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Abstract. Non-equilibrium fluid mechanics and thermodynamics of two- 

phase vapour-droplet and gas-particle flow are considered. Formation of the 
droplets as well as their subsequent interaction with the vapour are discussed. 

A new theory of nucleation in steam turbines is developed that reproduces 

many aspects of measured droplet size spectra which cannot be explained by 

any available steady-flow theories. (Steam turbines are responsible for 80% of 

global electricity production and the presence of moisture significantly reduces 
turbine efficiency costing 50 million pounds per annum in UK alone.) Fluid 

dynamic interactions discussed include flow instabilities induced by conden- 

sation, condensation wave theory, relaxation gas dynamics for vapour-droplet 

flow, thermal choking due to non-equilibrium condensation, the structure of 

shock waves and their development through unsteady processes, and jump 

conditions and the interpretation of total pressure in two-phase flows. 

Keywords. Non-equilibrium fluid mechanics; thermodynamics of two-phase 

flows; nucleation in steam turbines. 

1. Introduction 

Two-phase flow of a vapour-liquid mixture consisting of a large number of minute liquid 

droplets uniformly dispersed throughout a background vapour phase continuum is both 

scientifically interesting and of considerable engineering importance (in a variety of ar- 

eas in mechanical, chemical and aerospace engineering, and meteorology). In the present 

paper, we discuss the formation of the droplets as well as their impact on the subsequent 

thermo-fluid dynamics of the flow. We restrict ourselves mainly to the description of pure 

substances, i.e., when both phases are of the same chemically pure species. Numerical illus- 

trations are given only for steam-water mixtures, but the general principles are applicable 

to other substances as well. 

What follows is a brief description, with no equations, of some of the work with which 

the present author has been involved over the past few years. The references cited (Guha 
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& Young 1989, 1991, 1994; Young & Guha 1991; Guha 1992, 1994, 1997) give a fuller 

treatment of these topics. The VKI lecture series (Guha 1995) treats most of these topics 

at much greater depth. It also contains a good repertoire of references and works of many 

researchers in this field which we do not reproduce here owing to space constraints. 

2. Thermo-fluid dynamics of condensation 

2.1 Physical description of homogeneous condensation 

All condensing (or evaporating) flows are non-equilibrium to a greater or less extent. 

Departures from equilibrium are measured by the subcooling A T which is the difference 

between the saturation temperature at local pressure and the actual vapour temperature 

(AT = Ts - Tg). A T  governs the rate at which nuclei are formed as well as the rate at 

which established droplets grow (or evaporate). 

As pure, clean steam expands through a nozzle or a turbine blade passage, droplets 

do not appear as soon as the condition line crosses the saturation line. This is due to 

the existence of a free-energy barrier involved in creating new surface area. For some 

considerable time during expansion the steam remains dry in a metastable equilibrium until 

the subcooling becomes high enough to trigger an appreciable nucleation rate. Depending 

on the rate of  expansion and the pressure, steam may become subcooled by 30-40°C while 

still remaining dry. The nucleation process leads to the formation of very large number 

(1014-1017 nuclei per kg of steam) of tiny droplets (diameter < 1 nm), called the primary 

fog, more or less uniformly distributed in the continuous vapour phase. Nucleation is 

practically terminated at the point of maximum subcooling called the Wilson Point. For 

pure steam, if the Wilson points for tests with varying nozzle inlet conditions are plotted 

on the equilibrium Mollier diagram, they are contained within a narrow zone around a line 

called the Wilson line (which corresponds to approximately 3--4% equilibrium wetness 

line). 

The droplets thus formed then rapidly grow in size by exchanging heat and mass with 

the surrounding, subcooled vapour (the final droplet radii, r, in laboratory nozzles lie in 

the range 0.02-0.2 Ixm). The high rate of heat release as a result of rapid condensation, 

causes a sharp increase in vapour temperature and consequently an exponential decay of  

the subcooling. Depending on the values of the flow parameters, the initial growth phase 

of the droplets may give rise to a gradual increase in pressure known as "condensation 

shock". The term "shock", however, is a misnomer. Although pressure rises as a result of 

heat addition to supersonic flow, the Mach number downstream of the condensation zone 

usually remains above unity and, more importantly, the rise in pressure is gradual. 

In conventional laboratory nozzle experiments, where (dry saturated or superheated) 

steam is produced in a boiler, the flow must expand to supersonic velocities for significant 

subcooling to develop. However, if subcooled steam could be supplied at the nozzle inlet, 

homogeneous condensation could occur in the subsonic part of the flow. This is possible, 

for example, in a multistage turbine where steam could become subcooled at the inlet of  

a blade row as a result of work extraction in previous blade rows. Subsonic condensation 

would result in a decrease, rather than an increase, in pressure. 
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Some inlet conditions may give rise to combinations of flow Mach number and heat 

release rate that necessitate the formation of a true aerodynamic shock wave inside the con- 

densation zone ("supercritical condensation shock"). Under certain conditions this shock 

wave may become unstable and propagate towards the nozzle throat. The compressive 

wave ultimately interferes with the nucleation zone causing a reduction in nucleation rate 

and hence heat release rate. With the cause of its inception removed, the strength of the 

wave decreases and the flow again expands through the throat in a shock-free manner thus 

allowing the whole process to repeat itself. Such unsteady flow is normally observed in 

pure steam when the inlet stagnation temperature To is close to the saturation temperature 

at the inlet stagnation pressure P0. Homogeneous condensation then occurs in the tran- 

sonic region close to the throat causing flow instability (the flow domain and boundary 

conditions remaining fixed). 

Keeping P0 fixed, if To is progressively reduced from superheated to subcooled levels, 

one encounters different regimes of homogeneous condensation in the order: Subcriti- 

cal condensation (the usual pressure humps characteristic of many condensation experi- 

ments), supercritical condensation (with inbuilt shock wave), oscillatory condensation and 

subsonic condensation (Guha 1994a). 

After the "condensation shock", the steam generally reverts to near thermodynamic 

equilibrium at which the temperature of the vapour as well as of the droplets is close to 

the saturation level. Since the growth of liquid phase takes place by heat transfer through 

a finite temperature difference between the phases, the process is essentially irreversible 

and has associated with it a net rise in entropy. In turbines this appears as a reduction in the 

potential for performing work and is referred to as the thermodynamic wetness loss. This 

is a major component of the overall wetness loss. A simplistic version of an empirical rule, 

formulated by Baumann in 1921, states that the efficiency of a steam turbine decreases by 

1% for every 1% increase in mean wetness fraction. A typical value of the wetness fraction 

at the exit of a steam turbine in an electricity-generating power-plant is 10-12%. Thus, in the 

last stages, the wetness loss is comparable to the combined effects of the profile, secondary 

and tip leakage losses. A 1988 estimate by the then Central Electricity Generating Board 

of UK showed that the adverse wet steam effects cost them 50 million pounds per year. The 

global implication is thus quite serious, since steam turbines are responsible for about 80% 

of the world-wide generation of electricity and there is a considerable economic incentive 

for further research. 

2.2 Numerical solutions for different regimes of condensation 

The numerical scheme for the calculation of steady as well as unsteady non-equilibrium 

wet steam flow has been detailed in Guha & Young (1991) and Guha (1994a). Here, we 

describe only the outline and highlight some important aspects. 

One of the most effective methods of calculation is to write a computational "black-box" 

which contains the nucleation and droplet growth equations, and the energy equation in 

its thermodynamic form. Together they furnish the full set of equations that describe com- 

pletely the formation and growth of liquid droplets in a fluid particle (from a Lagrangian 

viewpoint), if the pressure-time variation is specified. The pressure-time variation is ob- 

tained by time-marching solutions of the conservation equations such as Denton's method, 
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extensively used for single-phase calculations in turbomachinery blade rows. In this re- 

spect, the thermodynamic aspects of phase-change can be completely divorced from fluid 
dynamical considerations so that the use of the "black-box" is effectively independent 

of any particular computational fluid dynamic application. Thus established single-phase 

CFD codes can, rather easily, be modified to deal with non-equilibrium two-phase flow 

with the above-mentioned modular approach. (The flexibility of this scheme may be ap- 

preciated from Guha & Young (1994) where the same "black-box" has been grafted into 

a streamline curvature calculation procedure.) 

The development of the computational routines within the "black-box" represents a 
comparatively major undertaking and has been fully described by Guha & Young (1991) 

and Guha (1994a). The routines are sufficiently general and robust to deal with any type of 

nucleating or wet steam flow and (in contrast to many procedures reported in the literature) 

full details of  the polydispersed droplet size spectrum following nucleation are retained 

in the calculations. The last aspect is essential for  accurate modelling o f  the nucleation 

zone. This has been possible, without consuming excessive CPU time, by developing a 

novel averaging procedure that constantly redefines the average size and droplet number 
in each droplet group. In this way, the number of droplet groups required is restricted to an 

affordable optimum, while always retaining the correct shape of the droplet size spectrum. 

A mixed Eulerian-Lagrangian technique is used. The continuity and momentum equa- 

tions are solved by Denton's time-marching method. (The wet-steam "black-box" being 

flexible and modular, any other Eulerian time-marching method, e.g. Jameson's scheme, 

can be used.) The "black-box" performs the integration of the droplet growth equations 

along the fluid path lines rather than the usual, quasi-unsteady, method in which the pres- 

sure field remains frozen at a given instant of  time while the growth of the liquid phase 

is calculated. The present scheme allows simultaneous solution of  all the relevant equa- 

tions and enforces the correct coupling between the vapour-phase gasdynamics and the 

relaxation effects due to the presence of  the liquid phase. 

For a proper comparison between experiments and theory, variation in pressure as well 

as droplet size must be considered. Many references compare the variation in pressure only. 

Such comparison is an inadequate test for nucleation and droplet growth theories. Almost 

any nucleation theory can be 'tuned' to reproduce the measured pressure distribution. 

A crucial test is to find out whether the same 'tuning' can predict the correct droplet 

size as well. Experience with calculations for wet steam points out categorically that, in 

general, predicting a satisfactory pressure distribution does not automatically ensure a good 

prediction of droplet size. The present computational scheme has been validated against 

measurements of steady (both sub- and supercritical) and unsteady condensation shock 

waves (Guha & Young 1991). Various regimes of condensation have been computed by 

Guha (1994a), which shows a novel example of subsonic condensation where the nozzle 
is unchoked at the geometric throat. (In most reported studies on condensation shocks in 

nozzles, condensation takes place in the supersonic divergent part.) 

Figure 1 presents one example of unsteady calculation. The prediction compares well 

with measurement. The pressure profiles at different instants during a complete cycle reveal 

exactly the same sequence of the formation and movement of the shock wave as explained 

earlier. As the aerodynamic shock wave moves upstream towards the throat and interacts 

with the nucleation zone, progressively fewer droplets are nucleated, thus resulting in a 
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larger final mean radius. This causes a large variation in the droplet sizes during each 

cycle. An interesting implication of  the unsteady nucleation process is that it may be a 

contributing factor to the formation of the highly-skewed polydispersed droplet spectrum 

measured in a real steam turbine: a polydispersity which cannot be predicted with steady 

flow calculation methods (see § 4). Details of this and other calculations are in Guha & 

Young (1991) and Guha (1994a). 

2.3 Integral analysis: Condensation wave theory 

A great deal of physics may be learnt from an integral analysis, whic.h is a study of the 

jump conditions relating the end states of the condensation zone, without considering the 

detailed flow structure within it. Figure 2 shows an example calculation of the condensation 

wave theory for air with 1% moisture content. Guha (1994a) presents condensation wave 
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theory in great detail and discusses similarities and differences with the more familiar 

combustion wave theory. (The reference considers control volume analysis of two types of 

near-discontinuities, condensation shock as well as aerodynamic shock waves in vapour- 

droplet flow, from a common standpoint.) In figure 2, My1 represents the upstream Mach 

number based on the frozen speed of sound af  and Me2 represents the downstream Mach 

number based on the equilibrium speed of sound ae (§ 3.2). The effect of heat release is 

very pronounced when the Mach number lies approximately between 0.8 and 1.1, and a 

small amount of condensation may alter the flow velocity etc., quite dramatically. Details 

may be found in Guha (1994a). 

2.4 Thermal choking due to non-equilibrium condensation 

It is well known that heat addition causes a reduction in Mach number in supersonic flow 

and an increase in Mach number in subsonic flow. In other words, heat addition to a flowing 

fluid drives 'the Mach number towards unity. Therefore, at a particular flow Mach number, 

the fluid can absorb a maximum quantity of heat before the local Mach number equals 

unity and the flow becomes thermally choked. Any elementary textbook on classical gas 

dynamics gives the expression for critical quantity of heat, q*lassical' for simple heat addition 
to an ideal gas (external heat addition without any change in flow cross-sectional area). 

Similar to the case of external heat addition, the Mach number decreases in the conden- 

sation zone (the flow being supersonic). Therefore, for particular combinations of nozzle 

geometry, supply conditions and the working fluid, the liberation of latent heat could be 

such that the minimum Mach number becomes unity and the flow is thermally choked. (A 

numerical computation of this limiting case of thermal choking due to non-equilibrium 

condensation is later shown in figure 4.) If the inlet total temperature, Tol, is reduced any 

further, keeping the inlet total pressure, Pol, fixed, continuous variation of the flow vari- 

ables is no longer possible and an aerodynamic shock wave appears inside the condensation 

zone. 

Although widely referred, it has been argued in Guha (1994b) that the expression for 

q* is not appropriate for a condensing flow primarily for two reasons: (i) In case classical 
of a condensation shock, the heat is added as a result of  condensation of a part of the 

fluid itself. Therefore, the mass flow rate of the condensable vapour changes as the vapour 

* which is is continually transformed into the liquid phase. The expression for qclassical' 
derived for external heat addition to an ideal gas, does not take into account this mass 

depletion. (ii) The droplets formed through homogeneous nucleation grow at afinite rate by 

exchanging mass and energy with the surrounding vapour. Therefore, the energy addition 

due to condensation is not instantaneous and takes place over a short but finite zone. Since 

condensation shock normally occurs in the diverging section (with dry vapour at inlet), 

this means the flow area increases between the upstream (A t) and downstream (A2) of the 

condensation zone. The expression for qc*lassical' on the other hand, is derived by assuming 

heat addition in a constant area duct. 

Guha (1994a) gives details about the relative importance of the above two effects. Two 

new expressions for critical quantity of heat have been derived: q,~ which deals with 

external heat addition with area variation, and q* which takes into account the area integral 
variation as well as the depletion in the mass of vapour due to condensation. The dotted 
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lines in figure 3 represent qmtegral while the solid lines are the plots of q,~. Note that the solid 

line corresponding to unity area ratio (A2/A1 = 1)is nothing but the classical solution, 
q* Figure 3 shows clearly that the effects of mass depletion and (even a small) area classical" 
variation are quite dramatic, especially when the Mach number is close to unity. 

Figure 4 presents a time-marching solution of a limiting condensation shock, giving the 

variation in Mach number (M), non-dimensional pressure (P/Pol) and non-dimensional 

wetness fraction (Y/Yeq) along the nozzle axis. There are two sonic points in the flow field. 
(Achieving exactly a Mach number of unity at the end of the condensation zone (point 2) 

required numerical experiments of varying To 1 keeping Po 1 fixed.) At the conditions shown 
in figure 4 A2/A1 = 1.0284, M1 = 1.182. The critical amount of heat obtained from this 

full numerical solution of the nozzle flow is denoted by qa*ctual" Table 1 compares the results 
of various integral analyses. 

In conclusion, a theory of thermal choking due to non-equilibrium condensation in 

a nozzle is presented (Guha 1994b). The theory is based on a simple control volume 

approach. (A differential theory of thermal choking is discussed in Guha (1994a).) It 

applies to vapour-droplet flow with or without a carder gas. The expression for critical 
heat (or condensation) derived is valid for either supersonic or subsonic flow, and for heat 

release either in the diverging or in the converging part of a nozzle. 
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Table 1. Comparison of integral predictions with exact solution. 

External heat addition to ideal gas 
in constant area duct 

( qclassical / C pg Tol ) 

in duct of varying area 

(q*A/CpgTol) 

Condensational heat 
release with area 

variation and mass 
depletion of vapour 

(q*tegral/ Cpg Tol ) 

Time-marching solution 
of non-equilibrium 

gas dynamic equations 
(q~ctual/Cpg Tol ) 

0.01978 0.0423 0.0574 0.0587 

Table 1 shows that the present theory, q*tegral, is in very close agreement with the full 
numerical solution of the differential equations of motion (giving the detailed structure 

of a condensation shock wave leading to thermal choking). The usually quoted q* cla_ssical 
underestimates the critical heat by a factor of three in the example calculation presented. 

The variation of area across the condensation zone (although small) and the depletion in 

vapour mass as a result of condensation cannot be neglected in determining the critical 

heat in condensing nozzle flow. 

3. Fluid dynamics with interphase transport of mass, momentum and energy in 

pure vapour-droplet mixtures 

3.1 Relaxation gas dynamics for  vapour-droplet mixtures 

A lucid description covering many aspects of relaxation gas dynamics and its applications 

to vapour-droplet flows (including coupled relaxation processes) may be found in Guha 

(1995). 
If a property of a medium is perturbed from its equilibrium state and the restoration 

to equilibrium occurs at a finite rate, the medium is called a relaxing medium and the 

process of restoration is termed relaxation. Simple relaxing media follow the archetypal 

rule of the restoration process following a perturbation: d ( A q ) / d t  = - - A q / z ,  where, q 

is an internal state variable, Aq is the departure from equilibrium and ~ is the relaxation 

time. 
A vapour-droplet medium is assumed to be a homogeneous two-phase mixture of a large 

number of fine, spherical droplets dispersed in the continuous vapour phase. Although the 

droplet cloud may exhibit an arbitrary level of polydispersity with a spectrum of different 

sizes of droplets, in the present analysis we will restrict ourselves to a mono-dispersed 

droplet population for simplicity of description. We also consider pure substances only. 

The droplets are large so that the capillary subcooling is negligible. 

A vapour-droplet medium may go out of equilibrium in three different ways as below. 

(i) The droplet temperature is not equal to the saturation temperature (Tl ~ Ts). 

ATI = Ts - Tl is the relevant non-equilibrium variable and ZD is the corresponding 

droplet temperature relaxation time. 

(ii) The two phases have unequal velocities, i.e., there may be a slip between the phases 

(Vg ~ Vl). A V  = Vg - Vl is the non-equilibrium variable and 31 is the corresponding 

inertial relaxation time. 
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(iii) The temperature of the vapour phase may be different from the saturation temperature 

(Te, ~ Ts). AT  = Ts - Tg is the relevant non-equilibrium variable and rT is the 
corresponding vapour thermal relaxation time. [Note that negative AT means that 

the vapour is superheated.] 

It is clear that under non-equilibrium conditions mass, momentum and energy transfers 

would take place between the two phases. It is through these interphase transfer processes 

that the system returns to equilibrium following a perturbation. The equations representing 

the different interphase transfer processes and the expressions for 3D, r l  and 3T have been 

derived in Young & Guha (1991) and Guha (1995). Figure 5 shows the variation of the 

three relaxation times in pure steam (p = 0.5 bar, y = 0.1) as a function of droplet radius. 

It can be shown (Guha 1992c) that, quite generally, the relation 3o << 31 << VT 
holds in pure vapour-droplet flow. Therefore, following a disturbance, on a very short 

time scale the droplet temperature reaches equilibrium, then the velocity slip and finally 

the vapour temperature relaxes to the equilibrium value, While considering any particular 

relaxation process, therefore, relaxation processes with smaller relaxation times may be 

assumed to have been equilibrated whereas relaxation processes with larger time scales 

may be assumed to be frozen. Mathematically, for example, equilibrium droplet temper- 

ature means that ATI and 39 simultaneously tend to zero, the ratio A T l / 3  D remaining 

finite such that ATI/3D ~ Vl(dTs/dx), and, for instance, frozen heat transfer implies 

3T -----~ O~). 

3.2 Speeds of  sound in a pure vapour-droplet mixture 

As a result of three relaxation processes in vapour-droplet flow, four different sound speeds 

(af, ael, ae2, ae) may be defined subject to different mechanical and thermodynamic 
constraints. The full frozen speed of sound, a f ,  corresponds to the speed of an harmonic 

acoustic wave of such high frequency that the response of the droplets is negligible (i.e. 

zero mass, momentum and energy transfer). The full equilibrium speed of sound, ae, 

corresponds to the speed of an harmonic acoustic wave of such low frequency that liquid- 

vapour equilibrium is maintained at all times. The two intermediate speeds correspond 

to (a) the case of equilibrium droplet temperature relaxation but frozen momentum and 
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heat transfer (ael), and (b) the case of equilibrium droplet temperature and velocity slip 

relaxation but frozen heat transfer (ae2). 

The derivation and the expressions of the sound speeds may be found in Young & Guha 

(1991) and Guha (1995). The relationship of the four sound speeds to each other is of great 
importance. As a typical example, the ratios of different sound speeds for steam at 1 bar 

and 0.1 wetness fraction are given by, af: ael: ae2: ae --= 1:0.997:0.945:0.878. 

3.3 Structure of stationary shock waves 

One can define at least two Mach numbers corresponding to the limiting speeds of sound: 

a frozen Mach number Mf  = V /a f ,  and an equilibrium Mach number Me = V/ae, where 

V is the flow velocity. In general, ae < af and Me > Mf.  As a result of the frequency 
dispersion, therefore, two distinct types of shock waves might form in a relaxing medium, 

the far upstream and far downstream conditions being at equilibrium (figure 6): (1) A partly 

dispersed shock wave, where a discontinuous jump in flow variables (dominated by viscos- 

ity and thermal conductivity as in Rankine-Hugoniot shocks in classical gas dynamics) is 

followed by a continuous relaxation zone in which the fluid returns to equilibrium by per- 

forming the relaxation processes. Such a case arises if the upstream velocity is greater than 

the frozen speed of sound, i.e., if Vgo > afo or, Mfo > 1. In order to denote the upstream 
condition, we use both subscripts o (so that confusion does not arise with sound speeds 

ael and ae2) and 1 (as this is the conventional nomenclature for Rankine-Hugoniot condi- 

tions discussed in § 3.5). (2) A fully dispersed shock wave, where a continuous change of 

flow properties takes place from the upstream to the downstream equilibrium state. This 

corresponds to the case when afo < Vgo < aeo; i.e., when Mfo < 1, but Meo > 1. 
With four limiting speeds of sound in a vapour-droplet mixture, four types of stationary 

shock wave structures may arise (Young & Guha 1991; Guha 1992c, 1995): 

type I waves 

type n waves 
type III waves 
partly dispersed waves 

corresponding to 

corresponding to 

corresponding to 

corresponding to 

aeo < Vgo < ae2o, 

ae2o < Vgo < aelo, 

aelo < Vgo < afo, 

Vgo > afo. 

Type I, II and HI waves are sub-categories of the fully dispersed waves, where the 

steepening effect of the nonlinear terms in the equations of motion is just balanced by the 

dispersive effect of the relaxation processes. Type I waves are dominated by vapour thermal 

relaxation, type II waves by both velocity and vapour thermal relaxation and type III waves 

by all three relaxation processes. It has been shown (Young & Guha 1991; Guha 1995) 
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that IAT/I becomes unstable in the interval ael < Vg < af ,  IAVI becomes unstable in 

the interval ae2 < Vg < ael, and, I ATI becomes unstable in the interval ae < Vg < ae2. 

These instabilities in the non-equilibrium variables are the reasons for the existence of 
the fully dispersed waves. Figure 7 shows numerical solutions for a typical type II fully 

dispersed wave in a steady flow of pure wet steam. Numerical solutions of other types of 

waves may be found in (Guha & Young 1989; Guha 1992b, 1995). 

The usual model of a partly dispersed shock wave assumes that the interphase transfer 

processes are frozen during the passage through the discontinuity and the vapour properties 

just downstream of the discontinuity can be calculated using a standard Rankine-Hugoniot 

analysis. The liquid droplets therefore pass through the frozen shock without change in ra- 

dius, temperature and velocity. The conditions downstream of the discontinuity provide the 

initial values for integrating the two-phase conservation equations through the relaxation 

zones. The droplet temperattire relaxes very quickly, followed by velocity slip and finally 
the vapour temperature. The lengths of the relaxation zones are in the approximate ratios 

tO: r1: fT. Details about partly dispersed waves in vapour-droplet flow may be found in 
(Guha 1992b). Although linearized analyses are often presented for the relaxation zone 

downstream of the frozen shock in standard treatments on relaxation gas dynamics, they 

are of limited applicability to vapour-droplet flows (Guha 1992b). 

3.4 Shock waves in unsteady flow 

The physical significance of the various wave profiles discussed above can be appreciated 

more readily by considering their development under unsteady flow conditions. As a typical 

example, we now discuss wave generation in one-dimensional flow by an instantaneously 

accelerated piston in a frictionless pipe initially containing stationary wet steam. The 

numerical scheme and other details may be found in Guha & Young (1989). 

Figure 8 shows the numerical prediction of a wave propagating in wet steam. The figure 

also includes the flow behaviour in a dry, ideal gas under identical conditions in order to il- 

lustrate the special features of a vapour-droplet mixture. The (t-x) diagram was constructed 

from the results of  the unsteady time-marching calculation. At the instant of initiation, all 

the interphase transfer processes are frozen and the shock velocity corresponds to the prop- 

agation velocity into a single-phase vapour at the same temperature. Behind the shock, 

the mixture relaxes to equilibrium along the particle pathlines. The droplet temperature 

relaxes first on the very short timescale ZD and is followed by the velocity slip and vapour 

temperature on timescales rI and r r  respectively. Changes along the particle paths are 

propagated upstream and downstream along the left and right running Mach lines (based 

on the frozen speed of sound). The right running Mach lines overtake the shock wave, 

weakening it and causing it to slow down. The shock path therefore curves in the (t-x) 

diagram until it reaches a constant equilibrium speed. When this occurs, the dispersive 

effects of the relaxation processes are just balanced by the steepening effects of the non- 

linear terms and the wave structure is identical to that of the stationary waves in steady 

flow described earlier. Whether the final equilibrium structure is partly or fully dispersed 

depends on the piston velocity (for analytical conditions, see Guha 1992c, 1995). 

The variation of the wave pressure profile with time is also shown in figure 8 and the 

deceleration and weakening of the wave front are clearly visible. The behaviour of the 
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Figure 8. Numerical prediction of shock propagation in a pipe. 

superheat vapour temperature, droplet radius and wetness fraction is shown by the curves 

in figure 9 which are self-explanatory. As with stationary partly dispersed shock waves, 

the increase in wetness fraction downstream of the frozen shock wave is due to the effects 

of velocity slip. 

3.5 Integral analysis: Jump conditions 

Detailed study on the jump conditions across shock waves has been made by Guha (1992a, 

1994a) and the similarities and differences of condensation discontinuities and aerody- 

namic shock waves are discussed at length (Guha 1994a). Here, we can only mention the 

bare minimum. 

In a simple relaxing medium, e.g., a solid-particle-laden gas, the form of the jump 

conditions (R in figure 6) are identical to the Rankine-Hugoniot relations for an ideal gas, 
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Figure 9. Variation of flow parameters during shock propagation in wet steam. 

40 

if one uses the equilibrium Mach number, Me, and the equilibrium isentropic index, Ye. 

(Expressions for Ye in vapour-droplet mixtures with or without a carrier gas are given in 

Guha 1992a, 1994a) However, it has been shown by Guha (1992a) that although jump 
conditions of the same form as Rankine-Hugoniot relations can be formulated for vapour- 

droplet mixtures, they are approximate and hold only conditionally. 
A solid-particle-laden gas can be treated as a modified gas. Equations governing vapour- 

droplet flow are much more complex. An additional complexity (and novelty) occurs due 

to interphase mass transfer (the liquid phase evaporates inside a dispersed wave). If the 

strength of the wave is sufficient, complete evaporation may result, thereby rendering a 

two-phase medium before a shock wave into a single-phase one after it! 

The integral analysis (Guha 1992a) reveals that, depending on the upstream wetness 

fraction and the pressure ratio across the wave, four types of shock structures may result in 

vapour-droplet flow. They are: (I) equilibrium fully dispersed, (II) equilibrium partly dis- 

persed, (III) fully dispersed with complete evaporation, (IV) partly dispersed with complete 

evaporation. Figure 10 shows the boundaries of the four regimes in low-pressure wet steam. 

Jump conditions across all types of aerodynamic waves are derived by Guha (1992a, 

1994a). Figure 11 shows the predictions of  the integral analysis compared with numer- 

ical solutions of the wave profile as discussed in § 3.3. The dotted lines in figure 11 

represent the jump conditions. The solid lines represent numerical solutions for three 
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Figure 10. Phase diagram of different 
shock structures in low-pressure steam. 

categories of shock waves: (I), partly dispersed with complete evaporation (Pl = 0.35 bar, 

Mfl  ----- 1.6, Yl = 0.05, rl = 0.1 I+m); (II) equilibrium partly dispersed (Pl = 0.35 bar, 

MT1 ----- 1.2, Yl = 0.05, rl = 0.1 tJJ'n); (III) equilibrium fully dispersed (Pl = 0.35bar, 

Mr1 ----- 0.97, Yt = 0.1, rl = 0.1 ~m). Results from integral analyses agree remarkably 

well with solutions of the differential equations of motion, thereby confirming independent 

theoretical consistency. 

It is interesting to study the various mechanisms of entropy creation inside a dispersed 

shock wave (Guha 1992a). In addition to the effects of viscosity and thermal conduction, 

entropy is created due to the relaxation processes. Figure 12 shows the rise in entropy across 

shock waves as a function of upstream frozen Mach number. Two cases are considered: 

dry steam, and, wet steam with upstream wetness fraction 0.1. Shock waves may occur in 

wet steam even when Mfl  < 1, due to the existence of fully dispersed waves. In a partly 

dispersed wave, entropy rises across the frozen shock as well within the relaxation zone 

that follows. The figure shows that the contribution of the relaxation processes is very 

significant in the overall creation of entropy. 

In an ideal gas, the total rise in entropy across a shock wave is fixed by Rankine- 

Hugoniot relations, the magnitudes of viscosity and thermal conductivity merely determine 

the thickness of the shock wave. It has been shown (Guha 1992a) that the total rise in entropy 

across a dispersed shock wave in vapour-droplet mixtures is similarly fixed by the jump 

conditions. In exact analogy with the role of viscosity, various relaxation processes and 
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their timescales determine the thickness of the shock wave. Overall jump conditions in 

any property, including entropy, can be determined without any explicit reference to the 

processes which make the 'jump' happen! 

An integral analysis as well provide much insight into the unsteady development of 

shock waves. Details can be found in (Guha 1995; Guha 1992c). 

3.6 Interpretation of totalpressure and temperature in two-phase flow 

In this section we discuss briefly some interesting effects of the non-equilibrium, interphase 

transfer mechanisms in a stagnation process in two-phase flow. Pitot measurements are 

often used for inferring velocity or loss (entropy generation) in multiphase mixtures. In 

single-phase fluids, the fluid is assumed to be brought to rest at the mouth of the Pitot 

tube isentropically. Hence flow Mach number and entropy generation (in steady, adiabatic 

flow) are uniquely determined by the total pressure measured by a Pitot tube, together with 

an independent measurement of the static pressure. (In supersonic flow in an ideal gas, 

application of Rankine-Hugoniot equations across the detached shock wave in front of a 

Pitot tube retains the utility of Pitot measurements for deducing flow Mach number and 

entropy generation.) Pitot measurements in a multiphase mixture, however, require careful 

considerations. Similar considerations are also needed for interpreting total temperature. 

Guha (1997a) gives the details of the physical considerations required and the description 

of a unified theory for the interpretation of total pressure as well as total temperature. 

The solid particles or the liquid droplets respond to.changes in temperature, velocity 

etc. of  the gas phase through interphase exchanges of mass, momentum and energy. These 

are essentially rate processes and hence significant departures from equilibrium can take 

place if the rate of change of external conditions, imposed by the deceleration in the 

stagnating flow, is comparable to the internal time scales. Thus, for example, if the size 

of the liquid droplets or the solid particles is very small, then inertial and thermodynamic 

equilibrium between the two phases are maintained always, and a Pitot tube would measure 

the equilibrium total pressure, Poe. On the other hand, if the size of the droplets or the 

particles is very large, all interphase transfer processes remain essentially frozen. The 

Pitot tube records the pressure which it would have recorded if the vapour phase alone 

was brought to rest from the same velocity. The total pressure in this case is termed the 
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frozen total pressure, Pof. Analytical expressions for Poe and Pof, both in vapour-droplet 

and gas-particle flow, are given (Guha 1997a). 

As an example, consider low-pressure wet steam with a typical wetness fraction of 10% 

and at a Mach number 1.5. Calculations show that Pof/P = 3.3 and Poe/P = 3.79, where 
p is the static pressure. Therefore, in this particular example, the equilibrium total pressure 

is about 15% higher than the frozen total pressure. 

It is expected that for intermediate sizes of the droplets or particles, the pressure recorded 

by the probe would neither be the equilibrium nor the frozen value. The imposed decelera- 

tion in front of  the Pitot tube would cause the two-phase mixture to deviate from equilibrium 

conditions, both inertially and thermodynamically. The deceleration process consequently 

ceases to be isentropic, as non-equilibrium exchanges of  mass, momentum and energy 

between the two phases create entropy. 

Guha (1997a) has considered a large number of two-phase mixtures, both gas-particle 

and vapour-droplet, at subsonic as well as supersonic velocities for many different sizes of  

the droplets (or particles). In the supersonic case a detached frozen shock wave stands in 

front of the Pitot tube. The relaxation mechanisms in a gas-particle mixture are different 

from those in a vapour-droplet flow. Despite all these complexities and differences, it was 

possible with proper non-dimensionalization of flow parameters to adopt a universal plot, 

within acceptable tolerance, of non-dimensional total pressure, Rp, versus Stokes number, 

St (which is a non-dimensional representation of particle size). Rp and St are defined 

by, Rp ---- (Po - Pof)/(Poe - Pof) and St = r /Vo, /L,  where, V~ is the unperturbed 
velocity of the two-phase mixture far upstream of the measuring device, Po is the pressure 

attained at the measuring point under non-equilibrium conditions (the total pressure which 

is measured) and L is a characteristic length (in subsonic flow L is related to the Pitot 

diameter, in supersonic flow L is related to the distance between the frozen shock wave 

and the Pitot mouth). Larger droplets or particles correspond to higher St. 

Figure 13 shows the variation of Rp with St, which may be adopted as the Pitot correc- 

tion curve usable at a wide range of subsonic and supersonic Mach numbers and for any 

two-phase mixtures (vapour-droplet or gas-particle). The variation is monotonic. It shouM 

be noted that the denominator in the expression for Rp is calculated using the equilibrium 

thermodynamics, whereas the numerator is calculated using non-equilibrium equations. 

Rp 
= p o - P o r  

Poe-Pot 
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theory with numerical solutions. 
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That the value of  Rp, shown in figure 13, indeed tends to unity and zero in the appro- 

priate limits of  St, demonstrates independent theoretical consistency of  the calculation 

schemes. 

In addition to these numerical calculations, an analytical theory for determining to- 

tal pressure under non-equilibrium conditions has been formulated. The analytical the- 

ory is simple and is amenable to direct physical interpretation. The theory shows that 

Rp = 1/(1 + St). The predicted total pressure correctly reduces to the frozen total pressure 

in the limit of large Stokes number (large particles) and to the equilibrium total pressure 

in the limit of small Stokes number (small particles). Maximum dependence of the total 

pressure on Stokes number is observed when the Stokes number is of the order unity. The 

analytical result is also plotted in figure 13 for comparison. Under non-equilibrium condi- 

tions for intermediate St, the prediction of this equation compares very well with results 

from full numerical solution of the gas dynamic equations for two-phase mixtures. 

Figure 14 plots the rise in mixture entropy, as mixtures of air and solid particles are 

decelerated by a measuring probe from their far upstream velocity to rest. Four different 

solid particles (hypothetical) with 8 -- Cl/Cpg = 0.1, 0.8, 1.2 and 4 are considered and 

the calculations are done for two Mach numbers. For the subsonic case ( M f ~  = 0.8), 

figure 14 shows that the rise in entropy is indeed maximum when St ~ 1, and is almost 

zero in the frozen and equilibrium limits. (Recall from figure 13 that the total pressures 

are different in these limits.) At M f ~  ---- 1.5, the entropy rise is again maximum close to 

St ,v 1, but it has a finite value both at St --+ 0 and at St ~ c~. The rise in entropy in 

the limit St ~ cxz is simply that across the frozen shock. (Since the same frozen shock 

is involved in all cases because the same M f ~  is used, this increase in entropy is the 

same for all four mixtures considered.) The rise in entropy in the limit St --+ 0 is, how- 

ever, different for different mixtures (it depends on the isentropic index of  the mixture and 

hence on 8). However, it is shown (Guha 1992a) that if the particles come to equilibrium 

downstream of a frozen shock wave, then the entropy rise (across the shock plus the relax- 

ation zone) is not dependent on the particle size (and hence on the relaxation times) but is 

determined completely by Rankine-Hugoniot equations for two-phase flow. This fact is 

reflected in the straight, horizontal portions of the curves (at M f ~  ---- 1.5) in figure 14 in the 

limit St --+ 0. 
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The rate of entropy production in a multiphase mixture is maximum when the Stokes 

number is of the order unity (in accordance with other results of relaxation gas dynamics), 

and a reduction in measured total pressure is not unequivocally related to a rise in entropy 

(as it is in steady, adiabatic flow of single-phase fluids).The fact that the total pressure 

decreases monotonically from Poe tO Pof as St changes form 0 to oo whereas the entropy 

rise is zero at both limits and has a maxima when St "-- 1, demands care while interpreting 

Pitot measurements in multiphase flow. 

4. Application of the non-equilibrium theory to steam turbines 

4.1 The formation of the liquid phase 

An introduction to the flow through steam turbines may be found in Guha (1995). In a 

multistage steam turbine used in power plants for generating electricity, the steam enters the 

low-pressure (LP) turbine cylinders as a dry superheated vapour but becomes wet towards 

the last stages. Experiments show that the water in turbines exists in two quite different 

forms. Usually more than 90% of the mass is concentrated in the fog, which consists of a 

very large number of very fine droplets (diameter 0.05-2.0 ~m). The rest is in the form of 

coarse droplets which are very much larger (diameter 20-200 i~m). Coarse water is formed 

as a small proportion of the fog (typically 2-3% per blade row) is deposited on the blade 

surface either due to inertial impaction or through turbulent diffusion. The deposited water 

is drawn towards the trailing edge by the steam flow (or centrifuged towards the casing on 

moving blades), where it is re-entrained in the form of large droplets. The large droplets 

cause blade erosion, but their thermodynamic and mechanical effects on the steam flow 

can nearly always be neglected. 

Formation of new droplets occurs only over a small part of the expansion in a turbine. 

As a fluid particle flows through the machine, typically the complete nucleation process 

takes only 10-20 p~s, as compared with a typical flow transit time of 5 -10ms  through 

an LP turbine. Thus most of the expansion in the turbine simply involves condensation 

on existing droplets. However, nucleation is of crucial importance as it is the process 

which establishes the final fog droplet size distribution which, in turn, determines the 

subsequent departure from equilibrium affecting the flow behaviour, the magnitude of 

the wetness loss and the rate of fog droplet deposition on the blading forming coarse 

water. Once the droplet size distribution can be accurately predicted, the analysis of the 

wet steam flow through the rest of the turbine rests on more solid foundation. However, 

currently no theory exists (see § 4.2 for a novel theory) which gives even remote agreement 

with the available experimental measurements of the size distribution of  fog droplets in 

turbines. 

Our inability to understand the nucleation process in steam turbines is surprising given 

the success with which spontaneous condensation in laboratory nozzles and stationary, 

two-dimensional, laboratory cascade of steam turbine blades can be predicted using a 

synthesis of the classical theories of homogeneous nucleation and droplet growth with 

the conservation equations of gas dynamics. Such calculations have now been refined to 

the extent that the theory, amended by only a modicum of empiricism, gives acceptable 
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agreement in terms of pressure distribution and mean droplet diameter with most experi- 

ments reported in the literature. 

As shown in figure 15, calculations of droplet size spectra in condensing steam nozzles 

usually indicate a narrow distribution with a comparatively small mean droplet diameter 

strongly dependent on the local expansion rate near the Wilson point. Because of  the 

narrowness of the distribution, optical experimental techniques based on measuring the 

attenuation of light of different wavelengths are unable to resolve the details of the spectrum 

but register results consistent with a near monodispersed droplet population. In turbines, 

however, experimental determinations of droplet size spectra give quite different results, 

the optical characteristics of the medium invariably indicating a broad, strongly skewed, 

distribution with a much larger mean diameter, typically in the range 0.2-0.6 ixm. Quite 

often, the distribution is bimodal with a significant proportion of the total mass of liquid 

contained in a secondary population of droplets having diameters in the range 0.4-1.0 ixm. 

A typical distribution, inferred from light attenuation measurements in a low-pressure 

steam turbine used for electricity generation, is also shown in figure 15. 

Early attempts to describe the process of phase-transition in steam turbines followed 

the work of Gyarmathy who modelled the turbine by a series of one-dimensional nozzles. 

Reversion to equilibrium from the supersaturated vapour state was predicted to occur at a 

well-defined Wilson point in a particular blade passage giving rise to a near-monodispersed 

population of  usually rather small droplets. The nucleation zone was thought to extend 

over a very short distance in the flow direction and calculations indicated that the mean 

droplet size should be very sensitive to turbine inlet conditions, small changes of which 

had the potential for displacing the Wilson point to new locations of quite different expan- 

sion rate. Later calculations of nucleation and droplet growth in two-dimensional turbine 

cascades displayed characteristics essentially similar to those found in one-dimensional 

condensation studies, albeit in more complicated and realistic fluid flow fields. 

As noted above, optical measurements of wetness fraction and droplet spectra in tur- 

bines tell quite a different story. The measured spectrum is always broader, and the mean 

diameter larger, than conventional calculations indicate. Furthermore, the spectrum is com- 

paratively insensitive to small changes in turbine inlet conditions: Measurements taken on 

the same machine over a period of years show excellent reproducibility. Finally, it appears 
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that the reversion process does not occur in very narrow condensation zones as observed in 

laboratory nozzles but generally occupies much greater distances in the flow direction. This 

behaviour can be deduced from optical measurements which show that the wetness frac- 

tions at certain locations in some turbines are considerably lower than the local equilibrium 
values. 

It is therefore evident that the nucleation of water droplets in turbines involves phenom- 

ena which are not reproduced by laboratory experiments on nozzles and stationary cascades 

but nevertheless play a dominating role in the process of phase-transition in real machines. 

Possible explanations include nucleation in blade-wake vortices, heterogeneous conden- 

sation due to the effects of impurities in the steam and the effects of  blade-row interaction 

unsteadiness. In § 4.2, consideration is given to the third of these possibilities, namely the 

effect of the unsteadiness due to the interaction of blade-wakes with downstream blade 

rows. It will be shown that a direct result of these interactions is to dramatically broaden 

the droplet size distribution giving a general shape and mean diameter much more in keep- 

ing with experimental measurements in real turbines. Furthermore, the theory predicts 

that the formation of  the liquid-phase takes place in an essentially unsteady manner and 

may encompass a region in the flow comprising one or more complete turbine stages in a 

multi-stage machine. The theory presents a radically different perspective of nucleation in 

turbines from the generally accepted view and, if correct, should have a major influence 

on the future development of calculation procedures for non-equilibrium steam flows in 

turbines. 

4.2 Effects of unsteadiness on the homogeneous nucleation of water droplets in multi- 

stage steam turbines 

The details of  the theory are given by Guha & Young (1994) and Guha (1995). The essence 

of the theory is that large-scale temperature fluctuations caused by the segmentation of 

blade wakes by successive blade rows have a dominating influence on nucleation and 

droplet growth in turbines. The fundamental premise is that, in passing through a multi- 

stage turbine, different fluid particles undergo different fluid mechanical experiences de- 

pending on the exact details of their passage through the machine and hence arrive at a 

given axial location with a wide variety of thermodynamic conditions. It is further assumed 

that, downstream of any turbine stage, the pressure of all the fluid particles would be near- 

uniform but their specific entropies (and hence static temperatures) would vary greatly 

depending on the dissipation experienced by a particular particle due to its being entrained 

in one or more blade boundary layers or lossy regions of the flow. However, although the 

path taken by a fluid particle is assumed to be random, the time-averaged dissipation of  all 

the particles should agree with the overall loss distribution in the turbine. This is assumed 

known, either by direct measurement or from empirical loss correlations. 

Figure 16 is a schematic diagram of the way in which the wakes from one blade row 

interact with, and are segmented by, the following row. It can be clearly seen that dissipation 

occurring in successive blade rows can become superposed in certain fluid particles (the 

darkly shaded areas). 

A Lagrangian frame of reference is adopted and attention is focussed on a large num- 

ber of individual fluid particles during their passage through the turbine. Homogeneous 
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Figure 16. Schematic diagram of the pas- 
sage of blade wakes through successive 
blade rows. 

nucleation and growth of droplets in each fluid particle is assumed to be governed by clas- 

sical theories. All fluid particles are assumed to experience the same pressure variation but 

those particles passing close to the blade surfaces suffer greater entropy production and 

therefore have higher static temperatures than those which pursue near-isentropic paths 

through the central portions of the blade passages. Particles which suffer high loss therefore 

nucleate later in the turbine than those which experience little dissipation. Condensation is 

thus viewed as an essentially random and unsteady phenomenon as the dissipation experi- 

enced by a fluid particle in one blade-row is assumed to be uncorrelated with its previous 

history. On a time-averaged basis, the condensation zone is spread over a much greater 

distance in the flow direction than a simple steady-flow analysis would indicate and may 

encompass several blade-rows depending on the number of stages in the machine. Predicted 

droplet size spectra show broad, highly-skewed distributions with large mean diameters 

and sometimes slight bimodality. These are all characteristics of experimentally measured 

spectra in real turbines. Conventional, steady-flow calculation methods, which predict a 

fixed Wilson point in a specific blade-row and a near-monodispersed droplet population, 

cannot reproduce any of these characteristics. 

As shown in figure 17, a "loss profile" is constructed to represent the pitchwise distribu- 

tion (from the suction to the pressure surface) of the loss in the blade-row. The pitchwise 

~u~| pitchwise l 

J 
~x pitehwis¢ mass 

l \ \ now fun~on, 

Figure 17. Specification of the pitchwise 
loss profile for a blade row. 
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loss profiles represent the time-averaged entropy increase along particular pathlines but 

individual fluid particles associated with the passage of wakes may exit from the blade-row 

at different conditions because, on entry, their static temperatures and velocities deviate 

from the mean. 

For the results presented below, a single (circumferentially averaged) pressure-time 
variation based on an axisymmetric streamline-curvature throughflow solution was adopted 

for all fluid particles. Fluid particles are then launched at the turbine inlet (where the 

steam is superheated), all at the same stagnation temperature and pressure. At the en- 

try to each blade row a random number is generated that specifies the pathline to be 

followed by the particle. The pathline, in turn, fixes the value of the polytropic effi- 

ciency (figure 17). The "black-box" (§ 2.2) is then applied along the pathline to cal- 

culate the subcooling and the droplet size distribution (if nucleation has taken place) 

at the downstream of the particular blade row. A new random number is then gener- 

ated that specifies the pathline in the next blade row and the procedure is repeated. 

The "black-box" can deal with successive nucleations after the primary as a matter of 

course should the expansion be sufficiently rapid to generate the high revels of subcooling 

required. 
For each fluid particle, the subcooling and droplet size distribution at all points of 

interest are recorded. It is then a straightforward matter to compute the time-mean wetness 

fraction and other statistical properties in order to obtain a quantitative picture of the 

process of phase-change and liquid growth throughout the machine. In a six-stage low- 
pressure turbine, some 104 fluid particle calculations are undertaken on each streamsurface 

to obtain converged statistical properties. 
It has been assumed that the classical theories of homogeneous nucleation and droplet 

growth realistically describe the process of phase-change for individualfluid particles. In 
other words, if the pressure-time and temperature-time variations of a fluid particle during 

its passage through the turbine can be accurately specified, then it is assumed that the 

theories of nucleation and droplet growth correctly describe the rate of formation of the 

liquid-phase within that particle. For different fluid particles, phase-change will therefore 

be initiated at different locations in the machine, depending on the dissipation suffered by 

the particular particle. This is in contrast to the usual model of nucleation in turbines which 

assumes phase-change to be governed by the time-averaged fluid properties and therefore 

to occur at a single, well-defined location. 
As an example calculation, the flow through the low pressure stages of a 320 MW turbine 

was analysed. The turbine was manufactured by the Italian company "Ansaldo" and the 

complete geometry is available in the literature (Guha & Young 1994; Guha 1995). The 

LP section has six-stages. Each stage consists of a stator followed by a rotor and hence 

there are twelve blade-rows altogether in the turbine. 
The physical characteristics are best explained by adopting a Lagrangian viewpoint of a 

fluid particle as it passes through the turbine. As described in the previous sections, different 

fluid particles experience different amounts of dissipation and heat transfer, depending on 

the particular pathline followed. Two limiting cases can be identified. At one extreme 

are the fluid particles which always follow the mid-pitch pathline in each blade-row and 

consequently suffer no dissipation. They pursue an isentropic path to the Wilson point. At 

the other extreme are those particles which negotiate the regions of maximum loss in each 
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Figure 18. Axial variation in the Ansaldo turbine of vapour subcooling for two fluid 
particles representing the extreme cases of zero dissipation ( . . . .  ) and maximum 
dissipation (--). 

blade-row. Other fluid particles experience levels of loss intermediate between these two 

extremes. 

Figure 18 shows the calculated variation of the vapour subcooling A T associated with the 

two extreme cases of zero and maximum dissipation. The subcooling of the fluid particles 

change as a result of the competing effects of the three physical processes: expansion, 

condensation and dissipation. Consider first the case of the fluid particle suffering no 

dissipation. Here, one of the mechanisms for altering the subcooling, i.e., dissipation, is 

absent. The fluid particle is superheated (negative A T) at the turbine inlet. Its subcooling 

increases in each blade-row due to expansion but remains almost constant between the 

rows. It attains the Wilson point in the stator of the fifth stage and subsequently experiences 

an exponential decrease in A T due to the extremely rapid liberation of latent heat. A T 

increases significantly again in the last rotor where the expansion rate is too high to be 

offset by the counteracting effect of condensation. Much the same history is repeated 

for the fluid particle experiencing the maximum dissipation. Here, however, dissipation 

opposes the increase of the subcooling throughout the flow field. Consequently, the Wilson 

point occurs much further downstream (in the rotor of the last stage). Other fluid particles, 

experiencing intermediate amounts of dissipation, attain their Wilson points at intermediate 

locations between the two extremes. The region of  nucleation thus covers (in a randomly 

unsteady manner) almost two complete turbine stages as opposed to being restricted to a 

very narrow zone in a specific blade-row. 

A reliable "rule of thumb" is that Wilson points occurring at locations of  higher expan- 

sion rate result in smaller droplets. The variable location of the Wilson point therefore 

results in large variations in mean droplet diameter. It should be understood, however, 

that the mean droplet diameters in the two limiting cases do not necessarily represent the 
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Figure  19. Computed Sauter mean droplet diameter at Ansaldo turbine outlet as a function 
of the axial location of the Wilson point for all fluid particles. 

extreme limits o f  droplet size produced in the machine. The droplet size is dependent on 

the local expansion rate which does not vary monotonically with distance between the 

extreme locations of the Wilson points. 
Figure 19 shows the location of the Wilson points for the totality of particles considered 

(104). Each point on this diagram corresponds to an individual fluid particle. The abscissa 

denotes the axial location of the Wilson point and the ordinate denotes the mean diameter of 

droplets within the fluid particle on its arrival at the turbine outlet. (It should be appreciated 

that each fluid particle is actually composed of a polydispersed distribution of droplet sizes, 

details of which, although retained by the computational procedure, cannot be included in a 

single diagram such as figure 19.) It can be seen that the majority of fluid particles nucleate 

either in the fifth-stage rotor or in the sixth-stage stator. (The absence of Wilson points in 

the first part of the sixth-stage stator results from the very low expansion rate there, see 

(Guha & Young 1994; Guha 1995).) In each blade-row, the mean diameter of the droplets 

becomes progressively smaller as the Wilson point moves towards the trailing-edge, as 

the rate of expansion tends to increase monotonically to each blade throat. However, 

interesting behaviour results for those fluid particles that reach the trailing-edge plane with 

subcoolings and nucleation rates which, although moderately high, are still insufficient to 

cause complete reversion to equilibrium. For these particles, the trailing-edge marks the 

Wilson point (i.e., the cessation of nucleation) even if comparatively few droplets have 

yet been produced. Reversion to equilibrium then occurs within the following gap by 

condensational growth on existing droplets. Because there is plenty of time available 

and because the droplet number density is low, these droplets may grow to very large 

sizes as shown in figure 19. Such fluid particles are then prime candidates for secondary 

nucleations in succeeding blade-rows because their liquid surface area is insufficient to 
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offset (by condensation) the opposing effect of increased subcooling due to the rapid 

expansion. 

An imaginary probe with unlimited resolution in space and time, sited at the turbine 

outlet, would register the complete droplet size distribution for each fluid particle it en- 

counters. Real probes based on the measurement of attenuated or scattered light, however, 

record only sufficient information to deduce, at most, the time-averaged droplet size distri- 

bution (and sometimes only the time-averaged Sauter mean diameter). In order to compare 

the theoretical predictions with such measurements, a theoretical time-averaged droplet 

size distribution may be constructed at any axial location in the turbine if the diameters 

and number density of droplets in all the 104 fluid particles considered are recorded by the 

computer for subsequent processing. The calculated time-averaged droplet size distribu- 

tion for the Ansaldo turbine at outlet is shown in figure 20. The spectrum is polydispersed 

and highly-skewed (i.e., there is a large difference between the mean and most probable 

diameters) and resembles the shape of similar spectra measured in real turbines (figure 15). 

This is very significant, as no existing steady-flow calculation procedure can predict such 

a high degree of polydispersion. 

Unfortunately, no measurement of the droplet size distribution is available for the 

Ansaldo turbine, although the time-averaged Sauter mean diameter of the droplets has 

been measured. The measured Sauter mean diameter at mid-span is about 0.4 p~m, which 

is a little smaller than the calculated value of  0.55 ~m, shown in figure 20. However, 

allowing for the uncertainties and approximations in the calculation scheme, the level of  

agreement is extremely encouraging. Of course, many more experimental comparisons are 

required before it is possible to assert conclusively that the important physical processes 

are being successfully modelled by the theory presented. 

In conclusion to this section, a theory has been developed for predicting the effect of 

temperature fluctuations on the homogeneous nucleation and growth of water droplets in 

multi-stage steam turbines. The fluctuations result from the segmentation of blade-wakes 

by successive blade-rows and the amplitude of the fluctuations increases with the number 

of stages. According to the model, the mechanics of nucleation in multi-stage turbines are 

quite different from the predictions of conventional steady-state theories of phase-change. 

For example, the nucleation zone may encompass (in a randomly unsteady manner) several 

blade-rows (as opposed to being isolated at a particular position in a specific blade-row). 
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The inherent unsteadiness of the process also results in a highly-skewed, polydispersed 

(sometimes bimodal) time-averaged droplet size distribution, having similar characteristics 

to spectra measured in real turbines. The next step would be to include, in the calculation 

scheme, the effects of circumferential variation in pressure within the blade passages. More 

details may be found in Guha & Young (1994) and Guha (1995). 

The well-known books on multi-phase flows (e.g. by N A Fuchs and by G B Wallis) 

describe the long, inexhaustible list of multi-phase phenomena demonstrating their all- 

pervasive occurrence. Here, we have considered only a few important topics, the selection 

inevitably being biased by the author's own interests; (See Guha 1997b for a new theory 

for particle transport in turbulent flow.) We have used a complementary combination of 

analytical and computational techniques, and differential and integral treatments in order 

to model fundamental processes occurring in two-phase mixtures as well as to explain 

observed phenomena and experimental findings. This is an exciting, rewarding and potent 

field - so many interesting and important things remain to be done! 
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