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Abstract

Background: Count data derived from high-throughput deoxy-ribonucliec acid (DNA) sequencing is frequently

used in quantitative molecular assays. Due to properties inherent to the sequencing process, unnormalized count

data is compositional, measuring relative and not absolute abundances of the assayed features. This compositional bias

confounds inference of absolute abundances. Commonly used count data normalization approaches like library size

scaling/rarefaction/subsampling cannot correct for compositional or any other relevant technical bias that is

uncorrelated with library size.

Results: We demonstrate that existing techniques for estimating compositional bias fail with sparse metagenomic

16S count data and propose an empirical Bayes normalization approach to overcome this problem. In addition, we

clarify the assumptions underlying frequently used scaling normalization methods in light of compositional bias,

including scaling methods that were not designed directly to address it.

Conclusions: Compositional bias, induced by the sequencing machine, confounds inferences of absolute

abundances. We present a normalization technique for compositional bias correction in sparse sequencing count

data, and demonstrate its improved performance in metagenomic 16s survey data. Based on the distribution of

technical bias estimates arising from several publicly available large scale 16s count datasets, we argue that detailed

experiments specifically addressing the influence of compositional bias in metagenomics are needed.

Keywords: Compositional bias, Normalization, Empirical Bayes, Data integration, Count data, Metagenomics,

Absolute abundance, scRNAseq, Spike-in

Background
Sequencing technology has played a fundamental role

in 21st century biology: the output data, in the form of

sequencing reads of molecular features in a sample, are

relatively inexpensive to produce [1–4]. This, along with

the immediate availability of effective, open source com-

putational toolkits for downstream analysis [5, 6], has

enabled biologists to utilize this technology in ingenious

ways to probe various aspects of biological mechanisms

and organization ranging from microscopic DNA binding

events [7, 8] to large-scale oceanic microbial ecosystems

[9, 10].
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This remarkable flexibility of sequencing comes with

atleast one tradeoff. As noted previously in the litera-

ture [11–14] (illustrated in Fig. 1), unnormalized counts

obtained from a sequencer only reflect relative abun-

dances of the features in a sample, and not their absolute

internal concentrations. When a differential abundance

analysis is performed on this data, fold changes of null

features, those not differentially abundant in the abso-

lute scale, are intimately tied to those of features that

are perturbed in their absolute abundances, making the

former appear differentially abundant. We refer to this

artifact as compositional bias. Such effects are observ-

able in the count data from the large-scale Tara oceans

metagenomics project [10], (Fig. 2), in which a few dom-

inant taxa are attributable to global differences in the

between-oceans fold-change distributions.

Correction for compositional bias can be achieved by

re-scaling each sample’s count data with its corresponding
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Fig. 1 Scaling normalization approaches from the perspective of compositional correction. a Features S and A have similar absolute abundances in

two experimental conditions, while B has increased in its absolute abundance in condition g due to technical/biological reasons. Because of the

proportional nature of sequencing, increase in B leads to reduced read generation from others (compositional bias). An analyst would reason A and

S to be significantly reduced in abundance, while, in reality they did not. b Knowing S is expressed at the same concentration in both conditions

allows us to scale by its abundance, resolving the problem. DESeq and TMM, by exploiting rerefence strategies across feature count data (described

below), approximate such a procedure, while techniques that are based only on library size alone like RPKM and rarefication/subsampling can lead

to unbiased inference only under very restrictive conditions. Approaches available for sparse settings are indicated.Wrench is the proposed

technique in this paper

count of an internal control feature (or “spike-in”, Fig. 1b).

In the absence of such control features, effective correc-

tion for compositional bias can still be hoped for, as it

can be shown that this correction amounts to resolv-

ing a linear technical bias [13]. This fact allows one to

exploit several widely used non- spike-in normalization

approaches [13, 15–17], which approximate the afore-

mentioned spike-in strategy by assuming that most fea-

tures do not change on average across samples/conditions.

For the same reason, such an interpretation can also be

given to approaches like centered logarithmic transforms

(CLR) from the theory of compositional data, which many

analysts favor when working with relative abundances

[18–24]. In this paper, we analyze the behavior of these

existing scaling normalization techniques in light of com-

positional bias.

When trying to normalize metagenomic 16S survey

data with these methods however, we found that the

large fraction of zeroes in the count data, and the rel-

atively low sequencing depths of metagenomic samples

posed a severe problem: DESeq failed to provide a solu-

tion for all the samples in a dataset of our interest, and

TMM based its estimation of scale factors on very few

features per sample (as low as 1). The median approach

simply returned zero values. CLR transforms behaved

similarly. When one proceeds to avoid this problem by

adding pseudo-counts, owing to heavy sparsity underly-

ing these datasets, the transformations these techniques

imposed mostly reflected the value of pseudocount and

the number of features observed in a sample. A recently

established scaling normalization technique, Scran [25],

tried to overcome this sparsity issue in the context of

single cell ribonucleic acid sequencing (scRNAseq) count

data – which also entertains a large fraction of zeroes –

by decomposing simulated pooled counts from multiple

samples. That approach, developed for relatively high cov-

erage single cell RNAseq, also failed to provide solutions

for a significant fraction of samples in our datasets (as

high as 74%). Furthermore, as we illustrate later, com-

positional bias affects data sparsity, and normalization

techniques that ignore zeroes when estimating normal-

ization scales (like CSS [26], and TMM) can be severely

biased. The relatively low sequencing depth per sample (as

low as 2000 reads per sample), large number of features

and their diversity across samples thus pose a serious chal-

lenge to existing normalization techniques. In this paper,
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Fig. 2 Importance of compositional bias correction in sparse metagenomic data. aM-A pots of 16S reconstructions (from high sequencing depth,

whole metagenome shotgun sequencing experiments) from two technical replicates each from the Tara oceans project [10] generated for the

Southern and South Atlantic Oceans. In all subplots, x-axis plots for each feature, its average of the logged proportions in the two compared

samples; y-axis plots the corresponding differences. The red dashed line indicates the median log fold change, which is 0 across the technical

replicates. bM-A plots of the same replicates but plotted across the two oceans. The median of the log-fold change distribution is clearly shifted. A

few dominant taxa in the South Atlantic Ocean (circled) are attributable for driving this overall apparent differences in the observed fold changes.

The Tara 16s dataset, reconstructed from very deep whole metagenome shotgun experiments of oceanic samples, albeit boasting of an average

100,000 16S contributing reads per sample, still encourages a median 88% feature absence per sample

we develop a compositional bias correction technique for

sparse count data based on an empirical Bayes approach

that borrows information across features and samples.

Since we have presented the problem of composi-

tional bias as one affecting inferences on absolute abun-

dances, one might wonder if resolving compositional

bias is needed when analyses on relative abundances

are performed. It is important to realize that composi-

tional bias is infused in the count data, solely due to

inherent characteristics of the sequencing process, even

before it passes through any specific normalization pro-

cess like scaling by library size. In practical conditions,

because feature-wise abundance perturbations are also

driven by technical sources of variation uncorrelated with

total library size [27–30], compositional bias correction

becomes necessary even when analysis is performed on

relative abundances. For instance, in metagenomic 16s

rRNA surveys, taxonomy specific biases in the count data

can arise by variation in rRNA extraction effeciencies

[31, 32], PCR primer binding preferences and the tar-

get rRNA GC content [33], all which cause differential

amplification across the surveyed taxa.

The paper is organized as follows. We first set up

the problem of compositional bias correction and with

appropriate simulations, evaluate several scaling normal-

ization techniques in solving it. We find that techniques

based only on library size (e.g. unaltered RPKM/CPM

[34], rarefication/subsampling in metagenomics [35, 36])

are provably bad. Other scaling techniques, while provid-

ing robust compositional bias estimates on high coverage

data, perform poorly at sparsity levels often observed with

metagenomic count data.We then introduce the proposed
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normalization approach (Wrench) and evaluate its perfor-

mance with simulations and experimental data showing

that it can lead to reduced false positives and rich anno-

tation discoveries. We close by discussing the insights

obtained by applying Wrench and other scaling normal-

ization techniques to experimental datasets, arguing both

for addressing compositional bias in general practice and

in benchmarking studies. Because all the aforementioned

techniques, including our own proposal, assume that most

features do not change across conditions on average, they

would all suffer in analyses of features arising from arbi-

trary general conditions. In such cases, spike-in based

techniques can be effective [37], although methods sim-

ilar to the External RNA Control Consortium (ERCC)

method for bulk RNAseq will not work for the simple rea-

son it starts with an extract, an already compositional data

source.

Results
Formalizing compositional bias in differential abundance

analysis

Below, we describe the compositional correction factor,

the quantity we use to evaluate scaling normalization

techniques in overcoming compositional bias.

Figure 3 illustrates a general sequencing experiment and

sets up the problem of compositional bias correction. We

imagine a set of observations j = 1 . . . ng arising from

conditions g = 1 . . .G (e.g., cases and controls). The true

absolute abundances of features in every sample organized

as a vector X0
gj·, are perturbed by various technical sources

of variation as the sample is prepared for sequencing. The

end result is a transformed absolute abundance vector

Xgj·, the net total abundance of which is denoted by Tgj =
∑

i Xgji = Xgj+, where the + indicates summing over that

subscript. This is the input to the sequencer, which intro-

duces compositional bias by producing reads proportional

to the absolute feature abundances represented in Xgj·.

The output reads are processed and organized as counts

in a vector Ygj·, which now retain only relative abundance

information of features in Xgj·. The ultimate goal of a

normalization strategy is to recover X0
gj· for all g and j.

Our goal is to evaluate existing normalization

approaches based on how well they reconstruct X from

Y, as it is in this step, that the sequencing process

induces the bias we are interested in. We come back

to the question of reconstructing X0 at the end of this

subsection. Because we are ignoring all other techni-

cal biases inherent to the experiment/technology (i.e.,

the process from X0 → X), our discussions apply to

RNAseq/scRNAseq/metagenomics and other quantitita-

tive sequencing based assays. In this paper, our primary

interest will be in the correction of compositional bias for

metagenomic marker gene survey data, which are often

under-sampled.

Although not strictly necessary, for simplicity, we shall

assume that the relative abundances of each feature i is

given by qgi for all samples within a group g. It is also rea-

sonable to assume an Xgj·|Tgj ∼ Multinomial
(

Tgj, qg·
)

,

where qg· is the vector of feature-wise relative abun-

dances (Such an assumption follows for example from

a Poisson assumption on the expression of features Xgji

[38–40]). Similarly, we shall assume the observed counts

Ygj·|Xgj·, τgj ∼ Multinomial
(

τgj,
Xgj·

Tgj

)

, τgj is the cor-

responding sampling depth. Notice that marginally,

E[Ygji|τgj]= qgi · τgj, and hence averaging the observed

sample-wise proportions q̂gji = Ygji/τgj in group g for

feature i yields the marginal expectation E
[

q̂g+i

]

= qgi.

We shall use E
[

Tg1

]

to denote the average (across sam-

ples) total absolute abundance of features in group g at the

time of input. Similarly, E
[

Xg+i

]

will denote the marginal

expectation of absolute abundance of feature i across sam-

ples in group g (number of molecules per unit volume in

case of RNAseq / number of distinct 16S fragments per

unit volume in an environmental lysate in the case of 16S

metagenomics). If we set g = 1 as the control group, and

define, for every feature i, νgi =
E[Xg+i]

E[X1+i]
, then log νgi is

the log-fold change of true absolute abundances associ-

ated with group g relative to that of the control group. We

can write:

νgi =
E

[

Xg+i

]

E
[

X1+i

] =
E

[

Tg1

]

qgi

E [T11] q1i
≡ �g ·

qgi

q1i
= �g ·

E
[

q̂g+i

]

E
[

q̂1+i

]

(1)

This indicates that the fold changes based on observed

proportions (estimated from Y ) from the sequencing

machine confounds our inference of the fold changes asso-

ciated with absolute abundances of features at stage X,

through a linear bias term �g . Thus, to reconstruct the

average absolute abundances of features in experimental

group g, one needs to estimate the compositional cor-

rection factor �−1
g , where for convenience in exposition

below, we have chosen to work with the inverse. Note that

the compositional correction factor for the control group

�−1
1 = 1 by definition.

Details on our terminology and how it differs from

normalization factors, which are compositional factors

altered by sample depths, are presented in the Simula-

tions subsection under Methods. Below, we use the terms

compositional scale or more simply scale factor inter-

changeably to refer to compositional correction factors.

The central idea in estimating compositional correc-

tion factors For any group g, an effective strategy for

estimating �−1
g can be derived based on an often quoted
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Fig. 3 Compositional bias introduced by sequencing technology. As a sample j from group g of interest is prepared for sequencing, its true internal

feature concentrations (organized as a vector) X0gj is transformed by various technical biases to Xgj . A sequencing machine introduces compositional

bias by generating counts Ygj proportional to the input absolute abundances in Xgj according to proportions qgj =
[

. . . xgji/
(∑

k xgjk
)

. . .
]

, i and k

indexing features. Directly performing a differential abundance test on Y (DE Test 1), by using normalization factors proportional to that of total

sequencing output (ex: R/FPKM/subsampling in metagenomics) amounts to testing for changes in relative abundances of features in X, in general

(not X0). For inferring differences in absolute abundance, we need to reconstruct X0 from Y to perform our inference (DE Test 3). For compositional

bias correction in particular, we care about reconstructing Xj from Y (DE Test 2). We show more formally later that compositional correction can

reconstruct X0 if technical biases perturb all feature abundances by the same factor, and that the presence of sequence-able contaminants induces

more stricter assumptions behind their application

assumption behind scale normalization techniques [13]: if

most features do not change in an experimental condition

relative to the control group, Eq. (1) should hold true for

most features with νgi = 1. Thus, an appropriate summary

statistic of these ratios of proportions could serve as an

estimate of �−1
g .

So far we have discussed estimating group-specific com-

positional factors. With this idea in place, a normaliza-

tion procedure for deriving sample-specific compositional

scale factors can be devised. One only needs to carry

out the above procedure by pretending that every sam-

ple arises from its own experimental group. Indeed, as

illustrated in Table 1, many scale normalization methods

(including the proposal in this work) can be viewed in this

light, where some control set of proportions (“reference”)

is defined, and the �−1
gj estimate is derived for every sam-

ple j based on the ratio of its proportions to that of the

reference. This central idea being the same, the robustness

of these methods are dependent on how well the assump-

tions hold with respect to the chosen reference, and the

choice of the estimation strategy.

Reconstrucing X0 from Y It is worth emphasizing that

the aforementioned estimation strategy does not restrict

compositional factors to only reflect biology-induced

global abundance changes; in reality, if feature-wise per-

turbations (νgi) are also of technical origin, they can well

be correlated with other sources of technical variation,

and can be seen to estimate technical variation beyond

what is accounted for by sample depth adjustments. Thus,

it is interesting to ask under what conditions composi-

tional factors arising from scaling techniques (including

our proposed technique in this work) can reconstruct X0.

In the supplementary, we show that in the presence of

sequence-able experimentally introduced contaminants,

utilizing existing compositional correction tools amounts

to applying stricter assumptions than the often-cited

assumption of “technical biases affecting all feature the

same way”. The precise condition is given in the supple-

ment (Additional file 1: Section 3, Eq. (6)). In the absence

of contamination, we find the traditional assumption to be

sufficient.

Existing techniques fail to correct for compositional bias in

sparse 16S survey data

In this subsection, we ask how existing techniques fare

in estimating compositional correction factors, both in

settings at large sample depths and with particular rele-

vance to sparse 16S count data. We will find that library

size/subsampling approaches are bad and that other scal-

ing techniques face certain difficulties with sparse data.
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Table 1 Scaling normalization approaches derive their technical bias estimates from ratio of proportions

Technique Proposed abundance measure, scale factor Signal for compositional scale in

Total sum

ygji

τgj ·�
−1
gj

,

�−1
gj = 1

TMM

ygji

τgj ·�
−1
gj

,

�−1
gj = e

[
∑

i:yij>0 ∩ i∈trimmed set for j wij log
(
qgji
q1ji

)]
qgji
q1ji

, ratio of proportions

DESeq

ygji

C·τgj ·�
−1
gj

∝
ygji

τgj ·�
−1
gj

,

�−1
gj = mediani

qgji

[
∏

k qik]
1
n

qgji

[
∏

k qik]
1
n
, ratio of proportions

Median

ygji

τgj ·�
−1
gj

,

�−1
gj = mediani qgji ∝ mediani

qgji
1/p

qgji
1/p , ratio of proportions

Upper quartile

ygji

τgj ·�
−1
gj

,

�−1
gj = upper quartilei qgji ∝ upper quartilei

qgji
1/p

qgji
1/p , ratio of proportions

CLR Transformation
log

(

ygji

[
∏

i ygji]
1
p

)

≡ log

(

qgji

[
∏

i qgji]
1
p

)

≡ log

(

ygji

τgj ·�
−1
gj

)

,

with �−1
gj =

[∏

i qgji
] 1
p ∝

[
∏

i
qgji
1/p

] 1
p

qgji
1/p , closely tracks

Median factors above;
ratio of proportions

Scran

ygji

τgj ·�
−1
gj

,

�−1
gj = fit linear models to

{
q1ji
q++i

, . . . ,
qnji
q++i

}p

i=1

qgji
q++i

, ratio of proportions

Wrench

ygji

τgj ·�
−1
gj

,

�−1
gj = 1

p

∑

i wij
qgji
q++i

qgji
q++i

, ratio of proportions

For each scaling normalization technique (rows of the table, named in the first column), we present the transformation they apply to the raw count data (second column) to

produce normalize counts. The third column shows how all techniques use statistics based on ratio of proportions (third column) to derive their scale factors. In the table,

i = 1 . . . p indexes features (genes/taxonomic units), and each sample is considered to arise from its own singleton group: g = 1 . . . n and j = 1, τgj the sample depth of

sample j, qgji the proportion of feature i in sample j, wij represents a weight specific to each technique, and q++i is the average proportion of feature i across the dataset. In

the second column, the first row in each cell represents the transformation applied on the raw count data by the respective normalization approach. They all adjust a

sample’s counts based on sample depth (τgj ) and a compositional scale factor �−1
gj . As noted in the third column, the estimation of �−1

gj is based on the ratio of sample-wise

relative abundances/proportions (qgji ) to a reference that are all some robust measures of central tendency in the count data. The logarithmic transform accompanying CLR

should not worry the reader about its relevance here, in the following sense: the log-transformation often makes it possible to apply statistical tests based on normal

distributions for the rescaled data; this is in-line with applying log-normal assumptions on the rescaled data obtained with the rest of the techniques. C =
[
∏

j τgj

]−1/n
is a

constant factor independent of sample, and its presence does not matter. For the same reason, Median and Upper Quartile scalings and CLR transforms, can be thought to

base their estimates on a reference that assigns equal mass to all the features or if the reader wishes, a more complicated reference that behaves proportionally. When most

features are zero, values arising from classical scale factors can be severely biased or undefined as we shall illustrate in the rest of the paper

We will also note that the common strategy of deriving

normalization factors/data transformations after adding

pseudocounts to the original sparse count data transfor-

mations also lead to biased estimates of scale factors.

Our analysis below is limited to methods that pro-

vide interpretable estimates of fold-changes. We therefore

do not consider differential abundance inferences arising

from rank-based methods. We also leave the analysis of

non-linear normalization techniques for future work.

Library size/Subsampling based approaches To under-

stand the practical importance of resolving confounding

caused by compositional bias, we first asked under what

conditions, inferences made without compositional cor-

rection would continue to reflect changes in absolute

abundances in an unbiased manner. We formally analyzed

its influence within the framework of generalized linear

models, a widely used statistical framework within several

count data packages (Additional file 1: Section 1). Under

the most natural adjustments based on the total count

(e.g., unaltered reads per kilobase of transcript, permillion

mapped reads (RPKM)/ fragments Per kilobase of tran-

script per million mapped reads (FPKM)/ Counts per mil-

lion (CPM)/subsampling/rarefication based approaches),
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we found that these conditions can be precisely char-

acterized mathematically and are extremely limited

in their applicability in general experimental settings

(Additional file 1: Theory Section 1). It may be tempting

to argue that one can resort to total count-based normal-

ization if total feature content is the same across condi-

tions. However, as shown in Additional file 1: Section 1,

it is easy to see that this assumption is only valid when

strict constraints on the levels of technical perturbation

of feature abundances and sequence-able contaminants

are respected, an assumption that can be very easily vio-

lated in metagenomic experiments [41–43], which usually

feature high intra- and inter-group feature diversity.

Reference normalization and robust fold-change esti-

mation techniques We now compare and contrast

library size adjustments with a few reference based tech-

niques (reviewed in Table 1) in overcoming composi-

tional bias at high sample depths. Furthermore, many

widely used genomic differential abundance testing toolk-

its enforce prior assumptions on reconstructed fold

changes, and moderate their estimation. This made us

wonder about the robustness of these testing techniques

in overcoming the false positives that would otherwise

be created without compositional bias correction. With

an exhaustive set of simulations at high coverage sam-

ple depths (similar to bulk RNAseq) with 20M reads per

sample, by and large, we found that all testing pack-

ages behaved the same way, and the key ingredient to

overcome compositional bias always was an appropriate

normalization technique (Additional file 1: Section 2). We

also found that reference based normalization procedures

outperformed library size based techniques significantly,

re-emphasizing the analytic insights we mentioned pre-

viously. With sparse 16S data however, such techniques

developed for bulk RNAseq faced major difficulties as

illustrated next.

In Fig. 4, we plot the feature-wise compositional scale

estimates (i.e., ratio of sample proportion to that of the

reference; third column entries in Table 1), obtained from

TMM and DESeq for a sample in two different 16S micro-

biome datasets. TMM computes a weighted average over

these feature-wise estimates, while DESeq proposes the

median. The first column corresponds to a bulk RNAseq

study of the rat body map [44]; the second corresponds

to those from a 16S metagenomic dataset [45]. Strik-

ingly, while a large number of features agree on their

scale factors for a sample arising from bulk RNAseq for

both TMM and DESeq strategies, the sparse nature of

metagenomic count data makes robust estimation of their

scale factors extremely difficult. Furthermore, large vari-

ance is also observed across the scale factors suggested by

the individual features. Clearly, a moderated estimation

procedure is warranted.

One might wonder if adding pseudocounts to the

orginal count data (a common procedure in metagenomic

data analysis [19, 46]) effectively deals away with the prob-

lem. However, as shown in Fig. 5, with large number of

features absent per sample, these scale factors roughly

reflect the value of the pseudocount, and are systemati-

cally scaled down in value as sequencing depth, which is

strongly correlated with feature presence, increases. This

result suggests that addition of pseudocounts to data need

not be the right strategy for deriving normalization scales

based on CLR [47] or other similar methods, especially

when the data is sparse. The alternate idea of only deriv-

ing scale factors based on positive values alone, are also

associated with problems as we will see later in the text.

Our proposed approach (Wrench) reconstructs precise

group-wise estimates, and achieves significantly better

simulation performance

To overcome the issues faced by existing techniques, we

devised an approach based on the following observa-

tions and assumptions. First, group/condition-wise fea-

ture count distributions are less noisy than sample-wise

feature count distributions, and it may be useful to Bayes-

shrink sample-wise estimators towards that of group-

wise global estimates. Second, zero abundance values in

metagenomic samples are predominantly caused by com-

petition effects induced by sequencing technology (illus-

trated in Fig. 1), and therefore can be indicative of large

changes in underlying compositions1 with respect to a

chosen reference. Indeed, ignoring sterile/control sam-

ples, the median fraction of features recording a zero

count across samples in themouse, lung, diarrheal, human

microbiome project [48] and (the very high coverage) Tara

oceans [10] datasets were: .96, .98, .98, .98 and .88. These

respectively had median sample depths of roughly 2.2K ,

4.5K , 3.3K , 4.4K and 100K reads. In direct contrast, this

value for the high coverage bulkRNAseq rat body map

across 11 organs at a median sample depth of 9.7M reads,

is .33. Large number of features, extreme diversity, and

time-dependent dynamic fluctuations in microbial abun-

dances can result in such high sparsity levels in metage-

nomic datasets. When working within the fundamental

assumption that most features do not change across con-

ditions, such extraordinary sparsity levels can then be

attributed, by and large, to competition among features

for being sequenced. As we illustrate in Fig. 6, zero obser-

vations in a sample are correlated with compositional

changes, and truncated analyses that ignore them (as is

done with TMM / DESeq / metagenomic CSS normal-

ization techniques) effectively leads to loss of information

and results that are opposite to what is expected.

We now give a brief overview of the technique (Wrench)

proposed in this work. More details are presented in

the “Methods” section. With average proportions across
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Fig. 4 Estimation of compositional correction scales from sparse count data. On the left column, we plot the feature-wise ratio (�gji) estimates

adjusted for sample depth from each feature i in one of the samples from the Adrenal tissue of the rat body map dataset (bulk RNAseq), and on the

right column, we plot the same values arising from a sample in the Diarrheal dataset (16S metagenomics). The top and bottom rows correspond to

the scales estimated using TMM and DESeq respectively. In the case of bulk RNAseq data, large numbers of individual feature estimates agree on a

compositional scale factor. Simple averaging, or some robust averaging would help us obtain the scale factor exactly. A similar robust behavior is

observed with all the tissues available in the bodymapRat dataset (considered later in text). On the second column, we plot the feature-wise ratio

values from a metagenomic 16S marker gene survey of infant gut microbiota. There is no general agreement among the features on the scale

factors, and simple averaging will not work. We note that what we have shown are fairly good cases. Several samples entertain only a few tens of

shared species with an arbitrary reference sample within the dataset. In this work, we aimed to model this variability and estimate the scale factors

robustly by borrowing information across features and samples

a dataset as our reference, we model our feature-wise

proportion ratios as a hurdle log-normal model2, with

feature-specific zero-generation probabilities, means and

variances. For the purpose of metagenomic applications,

and analytic convenience, we slighty relax the standard

assumption that most features do not change across con-

ditions by assuming that the feature-wise log-fold changes

arise from a zero mean Gaussian distribution, a common

assumption in differential abundance analysis [26, 49, 50].

The analytical tractability of the model allows us to stan-

dardize the feature-wise values within and across samples,

and derive the compositional scale estimates by basing

heavy weights on less variable features that are more

likely to occur across samples in a dataset. In addition,

to make the computed factors robust to low sequencing

depths and low abundant features, we employ an empiri-

cal Bayes strategy that smooths the feature-wise estimates

across samples before deriving the sample-wise factors.

Such situations are rather common in metagenomics, and

some robustness to overcome heavy sampling variations is

desirable.

Table 2 succinctly illustrates where current state of

the art fails, while more comprehensive simulations

illustrating the effectiveness of the proposed approach

is presented in Fig. 7. To generate Table 2, roughly,

we simulated two experimental groups, with 54K fea-

tures whose proportions were chosen from the lung

microbiome data, and let 35% of features change across

conditions (see Methods for details on simulations). The

net true compositional change resulting from each sim-

ulation, and their corresponding reconstructions by the

various techniques when the count data are generated

at different sequencing depths are shown. The follow-

ing observations form the theme of these, and the more

elaborate simulations summarized in Fig. 7: 1) TMM/CSS,

because they focus on positive-valued observations only,

are restricted in the range of scales they can recon-

struct. 2) Scran can yield accurate estimators at very large
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Fig. 5 Adding pseudocounts leads to biased normalization. For each of the four microbiome count datasets (rows: Mouse, Lung, Diarrheal and Tara

Oceans ), we plot a CLR and b DESeq compositional scales obtained after adding a pseudo count value of 1, as a function of fraction of features that

are zero in the samples (first column) and the sample depth (second column). The observed behavior was not sensitive to the value of pseudocount

used. Refer Additional file 1: Figure S7 for the same plot for a pseudocount value of 10−7 . c shows the total number of pseudocounts added, which

is essentially the number of features observed in a dataset, and the total actual counts observed in the dataset divided by their sum i.e., the total

implied sequencing depth after pseudocounts addition. A large fraction of sequencing depth in the new pseudocounted dataset is now arising

from pseudocounts than the true experimental counts, when the data is excessively sparse. Indeed, if the pseudocount value is altered to a very low

positive fraction value, the boxplots will reflect reversed locations, but this plot is only used to stress the level of alteration made to a dataset. Only in

the Tara Oceans project, where the sample depth is 100K reads, do the boxplots shift. However, at a roughly median 90% features absent, that data

when altered by pseudocounts, also leads to biased scaling factors as seen in a and b

sequencing depths when high feature-wise coverages are

achieved. Unfortunately, this behavior is highly dependent

on the underlying feature proportions and their diver-

sity. 3) Wrench estimators offer better alternatives for

under-sampled data, and as we shall observe below in

their empirical performances, they can still offer robust

protection against compositional bias at higher cover-

ages. For specific comparisons with pseudocounted CLR,

please refer Additional file 1: Figure S9, in which we

show the proposed technique (Wrench) performing sig-

nificantly better. In addition, Additional file 1: Figure S21,

and Additional file 1: Figure S22 explore simulation per-

formance as a function of group-wise sample size in

balanced and unbalanced designs, where we find the

performance to stabilize between roughly 10−20 samples,

depending on the fraction of features that change across

conditions.

We briefly note a key ingredient about our simulation

procedure. Simulating sequencing count data as inde-

pendent Poissons/Negative Binomials – as is commonly

done in benchmarking pipelines – does not inject com-

positional bias into simulated data. From the perspective

of performance comparisons for compositional correc-

tion, doing so is therefore inappropriate. A renormaliza-

tion procedure after assigning feature-wise fold-changes

is necessary. Alternatively, if absolute abundances are

generated, subsampling to a desired sample depth needs

to be performed.

Wrench has better normalization accuracy in experimental

data

Below, we show five different results illustrating the

improvements Wrench offers over existing techniques in

experimental data. The first two show that Wrench leads
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Then: 
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Scran fails to reconstruct for case group samples owing to heavy occurrence of zeros. 
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Fig. 6 Ignoring zeroes can introduce bias in normalization, when zeroes predominantly arise from under-sampling. An artificial example with 10

features and two groups (“controls” and “cases”), when one of the features undergoes a roughly 50X expansion (a log2 fold change of 5.64) in cases

compared to controls. This drives the relative abundances of the rest of the 9 features relatively low in the case group. As a result features that are

largely present in the controls are not observed in the case group at moderate sequencing depths. Scaling normalization strategies that derive

scales based only on the positive count values, can underestimate compositional changes as shown

to reduced false positive calls in differential abundance

inference, while the other three demonstrate the improved

quality of positive associations.

Reduction of false positives We used two approaches

to compare the performance of Wrench in reducing false

positive calls in differential abundance inference. Each of

these analyses was performed across all biological groups

with atleast 15 samples in the mouse (2 diet types),

Diarrheal (2 groups), Tara (5 oceans), HMP (JCVI, 16

body sites), and HMP (BCM, 16 body sites) and averaged

the results across these 41 experimental groups.

We ignored the lung microbiome for these analyses as

Scran had particular difficulty making direct comparisons

hard. Owing to the heavy sparsity in these datasets, Scran

failed to provide scales for 53 out of 72 samples of the

lung microbiome, 10 out of 132 observations of the mouse

microbiome, 6 out of 992 samples of the diarrheal dataset.

Notice that Wrench not only recovers compositional

scales for these samples, but also at magnitudes that were

coherent with other samples from similar experimental

groups (see next subsection) indicating some validity for

the computed normalization factors.

First, a standard resampling analysis was performed. For

every given experimental group, two artificial groups are

Table 2 Example simulations illustrate the limitations of current techniques

Net compositional change (�g) Average sample depth CLR TMM CSS Scran W0 W1 W2 W3

36.86X 1M 1.36 1.45 5.41 22.57 19.32 31.44 30.65 32.01

7.75X 10K .95 3.05 1.47 12.08 (14/40 samples failed) 5.30 6.32 6.31 6.70

Shown are the group-wise true and reconstructed compositional scales from the methods compared on two simulated examples, each at different sequencing depths and

at different total true absolute abundance changes for a roughly 54K features with control group proportions derived from the Lung microbiome. Low-coverage and/or high

compositional changes are problematic for current techniques due to the sparsity they cause in the count data.W1 , . . .W3 are Wrench estimators proposed in the Methods

section that adjust the base estimatorW0 for feature-wise zero-generation properties. All are presented here for comparison purposes. Our default estimator isW2
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Fig. 7Wrench scales outperform competing approaches in reconstructing compositional changes and in differential abundance testing. Multiple

iterations of two group simulations are simulated with various fractions of features perturbed across conditions (rows, f in figures), total number of

reads. Their average accuracy metrics in reconstruction and differential abundance testing are plotted. The control proportions were set to those

obtained from the mouse microbiome dataset. a Average log ratios of reconstructed to true absolute abundance changes. Each row corresponds to

a particular setting of f, and each column a particular setting of average sequencing depth. Scran also suffered from being unable to provide scales

for samples in each simulation set (sometimes as high as 60% of the samples at 4K and 10K average reads). b Average sensitivity, specificity and false

discoveries at FDR .1 of detecting true differential absolute abundances.W0 is the regularized Wrench estimator without sparsity adjustments and

W1 , ..W3 are various adjusted estimators compared here. For details on this and simulations, see Methods. Behavior was similar for other parameteric

variations (variances of global and sample-wise fold change distributions, number of samples) of simulations

repeatedly constructed via resampling (without replace-

ment), and the total number of significant calls made

during differential abundance analysis is recorded in

each repetition. For each iterate, we compute the

log2(FOther/FWrench) ratio, where FOther is the total num-

ber of significant calls made by a competingmethod (Total

Sum / TMM / Scran / CSS) and FWrench is the total number

of significant calls made byWrench. If Wrench is superior



Kumar et al. BMC Genomics          (2018) 19:799 Page 12 of 23

Total Sum Tmm Css Scran

0
.0

0
0

.0
5

A
ve

ra
g

e
 R

e
la

ti
ve

 N
o

rm
a

liz
a

ti
o

n
 B

ia
s

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0 Resampling

Total Sum Tmm Css Scran

A
ve

ra
g

e
 R

e
la

ti
ve

 N
o

rm
a

liz
a

ti
o

n
 B

ia
s

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5 Offset−Covariate

ba

Fig. 8Wrench scales lead to reduced false positive calls. a The average of log2(FOther/FWrench) values obtained over artificial two group splits of

homogeneous experimental group data is shown and b the average of log2(COther/CWrench) values across 41 metagenomic experimental groups

are shown. Standard error bars are shown. In both plots, positive values for a method imply reduced accuracy relative to Wrench. FOther : total

number of diffferentially abundant features found by a competing method (total sum, TMM, CSS or Scran). FWrench : total number of differentially

abundant features found by Wrench. COther : total number of features where the covariate term for Wrench normalization factors were found to be

significant when competing method is used as offset. CWrench : total number of features where the covariate term for a competing method’s

normalization factors were found to be significant, when Wrench is used as covariate

these logged ratios should be > 0. The average of these

ratios across all the experimental groups mentioned above

is plotted in Fig. 8a, and we findWrench meeting the goal.

Although total sum does not show a significant differ-

ence in this analysis, as illustrated next, it is insufficient in

capturing the null variation in the data.

We next exploited the offset-covariate approach intro-

duced in [25]. For every feature/OTU within a homoge-

nous experimental group, two generalized linear models

are fitted: in model (a) Wrench normalization factors as

offset, and those of a competing method as covariate.

In model (b), normalization factors from a competing

method as offset, and those of Wrench as covariate. The

number of features for which the covariate term was

called significant is recorded in both (a) and (b). We

will denote them respectively as CWrench and COther . If

Wrench sufficiently captures the variation in data, the

number of times the covariate term from a competing

method is called significant will be low. That is: the logged

ratio log2(COther/CWrench) must be > 0. The average of

these values across all the experimental groups mentioned

above is plotted in Fig. 8b, and we findWrench to improve

upon other techniques.

Improved association discoveries To compare the qual-

ity of associations achieved with the various normal-

ization methods, we re-analyzed the Tara Oceans 16S

microbiome dataset.

Even though the contribution of true compositional

changes and other technical biases are not identifiable

from the compositional scales without extra information,

we asked if the reconstructed scales correlate with orthog-

onal information on absolute abundances, and other mea-

sures of technical biases. The results are summarized

in Table 3. Interestingly, in the very high coverage Tara

Oceans metagenomics project,Wrench and Scran estima-

tors achieve comparable correlations (>50%) with absolute

flow cytometry measurements of microbial counts from

the Tara Oceans project. Scran failed to reconstruct the

scales for 3 samples. TMM and CSS had substantially

poor correlations. Similarly, Wrench normalization fac-

tors had comparable/slightly better correlations to the

total ERCC spike-in counts in bulk and single cell RNAseq

datasets. In direct contrast, CLR scale factors (the geomet-

ric means of proportions) computed with pseudocounts

were either uncorrelated or highly anti-correlated with

the aforementioned measurements reflecting technical

biases. These results reaffirm that there are advantages

to exploiting specialized compositional correction tools

even with microbiome datasets teeming with microbes of

extraordinary diversity.

We next analyzed the quality of differential abundance

inference arising from competing normalization tech-

niques, by performing two sets of enrichment analyses.

In the first procedure, we extracted broad genus-level

functional annotations from the Faprotax database [51],

and tested for their enrichment in positively associ-

ated genera in the deep chlorophyll (DCM) and the

mesopelagic layer (MES) samples of the oceans rela-

tive to the surface layer. The total number of signif-

icantly differentially abundant OTU calls were widely

different across techniques: Wrench and Scran made

roughly 30% fewer calls compared to total sum, TMM,

and CSS. Given the relatively general nature of the

annotations, all methods yielded expected annotations

in the DCM and MES layers based on previous studies,

although there were a few differences (Additional file 2).

Nitrite respiration/reduction/anoxygenic phototropy, oil
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Table 3 Correlations of compositional scales with orthogonal measurements on absolute abundances/technical biases

Dataset Type CLR TMM CSS Scran W0 W1 W2 W3

Tara oceans [10] 16s (from whole metagenome) 0 (−2.65 × 10−6) 0.26 0.15 0.52 .58 .54 .53 .53

Rat bodyMap [44] Bulk RNAseq -0.36 0.22 0.16 0.18 .20 .19 .20 .26

Embryonic stem cells [62] UMI/scRNAseq -0.70 .70 .67 .67 .71 .70 .70 .68

Correlations of logged reconstructed abundance factors (1/compositional correction factor) with logged total flow cytometry cell counts is shown for the Tara project.

Correlations of logged normalization factors with logged total ERCC counts are shown in the case of the rat body map and embryonic stem cells datasets. Given the high

sparsity in these datsets, CLR factors computed by adding pseudocounts, essentially had no information on technical biases.W1 , . . .W3 are estimators proposed in the

Methods section that adjust the base estimatorW0 for feature-wise zero-generation properties. All are presented here for comparison purposes. The default Wrench

estimator (W2) compares well at low and high coverage settings. For more details on these and the distinction in terminology between compositional correction factors and

normalization factors, refer Materials and Methods. Bland-Altman plots for the data underlying these numbers are presented in Additional file 1: Figure S18–S20, and related

discussions in Additional file 1: Section 9

bioremediation were found enriched in mesopelagic layer

by all methods, while methanogenesis, a function that

is usually associated with mesopelagic and deep sea

microbes [10, 51–54] was not found enriched in MES by

total sum. Both Wrench and Scran did not find xylanol-

ysis to be enriched in the mesopelagic layer, while other

methods did. We were unable to find literature evidence

supporting this call, and the result could potentially be

due to the higher number of OTUs called differentially

abundant by the other methods. Aerobic ammonia/nitrite

oxidation and fixation were found to be enriched in DCM

by all methods. Total sum and TMM found a methano-

genesis related module enriched in DCM, while other

methods did not.

To evaluate the methods in a more fine-grained set-

ting, we devised the following validation approach. The

design of the Tara oceans experiments - where 16S recon-

structions are obtained from whole metagenome shotgun

sequencing data - makes the following analysis feasible.

Because the Tara project’s functional (gene content sum-

marized as Kegg Modules, KMs) and 16S data arise from

the same input DNA samples, the same compositional

factors should apply for both datatypes. We therefore

estimated compositional factors from 16S data using the

different normalization methods and applied the resulting

estimates to the KM abundance data from the corre-

sponding matched samples. Next, we computed Spear-

man rank correlation between OTU and KM normalized

abundances and annotated OTUs with those KMs which

showed correlation of at least 0.75. Finally, we identified

OTUs that were positively associated with each layer using

differential abundance analysis. With the KM annotations

in place, we performed Fisher exact tests to compute

the enrichment scores in the identified OTUs. Detailed

tables are provided in Additional file 2. In mesopelagic

samples, Scran finds enrichment in only 30 KMs, while

other methods recovered at least 100 KMs. Specifically,

ureolysis, motility, several denitrification/methanogenesis

processes and aminoacid biosynthetic/transport mecha-

nisms (functions that have been attributed to microbes in

the mesopelagic layer and deep sea) [10, 51, 55, 56], were

missed by Scran, while Wrench finds them. On the other

hand, Total sum, TMM and CSS found more varied and

general processes including various ribosomal, transcrip-

tion/translation components to be enriched in both MES

and DCM layers.

Notice that the first analysis gives a broad sense of

the genera identified by the competing methods in light

of existing annotations, while the second gives a sense

of the quality of annotations one might confer on the

OTUs based on the normalized expression levels of OTUs

and the measured functional content themselves. In both

cases, Wrench is shown to retain relevant information,

and the relativelymore specific nature of the latter analysis

reveals that Wrench demonstrably improves upon other

methods.

Inferences following compositional correction show

improved coherence with experimental data

We further demonstrate the impact of compositional bias

in downstream inference below. The experimental cell

density measurements in the Tara Oceans project show

a highly significant overall reduction in the mesopelagic

samples when compared the surface layer (see Fig. 3 in

ref [10]). Thus, we expect an overall negative change in

the reconstructed fold changes, when performing a differ-

ential abundance analysis of the OTUs across these two

ocean layers.
Summing the log-fold changes of significantly asso-

ciated OTUs (both positive and negative) serves as a

measure of a net change experienced by a community.

If a given method produces fold change inferences that

track the abovementioned empirical cell density measure-

ments, we expect it to yield an overall negative net change

value for the significantly differentially abundant OTUs in

the mesopelagic community. As illustrated in Fig. 9a, this

value for total sum normalized data is +10577.99, while

that for Wrench is −8919.65, showing that differential

abundances arising from Wrench agrees more appropri-

ately with the underlying community change. Figure 9b

and c, show how these values distribute across the major

phyla focussed in the Tara oceans article. These plots
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Fig. 9Wrench normalized data lead to better downstream inferences. a The sum of log-fold changes of differentially abundant OTUs is used as a

measure of net change experienced by a community. This value is plotted for the differentially abundant OTUs in the mesopelagic ocean layer

relative to the surface layer in the Tara oceans 16S data, for Total Sum and Wrench normalization. b The same metric plotted for various major phyla

of interest in the Tara oceans project

demonstrate that the two approaches lead to markedly

different conclusions on the net change experienced by

a phylum. In particular, Proteobacteria, Actinobacteria,

Euryarchaeota were predicted to have drastically high

positive changes by total sum (while Wrench predicts a

marked decrease in the negative direction), and sizable

differences were apparent in the values obtained with the

rest of the phyla.

Compositional scale factor estimates imply substantial

technical biases, indicating importance of further

experimental studies

We next analyzed the phenotypic integrity of the compo-

sitional scales reconstructed by the various methods. In

the absence of technical biases, following our discussion

in the previous subsection, compositional factors should

hover around 1 (upto some arbitrary scaling). This is not

what we observe in samples from metagenomic datasets.

All scale normalization techniques resulted in group-

wise integrity in the scales they reconstructed within and

across related phenotypic categories, potentially indicat-

ing the general importance of correcting for confound-

ing induced by compositional bias in general practice.

Total sum normalization is oblivious to these biases, mak-

ing further experimental studies on compositional bias

important. For instance, in the microbiome samples aris-

ing from the Human Microbiome Project [48], as shown

in Fig. 10a, we noted systematic body site-specific global

deviations in the fold change distributions. This is sim-

ilar to what was illustrated with the Tara project in

Fig. 2. We found the reconstructed compositional scales

to largely organize by body sites, across normalization

techniques (Fig. 10b), behind-ear and stool samples were

distinctly located in terms of their compositional scales

from the oral and vaginal microbiomes (notice the log

scale in these plots). This behavior was also recapitulated

in scales reconstructed from other centers. Additional

file 1: Figure S10 and S11 present similar results on sam-

ples arising from the J. Craig Venter Institute. In the case

of the mouse microbiome samples, most normalization

techniques predicted a mild change in differential fea-

ture content across the two diet groups (Fig. 10c, and

Additional file 1: Figure S12). In the lung microbiome, the

lung and oral cavities had roughly similar scales across

smokers and non-smokers (Additional file 1: Figure S13),

while scales from the probing instruments had relatively

higher variability, which we found to directly correlate

with the high variability of feature presence in the count

data arising from these samples. In the diarrheal datasets

of children, however, no significant compositional differ-

ences were found across the various country/health-status

populations (Fig. 10d).

For completeness, we also attach similar results from all

the 11 organs of the rat bodymap dataset in the Additional

file 1: Figure S15.

Discussions
For some researchers, statistical inference of differential

abundance is a question of differences in relative abun-

dances; for others, it is a matter of characterizing dif-

ferences in absolute abundances of features expressed in

samples across conditions [14, 57]. In this work, we took

the latter view and aimed to characterize the composi-

tional bias injected by sequencing technology on down-

stream statistical inference of absolute abundances of

genomic features.

It is clear that the probability of sequencing a partic-

ular feature (ex: mRNA from a given gene or 16S RNA
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Fig. 10Wrench retains potential biological information, and indicates importance of compositional correction in general practice. We plot some

statistical summaries and the compositional scale factors reconstructed by a few techniques for various Human Microbiome Project samples,

sequenced at the Baylor College of Medicine. a On the top-left, we plot the logged median of the positive ratios of group-averaged proportions to

that of Throat chosen as the reference group. Stool samples show considerable deviation from the rest of the samples despite having comparable

fraction of features detected and sample depths to other body sites. Notice the log scale. b The similarity in the reconstructed scales across

techniques (second row) for closely related body sites are striking; although minor variations in the relative placements were observed across

centers potentially due to technical sources of variation, the overall behavior of highly significant differences in the scales of behind-ear and stool

samples were similar across sequencing centers (Additional file 1: Figure S10) and normalization methods. Corresponding CSS scales in Additional

file 1: Figure S11. These techniques predict a roughly 4X-8X (ratio of medians)inflation in the Log2-fold changes when comparing abundances

across these two body sites. cWrench and scran compositional scale factors across the plant-based diet (BK) and Western diet (Western) mice gut

microbiome samples. d Compositional scale factors for healthy (Control) and diarrhea afflicted (Case) children. Slight differences in the compositional

scales are predicted in the diet comparisons with t-test p-values < 1e-3 for all methods except TMM, but not as much in the diarrheal samples

of an unknown microbe) in a sample of interest is not

just a function of its own fold change relative to another

sample, but inextricably linked to the fold changes of

the other features present in the sample in a system-

atic, statistically non-identifiable manner. Irrevocably, this

translates to severely confounding the fold change esti-

mate and the inference thereof resulting from general-

ized linear models. Because the onus for correcting for

compositional bias is transferred to the normalization and

testing procedures, we reviewed existing spike-in proto-

cols from the perspective of compositional correction, and

analyzed several widely used normalization approaches

and differential abundance analysis tools in the context

of reasonable simulation settings. In doing so, we also

identified problems associated with existing techniques in

their applicability to sparse genomic count data like that
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arising frommetagenomics and single cell RNAseq, which

lead us to develop a reference based compositional correc-

tion tool (Wrench) to achieve the same. Wrench can be

broadly viewed as a generalization of TMM [13] for zero-

inflated data. We showed that this procedure, by model-

ing feature-wise zero generation, reduces the estimation

bias associated with other normalization procedures like

TMM/CSS/DESeq that ignore zeroes while computing

normalization scales. In addition, by recovering appropri-

ate normalization scales for samples even where current

state of the art techniques fail, the method avoids data

wastage and potential loss of power during differential

expression and other downstream analyses (We catalog

a few potential ways by which compositional sources of

bias can cause sparsity in metagenomic and single cell

sequencing count data in Additional file 1: Section 6).

Some practically relevant notes on the application of

proposed method to metagenomic datasets follow. First,

our choice of methodology and simplifying assumptions

were principally determined by the scale and sparsity

of the 16s metagenomic datasets and estimation robust-

ness. While fully joint parameter inference algorithms will

certainly be more accurate, they are unwieldy and com-

putationally intensive with large scale datasets boasting a

large number of features with high sparsity. A case in point

is the GAMLSS methodology [58], which improved over

our pipeline (Wrench normalization coupled with edgeR

differential abundance analysis) in a small scale equimolar

miRNA benchmarking dataset (Additional file 1: Figure

S23), but could not run to completion even in the sim-

plest of our metagenomic datasets, the mouse gut micro-

biome. Second, our simulation results indicate that the

performance of Wrench stabilizes by 10 − 20 samples

per group depending on sample depth and the fraction

of features that change across conditions. While in our

experience, this is very well within the limits of practi-

cally realized sample sizes in metagenomic experiments,

at very low sample sizes and very low sample depths

(less than a few thousand reads per sample), some care

might be necessary. For instance, coherence of the recon-

structed sample-wise compositional scales within groups

relative to the experimental design can be checked and

deviations from expectations analyzed/corrected. Third,

our current implementation exploits categorical group

information/factors alone (e.g., cases and controls), and

extension to continuous covariates (e.g., age, time) under-

lying the sampling design are planned for future work. If

a continuos covariate is present, converting it to factors

by discretizing its range in to non-overlapping windows

is an option that the analyst can entertain. Furthermore,

because group information is exploited during normal-

ization, our proposed methodology is not immediately

applicable for classification purposes. In such applica-

tions, immediate extensions of the proposed empirical

Bayes formalism by assuming priors on the unknown-

sample’s group membership (based vaguely, for example,

on clustering distances) can be done, and is planned for

future work.

A few important insights on compositional bias emerge

from our theory, simulation and experimental data anal-

yses. In our simulations, we found reference based nor-

malization approaches to be far superior in correcting

for sequencing technology-induced compositional bias

than library size based approaches. From a more prac-

tically relevant perspective, we found that in all the tis-

sues from the rat body map bulk RNAseq dataset, the

scale factors can be robustly identified. We expect that in

other bulk RNAseq datasets, the assumptions underlying

compositional correction techniques to hold well. These

results reinforce trust in exploiting such scaling practices

for other downstream analyses of sequencing count data

apart from differential abundance analysis; for example,

in estimating pairwise feature correlations. In the regimes

where assumptions underlying these techniques are met,

an analyst need not be restricted to scientific questions

pertaining to relative abundances alone. The fundamental

assumption behind all the aforementioned techniques is

that most features do not change across conditions (or the

closely related assumption that the log-fold change distri-

bution is centered at 0). As we illustrated, these assump-

tions appear to hold rather well in bulk RNAseq. Do we

expect these to hold in arbitrary microbiome datasets as

well? This question is not easy to address without more

experiments, but the relatively high correlations obtained

with orthogonal measurements of technical biases, the

similarity in the compositional scales obtained within

samples arising from biological groups, and their some-

times highly significant shifts preserved across normal-

ization techniques and across sequencing centers in large

scale studies certainly reinforce the critical importance

of characterizing compositional biases, if any, in metage-

nomic analyses by establishing carefully designed spike-in

protocols. In particular, given the inverse dependence of

compositional correction factors on the total feature con-

tent in the absence of technical biases, the large compo-

sitional scale estimates obtained for stool samples (across

all normalization techniques) is suspect. Compositional

effects can amplify even when a few features experi-

ence adverse technical perturbations, and only carefully

designed experiments can isolate these effects to inform

further normalization approaches. Finally, our results also

emphasize the tremendous care one needs to exercise

before applying the most natural normalizations based

on total sequencing depth or by applying pseudocounts

when the data is excessively sparse (CLR, RPKM, CPM,

rarefication are a few examples).

This brings us to the question of how effective spike-in

strategies are in enabling us to overcome compositional
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bias. It is immediately clear that the widely used ERCC

recommended spike-in procedure for RNAseq cannot

help us in overcoming confounded inference due to com-

positional bias for the simple reason that it already starts

with an extract, a compositional data source (Additional

file 1: Section 2). If one is able to add the spike-in quan-

tities at a prior stage during feature extraction, we would

have some hope. Lovén et al., [59] demonstrate a proce-

dure for RNAseq that precisely does this, in which the

spike-ins are added at the time when the cells are lysed and

suspended in solution [60]. One can perhaps extend these

solutions to metagenomics, where we may expect con-

founding due to compositionality to be heavy by adding

barcoded 16S RNAs during feature extraction. We expect

similar problems to arise in other genomic and epigenetic

measurement techniques that exploit sequencing tech-

nology, and the need for the development of appropriate

spike-in procedures should be addressed.

Finally, it is imperative that we enforce new tools and

techniques for normalization and differential abundance

analysis of sequencing count data be benchmarked for

compositional bias at least in the simulation pipelines.

Data analyses based on large-scale integrations of dif-

ferent data types for predicting clinical phenotypes is

increasingly common, and care should be taken to include

effective normalization techniques to overcome compo-

sitional bias. We hope the results and ideas presented

and summarized in our paper enables a researcher to do

just that.

Conclusions
Compositional bias, a linear technical bias, underlying

sequencing count data is induced by the sequencing

machine. It makes the observed counts reflect relative and

not absolute abundances. Normalization based on library

size/subsampling techniques cannot resolve this or any

other practically relevant technical biases that are uncor-

related with total library size. Reference based techniques

developed for normalizing genomic count data thus far,

can be viewed to overcome such linear technical biases

under reasonable assumptions. However, high resolution

surveys like 16S metagenomics are largely undersampled

and lead to count data that are filled with zeroes, mak-

ing existing reference based techniques, with or without

pseudocounts, result in biased normalization. This war-

rants the development of normalization techniques that

are robust to heavy sparsity.We have proposed a reference

based normalization technique (Wrench) that estimates

the overall influence of linear technical biases with signifi-

cantly improved accuracies by sharing information across

samples arising from the same experimental group, and

by exploiting statistics based on occurrence and variabil-

ity of features. Such ideas can also be exploited in projects

that integrate data from diverse sources. Results obtained

with our and other techniques, suggest that substan-

tial compositional differences can arise in (meta)genomic

experiments. Detailed experimental studies that specif-

ically address the influence of compositional bias and

other technical sources of variation in metagenomics are

needed, and must be encouraged.

Methods
An approach (Wrench) for compositional correction of

sparse, genomic count data

Briefly, our normalization strategy can be described as fol-

lows. Based on Eq. (1), for a chosen reference vector q0·,

accounting for sample depth τgj, the mean model for the

observed positive count of the ith feature can be written

as: E
[

logYgji|Ygji > 0
]

= log
[

qgjiτgj
]

= log
[
qgji
q0i

q0iτgj

]

≡

log
(

θgjiq0iτgj
)

, where θgji = �−1
gj νgji. Thus the true ratio

of proportions θgji encapsulate both the constant �−1
gj and

the absolute fold changes νgji, and can be viewed as the

net fold change experienced by feature i in sample j from

group g. For the purpose of metagenomic applications,

and analytic convenience, we slighty relax the standard

assumption that most features do not change across con-

ditions by assuming that the feature-wise log-fold changes

log νgji arise from a zero mean Gaussian distribution, a

common assumption in differential abundance analysis

[26, 49, 50]. It then follows that log θgji follows a Gaus-

sian distribution with a mean parameter log�−1
gj . Thus, a

robust location estimate of θgji for every sample leads us to

the desired compositional scale estimate �̂gji. Below, we

first illustrate how the θgji are estimated, and subsequently

discuss the robust averaging procedure.

Model We assume the following model for the counts

Ygji:

Ygji ∼

{

0 with probability πgji

eZgji with probability (1 − πgji)
,

Zgji = log q0i
︸ ︷︷ ︸

log-reference

+ log τgj
︸ ︷︷ ︸

log-sample depth

+ log ζ0g+μgj + agji
︸ ︷︷ ︸

=log θgji , log net fold change relative to reference

+ǫgji,

agji ∼ N
(

0, η20g

)

, g = 1 . . .G,

ǫgji ∼ N
(

0, σ 2
0i

)

, i = 1 . . . p,

log

(

πgji

1 − πgji

)

= βi1 + βi2 log τgj + possibly other covariates

(2)

The model assumes the following. For each sample j from

group g, the ith feature’s count value is sampled from a

hurdle log-normal distribution, in which with probability
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πgji, a value of 0 is realized; and with probability 1 − πgji

a positive count is observed. The probabilities πgji are

determined by sample covariates, including the total

sequencing depth. The positive count value is realized

as an exponential of a Gaussian random variable Zgji the

mean of which is determined (in accordance with the

Eq. (1)) by the chosen reference value q0i, sample-depth

τgj, and the net fold change θgji = νgji ∗ �−1
gj , the log of

which has beenmodeled in the above equation as a sum of

group-wise effect (log ζ0g), two-way group-sample inter-

action (μgj), a three-way group-sample-feature interaction

random effect agji and a noise term.

Estimation of regularized ratios θ̂gji: In the model, the

0 subscripted parameters are considered known, and are

determined the following way. τgj = Ygj+ is the total

count of sample gj. The reference value for each fea-

ture i, q0i, is set to the average proportion value q̂++i,

where q̂gji is the observed proportion of feature i in sam-

ple gj, i.e., q̂gji = Ygji/Ygj+ = Ygji/τgj . The mean

and variance parameters log ζ0g and η20g of the Gaus-

sian prior distribution on the log θgji are determined

based on the corresponding moments of the correspond-

ing empirical distribution of the group-wise pooled raw

ratios of proportions:
{

rgji = q̂gi/q0i
}p

i=1
. Here, q̂gi =

Yg+i/Yg++ i.e., the overall proportion of feature i in

the samples from the entire group. Specifically, we fix

the group-wise compositional scale ζ0g = rg+i i.e., as

the average of the raw ratios including the zero values

(following discussions in Fig. 6). We set the variance

parameter η20g = 1
∑

i I[Ygji>0]

∑

i:Ygji>0

(

log rgji − log rg+i

)

i.e., as the empirical variance of the logged-ratios. Finally,

the feature-specific expression variances σ 2
0i are fixed

with values obtained from Limma/Voom. With the above

fixed, the unknown parameters μgj and agji are esti-

mated/predicted using standard random effects estima-

tors: μ̂gj =
∑

i wgji

(

log rgji − log ζ0g
)

with wgji ∝ 1
σ 2
0i+η20g

,

and âgji =
σ 2
0i

σ 2
0i+η20g

(

log rgji − log ζ0g − μ̂gj

)

. The identifi-

ability of these terms is ensured as the other variance

components are fixed. The π̂gji are estimated with logistic

regression. The regularized ratios are then calculated as:

θ̂gji = exp(log ζ0g + μ̂gj + âgji).

Robust averaging of the θ̂gji: While averaging over the

regularized ratios W0 =: 1
p

∑

i θ̂gji would be one estima-

tion route to�−1
gj , better control can be achieved by taking

the variation in the feature-wise zero generation in to

account. We shall notice that E
[

rgji|rgji > 0
]

= θgji · e
σ 2
0i/2,

and so a robust averaging over θ̂gji/e
σ 2
0i/2, can serve as

an estimator of �−1
gj . One might choose the weights for

averaging to be proportional to that of the inverse hur-

dle/inclusion probabilities (as is done in survey analysis)∝

1/(1 − π̂gji) or on the inverse marginal variances ascribed

by our model above ∝ 1

(1−π̂gji)

(

π̂gji+e
σ20i+η20g−1

) . An esti-

mator that we also found to work well empirically is a

weighted average of
θ̂gji/e

σ20i/2

1−π̂gji
with weights proportional to

1
σ 2
0i

. Additional file 1: Section 7 sketches the derivations.

An advantage of these weights (and hence the model)

is that the weighting strategies proceed smoothly for

features with zero expression values as well, unlike the

binomial weights employed in the TMM procedure. Fur-

thermore, when constructing averages, the weights have

a favorable property of downweighting zeroes at higher

sample depths relative to those in samples at lower sample

depths.

In summary, we explored the performance of the fol-

lowing estimators for sample-wise compositional factors:

W0gj =:
1

p

∑

i

θ̂gji = θ̂g+j,

W1gj =:
1

p

∑

i

wgjiθ̂gji, with wgji ∝ 1/(1 − π̂gji)

W2gj =:
1

p

∑

i

wgjiθ̂gji, with wgji ∝
1

(

1 − π̂gji

)
(

π̂gji + e
σ 2
0i+η20g − 1

)

W3gj =:
1

p

∑

i

wgji
θ̂gji

1 − π̂gji
, with wgji ∝

1

σ 2
0i

(3)

We have found W1,W2 and W3 to work comparably well

in simulations and empirical comparisons, andW0 slightly

less so at high sparsity levels at low sample depths. We

prefer W2 as it systematically integrates both the hur-

dle and positive component variations. In our software

implementation, users have the option for other weighted

variants, and whether weighted averaging over zeroes is

necessary as they see fit. Software documentation and

supplementary material embark on further discussions on

these ideas.

Finally, with this framework setup, extensions for batch

correction can be immediately made; this work is being

planned for a forthcoming submission.

Data

We principally demonstrate our results with five datasets

from metagenomic surveys. A smoking study (n = 72)

where the lung microbiome of smokers and non-smokers

were surveyed (along with the instruments that were

used to sample the individual). A diet study in which
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the gut microbiomes (n = 139) of carefully controlled

laboratory mice fed plant-based or western diets were

sequenced [35]. A large scale study of human gut micro-

biomes (n = 992) from diarrhea-afflicted and healthy

children from various developing countries [45]. 16S

metagenomic count data corresponding to all these

studies were obtained from the R/Bioconductor pack-

age metagenomeSeq [26]. The Tara Oceans project’s

16S reconstructions from whole metagenome shotgun

sequencing (n = 139) was downloaded from The Tara

Oceans project website under http://ocean-microbiome.

embl.de/data/miTAG.taxonomic.profiles.release.tsv.gz.

The flow cytometry counts for autotrophs, bacte-

ria, heterotrophs, picoeukaryotes were obtained from

TaraSampleInfo_OM.CompanionTables.txt from the

same website and summed to serve as a rough measure of

total cell count that correlates with sequence-able DNA

material. The Human Microbiome Project count data

were downloaded from http://downloads.hmpdacc.org/

data/HMQCP/otu_table_psn_v35.txt.gz, and the associ-

ated metadata are from v35_map_uniquebyPSN.txt.bz2

under the same website.

The processed bulk-RNAseq data corresponding to the

rat body map from [44] was obtained from [61].

The Unique Molecular Identifier (UMI) single cell

RNAseq data from Islam et al. [62] was downladed from

GEO under accession GSE46980.

Implementation of normalization and differential

abundance techniques

All analysis and computations were implemented with the

R 3.3.0 statistical platform. EdgeR’s compNormFactors

for TMM, DESeq’s estimateSizeFactors, Scran’s

computeSumFactors (with positive=TRUE in sparse

datasets) and metagenomeSeq’s calcNormFactors

for CSS were used to compute the respective scales.

Implementation of CLR factors used a pseudo-count of

1 following [46], and were computed as the denominator

of column 3 in Table 1. Limma’s eBayes in combina-

tion with lmFit, edgeR’s estimateDisp, glmFit and

glmLRT, DESeq2’s estimateDispersionsGeneEst

and nbinomLRT were used to perform differential abun-

dance testing [50]. Welch’s t-test results were obtained

with t.test.

Implementation of Wrench

Wrench is implemented in R, and is available through the

Wrench package at http://bioconductor.org/packages/

Wrench.

Simulations

Given a set of control proportions q1i for features

i = 1 . . . p, and the fraction of features that are perturbed

across the two conditions f, we sample the set of true log

fold changes ( log νgi ) from a fold change distribution (fold

change distribution) for those randomly chosen features

that do change. The fold change distribution is a two-

parameter distribution chosen either as a two-parameter

Uniform or a Gaussian. Based on the expressions from

the first subsection of the “Results” section, the target

proportions were then obtained as qgi =
νgiq1i

∑

k νgkq1k
. Con-

ditioned on the total number of sequencing reads τ , the
sequencing output Ygi· for all i were obtained as a multi-

nomial with proportions vector qg· =[|qgi|]
p
i=1. We set the

control proportions from various experimental datasets

(specifically, mouse, lung and the diarrheal microbiomes).

With this setup, we can vary f, and the two parameters

of the fold change distribution, and ask, how various nor-

malization and testing procedures compare in terms of

their performance. For bulk RNAseq data, as illustrated in

Additional file 1: Figure S1, we simulated 20M reads per

sample.
For comparison ofWrench scales with other normaliza-

tion approaches, we altered the above procedure slightly

to allow for variations in internal abundances of features

in observations arising from a group g. We used νgi (where

the bar indicates this value will now assume the role of

an average) generated above as a prior fold change for

observation-wise fold change generation. That is, for all

samples j ∈ 1 . . . ng for all g, where ng represents the num-

ber of samples in group g, for all i (including the truly

null features), sample νgji from LN
(

log νgi, σ̃
2
ν

)

for a small

value of σ̃ 2
ν = .01. This induces sample specific varia-

tions in the proportions within groups. Notice that this

makes the problem harder and more realistic, as feature

marginal count distributions now arise from a mixture

of distributions. Based on empirically observed MA plots

for our metagenomic datasets, we set the mean and stan-

dard deviation of prior log-fold change distribution to

0 and 3 respectively. For generating 16S metagenomic-

like datasets, logged sample depths were sampled from

a log-normal distribution with logged-standard devia-

tion of .25 and logged-means corresponding to log(4K),

log(10K) and log(100K) reads. These parameters were

chosen based on comparisons with MA plots, the spar-

sity levels and total sample depths observed in current

experimental datasets. We repeated simulations for 20

iterations.
In both versions of simulations, the total induced abun-

dance change relative to that of the control is�gj = νTgj·q1·,

where νgj· is the vector of fold changes for sample j in

group g, and q1· is the average vector of feature-wise con-

trol proportions. As it can be seen from the expression for

�gj, notice that perturbing features with very low relative

abundances do not demonstrably induce compositional

bias at low sample depth settings (unless perturbed by

very high fold changes). So for every simulation iteration,

the fraction f of features that were perturbed in cases

http://ocean-microbiome.embl.de/data/miTAG.taxonomic.profiles.release.tsv.gz
http://ocean-microbiome.embl.de/data/miTAG.taxonomic.profiles.release.tsv.gz
http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v35.txt.gz
http://downloads.hmpdacc.org/data/HMQCP/otu_table_psn_v35.txt.gz
http://bioconductor.org/packages/Wrench
http://bioconductor.org/packages/Wrench
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were chosen randomly according to their control propor-

tions. We apply the term compositional correction factor

for �−1
gj and the term normalization factor for a sample

as the product of its compositional correction factor with

something that is proportional to that of its sample depth.

Thus, all technical artifacts like total abundance changes,

but sample depth, are incorporated into the definition of

compositional factors.

Performance comparisons

For simulations, we used edgeR as the workhorse fitting

toolkit. The compositional scale factors provided by all

normalization methods were provided to edgeR as off-

set factors. We define detectable differential abundance

in our simulated count data as follows. For each sim-

ulation, as we know the true compositional factors, we

input them as normalization factors in edgeR, and the

detectable differences in abundances are recorded. All

the performance metrics are then defined based on this

ground truth. Because we are interested in fold changes

and their directions, the performance metrics we report

are redefined as follows: Sensitivity as the ratio of the

number of detectable true-positives with true sign over

the total number of positives, False discovery as the ratio

of the number of detectable true positives with false sign

and false positives, over the total number of significant

calls made.

The offset-covariate analysis followed the procedure in

[25]. For resampling analysis, samples from each experi-

mental group (with atleast 15 samples) were split in half

randomly to construct two artificial groups. Normaliza-

tion factors from each method were then used to perform

differential abundance analysis, and the total number

of differentially abundant calls were recorded. The pro-

cedure was repeated for ten iterations for each group,

and the results were averaged across 41 experimental

groups. Those samples for which Scran fails to reconstruct

normalization scales were discarded from differential

abundance analyses to avoid any power differences while

testing. The normalization scales however, were obtained

with all data for each method.

Fisher exact tests were used to perform functional

enrichment analyses for positively associated OTUs.

A Genus level functional enrichment analysis was first

performed by aggregating annotations from the FAPRO-

TAX1.1 database [51] at the Genus level. A more specific

OTU level functional enrichment analysis was devised

as follows. Because the Tara Oceans Kegg module

(KM) abundance data (downloaded from http://ocean-

microbiome.embl.de/data/TARA243.KO-module.profile.

release.gz) and the 16S reconstructions are obtained

from the same input DNA through whole metagenome

shotgun, the same compositional factors apply to both

datatypes. Each normalization approach’s compositional

factors for 16S data was used to rescale the KM relative

abundance data. This normalized KM data was used to

annotate each OTU by (normalized) KMs that Spearman

correlate at a value of atleast .75.

Software availability

Wrench is available from R/Bioconductor as an R package

at the URL: http://bioconductor.org/packages/Wrench.

Endnotes
1 the idea being that in the limit �g → ∞, feature-wise

ratios that reflect �−1
g , → 0

2 the random variable assumes a value of zero with

probability π and a positive value based on its specific

log-normal distribution with probability (1 − π)

Additional files

Additional file 1: Supplementary Note. Presents further discussions on

compositional bias, and supplementary results in context. (PDF 17,810 kb)

Additional file 2: Enrichment Analysis Results. The results of enrichment

analyses based on faprotax annotations and Kegg modules procedure

described in the Methods section is presented. Names in the sheets and

their descriptions are as follows: KM.POS.SIG.MES and KM.POS.SIG.DCM

show the Kegg module based enrichment analyses for positively

associated features in MES and DCM layers respectively.

FAPRO.POS.SIG.MES and FAPRO.POS.SIG.DCM show the results of faprotax

annotations based enrichment analyses for positively associated features in

MES and DCM layers respectively. (XLSX 45 kb)
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