customers influenced by delay information begins with Naor

(1969), who studies a system like ours with partial information, but with identical

customers and linear waiting cost. Also, the cost depends on the whole sojourn time,

not just the delay. He points out that this system with its self-selecting customers

suffers from externalities ; an arriving customer who stays imposes delays on later

customers, but ignores them in making his decision. Consequently, too many cus-

tomers stay. If everyone were altruistic and acted to maximize the average utility,

some of those customers would leave. He shows that a price can steer the system to

this “social” optimum. He points out, however, that if the price is determined by the

provider to maximize revenue, the provider becomes a monopolist and behaves like

one. He sets the price higher than the socially optimal one and thus serves too few

customers.
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These features lead to additional peculiarities. Edelson and Hildebrandt (1975)

mention that a revenue-maximizing service provider may make socially wrong de-

cisions about service capacity, either in the service rate or the number of servers.

They also show that these effects disappear when balking is not allowed. Schroeter

(1982) considers non-identical customers with uniformly distributed costs. Gavish

and Schweitzer (1973) study a full-information system under assumptions similar

to Naor’s. See Stidham (1985) and Hassin and Haviv (2003) for a survey on such

research.

Hassin (1986) shows that the server may sometimes prefer less information to

more. More recently, Mandelbaum and Shimkin (2000) and Shimkin and Mandel-

baum (2004) discuss equilibria with respect to reneging in a setting similar to our

no-information model, with linear and nonlinear waiting cost functions, respectively.

Afèche and Mendelson (2004) study revenue-maximizing and socially optimal equi-

libria under uniform pricing with no information. The paper also discusses priority

auctions. Whitt (1999) studies two systems corresponding roughly to our models

with no and partial information. His customer-choice mechanism, however, is quite

different from ours, and so are his findings about the impact of information on per-

formance. There, information always reduces both waiting and throughput. Thus,

despite their similar motivation, his models represent very different behavior from

ours.

Armony and Maglaras (2004a, 2004b) analyze systems where an arriving customer

learns some delay information and then can choose to balk, wait, or leave a message,

in which case the provider calls back within a guaranteed time. That guaranteed

time is an estimate based on a heavy-traffic approximation. In that heavy-traffic

regime, indeed, such estimates become nearly precise. In Armony and Maglaras

(2004a) customers’ choices are based on the equilibrium waiting time, as in our no-
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information system. Customers employ a utility function to assess delays, but the

function’s argument is the expected delay, a constant. This approach is justified in the

heavy-traffic limit, but it thereby suppresses the risk-reduction role of information.

In Armony and Maglaras (2004b) each arriving customer receives more information,

a point estimate of delay based on the system occupancy. The customer treats the

estimate as exact, again based on the heavy-traffic limit. Comparing the results with

the other system, they show that more information improves performance on several

dimensions. Thus, their modeling approach is quite different from ours, and their

findings support a more optimistic view of the role of information.

Another stream of research explores lead-time quotation in production, e.g., Duenyas

and Hopp (1995) and Spearman and Zhang (1999). The system studied by Dobson

and Pinker (2000) is related to ours. The provider quotes a number, the nominal lead-

time, to every arriving customer. This is understood by all parties to mean a certain

fixed fractile of the lead-time distribution. The provider himself may use different

levels of information to assess this distribution and hence the fractile, but customers

see only the nominal leadtime. Their responses are determined by a demand function

– more customers stay when the quoted lead-time is shorter. The paper shows that

the impact of more information depends on the shape of this demand function, a

notion related to our findings about the cost-scale distribution. It only examines the

impact on the provider, however, not the customers. Whang (1993) obtains similar

results for a somewhat different formulation. He shows that sharing information is

beneficial for the provider, if the inverse demand function is convex.

Recently, Armony, et al. (2005) study the impacts of state-dependent delay in-

formation on many-server queue in the fluid approximation framework. Altman and

Hassin (2002) study an admission control problem in a one-server queueing system

with general service times where customers are identical and are informed of the
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queue length upon arrival. They provide a counter-example for the optimality of the

threshold-type policy and obtain an ε-optimal policy. Collins and Brooms (2005)

study the equilibrium for a Bernoulli feedback queueing system, where customers’

service times are affected by future arrivals. Hassin (2006) studies pricing and infor-

mation issues in a balking queue.

Throughout the dissertation, to assess the effects of information consistently, we

posit a customer-decision mechanism common to all levels of information. A given

function, c(w), measures the basic cost of delay. Different customers, however, value

time differently. Each customer arrives with a specific parameter θ, which scales the

basic cost function. Upon arrival the customer receives information, which affects

his estimate of the distribution of delay. Based on his scale parameter and the

information, the customer computes his expected delay cost. If that is more than

the reward, r, which he anticipates from receiving service, he balks, and if not, he

stays. In summary, customers’ expected utility function is U = r − θE[c(W )]. In

this scheme, then, different levels of information lead to different delay distributions

in the expected-cost calculations, and those in turn affect everything else.

The cost-scale parameter θ has a cumulative distribution function (cdf) H. As

explained later, the elasticity of H is crucial in determining whether information is

good or not for customers or the service provider. Also, we characterize customers’

risk attitudes towards delay uncertainty through the basic waiting-cost function. For

example, a linear cost function (c(w) = 1+w) represents risk-neutral customers, and

a quadratic function (c(w) = 1 + w2) risk-averse customers. A square-root cost func-

tion (c(w) = 1 +
√

w) represents risk-seeking customers. It turns out, interestingly,

that customers’ risk-attitudes are not important in deciding information’s qualitative

effects.

Social optimization aims to achieve the best outcome for everyone. It usually

5



requires some central coordination scheme, such as admission control. There, more

information is always better than less (absent information-processing costs), regard-

less of the objective. The controller can choose to ignore additional information, so

the less-information solution is feasible for the more-information case. In our system,

with its individual decisions, the matter is less obvious. We show for some impor-

tant cases that more information does improve performance, for the provider or the

customers or both, but for other cases it does not.

The contents of the dissertation are divided into four parts. In Chapter 2, we

consider a single server queueing system with exponential service times. We assume

potential customers arrive in a Poisson process. We consider three typical types of

delay information: none, the system occupancy, and the exact waiting time. With

no information, customers still estimate their waiting times, but these estimates are

based only on long-term (equilibrium) experience, not real-time information. The

occupancy provides partial information; the remaining uncertainty comprises the

actual service times of the waiting customers. The exact waiting time gives the

customer full information. We show how to obtain the equilibrium system behavior

for each level of information. In some cases, the solution can be found in closed form.

Then, we compare the three systems and obtain several important results about the

fundamental questions above.

In Chapter 3, we conduct sensitivity analysis of the cost function and H. Under

each level of delay information, we consider two systems with different cost and H

functions. We consider certain first-order and second-order stochastic relationships

between these two systems, and compare their performance measures. In this part,

we also explore the relationship between the value of information and the level of

customers’ risk aversion.

In Chapter 4, we extend the analysis to a system with phase-type service times.

6



We derive the equilibrium of the systems under no, partial and full delay information.

We take analytical comparison of no and full information systems. Then we carry

out a numerical study of these systems by considering exponential, hyper-exponential,

and generalized-Erlang distributions of service times.

In Chapter 5, we consider two richer models of delay information. In the first

model, an arriving customer learns an interval in which the system occupancy falls.

In the second model, each customer’s service time is the sum of a geometric number of

i.i.d. exponential phases, and an arriving customer learns the total number of phases

remaining in the system. For each information model, we compare two systems,

identical except that one has more precise information. We study the effects of

information on performances as seen by the service provider and customers.

7



Chapter 2

·/M/1 Queue and Delay Information

In this chapter, we consider a queueing system with exponential service times. This

chapter is organized as follows: Section 1 introduces the basic formulation. Sections

2-4 develop the models for no information, partial information, and full information,

respectively. Section 5 compares the three systems analytically. Section 6 treats an

important extension. Section 7 presents some concluding remarks. A supplement

containing proofs and other technical material is included in the Appendix.

2.1 Formulation and Preliminaries

Potential customers arrive according to a Poisson process with rate λ. There is a

single server, and the service times are independent and exponentially distributed

with mean 1/μ. The system uses the FCFS discipline.

2.1.1 Customer Behavior

We suppose that a customer’s utility equals a reward for receiving service minus a

waiting cost. This waiting cost depends on a customer-specific parameter and the

expectation of a common function of the waiting time. (In some applications, such as

production, the total sojourn time is more important than the delay. The approach

can be extended to that case.) Specifically, define

• W = waiting time in queue

• θ = customer-type parameter, indicating the importance of time, θ ∈ [0, 1]

• H = cumulative distribution function of θ, continuous on [0, 1], with density h

8



• c(w) = basic cost to wait time w, a positive, increasing, unbounded, continuous

function

• r = reward to the customer for receiving service, r > 0.

The service reward r is the same for all customers (this assumption is convenient

but not essential). Customers differ in the importance of time. This difference is

expressed by the customer type θ. Each customer’s type is independent of all other

events. The customer assesses the distribution of waiting time W , based on the

available information. The expected waiting cost θE[c(W )] is a function of that

information. The utility U for the customer to stay is then

U = r − θE[c(W )].

The customer remains in the system if U is non-negative and otherwise balks.

We can rescale r and c so that r = 1. Suppose c(0) > 1. Then, some potential

customers, precisely those with θ > 1/c(0), always balk. We can simply ignore them

and scale down λ and c to represent the other customers. Thus, we can assume

c(0) ≤ 1. For convenience, we assume for now that c(0) = 1. Thus, the reward is

just large enough to attract the most sensitive customers when there is no delay. We

defer the case c(0) < 1 to Section 6.

Different cost functions express different sensitivities to risk, just like utility func-

tions for wealth in finance and economics. A strictly convex cost means a strong

aversion to risk, while a linear cost expresses indifference to risk. On the other hand,

it is easy to think of situations where the marginal cost of waiting decreases, so the

cost is concave. (“We’ve already waited a whole hour, a few more minutes won’t

make any difference.”)

9



2.1.2 Average Utility and Throughput

Let I stand for information, a random variable with possible values i. Given infor-

mation I = i, an arriving customer computes the expected waiting cost, which we

can write EW [c(W )|I = i]. The customer stays, then, precisely when his θ is less

than or equal to the critical level θi = 1/EW [c(W )|I = i]. In these terms, the overall

fraction of customers who stay is EI [H(θI)], the throughput is λEI [H(θI)], and the

probability the server is busy is (λ/μ)EI [H(θI)].

Define

J(θ) = (1/θ)

∫ θ

0

H(φ)dφ.

The average expected utility for customers is

u = E[U+] = Eθ,I [ [ 1 − θEW [c(W )|I] ]+ ]

= EI

[∫ θI

0

(1 − φEW [c(W )|I]) h(φ)dφ

]

= EI

[
H(θI) − (1/θI)

∫ θI

0

φh(φ)dφ

]

= EI [J(θI)].

2.2 No Information

First consider the situation where the queue is invisible, and the provider tells the cus-

tomer nothing. Suppose W is the equilibrium waiting time, and all customers know

its distribution. An arriving customer has two choices, stay or balk. The customers

who stay are precisely those with θ ≤ θ−, where θ− = 1/E[c(W )]. Consequently, the

fraction of customers who stay is H(θ−), and the effective arrival process is Poisson

with rate λ− = λH(θ−). This effective arrival rate affects W , hence E[c(W )], and

hence θ−. We assume that these parameters arrive at consistent, i.e., equilibrium

10



values. (For discussions of such equilibria in related models, see Stidham 1985 and

Hassin and Haviv 2003.)

In sum, the equilibrium arrival rate λ− solves

λ− = λH

(
1

E[c(W |−)]

)
. (2.1)

Here, E[c(W |−)] indicates the expected cost given λ−. Assume that it is finite for

any λ− < μ.

Proposition 1. For no information, there exists a unique equilibrium arrival rate

λ−.

(The proof of this and the other results are in the supplement.) The assumption

of finite E[c(W |−)] is necessary. Consider c(w) = eβw with β ≥ μ and exponential

service times. For any λ− > 0, E[c(W |−)] = ∞, while for λ− = 0, E[c(W |−)] = 1.

So, there is no equilibrium. In words, if nobody comes, everybody wants to come,

but if anybody comes, nobody wants to come.

Since all customers receive the same information (none), the system behaves as

an M/M/1 queue. Thus, W has the truncated exponential (or impulse-exponential)

distribution with rate μ(1−ρ−) and mass 1−ρ− at 0, where ρ− = λ−/μ. Consequently,

E[c(W |−)] = (1 − ρ−) + ρ− {μ(1 − ρ−)c̃[μ(1 − ρ−)]} ,

where c̃ denotes the Laplace transform of c. Thus, the equilibrium ρ solves

ρ = (λ/μ)H

(
1

(1 − ρ) + ρ {μ(1 − ρ)c̃[μ(1 − ρ)]}
)

. (2.2)

The average utility is then J(θ−), where θ− = 1/E[c(W |−)].

Example 1 : Uniform customers with linear cost

11



Suppose H is the uniform distribution, and c(w) = 1+w. Then, c̃(s) = 1/s+1/s2,

and (4.1) becomes

ρ =
λ/μ

1 + ρ/[μ(1 − ρ)]
,

or

(1 − μ)ρ2 + (μ + λ)ρ − λ = 0, (2.3)

a quadratic equation. For μ = 1, the root of this equation is

ρ =
λ

1 + λ
.

For μ �= 1, the positive root less than 1 is

ρ =
−(μ + λ) +

√
(μ + λ)2 + 4λ(1 − μ)

2(1 − μ)
.

Similarly, for quadratic cost c(w) = 1 + w2, (4.1) becomes a cubic equation with

a single root between 0 and 1.

2.3 Partial Information

Suppose the provider observes and tells the customer N(t), the system occupancy at

the moment of arrival. The customer computes cn = E[c(W )|N(t) = n] and elects to

stay if θ ≤ θn, where θn = 1/cn. So, given N(t) = n, the effective arrival process is

Poisson with rate λn = λH(θn). Thus, N(t) is a birth-death process; the birth rate

in state n is λn = λH(θn), and the death rate is μ. Let N denote the equilibrium

occupancy and pn = Pr{N = n}. Then, by the standard analysis of birth-death

processes,

pn =

(
n−1∏
m=0

λm/μ

)
p0 = Θn(λ/μ)np0,

12



where

Θn =
n−1∏
m=0

H(θm), n > 0.

Let

Θ =
∑
n>0

Θn(λ/μ)n.

Then,

p0 =
1

1 + Θ
.

Note that Θ is finite, because θn → 0. The customers’ decisions ensure a stable

system, even for cases like c(w) = eβw, where the no-information system fails to reach

equilibrium.

Example 2 : Uniform customers with linear cost

Θn(λ/μ)n =

(
n−1∏
m=0

1

1 + m/μ

)
(λ/μ)n

=
λn

μ(μ + 1) · · · (μ + n − 1)

=
Γ(μ)

Γ(μ + n)
λn

Θ =
∞∑

n=1

Γ(μ)

Γ(μ + n)
λn = λ1−μeλγ(μ, λ)

p0 =
1

1 + γ(μ, λ)λ1−μeλ

pn = p0
Γ(μ)

Γ(μ + n)
λn, n > 0,

13



where Γ(μ) =
∫∞

0
tμ−1e−tdt is the gamma function, and γ(μ, λ) =

∫ λ

0
tμ−1e−tdt is

the lower incomplete gamma function; see Abramowitz and Stegun (1965). We have

obtained the distribution of N in closed form. This is a generalization of the Poisson

distribution. The Poisson is the special case with μ = 1. (Ward and Glynn 2003

derive a similar distribution for a different system, one with reneging.) The expected

occupancy can be expressed in a simple form (see the supplement):

E [N ] = λ − (μ − 1) (1 − p0) . (2.4)

2.4 Full Information

Now, suppose the provider observes and tells each arriving customer the exact waiting

time. (For instance, each arriving customer brings the realization of his service time.

This is nearly true in some production systems.) So W is a constant for the customer.

The workload (or virtual waiting time) V (t) is the total time needed to complete the

service of all customers currently in the system. Then, the waiting time for an

incoming customer at t equals V (t). The effective arrival rate given workload v is

λ(v) = λH(θv), where θv = 1/c(v). The sample path of V (t) works in the usual way:

When V (t) > 0, it decreases at constant rate −1; when a customer joins the system,

V (t) increases by the service time of that customer.

Denote the density function of the equilibrium workload V by f(v), v > 0, and

let p0 be its mass at 0. By a level-crossing argument (Brill and Posner 1977), these

quantities uniquely satisfy the integral equation

f(v) = λp0e
−μv +

∫ v

0

λH [1/c(w)] e−μ(v−w)f(w)dw (2.5)

and the normalization condition

p0 +

∫ ∞

0

f(v)dv = 1. (2.6)
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One can easily check that the solution is as follows: Define

C(v) =

∫ v

0

H[1/c(t)]dt.

Then,

f(v) = λp0e
λC(v)−μv,

where

p0 =
1

1 + λ
∫∞

0
eλC(v)−μvdv

.

We now have the solution in closed form, up to the evaluation of these integrals. (It is

not hard to show that the integrals are finite. Again, the customers’ decisions ensure

stability.)

Example 3 : Uniform customers with linear cost

C(v) =

∫ v

0

1

1 + t
dt = ln(1 + v).

Thus,

∫ ∞

0

eλC(v)−μvdv =

∫ ∞

0

(1 + v)λe−μvdv

= eμμ−(λ+1)

∫ ∞

μ

yλe−ydy

= eμμ−(λ+1)Γ(λ + 1, μ),

where Γ(λ + 1, μ) =
∫∞

μ
yλe−ydy is the upper incomplete gamma function; see

Abramowitz and Stegun (1965). So,

p0 =
1

1 + λeμμ−(λ+1)Γ(λ + 1, μ)
,

f(v) = λp0(1 + v)λe−μv, v > 0.

This is a truncated gamma distribution.
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2.5 Comparisons

This section compares the three information models. We find that, perhaps sur-

prisingly, the primary driver of whether information is good or bad for the provider

and the customers is the shape of H, the distribution of the customer cost-scale

parameter, not the cost function c.

2.5.1 Cost-Scale Distributions

We first identify some important classes of distributions H.

Consider a power distribution H(θ) = θα for α > 0. (The uniform distribution is

the case with α = 1.) Here,

J(θ) =
1

α + 1
θα.

Thus, J is proportional to H. Consequently, the average utility u = E[J(θI)] is

proportional to the throughput λE[H(θI)]. (Clearly, these are the only distributions

with this property.)

This is a striking result. One simple performance measure, the busy probability

or throughput, serves to characterize both the server’s profit and the customers’

average utility. The provider’s and the customers’ objectives are perfectly aligned.

Put another way, one need not separately measure customer satisfaction. Just count

the money. As we’ll see shortly, more information is better for all parties in this case.

This is not always so, however. To see that some condition is needed, consider

the case of identical customers with linear cost. For sufficiently small λ, under no

information, all customers choose to stay, so the throughput is λ. Specifically, this

happens when

θ

(
1 +

1

μ − λ
− 1

μ

)
≤ 1,
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or

λ ≤ μ

(
1 − 1

1 + μ[(1/θ) − 1]

)
.

Under partial information, however, there is a cutoff point n̄, such that all customers

stay when N ≤ n̄, but they all balk when N > n̄. Thus, the throughput is < λ. Here,

information reduces throughput. If the queue is readily visible, the provider may try

to hide it. (This point is due to Hassin 1986.) The same thing happens under full

information.

Information can also hurt customers, due to externalities. Suppose there are two

types of customers, A and B. Customers of each type are identical, but the types

have different θ’s, say θB 
 θA. An arriving customer is of type T with probability

hT . Suppose that, in the no-information system, all B customers stay, while all A

customers leave. In the partial-information system, some of those A’s stay, when they

encounter an empty or near-empty system. They get only slightly positive utility,

but they take it. So, the B’s suffer lower utilities, and the loss may overwhelm the

benefit to the A’s. Here, the customers may prefer to hide the queue. To illustrate,

consider the following case: θB = 1/8, θA = 63/64, hA = hB = 1/2, λ = μ = 1. No

information yields average utility 0.375, while partial information yields 0.358.

To understand when such behavior occurs, we distinguish two broad classes of

distributions H. As we’ll see, the following condition ensures that more information

increases throughput.

Condition 2. The function H(1/x) is convex in x ≥ 1.

This means that the cost-scale distribution is spread out, so customers are het-

erogeneous, in a certain sense. It is equivalent to

−θh′(θ)
h(θ)

≤ 2
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(assuming the derivative h′ exists). The left-hand side is the elasticity of the density

h. The condition posits that h not be too elastic, that is, that customers not be too

concentrated. More precisely, it rules out a sharp decrease in h. It is a one-sided

spread condition.

To see why this condition matters, notice that information has two main effects on

customers’ decisions. Compared to the no-information scenario, (1) a high-congestion

signal (small θI) drives away some customers who would otherwise stay, while (2) a

low-congestion signal (large θI) attracts some customers who would otherwise leave.

The key question for the service provider is, which of these effects is greater? When

h decreases sharply, it’s possible that the first effect is stronger, so the net impact of

more information is fewer customers.

For example, consider the beta density

h(θ) =
1

B(α, β)
θα−1(1 − θ)β−1

with parameters α, β > 0, where B(α, β) is the beta function. This satisfies the

condition, if and only if β ≤ 1. The customers are too concentrated if β > 1.

Next, assume that H is strictly increasing, so it has a well-define inverse H−1.

The following condition guarantees that more information benefits customers.

Condition 3. The function J ◦ H−1 is convex on [0, 1].

One can show that this condition is equivalent to

−φh′(φ)

h(φ)
≥ 2 − φh(φ)

[H(φ) − J(φ)]
.

Again, we have a restriction on the elasticity of h, but here it’s a lower bound, a

variable one. It requires that h not rise too sharply. For a beta distribution, the

condition holds precisely for β ≥ 1.
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Note that a power distribution is a beta distribution with β = 1. Among the beta

distributions, these are the only ones that satisfy both conditions.

The following tables show that, even for smooth beta distributions, when these

conditions are violated, more information can degrade performance. Table 2.1, 2.2

and 2.3 show the busy probabilities for systems with linear cost (c(w) = 1 + w),

quadratic cost (c(w) = 1 + w2) and square-root cost (c(w) = 1 +
√

w), respectively.

Here, β > 1, so Condition 1 is violated. The bold numbers indicate where more

information hurts the provider. Table 2.4, 2.5, 2.6 display average utilities in the

same format. These cases have β < 1, so they violate Condition 2.

Table 2.1: Busy Probability with Linear Cost Function
λ=0.5, μ = 1.5

β=4 β=6 β=8
α no partial full no partial full no partial full
0.50.3329 0.3306 0.33000.3333 0.3325 0.33190.3333 0.3330 0.3327
1 0.3321 0.3266 0.32570.3333 0.3309 0.32980.3333 0.3323 0.3315
2 0.3284 0.3168 0.31690.3329 0.3261 0.32430.3333 0.3299 0.3280
4 0.3144 0.2967 0.30210.3302 0.3129 0.31270.3329 0.3217 0.3192
6 0.2958 0.2803 0.29190.3236 0.2988 0.30290.3315 0.3113 0.3107
8 0.2770 0.2683 0.2847 0.3134 0.2858 0.29540.3282 0.3004 0.3034

Table 2.2: Busy Probability with Quadratic Cost Function
λ=0.5, μ = 1.5

β=4 β=6 β=8
α no partial full no partial full no partial full
0.50.3306 0.3264 0.32690.3330 0.3296 0.32920.3333 0.3311 0.3304
1 0.3257 0.3193 0.32170.3320 0.3254 0.32540.3331 0.3282 0.3275
2 0.3116 0.3062 0.3139 0.3277 0.3166 0.31910.3321 0.3219 0.3223
4 0.2800 0.2847 0.3040 0.3108 0.3000 0.31020.3253 0.3093 0.3143
6 0.2529 0.2693 0.2980 0.2900 0.2851 0.3043 0.3122 0.2973 0.3087
8 0.2308 0.2596 0.2937 0.2704 0.2724 0.3000 0.2967 0.2856 0.3045

Observe that information hurts the provider only for quite large β, so the cus-

tomers are quite concentrated, and for light traffic (small λ). Likewise, information
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Table 2.3: Busy Probability with Square-root Cost Function
λ=0.5, μ = 1.5

β=4 β=6 β=8
α no partial full no partial full no partial full
0.50.3331 0.3314 0.33100.3333 0.3329 0.33270.3333 0.3332 0.3331
1 0.3324 0.3280 0.32740.3333 0.3319 0.33140.3333 0.3329 0.3327
2 0.3298 0.3183 0.31780.3331 0.3281 0.32690.3333 0.3315 0.3307
4 0.3184 0.2961 0.29830.3313 0.3145 0.31350.3331 0.3245 0.3225
6 0.3016 0.2780 0.28360.3266 0.2982 0.29970.3323 0.3130 0.3115
8 0.2833 0.2658 0.27370.3185 0.2834 0.28820.3302 0.2999 0.3006

Table 2.4: Average Utility with Linear Cost Function
α=2, μ=2

β=0.15 β=0.1 β=0.05
λ no partial full no partial full no partial full

0.50.0570 0.0594 0.06120.0400 0.0405 0.04180.0215 0.0207 0.0214
1 0.0511 0.0523 0.05520.0365 0.0356 0.03770.0201 0.0182 0.0193
2 0.0436 0.0431 0.04720.0319 0.0294 0.03230.0182 0.0151 0.0167
4 0.0351 0.0335 0.03840.0265 0.0230 0.02660.0159 0.0119 0.0139
8 0.0262 0.0251 0.03010.0206 0.0176 0.02150.0131 0.0092 0.0115

Table 2.5: Average Utility with Quadratic Cost Function
α=2, μ=2

β=0.15 β=0.1 β=0.05
λ no partial full no partial full no partial full

0.50.0565 0.0594 0.06350.0398 0.0405 0.04340.0214 0.0207 0.0222
1 0.0500 0.0523 0.05880.0360 0.0356 0.04020.0199 0.0182 0.0207
2 0.0417 0.0430 0.05200.0310 0.0294 0.03590.0179 0.0151 0.0186
4 0.0323 0.0332 0.04360.0250 0.0229 0.03080.0153 0.0118 0.0164
8 0.0231 0.0246 0.03440.0187 0.0173 0.02540.0123 0.0092 0.0142

Table 2.6: Average Utility with Square-root Cost Function
α=2, μ=2

β=0.15 β=0.1 β=0.05
λ no partial full no partial full no partial full

0.50.0556 0.0588 0.0594 0.0392 0.0400 0.0405 0.0211 0.0205 0.0208
1 0.0496 0.0513 0.0523 0.0355 0.0349 0.0357 0.0196 0.0178 0.0183
2 0.0424 0.0417 0.0432 0.0310 0.0284 0.02950.0177 0.0145 0.0151
4 0.0345 0.0318 0.03370.0259 0.0218 0.02310.0154 0.0112 0.0119
8 0.0264 0.0235 0.02550.0205 0.0163 0.01780.0128 0.0085 0.0093
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hurts the customers only for very small β and large λ. Even in such cases, the effects

are small.

2.5.2 Comparison Results

Let us use superscripts no, part and full to indicate the different information levels.

We first compare the performance of the no-information and partial-information sys-

tems, then the no-information and full-information systems, and finally the partial-

information and full-information systems.

No information and partial information:

Proposition 4. If ppart
0 ≥ pno

0 , then upart > uno.

Thus, more information helps someone – if not the provider, then the customers.

Proposition 5. Under Condition 1 [H(1/x) is convex], ppart
0 ≤ pno

0 .

Thus, for certain shapes of the cost-scale distribution H, more information in-

creases throughput and so helps the provider. For power H, therefore, information

also increases customers’ average utility.

To compare utilities more generally, we need a different condition on the shape of

H.

Proposition 6. Under Condition 2 [J ◦ H−1 is convex], upart > uno. Moreover, if

ppart
0 < pno

0 , then

upart

uno
≥ 1 − ppart

0

1 − pno
0

.

For such customer distributions, then, average utility improves with information.

The throughput may or may not increase. If it does increase, then utility increases

even more, proportionally.
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Finally, we mention an interesting fact about the special case considered in the

examples above.

Proposition 7. For uniform H and linear cost, the relation between E [Nno] and

E [Npart] is the same as that between μ and 1. That is, they are equal for μ = 1,

E [Nno] > E [Npart] for μ > 1, and E [Nno] < E [Npart] for μ < 1.

We have already seen that throughput and utility both increase with more infor-

mation in this case. However, the standard performance measures such as E[N ] need

not improve. But such measures are not the most relevant ones in this context. The

customers here place different weights on delays. Information allows them to filter

themselves, so that those who care more about delays wait less.

No information and full information: The systems with no and full infor-

mation are related in exactly the same ways. For example, if pfull
0 ≥ pno

0 , then

ufull > uno.

Partial information and full information: It is harder to compare the partial-

and full-information systems. We have only the following result:

Proposition 8. Under Condition 1 [H(1/x) is convex], pfull
0 ≤ ppart

0 .

Thus, again, with this shape of H, more information increases throughput. And,

in case H is a power distribution, the full-information system has higher utility.

We conjecture that the other results above, comparing no and partial information,

also describe the relation between partial and full information.

2.6 Extension

Now, suppose c(0) < 1. Some of the results above remain valid in this case, but

others don’t.
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Some θi are now greater than 1. Let us extend the domain of H and J to all

θ ≥ 0, setting H(θ) = 1 for θ ≥ 1. The definition of J in terms of H remains the

same. With this understanding, the throughput is still λEI [H(θI)], and the average

utility is still EI [J(θI)]. The solutions for the three information models remain the

same.

Turning to comparisons, let us focus on the relation between the no- and partial-

information systems. The other comparisons are similar.

It is no longer true that, for a power distribution H, average utility is proportional

to throughput. The incentives of the provider and the customers are not perfectly

aligned.

Propositions 2 and 4 hold as stated. Thus, more information always helps some-

one, and under Condition 2, it helps customers.

Proposition 3 is no longer valid. The situation here is identical to the case of

identical customers, discussed in §6.1 above. For any H, and sufficiently small λ, all

customers stay in the no-information system. But, with partial information, some

customers balk, so the throughput is lower.

We can obtain a qualified version of the result, however: Under Condition 1, for

sufficiently large λ, ppart
0 ≤ pno

0 . In fact, this holds even under a weaker condition on

H, namely, H(1/x) is convex for sufficiently large x. (This covers all beta distribu-

tions, even those with β > 1.) Thus, under this condition, more information may

hurt the provider with light traffic, but not with heavy traffic.

2.7 Summary

In this chapter, we considered service systems with three levels of customer-delay in-

formation. Customers use that information to determine their expected waiting costs,

and so to decide whether to stay and receive service or leave (balk). We obtained
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closed-form solutions for some cases and nearly closed-form solutions for others. In

comparing these systems, we found that the form of the cost-scale distribution plays

a crucial role. For one important class, average utility is proportional to through-

put; so the provider’s and customers’ objectives coincide; those measures improve as

information increases. More broadly, we found sufficient conditions to ensure that

more information helps the provider or the customers. In other cases, however, more

information can actually hurt one or the other.
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Chapter 3

Sensitivity Analysis of Cost Function and

Weight Distribution

Delay, in most cases, is an unhappy experience for customers. Worse yet, to join a

queue is usually risky, since customers don’t know exactly how long they will have

to wait. Nowadays there are increasing possibilities, enabled by new technologies, to

provide useful delay information to customers, to enhance the values of the services

they receive. Customers can thus make better-informed decisions upon arrival.

Chapter 2 describes numerous examples. It studies a single-server queue with

three levels of delay information, none, partial (the system occupancy) and full (the

exact waiting time). Each customer decides whether to stay or leave, based on this

information and his own sensitivity to delays. The results there show that informa-

tion’s impact on the whole system is not always positive: It can reduce the server’s

throughput and even hurt customers’ average utility. The most important factor

determining these qualitative effects is the shape of the distribution of customers’

delay-sensitivity weights.

In this chapter, we carry out sensitivity analysis of system performance with

respect to customer characteristics, especially delay sensitivity and risk attitude.

We also explore the relationship between the value of information and customer

characteristics. In the latter part, we aim to answer questions such as: Is the value

of information greater for less patient customers? Is it larger for more risk-averse

customers?

There has been much research on comparison of systems with different input

streams. Ross (1978) conjectures that a more regular arrival process leads to better
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performance. Some counter examples are provided by Heyman (1982). See Rolski

(1990), Shaked and Shanthikumar (1994) and Müller and Stoyan (2002) for surveys.

Chao and Dai (1995) and Dai and Chao (1996) show that the conjecture holds for

a single-server loss system in random environment. Recently, Whitt (2006) analyzes

the sensitivity of performance to changes in model parameters in an M/M/s queue

with customer abandonment. He shows that performance can be quite sensitive to

changes in the arrival and service rates, but relatively insensitive to the abandonment

rate.

In our context, the arrival process is formed by a stream of customers who make

their own individual decisions, based on their utilities and the available information

about the system’s state. The overall impact of customers’ characteristics is thus

far from clear. Understanding this matter is important for the design of systems in

different markets with different types of customers.

Intuitively, information should be more valuable to a more risk-averse decision

maker. This is true in a static sense, but it may not reflect dynamic behavior.

See Hilton (1981), Freixas and Kihlstrom (1984), Willinger (1989) and Nadiminti, et

al.(1996). For example, Freixas and Kihlström show that the demand for information

may decrease with the level of risk aversion. Ex post, information reduces risk, how-

ever, ex ante, information gathering itself is a risky activity that risk-averse decision

makers are less willing to bear. These works consider only a single decision maker

facing an exogenous risk. In our system, there is a group of decision makers (cus-

tomers). Each one’s joining decision affects the delays for later-arriving customers,

so the system exhibits negative externality. The delay risk here is endogenous. The

relationship between information and risk aversion is thus even more complex.

The remainder of the chapter is organized as follows: Section 1 reviews the basic

formulation and reviews stochastic orders. Sections 2 briefly summarizes the three
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models in Chapter 2 and provides general stochastic comparison results. Section 3-4

develop the sensitivity analysis of system performance with respect to the change of

weight distribution and the change of cost function. Section 5 studies the relationship

between the value of information and customers’ characteristics. Section 6 concludes.

3.1 Formulation and Preliminaries

3.1.1 Notation and Utility

As in Chapter 2, we assume a single-server queue with exponential service times.

Potential customers arrive in a Poisson process. We suppose that a customer’s utility

equals a reward for receiving service minus a waiting cost. This waiting cost depends

on a customer-specific weight and the expectation of a (common) function of the

waiting time. Denote

• λ = arrival rate of potential customers

• W = waiting time in queue

• θ = customer weight for delay, θ ∈ [0, 1]

• H = cumulative distribution function of θ, assumed continuous on [0, 1], with

density h

• c(w) = basic cost to wait time w, a positive, increasing, unbounded, continuous

function

• r = reward to the customer for receiving service, r > 0

• u(w, θ) = utility for a customer with weight θ to wait time w

• u(θ|I) = expected utility for a customer with θ, given delay information I
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• u = average utility for a whole group of customers

The service reward is the same for all customers (this assumption is convenient

but not essential). Customers differ in the importance of time. This difference is

expressed by the customer weight θ. Each customer’s weight is independent of all

other events; it follows the common distribution function H(θ). The shape of H(·)
characterizes the heterogeneity of customers in delay sensitivity. A very concentrated

distribution indicates nearly identical customers and a dispersive distribution means

that customers are different: Some are patient while others are impatient.

A customer with delay-sensitivity θ has a utility function for receiving service

but waiting time w, which is expressed as u(w, θ) = r − θc(w). The waiting time w

can be a random variable. The customer assesses the distribution of this random

variable, based on the available information. Let I denote the information variable.

The expected waiting cost cI = E[c(W )|I] is a function of that information. The

expected utility for the customer to remain in the system is thus u(θ|I) = r − θcI .

The customer remains in the system if u(θ|I) is non-negative and otherwise balks.

We assume that there is no reneging.

We normalize r = 1 and assume c(0) = 1. Under this assumption, a customer

seeing an empty system will always join. Define θI = 1/cI . The effective arrival rate

given delay I is hence λH(θI). Define the function

J(θ) =

∫ θ

0
H(φ)dφ

θ
.

Chapter 2 shows that the average utility for all customers, u, equals EI [J(θI)]. Also,

J(1/x) is decreasing and convex in x.
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3.1.2 Stochastic Orders

Consider two systems, identical except for H and c. Use the superscript k = 1, 2

to index the systems. We consider different stochastic orders between θk, k = 1, 2.

Most of these concepts can be found in Shaked and Shanthikumar (1994) and Müller

and Stoyan (2002). For discussion of single crossing, see Athey (2002). We shall also

consider analogous relations between the cost functions.

If H1(x) ≥ H2(x), x ∈ [0, 1], θ1 is stochastically smaller than θ2 (denoted θ1 �st

θ2), or H2 is said to dominate H1 according to first-order stochastic dominance. A

stronger condition is that the ratio h1/h2 is monotonically decreasing, a condition

called monotone likelihood ratio. Then θ1 is said to to be smaller than θ2 in the

likelihood-ratio order (denoted θ1 �lr θ2).

If
∫ 1

v
H̄1(x)dx ≤ ∫ 1

v
H̄2(x)dx, for all v ∈ [0, 1], θ1 is smaller than θ2 in the in-

creasing convex order (denoted θ1 �icx θ2). If E[θ1] = E[θ2] and
∫ 1

v
H̄1(x)dx ≤∫ 1

v
H̄2(x)dx, for all v ∈ [0, 1], θ1 is smaller than θ2 in the convex order (denoted

θ1 �cx θ2), or H1 is said to dominate H2 according to second-order stochastic dom-

inance. This condition implies that var[θ1] ≤ var[θ2]. Intuitively, it means that

system 1’s customers are less heterogeneous than system 2’s. If the ratio H1/H2 is

decreasing, a condition called monotone probability ratio, θ1 is said to be smaller than

θ2 in the reverse hazard-rate order (denoted θ1 �rh θ2).

The theory of total positivity (see, Karlin 1968) shows that monotone ratios

are preserved under integration. Thus, decreasing h1/h2 implies decreasing H1/H2.

Decreasing H1/H2, in turn, implies decreasing J1/J2.

Let X1 and X2 be two random variables with pdfs f1 and f2, respectively. If the

ratio f 1/f2 is unimodal, X1 is said to be uniformly less variable than X2 (denoted

X1 �uv X2). If the ratio f1/f2 is log-concave, X1 is said to be log-concave relative

to X2 (denoted X1 �lc X2). This is a stronger condition than X1 �uv X2.
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3.2 General Comparison Results

Chapter 2 considers three levels of delay information. With no information, cus-

tomers still estimate their waiting times, but these estimates are based only on long-

term (equilibrium) experience, not real-time information. The occupancy provides

partial information; the remaining uncertainty comprises the actual service times of

the waiting customers. The exact waiting time gives the customer full information.

We briefly summarize the models and solutions and then give our general stochastic

comparison results.

3.2.1 No Information

Under no information, the resulting system is an M/M/1 queue with the equilibrium

arrival rate λ−, which solves

λ− = λH

(
1

E[c(W |−)]

)
. (3.1)

Here, E[c(W |−)] indicates the expected cost given λ−. Hence the equilibrium system

is still an M/M/1 queue with effective arrival rate λ−.

Proposition 9. Under no information, if λ1
− ≥ λ2

−, then N1 
lr N2.

Proof. Whitt (1999) (Theorem 4.1) shows that, for any pair of birth-death processes,

N1 
lr N2, provided

λ1
n

μ1
n+1

≥ λ2
n

μ2
n+1

, n ≥ 0.

Here, each system k is an M/M/1 queue with arrival rate λk
− and service rate μ.

Hence the above condition is satisfied.
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3.2.2 Partial Information

Under partial information, N , the system occupancy at the moment of arrival, can

be modeled as a birth-death process. The birth rate in state n is λn = λH(θn), where

θn = 1/cn = 1/E[c(W )|N = n], and the death rate is μ. The equilibrium distribution

of N can be expressed as

pn =

(
n−1∏
m=0

λm/μ

)
p0 = Θn(λ/μ)np0,

where

Θn =
n−1∏
m=0

H(θm), n > 0.

Let

Θ =
∑
n>0

Θn(λ/μ)n.

Then,

p0 =
1

1 + Θ
.

Define the cumulative effective arrival rate Λn = λ
∏n

m=0 H(1/cm).

Proposition 10. Under partial information,

1. if Λ1
n ≥ Λ2

n, then p1
0 ≤ p2

0;

2. if λ1
n ≥ λ2

n for all n = 0, 1, 2, ..., then N1 
lr N2;

3. if λ1
n crosses λ2

n once from above (i.e., there exists n̂ > 0 such that λ1
n ≥ λ2

n, n ≤
n̂, and the inequality is reversed for n > n̂), then N1 �uv N2;

4. if the ratio λ1
n/λ2

n is decreasing in n, then N1 �lc N2.
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Proof. For part 1, if Λ1
n ≥ Λ2

n for all n, then Θ1
n ≥ Θ2

n for all n, and hence p1
0 ≤ p2

0.

Part 2 follows by the same argument as in Proposition 9.

For part 3, if λ1
n crosses λ2

n once from above, consider the ratio

p1
n+1/p

2
n+1

p1
n/p

2
n

=
λ1

n

λ2
n

.

For n ≤ n̂, this fraction is greater than 1, thus p1
n/p

2
n is increasing; for n > n̂, similarly,

p1
n/p

2
n is decreasing. Thus p1

n/p2
n is unimodal. Hence, N1 �uv N2.

Finally, for part 4, if λ1
n/λ

2
n is decreasing in n,

p1
n+1/p

2
n+1

p1
n/p

2
n

=
λ1

n

λ2
n

.

is decreasing in n. So p1
n/p

2
n is log-concave, and N1 �lc N2.

3.2.3 Full Information

Define the cumulative effective arrival rate Λ(v) =
∫ v

0
λ(v)dv. Under full information,

the pdf for the equilibrium workload V , f(v), v > 0, solves the integral equation

f(v) = λp0e
−μv +

∫ v

0

λH [1/c(w)] e−μ(v−w)f(w)dw (3.2)

with the normalization condition

p0 +

∫ ∞

0

f(v)dv = 1. (3.3)

The solution is

f(v) = λp0e
Λ(v)−μv, (3.4)

where

p0 =
1

1 + λ
∫∞

0
eΛ(v)−μvdv

. (3.5)
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Proposition 11. Under full information,

1. if Λ1(v) ≥ Λ2(v), then p1
0 ≤ p2

0;

2. if λ1(v) ≥ λ2(v) for all v ≥ 0, then V 1 
lr V 2;

3. if λ1(v) crosses λ2(v) once from above, then V 1 �uv V 2;

4. if the ratio λ1(v)/λ2(v) is decreasing in v, then

ln(f 1(v))
′

ln(f 2(v))′

is decreasing in v.

Proof. Part 1 follows immediately from (3.5).

For part 2, if λ1(v) ≥ λ2(v) for all v ≥ 0, then Λ1(v) − Λ2(v) is positive and

increasing. So, p1
0 ≤ p2

0, and

f1(v)

f2(v)
=

p1
0

p2
0

exp
{[

Λ1(v) − Λ2(v)
]}

is increasing. Hence, V 1 
lr V 2.

For part 3, if λ1(v) crosses λ2(v) once from above, Λ1(v) − Λ2(v) is positive and

increasing for v ≤ v̂, but decreasing for v ≥ v̂. That is, Λ1(v) − Λ2(v) is unimodal,

and therefore so is f 1(v)/f2(v).

Finally, for part 4, if the ratio λ1(v)/λ2(v) is decreasing in v, then

ln(f 1(v))
′

ln(f 2(v))′
=

Λ1′(v)

Λ2′(v)
=

λ1(v)

λ2(v)

is decreasing in v.
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3.3 Specific Conditions on Weight Distributions

In this section, we assume c1 = c2 = c and consider specific conditions on the Hk.

3.3.1 First-Order Stochastic Dominance

Assume θ1 �st θ2. This means that system 1’s customers are stochastically more pa-

tient than system 2’s. We have the following conclusion about the system occupancy

and the workload.

Proposition 12. If θ1 �st θ2, then N1 
lr N2 under no or partial information, and

V 1 
lr V 2 under full information.

Proof. The condition θ1 �st θ2 means H1(θ) ≥ H2(θ), for all θ in [0, 1]. Hence,

H1(1/c(v)) ≥ H2(1/c(v)) for all v ≥ 0 and H1(1/cn) ≥ H2(1/cn) for all n ≥ 0. So,

λ1(v) ≥ λ2(v), and λ1
n ≥ λ2

n. Also, λ1
− ≥ λ2

− from (3.1). From Propositions 9, 10 and

11, the conclusion follows.

Next, we compare the average utilities for the two systems. By the definition of

Jk, we have J1 ≥ J2.

Proposition 13. If θ1 �st θ2, then u1 ≥ u2 under no information.

Proof. By Proposition 12, θ1
− ≥ θ2

−. Thus, u1 = J1(θ1
−) ≥ J1(θ2

−) ≥ J2(θ2
−) = u2.

For partial and full information, first consider the special case of the power distri-

bution, H(θ) = θα for constant α > 0. Note that, for two distributions of this form,

α1 ≤ α2 implies H1 ≥ H2.

Proposition 14. If each Hk is a power distributions with α1 ≤ α2, then u1 ≥ u2

under partial or full information.
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Proof. In this case, suppressing k for the moment,

J(θ) =
1

α + 1
θα =

1

α + 1
H(θ).

so the average utility u = E[J(θI)] = 1
α+1

E[H(θI)] = 1
α+1

(1 − p0)μ/λ. Under either

partial or full information, 1 − p1
0 ≥ 1 − p2

0, by Proposition 12. Thus, u1 ≥ u2.

Beyond this special case, the relation between u1 and u2 is not clear. A stronger

condition is needed to conclude that customers on average are better off in one system

than the other.

3.3.2 Monotone Likelihood Ratio

Condition θ1 �lr θ2 means that h1(x)/h2(x) is decreasing in x. This condition is

stronger than θ1 �st θ2. We now consider the relation between u1 and u2 under

partial and full information.

Proposition 15. If θ1 �lr θ2, then

u1

u2
≥ J1(1)p1

0

J2(1)p2
0

,

under partial or full information.

Proof. We demonstrate the result for partial information. The proof for full informa-

tion is similar. Recall that decreasing h1(x)/h2(x) implies decreasing H1(x)/H2(x),

which, in turn, implies decreasing J1(x)/J2(x). Hence J1(θn)/J2(θn) is increasing in

n. From proposition 12, we know that N1 
lr N2 under partial information, that is,

p1
n/p

2
n is increasing in n. Hence,

u1

u2
=

∑
n≥0 J1(θn)p1

n∑
n≥0 J2(θn)p2

n

≥ J1(θ0)p
1
0

J2(θ0)p2
0

=
J1(1)p1

0

J2(1)p2
0

.
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Since p1
0 ≤ p2

0 and J1(1) ≥ J2(1), it is not necessarily true that [J1(1)p1
0]/[J2(1)p2

0] ≥
1. But at least we obtain a lower bound on u1/u2.

3.3.3 Stochastic Monotonicity and Convexity

In this subsection, we discuss the relationship between the conditions θ1 �icx θ2 and

Λ1(v) ≥ Λ2(v) and Λ1
n ≥ Λ2

n. First, the condition θ1 �icx θ2 is not a sufficient

condition for Λ1(v) ≥ Λ2(v). The condition θ1 �icx θ2 means that
∫ 1

x
H1(y)dy ≥∫ 1

x
H2(y)dy, x ∈ [0, 1]. Let y = 1/c(t), dy/dt = −c′(t)/c2(t). Then this condition

becomes

∫ 0

v

H1(1/c(t))(−c′(t)/c2(t))dt ≥
∫ 0

v

H2(1/c(t))(−c′(t)/c2(t))dt.

This condition is very different from

∫ v

0

H1(1/c(t))dt ≥
∫ v

0

H2(1/c(t))dt.

Hence, the condition θ1 �icx θ2 doesn’t imply Λ1(v) ≥ Λ2(v). Similarly, θ1 �icx θ2

is not a sufficient condition for Λ1
n ≥ Λ2

n. The former depends on the integrals of

the Hk on the whole interval [0, v], while the latter depends on the products of the

discrete values of the Hk on {θ0, θ1, θ2, ...}.
Hence, more concentrated customers need not imply a larger cumulative effective

arrival rate.

3.3.4 Single Crossing

Consider the condition that H1 crosses H2 once from above in (0, 1). Denote the

crossing point by θ̂. Then H1(1/c(v)) crosses H2(1/c(v)) once from below. Hence,
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λ1(v) crosses λ2(v) once from below. The crossing point is v̂ = c−1(1/θ̂). From

Propositions 10 and 11, we derive the following conclusion.

Proposition 16. If H1 crosses H2 once from above, then N1 �uv N2 under partial

information, and V 1 �uv V 2 under full information.

3.3.5 Reverse Hazard-Rate Ordering

The condition θ1 
rh θ2 means that H1(θ)/H2(θ) is increasing. Hence

H1(1/c(x))/H2(1/c(x))

is decreasing in x. Thus λ1(v)/λ2(v) is decreasing in v. By Propositions 10 and 11,

we have the following proposition.

Proposition 17. If θ1 
rh θ2, then N1 �lc N2 under partial information and

ln(f 1(v))
′

ln(f 2(v))′

is decreasing in v under full information.

3.4 Specific Conditions on Cost Functions

In this section, we fix H1 = H2 = H but consider different conditions on the ck.

3.4.1 Inequality

Condition c1 ≤ c2 means that customers in system 1 care less about waiting than

those in system 2. We have the following conclusion about the system occupancy

and the workload.

Proposition 18. If c1 ≤ c2, then N1 
lr N2 under no or partial information, and

V 1 
lr V 2 under full information.
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Proof. From the condition c1 ≤ c2, we get H(1/c1(v)) ≥ H(1/c2(v)) for all v ≥ 0 and

H(1/c1
n) ≥ H(1/c2

n) for all n = 0, 1, 2.... Hence, λ1(v) ≥ λ2(v) and λ1
n ≥ λ2

n. Also we

can derive that λ1
− ≥ λ2

− from (3.1). From Proposition 9, 10 and 11, we obtain the

conclusion.

About average utilities, we have the following conclusions.

Proposition 19. If c1 ≤ c2, then u1 ≥ u2 under no information.

Proof. By Proposition 18, λ1
− ≥ λ2

−, so θ1
− ≥ θ2

−. Also, Jk = J . Thus, since J is

increasing, u1 = J(θ1
−) ≥ J(θ2

−) = u2.

This last conclusion need not hold for partial and full information, however. On

one hand, since c1 ≤ c2, θ1
i ≥ θ2

i and thus J(θ1
i ) ≥ J(θ2

i ) since J(θ) is increasing in

θ. On the other hand, since J(θi) is decreasing in i, I1 
st I2 implies E[J(θk
I1)] ≤

E[J(θk
I2)] for k = 1, 2. Thus, it is unclear whether E[J(θ1

I1)] or E[J(θ2
I2)] is larger.

Intuitively, given information I, system 2 has larger expected utility, but its larger

arrival rate pushes the system to a more congested state, which decreases the utilities.

The overall effect is unclear. Tables 3.1 and 3.2 show that either effect can dominate

the other. All the cases considered have linear costs: ck(w) = 1 + γkw. In Table 3.1

the average utility decreases with ck, while in Table 3.2 it increases for partial and

full information.

Table 3.1: Compare Linear Cost Functions with Beta H
α = β = 2, λ = 2, μ = 2

busy probability average utility
γ no partial full no partial full

0.1 0.8601 0.8922 0.8959 0.3613 0.3956 0.4001
0.5 0.6972 0.7668 0.7848 0.2750 0.3324 0.3460
1.0 0.6026 0.6954 0.7259 0.2315 0.3038 0.3222
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Table 3.2: Compare Linear Cost Functions with Beta H
α = β = 2, λ = 8, μ = 2

busy probability average utility
γ no partial full no partial full

0.1 0.9768 1.0000 1.0000 0.0870 0.0893 0.0894
0.5 0.9002 0.9998 1.0000 0.0798 0.0899 0.0898
1.0 0.8284 0.9940 0.9996 0.0732 0.0908 0.0907

In a system with no balking, where all customers stay, the distribution of W is

just that of the standard M/M/1 system with arrival rate λ. The average waiting

cost for system k is E[θk]E[ck(W )], which is larger for system 1. Thus, the customers

in system 1 get lower average utility. In the system allowing balking but with no

information, this conclusion is still true, by Propositions 13 and 19. However, in

the system with balking and either partial or full information, the average utility in

system 1 can be larger. Here, customers make their own decisions to maximize their

expected utilities, and this leads to less congestion in system 1. Less congestion in

turn increases the average utility for those served customers.

3.4.2 Single Crossing

Consider the condition that c1(v) crosses c2(v) once from below. Then H(1/c1(v))

crosses H(1/c2(v)) once from above. Hence, λ1(v) crosses λ2(v) once from above. We

get the following conclusion.

Proposition 20. If c1(v) crosses c2(v) once from below, then N1 �uv N2 under

partial information, and V 1 �uv V 2 under full information.

3.4.3 Monotone Ratio

Consider the condition that the ratio c1(x)/c2(x) is increasing in x. Hence,

d ln
[
c1(x)/c2(x)

]
/dx ≥ 0

39



or

c1′(x)

c1(x)
≥ c2′(x)

c2(x)
.

Since c1(0) = c2(0) = 1, c1(x) ≥ c2(x) for all x ≥ 0.

Consider the elasticity of H at x, xh(x)/H(x). Assume H has a decreasing

elasticity. Then,

h(1/c1(x))[1/c1(x)]

H(1/c1(x))
≥ h(1/c2(x))[1/c2(x)]

H(1/c2(x))
.

Thus

d

dx
ln

(
H(1/c1(x))

H(1/c2(x))

)
= −h(1/c1(x))[1/c1(x)]

H(1/c1(x))

c1′(x)

c1(x)
+

h(1/c2(x))[1/c2(x)]

H(1/c2(x))

c2′(x)

c2(x)
≤ 0.

Hence, H(1/c1(x))/H(1/c2(x)) is decreasing in x and so λ1(v)/λ2(v) is decreasing in

v. We have the following conclusion.

Proposition 21. If c1(x)/c2(x) is increasing in x and H has a decreasing elasticity,

N1 �lc N2 under partial information and

ln(f 1(v))
′

ln(f 2(v))′

is decreasing in v under full information.

3.4.4 Risk Aversion

In this subsection, we consider a different condition on ck which indicates the degree of

customers’ risk aversion. For a utility function of one variable u(x) which is increasing

in x, the Arrow-Pratt measure of absolute risk aversion is A(x) = −u′′(x)/u′(x).

Here, customers have an increasing disutility function c(·), hence we use A(w) =

c
′′
(w)/c

′
(w) to measure risk aversion. Let Ak(w) denote the risk aversion of the cost
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function ck. We suppose customers in system 1 are more risk averse than those of

system 2. As we shall see, this condition is related to others we have seen above.

Proposition 22. If A1(w) ≥ A2(w) for all w and c1′(0) ≥ c2′(0), then c1(w) ≥ c2(w);

if A1(w) ≥ A2(w) for all w and c1′(0) < c2′(0), then c2(w) crosses c1(w) once from

above.

Proof. According to Pratt (1964), the condition A1(w) ≥ A2(w) is equivalent to the

condition that function τ = c2 ◦ (c1)−1 be increasing and concave; that is, c2 is an

increasing and concave transform of c1. In out context, c2(0) = c1(0) = 1. Hence,

τ(1) = 1. Consider the derivative of τ ,

dτ

dx
=

c2′ ◦ (c1)−1(x)

c1′ ◦ (c1)−1(x)
.

Condition c2′(0) ≤ c1′(0) is equivalent to c2′ ◦ (c1)−1(1) ≤ c1′ ◦ (c1)−1(1) or dτ
dx

(1) ≤
1. Since τ(1) = 1 and τ is increasing and concave, it follows that τ(x) ≤ x. Insert

x = c1(w), and we get c2(w) ≤ c1(w), w ≥ 0.

Similarly, the condition c2′(0) > c1′(0) is equivalent to c2′ ◦ (c1)−1(1) > c1′ ◦
(c1)−1(1) or dτ

dx
(1) > 1. Since τ(1) = 1 and τ is increasing and concave, it follows that

the graph of τ(x) starts from (1, 1) and crosses the diagonal line y = x once from

above. Insert x = c1(w), and we get c2(w) crosses c1(w) once from above.

Thus, greater risk aversion implies either no crossing or single crossing of the two

cost functions, depending on their derivatives at 0. By Proposition 20, single crossing

of the two cost functions implies nothing about the relation between the throughputs.

Hence, a system with more risk-averse customers need not have a smaller throughput.
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3.5 The Value of Information and Risk Aversion

In this section, we discuss the relationship between the value of information and cus-

tomer characteristics, namely, the weight on delay and the degree of risk aversion. We

first give the expression of the value of information, then give two general conclusions

and at last we give numerical computation results.

A simple and direct measure of the value of information is the difference of the

average utilities under more and less information. For a customer with weight θ, his

expected utility under no, partial and full information is denoted as uno(θ), upart(θ)

and ufull(θ), respectively. Define V Ifn(θ) = ufull(θ)−uno(θ). Then V Ifn(θ) measures

the value of full over no information for a customer with weight θ. Similarly, define

V Ipn(θ) = upart(θ) − uno(θ) and V Ifp(θ) = ufull(θ) − upart(θ).

Under no information, if θ > θ−, the customer will balk and gets utility 0. Hence

uno(θ) = 0.

If θ ≤ θ−, the customer will join and obtain a nonnegative expected utility 1 −
θE[c(W no)] and hence

uno(θ) = 1 − θE[c(W no)].

Under partial information, the customer will join if 1 − θcn ≥ 0 or n ≤ c−1(1/θ).

Denote n∗ to be n satisfying cn∗ = 1/θ (n∗ may not be an integer). The expected

utility for the customer upart is

upart(θ) =
∑
n≤n∗

(1 − θcn)ppart
n .

Now define a new variable Ñpart such that p̃part
n = ppart

n for all n < n∗ and p̃part
n∗ =

1 −∑n<n∗ pn. Then we can write

upart(θ) = 1 − θE[cÑpart ].
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Under full information, if v ≤ c−1(1/θ), customer will join and obtain the utility

1 − θc(v); otherwise , he will leave with utility 0. Hence, the customer’s expected

utility is

ufull(θ) =

∫ c−1(1/θ)

0

(1 − θc(v))dF full(v).

Define a new distribution F̃ full such that F̃ full(v) = F full(v), for v < c−1(1/θ) and

F̃ full(v) = 1, for v ≥ c−1(1/θ). Denote a random variable with this distribution by

Ṽ full. One can easily verify that

Ṽ full �st V full. (3.6)

Then we can write

ufull(θ) = 1 − θE[c(Ṽ full)]

We have two propositions about the value of information.

Proposition 23. If pfull
0 ≥ pno

0 , then for all θ, V Ifn(θ) ≥ 0. Similarly, if ppart
0 ≥ pno

0 ,

then for all θ, V Ipn(θ) ≥ 0.

Proof. We prove the result for full versus no information. The proof for partial versus

no information is similar.

Chapter 2 shows that V full �st W no if pfull
0 ≥ pno

0 . From (3.6), we derive that

Ṽ full �st W no. Hence E[c(W no)] ≥ E[c(Ṽ full)], and thus uno(θ) ≤ ufull(θ) for θ ≤ θ−.

For θ > θ−, the customer has utility 0 under no information and nonnegative expected

utility under full information, hence, uno(θ) ≤ ufull(θ).

That is, information benefits every individual customer, if it hurts the server.

Proposition 24. When θ > θ−, V Ifn(θ) is decreasing in θ. That is, the value of

information is smaller for less patient customers. When θ ≤ θ−, if V Ifn(θ) > 0, then

V Ifn(θ) is increasing with θ. Otherwise, if V Ifn(θ) < 0, V Ifn(θ) is decreasing with
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θ. That is, the value of information is larger for less patient customers, if it benefits

those customers. Similar conclusions hold for V Ipn(θ).

Proof. We present the proof for full versus no information. The case of partial versus

no information is similar.

When θ > θ−, let’s first write

V Ifn = ufull(θ) =

∫ c−1(1/θ)

0

(1 − θc(v))f full(v)dv + (1 − θ)pfull
0 .

We have

dV Ifn

dθ
= −

∫ c−1(1/θ)

0

c(v)f full(v)dv − pfull
0 < 0.

When θ ≤ θ−,

V Ifn = ufull(θ) − uno(θ)

=

∫ c−1(1/θ)

0

(1 − θc(v))f full(v)dv + (1 − θ)pfull
0 − (1 − θE[c(W no)]).

We have

dV Ifn

dθ
= −

∫ c−1(1/θ)

0

c(v)f full(v)dv − pfull
0 + E[c(W no)]

= −E[c(Ṽ full)] + E[c(W no)].

When ufull(θ) > uno(θ), E[c(Ṽ full)] < E[c(W no)] and hence dV Ifn/dθ > 0; when

ufull(θ) ≤ uno(θ) then dV Ifn/dθ ≤ 0.

Thus, the value of information is not necessarily larger for less patient customers.
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3.5.1 CARA Utility Function

In this subsection, we study the relationship between the value of information and

the degree of risk aversion. We assume H is a uniform distribution and consider the

cost function

c(w) = eγw

for γ > 0. This function is increasing and convex. To guarantee the stability of the

no-information model, we restrict γ < μ.

Here, A(w) = c′′(w)/c′(w) = γ. Thus, a larger γ means a higher level of risk-

aversion. This risk aversion measure is independent of w, a property called constant

absolute risk aversion (CARA). Also, the cost function is increasing with γ.

For the numerical computation, we consider θ = 0.1, 0.5, 0.9, which represent very

patient, moderately patient and impatient customers, respectively. We fix μ = 2 and

change λ over {0.5, 1, 2, 3}. Figures 3.1, 3.2 and 3.3 show the value of full versus

no information with θ = 0.1, 0.5, 0.9, respectively. Figures 3.4, 3.5 and 3.6 show the

value of partial versus no information, and Figures 3.7, 3.8 and 3.9 show the value of

full versus partial information.

First, we observe that the relationship between the value of information and

the level of customers’ risk aversion is not monotone. When θ = 0.1, the value of

information roughly increases with the level of risk aversion. However, for θ = 0.5

and 0.9, it doesn’t. For very patient customers, they join the system under no and

full information in most of time. What they care about is congestion. The cost

function c(w) = eγw is increasing in γ. So, when γ increases, the system becomes less

congested with and without information. However, it is likely that the congestion

in the system with information is lessened more than the one without information.

Hence, for patient customers, the value of information tends to increase with γ, since

they usually join the system, and less congestion with information benefits them most.
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However, customers with moderate to severe impatience often leave the system with

and without information, and thus the value of information is less promising to them.

In summary, information here not only helps one customer to make his decision,

but also affects the congestion of the system itself. Hence, the risk here is endogenous.

In this situation, the value of customers’ cost function, instead of the shape of it,

is an important factor deciding customers’ delay risk. And there is no monotone

relationship between the value of information and the degree of risk aversion.

We also observe that the value of full versus no information, and that of partial

versus no information, decrease with the system’s utilization. However, the value of

full versus partial information need not behave in this way.
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Figure 3.5: The Value of Partial/No Information for Customers with θ = 0.5
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Figure 3.6: The Value of Partial/No Information for Customers with θ = 0.9
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Figure 3.8: The Value of Full/Partial Information for Customers with θ = 0.5
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3.6 Conclusions

In this chapter, we explore the impacts of customers’ delay sensitivities and risk

attitudes on balking queues. We first give stochastic comparison results when the

effective arrival rates exhibit certain relationships under different information scenar-

ios. Under partial information, a sufficient condition for a system’s throughput to

be larger than the other’s is that the system have larger cumulative effective arrival

rate. (1) If a system always has a larger effective arrival rate than the other system

does, the system’s occupancy is stochastically larger than the other’s, in the sense

of likelihood-ratio order; (2) if a system’s effective arrival rate crosses the other’s

once from above, then the system’s occupancy is uniformly less variable than the

other’s; (3) if the ratio of a system’s effective arrival rate to the other’s is increasing,

then the system’s occupancy is logconcave relative to the other’s. We obtain similar

conclusions for the full-information system.

We then consider different orders between H1 and H2 and discuss their relation-

ships with orders between the effective arrival rates. For example, we show that when

system 1’s customers are more sensitive to delay than system 2’s in the usual stochas-

tic order, system 1 has smaller effective arrival rates. We also discuss the relationship

between c1 and c2 and discuss the relationship between them and the effective arrival

rates. For example, when H has a decreasing elasticity, increasing c1/c2 is a sufficient

condition for increasing λ1(v)/λ2(v). We also explore risk-aversion relations between

cost functions. We show that a system with more risk-averse customers need not

have a smaller throughput.

With regard to customers’ average utility, if system 1’s customers have larger

costs and larger weights on the cost, they have a smaller utility for a fixed waiting

time. Hence, in a system without balking, the customers in system 1 get lower

average utility. In our system with balking, but without information about delay,
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this conclusion is still true. However, in a system with balking and information, the

average utility in system 1 can be larger.

Finally, we examine the relationship between the value of information and cus-

tomers’ characteristics. We show that, when information hurts the server, it always

benefits each customer. However, the value of information need not increase with the

weight on delay cost. We also explore numerically the value of information for dif-

ferent delay-sensitive customers with CARA utility functions. We show that there is

no simple relationship between the value of information and the degree of customers’

risk aversion.
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Chapter 4

·/PH/1 Queue and Delay Information

In this chapter, we explore information’s effects on the server’s profit and customers’

average utility in a system with phase-type service times. With general service times,

information can have some odd effects. A longer queue may indicate a shorter waiting

time, as discussed by Altman and Hassin (2002). A similar phenomenon can appear

in a two-server system; Whitt (1985) shows that, therefore, it is not always optimal

to join the shortest queue.

Section 1 introduces notation and assumptions and briefly summarizes the impor-

tant conclusions in Chapter 2. Sections 2-4 model systems with no, partial and full

information, respectively. Section 5 provides some analytical results comparing the

performance of various systems. Section 6 gives numerical results. Section 7 provides

some concluding remarks.

4.1 Formulation and Preliminaries

As in Chapter 2, we assume potential customers arrive in a Poisson process. We

suppose that a customer’s utility equals a reward for receiving service minus a waiting

cost. This waiting cost depends on a customer-specific parameter and the expectation

of a (common) function of the waiting time. Let Sr denote the residual service time

for the customer in service.

4.1.1 Reneging

Suppose for the moment that customers can renege, based on the same calculation

as above. When would they do so? With full information, the answer is clearly
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never. With less information, however, they might. First, consider the case of no

information and exponential service times. Suppose an arriving customer decides to

stay but immediately finds himself waiting in the queue. He now has more information

than he started with; he knows that W > 0. At that moment, he may choose to

renege. If not, however, he will never leave, because (W |W > 0) is exponential.

With general service times, even this may not hold. For example, in a M/G/1

queue with decreasing-failure-rate (DFR) service times, the stationary waiting time

too is DFR (see, e.g., Shanthikumar, 1988), as is (W |W > 0). In this case, a

customer in the queue estimates a larger remaining waiting time as time passes. So,

he may choose to renege.

4.1.2 Phase-type Service Times

The phase-type (PH) distribution is discussed in detail by Neuts (1981). The cdf of

the PH distribution of service times is expressed as

G(x) = 1 − βT eBx1, x ≥ 0,

where 1 is a column m-vector of ones, βT = (β1, β2, ..., βm) is a non-negative m-

dimensional row vector, and B is an m × m matrix with Bij ≥ 0, i �= j; Bii < 0, i =

1, ..., m; and B is nonsingular. The general definition allows βT1 ≤ 1. Here we

restrict attention to βT1 = 1. We say the distribution has parameters (β,B).

4.1.3 Summary of Conclusions in Chapter 2

We summarize the important conclusions obtained in Chapter 2. We use superscripts

no, part and full to indicate the different information levels. Also, define the function

J(θ) =

∫ θ

0
H(φ)dφ

θ
.
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The expected utility, u, equals EI [J(θI)], where I denotes the information variable.

Denote by p0 the idle probability. A power distribution has cdf H(θ) = θα for α > 0.

(The uniform distribution is the case with α = 1.)

1. If ppart
0 ≥ pno

0 , then upart > uno. Thus, more information helps someone – if not

the provider, then the customers.

2. If H(1/x) is convex in x, then ppart
0 ≤ pno

0 .

3. If J ◦ H−1 is convex, then upart > uno.

Chapter 2 also shows that, for the special case of a power distribution, the cus-

tomers’ average utility is proportional to the throughput. In this case, the provider’s

and the customers’ objectives are perfectly aligned. That argument holds for general

service times, not just exponential ones.

The same relations also hold between no and full information. And the 2nd

relation holds between partial and full information. It is conjectured that the 1st and

the 3rd hold too.

The condition that H(1/x) is convex in x in property (2) means that the cost-

scale distribution is spread out, so customers are heterogeneous, in a certain sense.

It is equivalent to

−θh′(θ)
h(θ)

≤ 2

(assuming the derivative h′ exists). The left-hand side is the elasticity of the density

h. The condition posits that h not be too elastic, that is, that customers not be too

concentrated. More precisely, it rules out a sharp decrease in h. It is a one-sided

spread condition. For a beta distribution with parameters (a, b), the condition holds,

if and only if b ≤ 1.
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The condition that J ◦ H−1 is convex in property (3) is equivalent to

−φh′(φ)

h(φ)
≥ 2 − φh(φ)

[H(φ) − J(φ)]
.

This is another restriction on the elasticity of h, but here it’s a lower bound, a variable

one. It requires that h not rise too sharply. For a beta distribution with parameters

(a, b), this condition holds, if and only if b ≥ 1.

The power distribution is the special case of a beta distribution with parameter

b = 1. So, in this case more information helps everyone.

Here, we investigate whether these properties continue to hold with phase-type

service times.

4.2 No Information

Under no information, customers use the equilibrium distribution to estimate W .

Thus, W affects the arrivals, which, in turn, affect W . When the system is in

equilibrium, there exists a cut-off level, θ−, for customers’ sensitivity parameter θ.

At θ−, the customer has utility 0 and thus is indifferent between joining and balking.

Obviously, θ− = 1/E[c(W |−)]. Below that, customers have positive utility and join;

above that, customers get negative utility and leave. Thus the fraction of customers

joining the system is H(θ−). Those customers form the effective arrival process. The

effective arrival rate is λ− = λH(θ−). The resulting system is an M/PH/1 queue

with an effective arrival rate λ−.

Denote ρ− = λ−/μ, where μ = 1/E[S] is the average service rate. The distribution

of waiting time W for such a queue is also of phase type (see Neuts Neuts) with

representation (γ,Γ), where

γ = ρ−δ, Γ = B + ρ−BmΔo,
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and Bm is an m × m matrix with identical columns Bo, Bo = −B1,

Δo = diag(δ1, ..., δm),

and δ is the stationary probability vector of B + BoβT .

The equilibrium λ− solves

λ− = λH

(
1

E[c(W |−)]

)
. (4.1)

The expected utility is shown in Chapter 2 to be

u = E[U+] = J(θ−).

where θ− = 1/E[c(W |−)] .

For some cost functions, for example, the linear and quadratic, the expected

waiting cost can be expressed as the function of moments of waiting time. The

moments of PH(γ,Γ) can be expressed as

E[W n] = (−1)nn!γTΓ−n1.

Generally, the moments of W for the M/G/1 queue can be computed using the

Pollaczek-Khintchine formula (Heyman and Sobel, 1986). For example, the expected

waiting time is

E[W ] =
λ−E[S2]

2(1 − ρ−)
,

where E[S2] is the second moment of S.

4.3 Partial Information

4.3.1 Discussion

In Chapter 2, partial information means each customer learns N , the system oc-

cupancy. He then estimates his waiting time as W = S(N). Here, this approach
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is problematic. For N > 0, the waiting time is W = Sr + S(N−1). How does the

customer estimate Sr? This problem is quite intricate.

Consider a standard M/G/1 system. Denote the failure rate of N by rn, and let

pn be the stationary probability Pr{N = n}, i.e.,

rn =
pn∑∞
i=n pi

.

Mandelbaum and Yechiali (1979) and Fakinos (1982) show that the mean conditional

residual service time in an M/G/1 system is

E[Sr|N = n] =
1 − ρ

λpn

(
1 −

n∑
i=0

pi

)
=

1 − ρ

λrn

− 1 − ρ

λ
, n = 1, 2, 3, ... (4.2)

where ρ is the system utilization. This depends on λ as well as n.

This formula (4.2) assumes a constant arrival rate. Here, the arrival rate is state-

dependent. But it is likely that (Sr|N) is at least as complex. Altman and Hassin

(2002) present an example where (W |N) actually can decrease in N .

Consequently, we examine two alternative models of partial information. First,

we assume that the server tells customers the current phase of the service process as

well as the system occupancy. Second, we assume that customers learn only N , but

estimate Sr in a simple way.

4.3.2 Models

Assume the incoming customer is told the current occupancy, N , and the phase

of the customer in service, L. Given L = l, the residual service time, denoted by

Srl , is the service time starting from state l. This has the PH distribution with

parameter (1l,B), where 1l is the unit column vector with l’th coordinate 1. Given

the information (N = n, L = l), the waiting time for the incoming customer is
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(W |N = n, L = l) = S(n−1) + Srl. The convolution of PH distributions is itself a PH

distribution. Hence, (W |N = n, L = l) has a PH distribution.

Define the effective arrival rate λ(n, l) = λH(1/E[c(W |N = n, L = l)]). The

system can be modelled as a homogeneous Markov process with state space

{(0); (n, l), n = 1, 2, ..., l = 1, 2, ..., m},

where the state (0) describes an empty system, and (n, l) means there are n customers

present and the current service is in phase l. Denote the stationary probabilities by

p0 and pnl. Define the row vector pT
n = (pn1, ..., pnm).

This system is similar to what Neuts (1981) calls a quasi-birth-death process.

Define Λn as a m × m diagonal matrix with the element at (l, l) equal λ(n, l). We

can write the balance equations in matrix form as

0 = −λ(0)p0 + pT
1 Bo (4.3)

0T = pT
1 (−Λ1 + B) + λ(0)p0β

T + pT
2 BoβT (4.4)

0T = pT
n (−Λn + B) + pT

n−1Λn−1 + pT
n+1B

oβT , n = 2, 3, ... (4.5)

Multiplying (4.4) and (4.5) by the vector 1 over n = 1, 2, ... and summing successively

yields

pT
nΛn1 = pT

n+1B
o, n = 0, 1, 2, ... (4.6)

Substituting (4.6) back to (4.4) and (4.5), we obtain

0 = −λ(0)p0 + pT
1 Bo

0T = pT
1 (−Λ1 + B) + λ(0)p0β

T + pT
1 Λ11βT

0T = pT
n (−Λn + B) + pT

n−1Λn−1 + pT
nΛn1βT , n = 2, 3, ...

Introducing the matrix B̃n = Λn(I−1βT )−B, n = 1, 2, ..., we can rewrite the above

59



as:

pT
1 B̃1 = λ(0)p0β

T

pT
n B̃n = pT

n−1Λn−1, n = 2, 3, ...

For a quasi-birth-death process, B̃n reduces to λI−λ1βT −B, which is shown in

Neuts (1981) to be nonsingular. Here we show that B̃n is also nonsingular.

Lemma 25. B̃n is nonsingular.

Proof. Define Dn = −Λn + B and λn = Λn1. Then −B̃n = Dn + λnβ
T . Since B

is stable (all its eigenvalues have negative real parts), Dn too is stable and hence

nonsingular. By Lemma 2.8.2 of Bocharov, et al. (2004), the following inverse exists,

B̃−1
n = −(Dn + λnβ

T )−1 = −D−1
n +

D−1
n λnβ

TD−1
n

1 + βTD−1
n λn

,

provided 1 + βTD−1
n λn �= 0. But,

1 + βTD−1
n λn = 1 − βT (Λn − B)−1λn

= 1 − βT [Λn(I − Λ−1
n B)]−1λn

= 1 − βT (I − Λ−1
n B)−1Λ−1

n Λn1

= 1 − βT (I − Λ−1
n B)−11

This is the Laplace-Stieltjes transform of a PH distribution with representation

(β,Λ−1
n B) at the value 1. Thus, it must be positive. Therefore, the matrix B̃−1

n

exists.

Define W1 = λ(0)B̃−1
1 and Wn = Λn−1B̃

−1
n , n = 2, 3, ... Then the stationary

distribution admits the representation

pT
n = p0β

T
n∏

i=1

Wn, n = 1, 2, ...
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By the normalization condition

p0 +
∞∑

n=1

pT
n1 = 1,

we can now solve for p0.

Define Jn = [J(θn1), ..., J(θnm)]′, where θnl = 1/E[c(W |N = n, L = l)]. The

expected utility is:

u = E[U+] =
∞∑

n=1

pT
nJn + p0J(1).

Here is a simpler and more realistic partial-information model. Arriving customers

learn only N , and they approximate the residual service time by Se, the equilibrium

distribution of S. According to Theorem 2.2.3. of Neuts (1981), Se has a phase-type

distribution with representation (δ,B).

Then, given information N = n, a customer estimates the waiting time as

(W |N = n) = S(n−1) + Se, n ≥ 1.

The conditional arrival rate is now λn = λH(1/E[c(W |N = n)]). The balance

equations and solutions are the same as the above, except replacing Λn with λnI.

4.4 Full Information

For work on queues with workload-dependent arrival rate, see Hu and Zazanis (1993),

Bekker, et al (2004) and Bekker (2005). Recently, Liu and Kulkarni (2006) analyze

the M/G/1 queue with workload-based balking. Their model assumes identical cus-

tomers.

The effective arrival rate given workload v is λ(v) = λH(θv), where θv = 1/c(v).

Using a level-crossing argument, e.g. Brill and Posner (1977), we derive an inte-

gral equation for the workload with workload-dependent balking and non-identical
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customers in Chapter 2

f(v) = λp0Ḡ(v) +

∫ v

0

λH(θw)Ḡ(v − w)f(w)dw (4.7)

and the normalization condition

p0 +

∫ ∞

0

f(v)dv = 1, (4.8)

where f(v), v > 0 is the density function of the equilibrium workload V , and p0 is its

mass at 0. (A sufficient condition for positive recurrence is that λ(v) → 0 as v → ∞
and that G has finite mean. See, Perry and Asmussen (1995).)

Here, service times have the phase-type distribution with parameters (β,B).

Then,

f(v) = λp0

(
βT eBv1

)
+

∫ v

0

λH(θw)
(
βT eB(v−w)1

)
f(w)dw

= βT

[
λp0e

Bv +

∫ v

0

λH(θw)eB(v−w)f(w)dw

]
1

= βT f(v), (4.9)

where

f(v) =

[
λp0e

Bv +

∫ v

0

λH(θw)eB(v−w)f(w)dw

]
1. (4.10)

Equation (4.9) can be solved explicitly. The result is given in the following propo-

sition.

Proposition 26.

f(v) = λp0β
T eλC(v)1βT

+Bv1, (4.11)

where C(v) =
∫ v

0
H(θw)dw.
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Proof. From (4.10), we have the initial condition f(0) = λp01. Also,

f ′(v) =

[
λp0

(
BeBv

)
+ λC ′(v)f(v)I +

∫ v

0

λC ′(w)
(
BeB(v−w)

)
f(w)dw

]
1

= λC ′(v)f(v)1 + B

[
λp0e

Bv +

∫ v

0

λC ′(w)eB(v−w)f(w)dw

]
1

= λC ′(v)[βT f(v)]1 + Bf(v)

= λC ′(v)
(
1βT

)
f(v) + Bf(v)

=
[
λC ′(v)1βT + B

]
f(v).

It is easy to verify that the proposed solution indeed satisfies these relations.

Generally, to solve (4.7), we can use numerical methods; see Perry and Asmussen

(1995) and Bekker et al. (2004).

The expected utility is

u = E[U+] =

∫ ∞

0

J(θv)f(v)dv + p0J(1).

4.5 Some Comparisons

In this section, for no and full information, we compare two systems with different

service times. We use superscript 1, 2 to indicate the two systems. We consider the

situation S1 �cx S2, where �cx means the convex order. X is less than Y in convex

order, if E[f(X)] ≤ E[f(Y )] for all convex functions f such that the expectations

exist. S1 �cx S2 implies E[S1] = E[S2] and var[S1] ≤ var[S2]. For example,

O’Cinneide (1991) shows that a PH-distribution with an order m representation is

always larger than the order m Erlang distribution of the same mean, in the sense of

the convex order.

We also compare the systems with no and full information and identical S.
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4.5.1 Equilibrium Service Time

The distribution of the equilibrium service time Se is given by

Ge(x) =

∫ x

0

Ḡ(t)

E[S]
dt, x ≥ 0.

Two random variables are related by S1 �cx S2 means that E[S1] = E[S2] and∫∞
t

Ḡ1(x)dx ≤ ∫∞
t

Ḡ2(x)dx for all t. This implies G1
e(x) ≥ G2

e(x) for all x, or

S1
e �st S2

e . Also, E[Se] = E[S2]/(2E[S]).

4.5.2 No Information

Consider two systems with no information and service times S1 and S2.

Proposition 27. For no information, if S1 �cx S2, then p1
0 ≤ p2

0.

Proof. S1 �cx S2 implies S1
e �st S2

e . For the M/G/1 queue, the waiting time is the

geometric sum of Se (See Ross 1983), i.e.,

W =st

Q∑
q=1

Xq,

where X1, X2, ... are i.i.d. with distribution function Ge and Q is geometrically dis-

tributed with parameter ρ−.

Now assume ρ1
− < ρ2

−, then Q1 �st Q2. By Theorem 4.3.5. of Müller and

Stoyan (2002), Q1 �st Q2 and X1
q �st X2

q lead to W 1 �st W 2. Since c(·) is an

increasing function, E[c(W 1|−)] ≤ E[c(W 2|−)]. So, from equation (4.1), ρ1
− ≥ ρ2

− ,

a contradiction. Hence, ρ1
− ≥ ρ2

− or p1
0 ≤ p2

0.

Proposition 28. For no information, if S1 �cx S2, then u1 ≥ u2.
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Proof. By Proposition 27, S1 �cx S2 implies p1
0 ≤ p2

0. Hence, E[c(W 1|−)] ≤
E[c(W 2|−)]. Since J(1/x) is decreasing in x, we obtain that

u1 = J(1/E[c(W 1|−)])

≥ J(1/E[c(W 2|−)]) = u2.

Thus, a more variable service time reduces the system’s throughput and decreases

customers’ average utility.

4.5.3 Full Information

Lemma 29. For full information,

p0 = 1

/(
1 +

∞∑
n=1

ζn

)
, (4.12)

where

ζn = (λE[S])nE
[
H
(
1/c(S(1)

e )
)
H
(
1/c(S(2)

e )
) · · ·H (

1/c(S(n−1)
e )

)]
.

Proof. The solution of the integral equation (4.7) has the following general form (e.g.

Perry and Asmussen, 1995):

Denote λ(v) = λH(θv), and K(x, y) = λ(y)Ḡ(x − y). Define

K(1) = K, K(n+1)(x, y) =

∫ x

y

K(x, z)K(n)(z, y)dz, K∗ =
∞∑

n=1

K(n).

Then,

p0 = 1
/(

1 +

∫ ∞

0

K∗(x, 0)dx

)
, f(x) = p0K

∗(x, 0).
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Rewrite
∫∞

0
K∗(x, 0)dx as

∑∞
n=1

∫∞
0

K(n)(x, 0)dx. Denote ζn =
∫∞

0
K(n)(x, 0)dx.

In the following, we consider ζn for each n.

ζ1 =

∫ ∞

0

K(1)(x, 0)dx = λ(0)

∫ ∞

0

Ḡ(x)dx = λE[S].

ζ2 =

∫ ∞

0

K(2)(x, 0)dx =

∫ ∞

0

(∫ x

0

λ(z)Ḡ(x − z)λ(0)Ḡ(z)dz

)
dx

= λ

∫ ∞

0

λ(z)

(∫ ∞

z

Ḡ(x − z)Ḡ(z)dx

)
dz

= λE[S]

∫ ∞

0

λ(z)Ḡ(z)dz

= (λE[S]2)

∫ ∞

0

λ(z)(Ḡ(z)/E[s])dz

= (λE[S])2E
[
H
(
1/c(S(1)

e )
)]

.

The last step comes from the fact that Ḡ(x)/E[s] is the pdf of Se.

K(3)(x, y) =

∫ x

y

λ(z)Ḡ(x − z)K(2)(z, y)dz.
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Thus,

ζ3 =

∫ ∞

0

K(3)(x, 0)dx

=

∫ ∞

0

[∫ x

0

λ(z)Ḡ(x − z)

(∫ z

0

λ(t)Ḡ(z − t)λ(0)Ḡ(t)dt

)
dz

]
dx

= λ

∫ ∞

0

∫ x

0

∫ z

0

λ(z)Ḡ(x − z)λ(t)Ḡ(z − t)Ḡ(t)dtdzdx

= λ

∫ ∞

0

∫ z

0

∫ ∞

z

λ(z)Ḡ(x − z)λ(t)Ḡ(z − t)Ḡ(t)dxdtdz

= λE[S]

∫ ∞

0

∫ z

0

λ(z)λ(t)Ḡ(z − t)Ḡ(t)dtdz

= λE[S]

∫ ∞

0

∫ ∞

t

λ(z)λ(t)Ḡ(z − t)Ḡ(t)dzdt

= λE[S]

∫ ∞

0

λ(t)

(∫ ∞

0

λ(z + t)Ḡ(z)dz

)
Ḡ(t)dt

= λE[S]3
∫ ∞

0

λ(t)

(∫ ∞

0

λ(z + t)(Ḡ(z)/E[S])dz

)
(Ḡ(t)/E[S])dt

= (λE[S])3E
[
H
(
1/c(S(1)

e )
)
H
(
1/c(S(2)

e )
)]

.

Continuing in this way yields the conclusion.

We have the following proposition.

Proposition 30. For full information, if S1 �cx S2, then p1
0 ≤ p2

0.

Proof. S1 �cx S2 implies S1
e �st S2

e . Thus (S1
e )

(n) �st (S2
e )

(n). Since H(1/c(·)) is a

decreasing function,

E
[
H
(
1/c((S1

e )
(1))
) · · ·H (

1/c((S1
e )

(n−1))
)]

≥ E
[
H
(
1/c((S2

e )
(1))
) · · ·H (

1/c((S2
e )

(n−1))
)]

.

This leads to p1
0 ≤ p2

0 from Lemma 29.
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The conclusion here is the same as Proposition 27’s. Again, variability of the

service times hurts the server.

4.5.4 Comparison Between No and Full Information

In order to compare the no and full information systems, we introduce another birth-

death process, solely to help in the analysis.

Consider a system with exponential service times with mean E[S]. Customers

learn the system occupancy N at arrival epochs. However, in customers’ beliefs,

S is replaced by Se. That is, given N = n, the arriving customer estimates his

waiting time to be S
(n)
e . Hence, the effective arrival rate is λn = λH

(
1/E[c(S

(n)
e )]

)
.

The system occupancy N can be modeled as a birth-death process as in Chapter 2.

Denote the stationary probabilities for this system by pBD
n . The standard analysis

yields

pBD
0 = 1

/(
1 +

∑
n≥1

θn

)
, (4.13)

where

θn = (λE[S])nH
(
1/E[c(S(1)

e )]
)
H
(
1/E[c(S(2)

e )]
) · · ·H (

1/E[c(S(n−1)
e )]

)
.

Next, consider a similar system with exponential service times with mean E[S]

and no information. Still, in customers’ beliefs, S is replaced by Se. The distribution

of N here is geometric. Suppose the utilization is ρ′
−. Then the waiting time, in

customers belief, is a geometric sum of Se, i.e.,

W =st

Q∑
q=1

Xq,

where X1, X2, ... are i.i.d. with distribution function Ge and Q is geometrically dis-

tributed with parameter ρ′
−. The effective arrival rate solves (4.1). This is exactly
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the effective arrival rate in the real system under no information. Hence, ρ′
− = ρ−,

and the idle probability for this system is pno
0 .

According to Chapter 2, in the system with exponential service times, if H(1/x)

is convex in x, ppart
0 ≤ pno

0 . One can easily verify that the proof for this conclusion

still holds, if customers in both systems replace S with Se in their beliefs. But the

analogue of the partial-information system here is precisely the birth-death process

above. Hence,

Lemma 31. If H(1/x) is convex in x, pBD
0 ≤ pno

0 .

Furthermore, if H(1/x) is convex in x, we have

ζn = (λE[S])nE
[
H
(
1/c(S(1)

e )
)
H
(
1/c(S(2)

e )
) · · ·H (

1/c(S(n−1)
e )

)]
≥ (λE[S])nE

[
H
(
1/c(S(1)

e )
)]

E
[
H
(
1/c(S(2)

e )
)] · · ·E [H (

1/c(S(n−1)
e )

)]
≥ (λE[S])nH

(
1/E[c(S(1)

e )]
)
H
(
1/E[c(S(2)

e )]
) · · ·H (

1/E[c(S(n−1)
e )]

)
= θn. (4.14)

The first inequality follows from the positive correlation between S
(m)
e and S

(n)
e ; the

second inequality is by Jensen’s inequality. By (4.12), (4.13) and (4.14), we obtain

the following lemma

Lemma 32. If H(1/x) is convex in x, pfull
0 ≤ pBD

0 .

Combining Lemmas 31 and 32 yields the following result:

Proposition 33. If H(1/x) is convex in x, pfull
0 ≤ pno

0 .

4.6 Numerical Results

4.6.1 Impact of Information

We consider three service time distributions:
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• Exponential: μ = 4/3;

• Generalized Erlang: μ1 = 2, μ2 = 4;

• Hyper-exponential: μ1 = 1, μ2 = 2, β1 = 0.5, β2 = 0.5.

All three distributions have the same mean 3/4. The variance is 0.5625 for the

exponential, 0.3125 for the generalized Erlang, and 0.6857 for the hyper-exponential.

Let H be a beta distribution with parameters (a, b). We fix a = 2 and change b

over {0.3, 0.5, 1, 2, 4, 8, 16}. We change the arrival rate λ over {0.5, 1, 1, 2, 4, 8}.
Table (4.1) shows the busy probability under different scenarios, and Table (4.2)

shows the average utility. We can see from Table (4.1) that, for b < 1, the busy

probability under more information is always larger than that under less information,

while for b > 1, this is not true: The bold numbers in Table (4.1) show the cases where

more information reduces utilization. These results verify that property (2) holds

here. By comparing Tables (4.1) and (4.2), we see that, when the busy probability

under more information is smaller, the utility is larger. So, property (1) holds too.

According to property (3), if b > 1, the average utility under more information

should be larger than that under no information. Table (4.2) shows that this property

holds. The bold numbers in the table indicate that, when the condition in property

(3) is violated, the average utility under more information can be lower than that

under less information.

Also we can see that when b = 1 (H is a power distribution), both the busy

probability and average customers’ utility both increase with information accuracy.

Thus, information helps both the server and customers. This too is consistent with

the finding in Chapter 2.
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Table 4.1: Busy Probability with Linear Cost Function and Beta H
Exponential Generalized Erlang Hyper Exponential

b λ no part full no part full no part full

0.3

0.50.1338 0.2796 0.2864 0.1438 0.2832 0.2882 0.1297 0.2794 0.2858
1 0.2058 0.4454 0.4627 0.2233 0.4543 0.4671 0.1986 0.4450 0.4614
2 0.2979 0.6321 0.6654 0.3253 0.6488 0.6735 0.2867 0.6314 0.6630
4 0.4042 0.7970 0.8430 0.4415 0.8196 0.8529 0.3890 0.7960 0.8400

0.5

0.50.1757 0.2846 0.2941 0.1884 0.2902 0.2968 0.1704 0.2843 0.2933
1 0.2665 0.4577 0.4819 0.2890 0.4713 0.4885 0.2573 0.4569 0.4798
2 0.3755 0.6547 0.7002 0.4090 0.6795 0.7118 0.3618 0.6533 0.6967
4 0.4915 0.8265 0.8839 0.5334 0.8568 0.8961 0.4741 0.8247 0.8802

1

0.50.2434 0.2976 0.3095 0.2588 0.3063 0.3137 0.2368 0.2967 0.3081
1 0.3656 0.4891 0.5202 0.3941 0.5105 0.5308 0.3537 0.4869 0.5169
2 0.4962 0.7092 0.7661 0.5358 0.7453 0.7830 0.4797 0.7056 0.7609
4 0.6165 0.8868 0.9440 0.6599 0.9211 0.9555 0.5980 0.8833 0.9404

2

0.50.3140 0.3209 0.3297 0.3279 0.3306 0.3352 0.3076 0.3187 0.3278
1 0.4781 0.5451 0.5722 0.5099 0.5706 0.5866 0.4646 0.5399 0.5674
2 0.6252 0.7958 0.8465 0.6658 0.8349 0.8663 0.6078 0.7886 0.8400
4 0.7365 0.9541 0.9861 0.7748 0.9760 0.9914 0.7196 0.9500 0.9842

4

0.50.36350.34970.35050.36880.35600.35570.36040.3464 0.3484
1 0.5904 0.6185 0.6304 0.6203 0.6403 0.6463 0.5772 0.6101 0.6245
2 0.7458 0.8918 0.9226 0.7814 0.9216 0.9397 0.7301 0.8828 0.9165
4 0.8357 0.9922 0.9990 0.8642 0.9976 0.9996 0.8226 0.9904 0.9987

8

0.50.37480.36840.36570.37490.37080.36890.37460.3665 0.3641
1 0.68440.68250.68310.70620.69780.69700.6741 0.6750 0.6774
2 0.8427 0.9609 0.9747 0.8691 0.9769 0.9839 0.8305 0.9548 0.9709
4 0.9057 0.9997 1.0000 0.9240 1.0000 1.0000 0.8970 0.9996 1.0000

16

0.50.37500.37420.37270.37500.37460.37380.37500.3738 0.3720
1 0.74020.72380.72130.74660.73220.73010.73590.7193 0.7170
2 0.9098 0.9928 0.9963 0.9269 0.9972 0.9984 0.9017 0.9906 0.9952
4 0.9490 1.0000 1.0000 0.9595 1.0000 1.0000 0.9438 1.0000 1.0000
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Table 4.2: Average utility with Linear Cost Function and Beta H
Exponential Generalized Erlang Hyper Exponential

b λ no part full no part full no part full

0.05

0.50.01980.0188 0.0198 0.02040.01940.02000.01960.0188 0.0197
1 0.01790.01560.01700.01860.01640.01730.01760.0156 0.0170
2 0.01560.01210.01400.01640.01320.01440.01530.01200.0139
4 0.01300.00890.01120.01380.01030.01170.01260.0088 0.0111

0.1

0.50.0360 0.0368 0.0386 0.0373 0.0379 0.0390 0.0354 0.0368 0.0385
1 0.03150.0305 0.0332 0.03300.0321 0.0338 0.03080.0305 0.0331
2 0.02620.0235 0.0271 0.02780.0256 0.0278 0.02550.0234 0.0269
4 0.02060.0172 0.0213 0.02210.0197 0.0221 0.02000.0171 0.0212

0.5

0.50.1298 0.1566 0.1635 0.1373 0.1610 0.1651 0.1266 0.1562 0.1631
1 0.1027 0.1295 0.1389 0.1101 0.1355 0.1409 0.0996 0.1290 0.1384
2 0.0750 0.0973 0.1075 0.0811 0.1038 0.1093 0.0725 0.0968 0.1072
4 0.0505 0.0664 0.0748 0.0546 0.0717 0.0753 0.0488 0.0659 0.0750

1

0.50.2163 0.2646 0.2756 0.2301 0.2723 0.2786 0.2105 0.2638 0.2749
1 0.1625 0.2174 0.2317 0.1752 0.2269 0.2351 0.1572 0.2164 0.2310
2 0.1103 0.1576 0.1707 0.1191 0.1656 0.1724 0.1066 0.1568 0.1707
4 0.0685 0.0985 0.1052 0.0733 0.1023 0.1035 0.0664 0.0981 0.1064

2

0.50.3479 0.4070 0.4225 0.3701 0.4192 0.4279 0.3382 0.4052 0.4211
1 0.2472 0.3306 0.3517 0.2668 0.3451 0.3574 0.2391 0.3289 0.3505
2 0.1535 0.2242 0.2405 0.1644 0.2330 0.2409 0.1489 0.2237 0.2414
4 0.0874 0.1225 0.1257 0.0922 0.1234 0.1207 0.0853 0.1229 0.1285

4

0.50.5267 0.5671 0.5828 0.5543 0.5832 0.5915 0.5140 0.5633 0.5802
1 0.3578 0.4574 0.4835 0.3854 0.4781 0.4933 0.3463 0.4540 0.4812
2 0.1995 0.2815 0.2981 0.2107 0.2890 0.2959 0.1946 0.2816 0.3003
4 0.1043 0.1323 0.1327 0.1082 0.1312 0.1259 0.1026 0.1331 0.1364

8

0.50.7101 0.7208 0.7293 0.7300 0.7361 0.7400 0.7002 0.7149 0.7255
1 0.4925 0.5898 0.6120 0.5296 0.6144 0.6272 0.4772 0.5827 0.6075
2 0.2405 0.3189 0.3285 0.2500 0.3205 0.3225 0.2362 0.3194 0.3321
4 0.1169 0.1339 0.1342 0.1195 0.1329 0.1272 0.1156 0.1343 0.1383
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4.6.2 Impact of Variability of Service Times

In this subsection, we fix the mean of S but change the coefficient of variation.

First, consider a two-phase hyper-exponential service time. We fix μ1 = 1, and set

E[S] = 0.5 and ρ = 0.9, then λ = ρ/E[S] = 1.8. We change the squared coefficient

defined by cv2 = var[S]/E[S]2 over the set {1, 1.5, 2, 2.5}. Given μ1, E[S] and cv2,

the other two parameters μ2, β1, (β2 = 1 − β1) can be computed easily. The results

are shown in Table 4.3. We can see that both the busy probability and the average

utility decrease with the coefficient of variation.

Next, consider a m-phase Erlang distribution, where each phase has an expo-

nential distribution with rate μ. Then E[S] = m/μ and var[S] = m/μ2. Thus

cv2 = var[S]/E[S]2 = 1/m. Still, we set E[S] = 0.5, ρ = 0.9, and λ = ρ/E[S] = 1.8.

We change cv2 over the set {1/4, 1/3, 1/2, 1}. Given E[S] and cv2, the parameter μ

can be computed as μ = 1/(cv2E[S]). The results are shown in Table 4.4. Again, the

busy probability and the average utility decrease with the coefficient of variation.

Thus, service-time variation hurts the system’s performance for the customers

and the server. This finding confirms the results of the previous section. The effect

here is the same as for conventional queue-performance measures like expected delay.

4.7 Summary

This paper extends the discussion of Chapter 2 to systems with phase-type service

times. Under no information, we show that the equilibrium is an M/PH/1 queue with

a smaller effective arrival rate. Under partial information, where the service provider

informs customers about the system occupancy and the phase of the customer in

service, we show that the system is similar to a quasi-birth-death process with state-

dependent arrival rates, and we obtain an explicit expression for the stationary vector.
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Under full information, we model the workload distribution with a Volterra integral

equation of type two, and we obtain a nearly closed-form solution.

We then carry out stochastic comparisons of the two systems with different service

times, under no and full information. We show that the variability of service times

hurts the system’s throughput and customers’ average utility. We also compare

no- and full-information systems and show that information’s effect on the system’s

throughput depends on the shape of the distribution function of customers’ delay-

sensitivity parameter.

The numerical results are consistent with the analytical results. They also verify

that all the important results in Chapter 2 still hold here. In particular, information’s

effect is mainly determined by the shape of H, the distribution function of customers’

delay-sensitivity parameter. More information does not always improve performance.

We also test the influence of the variance of service times. We find that performance

declines with the variance.
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Table 4.3: Influence of Coefficient of Variation of Hyper-exponential Service Times
Busy Probability Average Utility

cv2 no part full no part full
1.0 0.5766 0.6527 0.6781 0.2486 0.3206 0.3397
1.5 0.5456 0.6400 0.6666 0.2331 0.3171 0.3382
2.0 0.5198 0.6240 0.6537 0.2205 0.3122 0.3346
2.5 0.4978 0.6041 0.6395 0.2100 0.3048 0.3281

Table 4.4: Influence of Coefficient of Variation of Erlang Service Times
Busy Probability Average Utility

cv2 no part full no part full
0.250 0.6389 0.7026 0.7106 0.2811 0.3450 0.3505
0.333 0.6307 0.6960 0.7062 0.2767 0.3415 0.3490
0.500 0.6153 0.6838 0.6981 0.2686 0.3353 0.3463
1.000 0.5766 0.6527 0.6781 0.2486 0.3206 0.3397
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Chapter 5

Other Models of Delay Information

Chapter 2 studies a single-server queue with three levels of delay information, none,

partial (the system occupancy) and full (the exact waiting time). Each customer

decides whether to stay or leave, based on this information and his own sensitivity

to delays. Information’s effects on the server’s profit and customers’ average utility

are mainly determined by the spread of the distribution of customers’ sensitivities to

delays.

This chapter considers two other stylized models of information. The first model

is specified by a consecutive partition of the nonnegative integers, a partition in which

each subset consists of consecutive integers. When a customer arrives, he learns which

subset the system occupancy is in. A finer partition means more precise information.

(Chapter 2’s no- and partial-information scenarios are extreme cases.) In the second

information model, each customer’s service time consists of a random number of

small phases. The server observes the number of phases brought by each customer

and keeps track of the total remaining phases in the system. That information is

communicated to each arriving potential customer. The mean size of a phase, a

continuous parameter, determines the precision of the information. (This model lies

between Chapter 2’s partial- and full-information scenarios.) The goal of this chapter

is to test the conclusions of Chapter 2 in these two new information scenarios.

Some systems actually work in this manner, or nearly so: In a call center, when a

customer makes a phone call, he immediately knows whether the system occupancy

is 0 or positive (a busy line). This is an example of the partition model. In modern

digital communication networks, a message is broken down into small packets which
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are processed separately. In some job-shop production systems, each customer brings

a certain number of identical units to be worked. These are examples of the phase

model.

For each information model, we compare two systems, identical except that one

has more precise information. In many cases, better information increases throughput

and thus benefits the service provider. But this is not always so. The effect depends

on the shape of the distribution describing customers’ sensitivities to delays. We also

study the effects of information on performance as seen by customers. In the partition

information model, when more accurate information hurts the server, it must benefit

customers. In both models, when information benefits the server, although we cannot

ensure that customers’ utilities increase, the ratio of the average utilities in the two

systems is bounded below by the ratio of their idle probabilities.

The reminder of this chapter is organized as follows: Section 1 presents the so-

lution of the partition model and provides comparison results of two systems with

different levels of information. Section 2 presents the solution of the phase model

and comparison results. Section 3 briefly summarizes the results.

5.1 Partition Information

5.1.1 Model and Solution

In this section, we consider the first model of information described above. The model

is specified by a consecutive partition of the nonnegative integers, a partition in which

each subset consists of consecutive integers. When a customer arrives, he learns which

subset the system is in. Note that Chapter 2’s no- and partial-information models

are extreme cases.

A consecutive partition can be defined by a subsequence of nonnegative integers

starting with 0. Each integer in the subsequence is the first element of the corre-
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sponding subset. (If the subsequence is finite, then the last subset in the partition

is infinite.) Let N = {N k : k = 0, 1, ...K} denote the partition. (K can be finite or

∞.)

Let λk denote the arrival rate given N ∈ N k, and ρk = λk/μ. (For the moment,

these are unknowns.) Given ρk = ρ,

pn|k(ρ) = Pr{N = n|N ∈ N k} =
ρn∑

m∈Nk ρm
, n ∈ N k.

Let ck = ck(ρ) = E[c(W )|N ∈ N k]. Then,

ck(ρ) =
∑

n∈N k

pn|k(ρ)cn.

An arriving customer seeing N ∈ N k stays precisely when his θ ≤ θk = 1/ck. Thus,

ρk solves the equation

ρ = (λ/μ)H
(
1/ck(ρ)

)
. (5.1)

Lemma 34. ρk is unique and decreases in k.

Proof. ck(ρ) increases in ρ, so H
(
1/ck(ρ)

)
decreases, and so (5.1) has a unique solu-

tion. Also, for any ρ, ck(ρ) ≤ ck+1(ρ), and thus ρk ≥ ρk+1.

This is consistent with both the no- and partial-information models of Chapter 2.

This solution depends only on N k; the calculation for each subset is independent

of the others. Having determined λk for each k, the arrival rate in state n becomes

λn = λk, n ∈ N k. Now we have a birth-death process, which can be analyzed in the

standard way.

5.1.2 Comparison

Consider two consecutive partitions, one a refinement of the other. The refined

partition provides customers with more information. Any such refinement can be
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constructed by a sequence of simple refinements, each of which splits a single subset

into two. Let’s focus on such a simple refinement. Starting with a partition N , we

construct a new one N by splitting one subset, say N ko, into the two subsets N k−

and N k+, where the numbers in N k− are smaller than those in N k+. Let pn denote

the steady-state probabilities for the original partition and p̄n those for the refined

one. Define

pk =
∑

n∈N k

pn = Pr{N ∈ N k},

and define p̄k similarly. Also, set p̄ko = p̄k− + p̄k+.

Lemma 35. ρk− ≥ ρko ≥ ρk+.

Proof. cko(ρko) is a weighted average of ck−(ρko) and ck+(ρko), and

ck−(ρko) ≤ cko(ρko) ≤ ck+(ρko).

Therefore,

ρko ≤ H
[
1/ck−(ρko)

]
ρko ≥ H

[
1/ck+(ρko)

]
.

The assertion thus follows by (5.1).

Let nk denote the first element of subset N k. Consider what happens to the

ratio ηn = p̄n/pn. For n ≤ nk−, p̄n and pn change by the same rates, so ηn remains

constant at η0. For nk− < n ≤ nk+, since ρk− ≥ ρko, ηn increases. Likewise, for

nk+ < n ≤ nko+1, ηn decreases. Finally, for n ≥ nko+1, ηn remains constant at ηnko+1 .

Consequently, the sequence ηn is unimodal. Its largest value is at n = nk+.

Lemma 36. If η0 ≥ 1, then N̄ �st N .
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Proof. In this case, η0 ≥ 1 for all n ≤ nk+. Normalization then requires that η0 ≤ 1

for all n ≥ nko+1. Thus, p̄n crosses pn just once, from above.

We can write the average arrival rates for the original system and the refined one

as follows:

E[λK ] =
∑
k �=ko

pkλH(θk) + pkoλH(θko)

E[λ̄K ] =
∑
k �=ko

p̄kλH(θk) + p̄k−λH(θk−) + p̄k+λH(θk+).

The following is a sufficient condition to compare the idle probabilities:

Lemma 37. If p̄k−H(θk−) + p̄k+H(θk+) > p̄koH(θko), then p0 > p̄0.

Proof. Suppose p0 ≤ p̄0, then N̄ �st N by Lemma 36. Hence, The condition

p̄k−H(θk−) + p̄k+H(θk+) > p̄koH(θko) implies that

E[λ̄K ] =
∑
k �=ko

p̄kλH(θk) + p̄k−λH(θk−) + p̄k+λH(θk+)

>
∑
k �=ko

p̄kλH(θk) + p̄koλH(θko)

≥
∑
k �=ko

pkλH(θk) + pkoλH(θko) = E[λK ].

The second inequality follows from the fact that H(θk) is decreasing in k and N̄ �st N .

Therefore,

p0 = 1 − E[λK ]/μ

> 1 − E[λ̄K ]/μ = p̄0,

a contradiction.
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Thus, as long as the refined system has a larger average arrival rate on the split

subset, it has larger throughput overall.

Next, let’s compare the average utilities. For the original partition and the refined

one, these are, respectively,

u =
∑
k �=ko

pkJ(θk) + pkoJ(θko)

ū =
∑
k �=ko

p̄kJ(θk) + p̄k−J(θk−) + p̄k+J(θk+).

Here is a sufficient condition:

Lemma 38. If

p̄k−J(θk−) + p̄k+J(θk+) ≥ p̄koJ(θko),

then η0 ≥ 1 implies ū ≥ u.

Proof. Note that J(θk) is decreasing in k. The proof is similar to that of Lemma

37.

5.1.3 A Special Case

The comparison results above are expressed as sufficient conditions that are not easily

checked in terms of the original data. To do that, we need to focus on a special case.

There is one particular nonnegative integer k. When a customer arrives and N < k,

he learns the exact value of N . When N ≥ k, however, the customer learns only that

fact, i.e., N ≥ k. The information sets here are N l = {l} for l = 0, 1, 2, ..., k − 1 and

N ko = {k, k + 1, k + 2, ...}.
This scenario is realistic in many settings. In some cases, the service provider

may perceive an incentive to avoid bad news; in other cases, there may be technical

restrictions. For example, in the call center mentioned earlier, an arriving customer

immediately knows whether N is 0 or positive.
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Now, consider a refined system, where N ko is decomposed into N k− = {k} and

N k+ = {k + 1, k + 2, ...}.
The average cost on the set N ko, cko, can be expressed as

cko =
ρkock +

(
ρko
)2

ck+1 +
(
ρko
)3

ck+2 + ...

ρko + (ρko)2 + (ρko)3 + ...

=
ck + ρkock+1 +

(
ρko
)2

ck+2 + ...

1 + ρko + (ρko)2 + ...
(5.2)

ck− and ck+ are defined similarly. Define α = p̄k−/p̄ko.

Lemma 39. αck− + (1 − α)ck+ ≤ cko.

Proof. For the refined system, we have the balance equations:

p̄k+1 = p̄kρ
k−

and

p̄k+i = p̄k+i−1ρ
k+ = p̄kρ

k−(ρk+)i−1, i = 2, 3, ...

Hence,

α =
p̄k−

p̄ko
=

ρk−

ρk− + ρk−[ρk+ + (ρk+)2 + ...]
.

So

αck− + (1 − α)ck+ = αck− + (1 − α)
ρk+ck+1 +

(
ρk+
)2

ck+2 +
(
ρk+
)3

ck+3 + ...

ρk+ + (ρk+)2 + (ρk+)3 + ...

=
ρk−ck + ρk−ρk+ck+1 + ρk−(ρk+)2ck+2 + ...

ρk− + ρk−ρk+ + ρk−(ρk+)2 + ...

=
ck + ρk+ck+1 + (ρk+)2ck+2 + ...

1 + ρk+ + (ρk+)2 + ...
(5.3)

We have ρko ≥ ρk+ by Lemma 35. Comparing (5.2) and (5.3), the conclusion follows.
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We obtain several main conclusions, which are consistent with those of Chapter

2:

Proposition 40. If H(1/x) is strictly convex in x, then p0 > p̄0.

Proof.

αH(1/ck−) + (1 − α)H(1/ck+) > H

(
1

αck− + (1 − α)ck+

)

≥ H(1/cko)

Hence, p̄0 < p0 by Lemma 37.

This convexity condition, which characterizes the shape of H, is fundamental also

in Chapter 2. It means that customers are heterogeneous in a certain sense.

Proposition 41. If p̄0 ≥ p0, then ū ≥ u.

Proof. Since J(1/x) is convex in x,

αJ(1/ck−) + (1 − α)J(1/ck+) ≥ J

(
1

αck− + (1 − α)ck+

)

≥ J(1/cko) = J(θko).

By Lemma 38, it follows that ū ≥ u.

Hence, when information hurts the server, it benefits customers.

Proposition 42. If H(1/x) is strictly convex in x,

ū

u
>

p̄0

p0

.
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Proof. If H(1/x) is strictly convex in x, then p0 > p̄0 according to Proposition 40.

The condition p̄0 < p0 implies that

ρk− + ρk−[ρk+ + (ρk+)2 + (ρk+)3 + ...] > ρko + (ρko)2 + (ρko)3 + ...

Denote ρi = λi/μ. We have

ū

p̄0

= J(1/c0) + ρ0J(1/c1) +

(
1∏

i=0

ρi

)
J(1/c2) + ... +

(
k−2∏
i=0

ρi

)
J(1/ck−1)

+

(
k−2∏
i=0

ρi

)[
ρk−J(1/ck−) + ρk−[ρk+ + (ρk+)2 + (ρk+)3 + ...]J(1/ck+)

]

= J(1/c0) + ρ0J(1/c1) +

(
1∏

i=0

ρi

)
J(1/c2) + ... +

(
k−2∏
i=0

ρi

)
J(1/ck−1)

+

(
k−2∏
i=0

ρi

)[
ρk− + ρk−[ρk+ + (ρk+)2 + ...]

]
[αJ(1/ck−) + (1 − α)J(1/ck+)]

> J(1/c0) + ρ0J(1/c1) +

(
1∏

i=0

ρi

)
J(1/c2) + ... +

(
k−2∏
i=0

ρi

)
J(1/ck−1)

+

(
k−2∏
i=0

ρi

)[
ρko + (ρko)2 + ...

]
J

(
1

αck− + (1 − α)ck+

)

= J(1/c0) + ρ0J(1/c1) +

(
1∏

i=0

ρi

)
J(1/c2) + ... +

(
k−2∏
i=0

ρi

)
J(1/ck−1)

+

(
k−2∏
i=0

ρi

)[
ρko + (ρko)2 + (ρko)3 + ...

]
J(1/cko)

=
u

p0

.

In this case, it still may not be true that the refined system has higher utility

than the original system. But at least its utility cannot be too much lower.
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Chapter 2 also shows that, if J ◦ H−1 is convex, then the average utility under

partial information is indeed larger than that under no information. However, the

corresponding result here need not hold. Here is a counterexample: Assume H is a

beta distribution with parameter (α, β). Chapter 2 shows that J ◦ H−1 is convex,

if and only if β ≥ 1. Set α = 2, β = 8, μ = 2, λ = 4 and c(w) = 1 + w. Table

5.1 shows that the average utility first increases with k then decreases. Hence, more

information can decrease utility, even when J ◦ H−1 is convex.

Table 5.1: Compare Average Utility with Beta H
k 1 3 5 7 9 11
u 0.2760 0.2836 0.2840 0.2830 0.2821 0.2814

5.2 Phase Information

5.2.1 Assumptions and Notation

In this section, we consider another model of information. This one lies between

Chapter 2’s partial and full information. Assume each customer’s service time consists

of a random number K of phases. The times of these phases are i.i.d. random

variables with the exponential distribution of rate ν. Thus, conditional on K, the

service time has the Erlang distribution with parameters (K, ν). Suppose that K has

a geometric distribution with parameter q, i.e., Pr{K = k} = (1 − q)qk−1, k > 0.

Then, the unconditional service time has the exponential distribution with rate μ =

(1 − q)ν.

When a customer arrives, the provider observes his K but not the times of the

individual phases. The provider keeps track of the total remaining number of phases

of all remaining customers. Call this M . When a new customer arrives, the provider

tells him M . That is more information than the system occupancy N but less than

the workload V . Given M = m, the customer assesses the distribution of waiting

time W . The expected basic waiting cost is cm = E[c(W )|M = m], a function of

85



that information. Hence, given M = m, the probability that an arriving customer

stays is H(1/cm), and so the effective arrival rate is

λm = λH(1/cm). (5.4)

The process M can be modeled as a continuous-time Markov chain.

Note that different q and ν can give the same μ. For fixed μ, a larger ν and q

means the server can differentiate customers’ service times into smaller phases. That

in turn means more information.

5.2.2 Model and Solution

Balance equation

This system is like a queue with state-dependent batch or bulk arrivals. The process

M is a continuous-time Markov chain with state space {0, 1, 2, ...}. Let pm = Pr{M =

m}. If we cut between state m and m + 1, we obtain the global balance equation:

νpm+1 =
m∑

k=0

λkpk Pr{K ≥ m + 1 − k}, m ≥ 0, (5.5)

where λk is defined in (5.4).

For m = 0,

νp1 = λ0p0.

For m ≥ 1,

νpm+1 =
m∑

k=0

λkpk Pr{K ≥ m + 1 − k}

=
m∑

k=0

λkpkq
m−k

= q

m−1∑
k=0

λkpkq
m−1−k + λmpm

= (qν + λm)pm. (5.6)
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These equations can be solved just like those of a birth-death process. Denote ξ0 =

λ0/ν and ξm = q + λm/ν, m > 0. Then,

pn = Θnp0, n > 0,

where

Θn =
n−1∏
m=0

ξm.

Thus,

p0 =
1

1 + Θ
,

where

Θ =
∑
n>0

Θn. (5.7)

Closed-form solutions for a special case

For linear cost c(w) = 1 + w and uniform H, λk = λ/(1 + k/ν), and we can obtain

closed-form expressions for the system performance measures. See the appendix for

the derivations.

The idle probability for the system, p0, can be expressed as

p0 =

{
1 +

λB (q; ν, λ/q + 1)

qν (1 − q)λ/q+1

}−1

,

where B(x; a, b) =
∫ x

0
ta−1(1 − t)b−1dt, a > 0, b > 0 is the incomplete beta function.

The Laplace-Stieltjes transform of the stationary distribution of the waiting time

W can be expressed as

W̃ (s) = A(s)/A(0),

where

A(s) = 1 +

λ
1+s/ν

B
(

q
1+s/ν

; ν, λ/q + 1
)

(
q

1+s/ν

)ν (
1 − q

1+s/ν

)λ/q+1
.
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The mean waiting time can be expressed as

E[W ] =
λ + (1 − μ)(1 − p0)

μ
. (5.8)

(5.8) indicates that E[W ] is not always decreasing in p0. This depends on the rela-

tionship between μ and 1. A similar conclusion is obtained in Chapter 2.

5.2.3 Comparison

In this section, we compare the performance of two systems with different levels of

information, an original system as above, and a refined system with larger q and

ν but the same μ. The refined system can differentiate customers’ service times

into smaller pieces and hence provide customers with more precise information. The

refined system can be constructed by decomposing each phase in the original system

into the sum of a geometric number of smaller phases. Denote this geometric random

variable by L and its parameter by ζ. Let ν̃ and q̃ be the refined system’s parameters.

Then,

ν̃ = ν/(1 − ζ), q̃ = ζ + q(1 − ζ).

Note that (1 − q̃)ν̃ = (1 − q)ν = μ.

Let M̃ be the total number of small phases in the refined system. Define the

other corresponding parameters as follows: c̃m = E[c(W̃ )|M̃ = m], λ̃m = λH(1/c̃m),

ξ̃0 = λ̃0/ν̃ and ξ̃m = q̃ + λ̃m/ν̃, m > 0. Note that c̃0 = c0 and λ̃0 = λ0. Also, define

ξ̂0 = λ̃0/ν and ξ̂m = q + λ̃m/ν, m > 0.

The following subsections compare the throughput and average utility for the two

systems.

Throughput

We start with two lemmas. Denote the m-fold convolution of L by L(m).

88



Lemma 43. The idle probability in the refined system can be expressed as

p̃0 =
1

1 + Θ̃
,

where

Θ̃ =
∑
n>0

Θ̃n

Θ̃n = E[ξ̂0ξ̂L(1) · · · ξ̂L(n−1) ],

Proof. By (5.7),

Θ̃ =
∑
n>0

n−1∏
m=0

ξ̃m

=
(
λ̃0/ν̃

){
1 +

∑
n≥1

n∏
m=1

(q̃ + λ̃m/ν̃)

}

= [(λ0/ν) (1 − ζ)]

{
1 +

∑
n≥1

n∏
m=1

[ζ + (1 − ζ)q + (1 − ζ)λ̃m/ν]

}

= ξ̂0

{
(1 − ζ) + (1 − ζ)

∑
n≥1

n∏
m=1

[ζ + (1 − ζ)ξ̂m]

}
.

Expand the expression in brackets. First, consider terms which include none of

the ξ̂i. The sum of such terms is 1.

Second, consider terms which include exactly one ξ̂i. The coefficient of ξ̂i is

(1 − ζ)ζ i−1. This is Pr{L = i}. Hence, the sum of all such terms is

∑
i≥1

(1 − ζ)ζ i−1ξ̂i = E[ξ̂L(1) ].

Third, consider terms which include the product of two different ξ̂i. The coefficient

of ξ̂iξ̂j with i < j can be shown to equal (1−ζ)3(ζj−2 +ζj−1 +ζj + · · · ) = (1−ζ)2ζj−2.
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Moreover, for two independent random variables L1 and L2 with the same distribution

as L,

Pr{L1 = i, L2 = j − i} = Pr{L1 = i}Pr{L2 = j − i}

= (1 − ζ)ζ i−1(1 − ζ)ζj−i−1

= (1 − ζ)2ζj−2.

Hence, the sum of all such terms is E[ξ̂L(1) ξ̂L(2) ].

Similarly, one can show that the coefficient for the product of n different ξ̂i can

be expressed as the joint probability of {L1, L2, L3, ..., Ln} where Lj, j = 1, ..., n are

i.i.d. random variables with the same distribution as L. Hence, the sum of these

terms is E[ξ̂L(1) · · · ξ̂L(n) ].

In Chapter 2, for full information, an expression analogous to Θ̃n equals

(λ/μ)nE[H(1/c(S0)H(1/c(S1) · · ·H(1/c(Sn−1)].

This is a limiting case of this lemma.

Note that the random variable
[
W̃ |M̃ = L(m)

]
equals [W |M = m]. Therefore,

E[c̃L(m) ] = cm.

Lemma 44. If H(1/x) is strictly convex, E[ξ̂L(n) ] > ξn, n > 0.

Proof. Since H(1/x) is convex in x, for n > 0,

E[ξ̂L(n) ] = q + λE[H(1/c̃L(n))]/ν

> q + λH(1/E[c̃L(n) ])/ν

= q + λH(1/cn)/ν

= q + λn/ν = ξn.
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Using this lemma, we have

Proposition 45. If H(1/x) is strictly convex, p̃0 < p0.

Proof.

Θ̃n = E[ξ̂0ξ̂L(1) · · · ξ̂L(n−1) ]

≥ E[ξ̂0]E[ξ̂L(1) ] · · ·E[ξ̂L(n−1) ]

> ξ0ξ1 · · · ξn−1 = Θn.

The first inequality follows from the positive correlation between L(i) and L(j); the

second inequality follows from Lemma 44.

Utility

Denote Jn = J(1/cn). In the original system,

u =
∑
n≥0

pnJn = p0

{
J0 +

∑
n≥0

n∏
m=0

ξmJn+1

}
. (5.9)

Similarly, define J̃n = J(1/c̃n) for the refined system. The average utility in the

refined system ũ can be expressed as follows.

Lemma 46.

ũ = p̃0

{
J̃0 +

∑
n≥0

E[ξ̂0ξ̂L(1) · · · ξ̂L(n) J̃L(n+1) ]

}
(5.10)

Proof.

ũ = p̃0

{
J̃0 +

∑
n≥0

n∏
m=0

ξ̃mJ̃n+1

}

= p̃0

{
J̃0 + ξ̂0(1 − ζ)

[
J̃1 +

∑
n≥1

n∏
m=1

[ζ + (1 − ζ)ξ̂m]J̃n+1

]}
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Expand the expression in brackets as in the proof of Lemma 43. The result then

follows.

Then we have the following proposition.

Proposition 47. If H(1/x) is strictly convex,

ũ

u
>

p̃0

p0

.

Proof. Due to the convexity of H(1/x) and J(1/x), by Jensen’s inequality we have

E[ξ̂L(n) ] ≥ ξn and E[J̃L(n+1) ] ≥ Jn+1. Hence,

E[ξ̂0ξ̂L(1) · · · ξ̂L(n) J̃L(n+1) ] ≥ E[ξ̂0]E[ξ̂L(1) ] · · ·E[ξ̂L(n) ]E[J̃L(n+1) ]

> ξ0ξ1 · · · ξnJn+1.

The first inequality follows from the positive correlation between L(i) and L(j) and

the fact that both ξ̂ and J̃ are monotone functions in the same direction. By (5.9)

and (5.10), we get u/p0 ≤ ũ/p̃0.

Next, we give two counterexamples: The first one shows that, even when J ◦H−1

is convex, the average utility need not increase with information; the second one

shows that p̃0 ≥ p0 need not imply ũ ≥ u. In both examples, we assume H is

a beta distribution with parameter (α, β) and we set α = 2, β = 8. We assume

μ = 2 and a linear cost function c(w) = 1 + w. λ = 4 in the first example, and

λ = 0.5 in the second. Table 5.2 shows that the average utility decreases with ν

when β > 1. Hence, more information can decrease the average utility, even though

J ◦ H−1 is convex. Table 5.3 shows that the average utility can decrease, even when

the idle probability increases. Hence, more information can decrease the average

utility and the throughput simultaneously. Thus, the effects of information here are

less straightforward than in the systems of Chapter 2.
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Table 5.2: Compare Average Utility with Beta H and λ = 4
ν 2 4 6 8 10 12 14
u 0.2477 0.2314 0.2262 0.2237 0.2222 0.2212 0.2205

Table 5.3: Compare Average Utility and Idle Probability with Beta H and λ = 0.5
ν 2 4 6 8 10 12 14
p0 0.7502 0.7505 0.7506 0.7506 0.7506 0.7507 0.7507
u 0.8265 0.8165 0.8132 0.8116 0.8106 0.8100 0.8095

5.3 Conclusion

In this chapter, we consider two stylized models of information about service delays,

partition information and phase information. In the first model, we consider that the

arriving customer can learn the information on the range of system occupancy. We

derived the effective arrival rate for each information range. In the second model,

we assume that each customer’s service time consists of a geometric random sum of

phases which have independent and identical exponential distributions. The server

informs the incoming customer the total number of phases in the system. We model

the process of this number as a continuous-time Markov chain and we derive the

balance equations for it. For a special case with uniform customers and a linear cost

function, we derive closed-form expressions for key system performance measures.

Under each information model, we compare two systems, one with sharper in-

formation than the other. We show that for both information models, providing

customers more accurate delay information may benefit the server, but it may not.

This effect depends on the shape of the distribution function of customers’ delay-

sensitivities. We also show that, in the partition information model, when more

accurate information hurts the server, it must benefit customers. In both informa-

tion models, when information benefits the server, the ratio of the average utility of

more-information system to that of less-information system is greater than the ratio

of their idle probabilities.
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Chapter 6

Conclusion

In this dissertation, we start our analysis from an ·/M/1 queue with three levels

of delay information. Customers use that information to determine their expected

waiting costs, and so to decide whether to stay and receive service or leave (balk).

We obtained closed-form solutions for some cases and nearly closed-form solutions

for others. In comparing these systems, we found that the form of the cost-scale dis-

tribution plays a crucial role. For one important class, average utility is proportional

to throughput; so the provider’s and customers’ objectives coincide; those measures

improve as information increases. More broadly, we found sufficient conditions to

ensure that more information helps the provider or the customers. In other cases,

however, more information can actually hurt one or the other. We also carry out the

sensitivity analysis of cost function and the cost-scale distribution. We consider first-

order and second-order stochastic conditions and we obtain some comparative-statics

results. In the latter chapters, we extend our analysis in two directions: In the one

direction, we extend the three information models to the systems with general service

times. In the other, we consider richer models of information. Our generalization

shows that most of previous conclusions still hold.

These perverse phenomena occur mainly in extreme conditions, however. In-

formation can make a bad system worse. It would be worth investigating a larger

model, where capacity is a decision variable, and/or there are other levers, like prices,

to manage demand. We suspect that the strange behavior seen here would be less

marked in a broader setting.

The utility-based approach forces us to revise our notions of good performance.

Most peculiar is the concept that customers actually may prefer one system to another

when its probability of delay and average delay are larger. Of course, this does not

mean that the customers want to wait. Rather, it shows that these standard measures
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do not capture everything that matters to customers.

Numerous extensions are worth pursuing, for example, alternative queue disci-

plines, inventory, etc. It would be interesting also to explore various pricing schemes,

following the lead of Naor.

Information can modulate waiting costs in subtler ways than our model envisions.

For example, given a delay estimate, a call-center customer may turn attention to

other tasks while waiting. In general, information affects people’s expectations, and

those expectations affect the overall experience of waiting. (Carmon et al. 1995 pose

a framework for such effects.) It would be interesting to study how delay information

is acquired and used in various situations and the resulting effects on overall system

behavior.
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.1 Appendix for Chapter 2

.1.1 No Information

Assume that E[c(W |−)] is finite for any λ− < μ.

Proposition 48. For no information, there exists a unique equilibrium arrival rate

λ−.

Proof. By assumption, c is increasing and continuous. Thus, λ/E[c(W |−)] is a de-

creasing, continuous function of λ− mapping the interval [0, min{λ, μ}] into itself.

Thus, (3.1) has a unique solution.

.1.2 Partial Information

Verification of formula (2.4) for uniform H and linear c: Observe that

d

dλ
γ(μ, λ) = λμ−1e−λ =

d

dλ

(
λμ−1e−λ

∞∑
n=1

Γ(μ)

Γ(μ + n)
λn

)

= (μ − 1 − λ)(λμ−2e−λ)
∞∑

n=1

Γ(μ)

Γ(μ + n)
λn + (λμ−1e−λ)

∞∑
n=1

Γ(μ)

Γ(μ + n)
nλn−1

= (μ − 1 − λ)λμ−2e−λΘ + (λμ−2e−λ/p0)E [N ] .

Thus,

λ = (μ − 1 − λ)Θ + E [N ] /p0

= (μ − 1 − λ)(1 − p0)/p0 + E [N ] /p0,

or

E [N ] = λ − (μ − 1) (1 − p0) .
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.1.3 Cost-Scale Distributions

We verify the assertions about beta distributions. One can directly compute

−θh′(θ)
h(θ)

= −(α − 1) + (β − 1)
θ

1 − θ
.

Condition 1 stipulates that this quantity be no more than 2 for all θ. This is clearly

true, if and only if β ≤ 1.

The other condition is more intricate. In general,

(J ◦ H−1)′′(φ) =
φh2(φ) − [2h(φ) + φh′(φ)][H(φ) − J(φ)]

φ2h3(φ)
.

Condition 2 means that the numerator be nonnegative. For a beta distribution, the

numerator can be written as

φα−2(1 − φ)β−2

B(α, β)

{
φα+1(1 − φ)β

B(α, β)
− [(α + 1) − (α + β)φ]

α

α + β
H(φ; α + 1, β)

}
,

where H(φ; α + 1, β) denotes the cdf but with parameter α + 1 instead of α. Using

a standard series representation of H, this becomes

φ2α−1(1 − φ)2β−2

(α + 1)B2(α, β)

{
(α + 1) − [(α + 1) − (α + β)φ]

[
1 +

B(α + 2, 1)

B(α + β + 1, 1)
φ + ...

]}
.

For β = 1

1 +
B(α + 2, 1)

B(α + β + 1, 1)
φ + ... =

1

1 − φ

and

[(α + 1) − (α + β)φ] = (α + 1)(1 − φ),

so the numerator reduces to 0. For β < 1 each coefficient in the power series above

is > 1, so

1 +
B(α + 2, 1)

B(α + β + 1, 1)
φ + ... >

1

1 − φ
.
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Also,

[(α + 1) − (α + β)φ] > (α + 1)(1 − φ).

Thus, (J ◦H−1)′′(φ) < 0. Similarly, for β > 1, (J ◦H−1)′′(φ) > 0. Thus, the condition

holds for β ≥ 1 but not for β < 1.

The function J plays an important role in the following. Observe that, since H

is increasing, so is J , and hence J(1/x) is decreasing in x. Also,

d2

dx2
J(1/x) = −(1/x2)H(1/x) + (1/x2)H(1/x) + (1/x3)h(1/x)

= (1/x3)h(1/x) > 0.

Thus, J(1/x) is strictly convex in x ≥ 1.

.1.4 No Information and Partial Information

We start with two preliminary results.

Lemma 49. ppart
n is log-concave in n.

Proof.

ppart
n+1

ppart
n

= (λ/μ)H(θn),

which is decreasing in n.

This implies that P̄ part
n (the complementary cdf of Npart) is also log-concave. (See,

e.g., Karlin 1968.) This property means precisely that Npart has increasing failure

rate. Also, since pno
n and P̄ no

n are geometric (log-linear) sequences, the ratios ppart
n /pno

n

and P̄ part
n /P̄ no

n are also log-concave. In particular, these ratios are unimodal.

Lemma 50. If ppart
0 ≥ pno

0 , then Npart �st Nno.

Proof. The sequence ppart
n /pno

n is log-concave and hence unimodal. If it starts above

1, then it must cross 1 exactly once, by normalization. It follows that P̄ part
n ≤ P̄ no

n

for all n. That is, Npart �st Nno.
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Now we prove the first main result.

Proposition 51. If ppart
0 ≥ pno

0 , then upart > uno.

Proof. In this case, Npart �st Nno. Since cn is increasing, E[cNpart ] ≤ E[cNno ]. Since

J(1/x) is decreasing and strictly convex, by Jensen’s inequality,

uno = J(θ−) = J(1/E[cNno ])

≤ J(1/E[cNpart ])

< E[J(1/cNpart)]

= E[J(θNpart)] = upart.

Here is the proof of the next result.

Proposition 52. Under Condition 1 [H(1/x) is convex], ppart
0 ≤ pno

0 .

Proof. Suppose to the contrary that ppart
0 > pno

0 . Then, Npart �st Nno. Thus,

H(θ−) = H(1/E[cNno ])

≤ H(1/E[cNpart ])

≤ E[H(1/cNpart)]

= E[H(θNpart)].

(The second inequality uses Jensen’s inequality and the convexity of H(1/x).) There-

fore,

pno
0 = 1 − (λ/μ)H(θ−)

≥ 1 − (λ/μ)E[H(θNpart)] = ppart
0 ,

a contradiction.

Next, we prove the result comparing utilities.
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Proposition 53. Under Condition 2 [J ◦ H−1 is convex], upart > uno. Moreover, if

ppart
0 < pno

0 , then

upart

uno
≥ 1 − ppart

0

1 − pno
0

.

Proof. We already know that upart > uno for the case ppart
0 ≥ pno

0 . Otherwise, if

ppart
0 < pno

0 , let

τ =
1 − ppart

0

1 − pno
0

=
E[H(θNpart)]

H(θ−)
.

We have τ > 1, and so

τuno = τJ(θ−) = τJ ◦ H−1[H(θ−)]

≤ J ◦ H−1(τH(θ−))

= J ◦ H−1(E[H(θNpart)])

≤ E[J ◦ H−1(H(θNpart))]

= E[J(θNpart)] = upart.

(The first inequality follows from the fact that J ◦ H−1 is increasing and the second

from Jensen’s inequality.)

Finally, we prove the result about E[N ] for a special case.

Proposition 54. For uniform H and linear cost, the relation between E [Nno] and

E [Npart] is the same as that between μ and 1. That is, they are equal for μ = 1,

E [Nno] > E [Npart] for μ > 1, and E [Nno] < E [Npart] for μ < 1.

Proof. From (2.4),

E
[
Npart

]
= λ − (μ − 1)

(
1 − ppart

0

)
.

For μ = 1, therefore, E [Npart] = λ = E [Nno].
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So, assume μ �= 1. We have

E [Nno] =
ρno

1 − ρno
,

or

ρno =
E [Nno]

E [Nno] + 1
.

We know that ρno satisfies (2.3). Thus,

(1 − μ) [E [Nno]]2 + (μ + λ)E [Nno] [E [Nno] + 1] − λ [E [Nno] + 1]2 = 0,

or

[E [Nno]]2 + E [Nno] (μ − λ) − λ = 0. (7)

Since 1−ppart
0 = ρpart > ρno, we have (1−μ)(ρpart)2 +(μ+λ)ρpart−λ > 0 . Thus,

again using (2.4),

[
E
[
Npart

]]2
(1 − μ) + E

[
Npart

]
(1 − μ)(μ − λ) − λ(1 − μ) > 0.

For μ < 1 this reduces to

[
E
[
Npart

]]2
+ E

[
Npart

]
(μ − λ) − λ > 0.

Comparing this to (7), we see that E [Nno] < E [Npart]. Similarly, the opposite

conclusion holds for μ > 1.

.1.5 No Information and Full Information

Observe that

d ln f full(v)

dv
= λH

[
1

c(v)

]
− μ,

which is decreasing in v. Thus, f full is log-concave, and so the ratio f full/fno is too.

Also, f full(0+) = λpfull
0 and

fno(0+) = ρ−(1 − ρ−)μ = λθ−(1 − ρ−)

≤ λ(1 − ρ−) = λpno
0 .
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So, if pfull
0 ≥ pno

0 , then f full(0+) ≥ fno(0+), and so V full �st V no.

With this key fact established, the results are entirely analogous to those above.

We provide a complete proof only for the first one, which asserts that, if pfull
0 ≥ pno

0 ,

then ufull > uno.

Proof. As above, pfull
0 ≥ pno

0 implies V full �st V no. Therefore, E[c(V full)] ≤ E[c(V no)].

Also, the equilibrium condition can be expressed as θ− = 1/E[c(V no)]. Thus,

uno = J(θ−) = J(1/E[c(V no)])

≤ J(1/E[c(V full)])

< E[J(1/c(V full))]

= E[J(θV full)] = ufull.

.1.6 Partial Information and Full Information

It appears harder to compare partial and full information. In general f full/fpart is

not log-concave nor even unimodal. (The case of two types of customers provides a

counterexample.) We have the analogue to only one of the results above.

First, we establish some preliminary results. Denote a = λ/μ, and define

Υ(a) =
1

pfull
0

− 1 = aμ

∫ ∞

0

e−μv exp [aμC(v)] dv.

We analyze the power-series reprentation of Υ(a). We have

Υ(a) = aμ

∫ ∞

0

e−μv

∞∑
n=0

[aμC(v)]n

n!
dv

=
∞∑

n=0

an+1

n!

∫ ∞

0

μe−μv[μC(v)]ndv

=
∞∑

n=1

an

n!
n

∫ ∞

0

μe−μv[μC(v)]n−1dv.
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Thus, Υ(0) = 0, and for n > 0,

Υ(n)(0) = n

∫ ∞

0

μe−μv [μC(v)]n−1 dv = nE[{μC(S)}n−1]. (8)

In particular, Υ′(0) = 1.

The following is an alternative representation of the higher coefficients.

Lemma 55. For n > 1

Υ(n)(0)

n!
= E

[
C ′(S(1))C ′(S(2)) · · ·C ′(S(n−1))

]
.

Proof. Integrate (8) by parts to obtain

Υ(n)(0)

n
=

{
(−e−μv) [μC(v)]n−1}∞

0
+

∫ ∞

0

e−μv(n − 1)μC ′(v) [μC(v)]n−2 dv

= (n − 1)

∫ ∞

0

μe−μvC ′(v) [μC(v)]n−2 dv,

or

Υ(n)(0)

n(n − 1)
= E

[
C ′(S) [μC(S)]n−2] .

In particular,

Υ(2)(0)

2!
= E [C ′(S)] .

Thus, the result holds for n = 2.
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Next, for n > 2,

Υ(n)(0)

n(n − 1)
=

∫ ∞

0

μe−μvC ′(v) [μC(v)]n−2 dv

=

∫ ∞

0

μe−μvC ′(v) [μC(v)]n−3 μ

∫ v

0

C ′(t1)dt1dv

=

∫ ∞

0

μC ′(t1)
∫ ∞

t1

μe−μvC ′(v) [μC(v)]n−3 dvdt1

=

∫ ∞

0

μe−μt1C ′(t1)
∫ ∞

0

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−3 dt2dt1,

or

Υ(n)(0)

n(n − 1)
= E

[
C ′(S(1))C ′(S(2))

[
μC(S(2))

]n−3
]
.

In particular,

Υ(3)(0)

3!
= E

[
C ′(S(1))C ′(S(2))

]
,

which is the result for n = 3.
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Now, for n > 3,

Υ(n)(0)

n(n − 1)

=

∫ ∞

0

μe−μt1C ′(t1)
∫ ∞

0

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−3 dt2dt1

=

∫ ∞

0

μe−μt1C ′(t1)
∫ ∞

0

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−4

∫ t1+t2

0

μC ′(v)dvdt2dt1

=

∫ ∞

0

μe−μt1C ′(t1)
∫ ∞

0

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−4

•
(∫ t1

0

μC ′(v)dv +

∫ t1+t2

t1

μC ′(v)dv

)
dt2dt1

=

∫ ∞

0

μC ′(v)

∫ ∞

v

μe−μt1C ′(t1)
∫ ∞

0

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−4 dt2dt1dv

+

∫ ∞

0

μe−μt1C ′(t1)
∫ ∞

t1

μC ′(v)

∫ ∞

v−t1

μe−μt2C ′(t1 + t2) [μC(t1 + t2)]
n−4 dt2dvdt1

= 2

∫ ∞

0

μe−μs1C ′(s1)

∫ ∞

0

μe−μs2C ′(s1 + s2)

•
∫ ∞

0

μe−μs3C ′(s1 + s2 + s3) [μC(s1 + s2 + s3)]
n−4 ds3ds2ds1

= 2E
[
C ′(S(1))C ′(S(2))C ′(S(3))

[
μC(S(3))

]n−4
]
.

Continuing in this manner, we obtain for n > k ≥ 3

Υ(n)(0)

n(n − 1)
= (k − 1)!E

[
C ′(S(1)) · · ·C ′(S(k))

[
μC(S(k))

]n−k−1
]

In particular, for k = n − 1,

Υ(n)(0)

n!
= E

[
C ′(S(1)) · · ·C ′(S(n−1))

]
,

as asserted.
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Lemma 56. For n > 1,

E
[
C ′ (S(1)

)
C ′ (S(2)

) · · ·C ′ (S(n−1)
)]

≥ E
[
C ′ (S(1)

)]
E
[
C ′ (S(2)

)] · · ·E [C ′ (S(n−1)
)]

.

Proof. The two expressions are identical for n = 2. Consider the case n = 3.

E
[
C ′ (S(1)

)
C ′ (S(2)

)]
= ES1 [C ′ (S1) ES2 [C ′ (S1 + S2)]] .

Both C ′ (S1) and ES2 [C ′ (S1 + S2)] are decreasing as functions of S1. These two

random variables are therefore positively correlated (e.g., Casella and Berger, 2001).

Thus,

E
[
C ′ (S(1)

)
C ′ (S(2)

)] ≥ ES1 [C ′ (S1)] ES1 [ES2 [C ′ (S1 + S2)]]

= E
[
C ′ (S(1)

)]
E
[
C ′ (S(2)

)]
.

The general case follows similarly.

Now we are ready to prove

Proposition 57. Under Condition 1 [H(1/x) is convex], pfull
0 ≤ ppart

0 .

Proof. We have

Υ(n)(0)

n!
= E

[
C ′ (S(1)

)
C ′ (S(2)

) · · ·C ′ (S(n−1)
)]

, n > 1.

By Lemma (56),

Υ(n)(0)

n!
≥ E

[
C ′ (S(1)

)]
E
[
C ′ (S(2)

)] · · ·E [C ′ (S(n−1)
)]

.

By Jensen’s inequality and the convexity of H(1/x), each

E
[
C ′ (S(m)

)]
= E

[
H

{
1

c (S(m))

}]
≥ H

{
1

E[c (S(m))]

}
= H

(
1

cm

)
.
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Thus,

Υ(n)(0)

n!
≥ H

(
1

c1

)
H

(
1

c2

)
· · ·H

(
1

cn−1

)
= Θn, n > 1.

This is the corresponding factor in Θ for partial information.

.1.7 Extension

For the case c(0) < 1, average utility and throughput are no longer proportional,

because J is no longer proportional to H over their extended domain. Unlike H, J

is not constant for θ ≥ 1.

The proofs of Proposition 2 and the preceding lemmas go through as is.

Proposition 4 requires more care. The case ppart
0 ≥ pno

0 is fine, as before. For the

other case, ppart
0 < pno

0 , H−1 exists for the original H, but not the extended one, so

the proof needs to be modified.

First, assume η = h(1) > 0. Define

Ĥ(θ) =

{
H(θ) , θ ≤ 1

1 + η[1 − (1/θ)] , θ > 1.

This function is strictly increasing everywhere, and so has an inverse, Ĥ−1. Also, Ĥ

is continuously differentiable at θ = 1, and so is Ĥ−1. By Condition 2, J ◦ Ĥ−1(φ) is

convex for φ < 1. For φ > 1,

J ◦ Ĥ−1(φ) = 1 − [1 − J(1)][1 − (1/η)(φ − 1)].

This is linear, and so convex. Finally, J ◦ Ĥ−1 too is continuously differentiable at

φ = 1. So, J ◦ Ĥ−1 is convex overall. Now, define

τ̂ =
E[Ĥ(θNpart)]

Ĥ(θ−)
.

A proof just like that of Proposition 4, with Ĥ replacing H, shows that upart/uno ≥
τ̂ . Moreover, Ĥ(θ) ≥ H(θ), and ppart

0 < pno
0 implies θ− ≤ 1, so Ĥ(θ−) = H(θ−).
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Therefore,

τ̂ ≥ E[H(θNpart)]

H(θ−)
=

1 − ppart
0

1 − pno
0

.

This completes the proof, assuming h(1) > 0.

For the case h(1) = 0, we can use a limit argument. Construct a sequence of H’s,

each with h(1) > 0, which converges to the original H. Apply the argument above

to each item in the sequence. Then use continuity.

As for Proposition 3, the crucial step is the use of Condition 1 and Jensen’s

inequality to get

H(1/E[cNpart ]) ≤ E[H(1/cNpart)].

For large λ, cNpart is nearly always > 1. It spends most of its time in the region where

H(1/x) is convex. Moreover, since H(1/x) decreases from 1 to 0 and never becomes

negative, there must be places where it’s strictly convex or kinked. By combining

these facts carefully, one can verify the inequality above.

.2 Appendix for Chapter 5

Consider the special case above, with linear c and uniform H. Here we derive the

closed-form expressions for p0 and E[W ] mentioned earlier.

Idle probability

Θ1 =
λ

ν
.
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For n > 1,

Θn =
λ

ν

n−1∏
m=1

(
qν +

λ

1 + m/ν

)
/ν

=
λ

ν

n−1∏
m=1

(
q +

λ

ν + m

)

=
λ

ν

n−1∏
m=1

q

(
ν + λ/q + m

ν + m

)

=
λ

ν
qn−1 Γ(ν + λ/q + n)/Γ(ν + λ/q + 1)

Γ(ν + n)/Γ(ν + 1)

=
λ

ν
qn−1 Γ(ν + λ/q + n)/(Γ(ν + λ/q + 1)Γ(n − 1))

Γ(ν + n)/(Γ(ν + 1)Γ(n − 1))

=
λ

ν
qn−1 B(ν + 1, n − 1)

B(ν + λ/q + 1, n − 1)
,

where B(x, y) is the beta function. Thus

Θ =
∑
n>0

Θn

=
λ

ν

[
1 +

∑
n>1

qn−1 B(ν + 1, n − 1)

B(ν + λ/q + 1, n − 1)

]

The incomplete beta function B(x; a, b) =
∫ x

0
ta−1(1− t)b−1dt, a > 0, b > 0 can be

expressed as follows (see, Press, et al. 1992)

B(x; a, b) =
xa(1 − x)b

a

[
1 +

∞∑
n=0

B(a + 1, n + 1)

B(a + b, n + 1)
xn+1

]
.

Using this expression, we can rewrite Θ as

Θ =
λB (q; ν, λ/q + 1)

qν(1 − q)λ/q+1
.
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Thus

p0 =

{
1 +

λB (q; ν, λ/q + 1)

qν (1 − q)λ/q+1

}−1

.

Mean waiting time

Based on the distribution of M , we can obtain the Laplace-Stieltjes transform of

the stationary distribution of the waiting time W .

W̃ (s) =

∫ ∞

0

e−stdFW (t)

= p0 +
∞∑

n=1

(
ν

ν + s

)n

pn

= p0 +
∞∑

n=1

(
ν

ν + s

)n

Θnp0

= p0

[
1 +

λ

ν + s
+

∞∑
n=2

(
ν

ν + s

)n
λ

ν
qn−1 B(ν + 1, n − 1)

B(ν + λ/q + 1, n − 1)

]

= p0

{
1 +

λ

ν + s

[
1 +

∑
n>1

(
q

1 + s/ν

)n−1
B(ν + 1, n − 1)

B(ν + λ/q + 1, n − 1)

]}

= p0

⎡
⎢⎣1 +

λν
ν+s

B
(

q
1+s/ν

; ν, λ/q + 1
)

(
q

1+s/ν

)ν (
1 − q

1+s/ν

)λ/q+1

⎤
⎥⎦

= A(s)/A(0),

where

A(s) = 1 +

λ
1+s/ν

B
(

q
1+s/ν

; ν, λ/q + 1
)

(
q

1+s/ν

)ν (
1 − q

1+s/ν

)λ/q+1
.

110



Denote x(s) = q/(1 + s/ν). The mean waiting time is thus

E[W ] = −W̃
′
(0)

= −p0

[
1 +

(
λν

ν + s

)(
B(x(s); ν, λ/q + 1)

x(s)ν(1 − x(s))λ/q+1

)]′ ∣∣∣∣∣
s=0

= −p0

[
−λ

ν

B(q; ν, λ/q + 1)

qν(1 − q)λ/q+1
+ λ

(
B(x(s); ν, λ/q + 1)

x(s)ν(1 − x(s))λ/q+1

)′] ∣∣∣∣∣
s=0

= p0
1

ν

(
1

p0

− 1

)

−p0λ

[
x(s)

′

q(1 − q)
− B(q; ν, λ/q + 1)x(s)

′

qν(1 − q)λ/q+1

(
ν

q
− λ/q + 1

1 − q

)] ∣∣∣∣∣
s=0

= p0
1

ν

(
1

p0

− 1

)

−p0

[
λ

μ − ν

ν2

ν2

(ν − μ)μ
−
(

1

p0

− 1

)
μ − ν

ν2

(
ν2

ν − μ
− λν2

μ(ν − μ)
− ν

μ

)]

=
1

ν
(1 − p0) +

λp0

μ
+ (1 − p0)

(
−1 +

λ

μ
− 1

ν
+

1

μ

)

=
λ + (1 − μ)(1 − p0)

μ
.

111



References

[1] Abramowitz, M. and I. Stegun. 1965. Handbook of Mathematical Functions.
Dover. New York.
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