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Abstract—The use of blade individual pitch control (IPC)
provides a means of alleviating the harmful turbine loads that
arise from the uneven and unsteady forcing from the oncoming
wind. Such IPC algorithms, which mainly target the blade loads
at specific frequencies, are designed to avoid excitations of other
turbine dynamics such as the tower. Nonetheless, these blade
and tower interactions can be exploited to estimate the tower
movement from the blade load sensors. As a consequence, the
aim of this paper is to analyse the observability properties of the
blade and tower model and based on these insights, an estimator
design is proposed to reconstruct the tower motion from the
measurements of the flap-wise blade loads, that are typically
available to the IPC. The proposed estimation strategy offers
many immediate benefits, for example, the estimator obviates the
need for hardware sensor redundancy, and the estimated signals
can be used for control or fault monitoring purposes. We further
show results obtained from high-fidelity turbine simulations to
demonstrate the performance of the proposed estimator.

Index Terms—Estimator, Observer, Kalman filter, Individual
blade-pitch control,

I. INTRODUCTION

Large wind turbines often experience unsteady and inter-

mittent aerodynamic loads from the wind and such loads

inevitably cause fatigue damage to the turbine structures. To

attenuate such harmful loads on blades and rotor structures, an

increasing number of modern turbines employ individual pitch

control (IPC) strategies alongside the collective pitch control

(CPC). The role of the CPC is to regulate the rotor speed

in above-rated conditions by collectively adjusting the pitch

angle of each blade by the same amount [1]. The IPC provides

additional pitch demand signals, in response to measurements

of the flap-wise blade root bending moments [2]. As the size

of a wind turbine increases, couplings between the turbine

structures becomes more pronounced. Typically, and for rea-

sons of simplicity of implementation favoured by the industry,

IPCs are designed separately from a CPC and prudently to

avoid excitation of other turbine structure dynamics [3]–[6].

Nonetheless, the interactions between the turbine blades and

tower provide opportunities for an estimation problem in that

the tower motions can be reconstructed based on the blade

load measurements that are already available to the IPC.

However, systematic studies of the observability properties

of the wind turbine structural systems have been somewhat

neglected in the mainstream literature, albeit the use of estima-

tion strategies have been reported in many applications in wind

turbines. For example, wind speeds across the turbine rotor

were estimated based on an aerodynamic turbine structural

model [4], [7]. In addition, an observer was employed to

estimate the unknown system states for state-feedback con-

trol strategies [8]. Moreover, previous work [9] proposed a

method to estimate blade load based on sensors locating at

the non-rotating turbine structure. Nevertheless, analysis of the

observability of the structural turbine models provides useful

insights of how much information of the unknown dynamics

can be extracted from the available measurements. Thus, this

work is motivated to investigate the observability properties of

the tower estimation problem.

Typically, measurements of the flap-wise blade loads are

obtained from sensing devices that are located at the blade

root upon a rotating coordinate frame (e.g. [2]–[6]), whilst

the turbine tower fore-aft movements are upon a stationary

reference frame relative to the rotor. Thus, such periodically

time-varying nature of the turbine structural system makes

the observability study and estimator design non-trivial by the

substantial and mature linear time-invariant control theories.

Therefore, this work aims to bridge the gap by demonstrat-

ing the observability analysis of the periodic blade and tower

model. Subsequently, Coleman transformations are employed

for transforming the periodic system into a time-invariant

model and its observability is then studied. With these insights,

this work finally proposes an estimator design that can recon-

struct tower motions from the blade moment measurements.

There are significant benefits from an industrial perspective:

firstly, the virtual sensor obviates the need for more hardware

redundancy; secondly, the estimated tower movement signals

can be employed for supervisory and control purposes.

The remainder of this paper is structured as follows.

Section II describes the preliminaries on the observability

and periodic systems. Section III provides a background of

the blade and tower modelling. In Section IV, analysis of

observability of the modelled system and transformations of

the periodic system are presented. Subsequently, an estimator

for tower disturbance are designed in Section V. In Section VI,

the performance of the estimator is demonstrated using high-

fidelity wind turbine simulations. Finally, Section VII con-

cludes the paper with a summary and an overview of future

work.

Notation

Let R, C and Z denote the real and complex fields and and

set of integers, respectively, j :=
√
1 and let s ∈ C denote a

complex variable. The space R denotes the space of proper
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Fig. 1: An out-of-plane force F out
i,l is caused by the stream-

wise wind speed v0i,l on the shaded blade element at rl, fore-

aft tower ẋfa and rotational velocity ϕ̇fa.

real-rational transfer function matrices and ẋ represents the

time derivative of x. Let vT ∈ R
1×nv denote the transpose

of a vector v ∈ R
nv and V T ∈ R

ny×nz is the transpose of a

matrix V ∈ R
nz×ny . The identity matrix is denoted as I .

II. PRELIMINARIES ON OBSERVABILITY AND LINEAR

PERIODIC SYSTEMS

This section recalls a few definitions and theorems pertinent

to linear time-periodic systems.

Definition 2.1: (Linear time-periodic system). A linear

time-periodic system is described as follows:

ẋ(t) = A(t)x(t) +Bu(t), y(t) = Cx(t), (1)

with state x ∈ R
nx , input u ∈ R

nu , output y ∈ R
ny and

A(t) ∈ R
nx×nx is periodic with period T , namely A(t) :=

A(t+ T ).
Definition 2.2: (State transition matrix). There exists a ma-

trix Φ(t, t0) of (1) mapping states x(t0) at t0 to states x(t) at

t.

Theorem 2.1: [10]. The linear time-periodic system (1) is

asymptotically stable if and only if the eigenvalues of the state

transition Φ(T, 0) lie within the unit circle.

Definition 2.3: (Observability Gramian) The observability

Gramian of (1) are:

Wo(t0, tf) :=

∫ tf

t0

ΦT (t, t0)C
TCΦ(t, t0)dt. (2)

Theorem 2.2: [11] The system (1) is observable over the

time interval [t0, tf ] if and only if Wo(t0, tf) is positive

definite.

III. MODELLING OF BLADE AND TOWER DYNAMICS

This section gives a brief background of the blade and tower

model including their interactions and shows such a model is

asymptotically stable.

Typical aerodynamic interactions of a typical wind turbine

are depicted in Figure 1, where the shapes of the blades

along the span-wise locations are optimised accordingly for

maximising the power output. Thus, the wind forces are not

uniformly distributed on the blades and to model such forces,

blade element momentum theory is often adopted [12], where

the blade is divided to small length elements as shown in

Figure 1. Consider three turbine blades are identical, the out-

of-plane forces F out
i,l for each blade i ∈ {1, 2, 3} on the span-

wise element l ∈ {1, · · · , L} ⊂ Z is defined as follows:

F out
i,l (t) :=

dF out
i,l

dθ
θi(t) +

dF out
i,l

dv
vi,l(t), (3)

where θi(t) denotes the pitch angle of blade i and vi,l is

the stream-wise wind speed. The variations of out-of-plane

forces with respect to the pitch angle and wind speed are

represented as
dF out

i,l

dθ
∈ R and

dF out
i,l

dv
∈ R, where these values

are obtained under an uniform wind condition of 18 ms−1,

chosen because this value is near the centre of the range

of wind speeds covering the above-rated wind conditions.

Subsequently, Figure 1 revealed that the stream-wise wind

speed vi,l experienced by the blades are subjected to the

fore-aft velocity ẋfa and rotational velocity ϕ̇fa the tower-top,

defined as follows:

vi,l(t) := v0i,l(t)− ẋfa(t) + ϕ̇fa(t)rl sin
(

φi(t)
)

, (4)

where the free stream-wise wind speed is v0i,l . The azimuth

angle of each blade is denoted as [φ1(t), φ2(t), φ3(t)] =
[φ(t), φ(t) + 2π

3 , φ(t)] and φ(t) is defined as the angle of the

first blade from the horizontal yaw axis. This work implicitly

assumes the tower is a prismatic beam so that the ratio between

rotation and displacement is 2
3h where h ∈ R is the height of

the tower (e.g. [4], [3]). Thus, the fore-aft rotational velocity

of the tower-top can be approximated as ϕ̇fa(t) ≈ 2
3h ẋfa(t).

Assuming the wind forces on the turbine hub are negligible,
the aerodynamic thrust Fa on the tower-top and flap-wise blade
moments Mai acting on the blades are defined as follows:

Fa(t) :=

3∑

i=1

L∑

l=0

F
out
i,l (t), (5)

Mai(t) :=

L∑

l=0

F
out
i,l (t)rl (6)

where rl denotes the blade length between the blade root to
the blade element l as shown in Figure 1. Substituting (3) into
(5) yields:

Fa(t) :=
dFa

dθ
θ̄(t) + F

d
a (t)− kFxẋfa(t), (7a)

Mai(t) :=
dMa

dθ
θi(t) +M

d
i (t)− kMxẋfa(t)

+ kMϕẋfa(t) sin
(
φi(t)

)
(7b)

where θ̄(t) := 1
3

(

θ1(t) + θ2(t) + θ3(t)
)

is the collective pitch
angle and the remaining variables are described by:

dFa

dθ
:=

3∑

i=1

L∑

l=0

dF out
i,l

dθ
, F

d
a (t) :=

3∑

i=1

L∑

l=0

dF out
i,l

dv
v0i,l(t), (7c)

dMa

dθ
:=

L∑

l=0

dF out
i,l

dθ
rl, M

d
i (t) :=

L∑

l=0

dF out
i,l

dv
rlv0i,l(t) (7d)

kFx :=

3∑

i=1

L∑

l=0

dF out
i,l

dv
, kMx :=

L∑

l=0

dF out
i,l

dv
rl, kMϕ :=

2

3h
kMx.

(7e)

Notice that the wind-induced thrust F d
a is typically the

averaged force across the rotor, thus, it can be expressed

in terms of the averaged wind-induced blade disturbance
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M̄d(t) := 1
3

(

Md
1 (t)+Md

2 (t)+Md
3 (t)

)

, as F d
t (t) = M̄(t)r−1

eff ,

where reff :=
∑L

l=0 rl ∈ R.
Consequently, the dynamics of the flap-wise blade root

bending moments Mi for blade i and fore-aft motion of the
tower-top ẋfa can be modelled as follows (e.g. [3], [4]):

M̈i(t) + 2ζbωbṀi(t) + ω
2
bMi(t) = ω

2
bMai(t), (8a)

ẍfa(t) + 2ζtωtẋfa(t) + ω
2
t xfa(t) = ω

2
t

(
Fa(t) +

2

3h
Mtilt(t)

)
,

(8b)

where ζb, ζt ∈ R denote the damping ratio of the blade and

tower, whilst ωb, ωt ∈ R represent the natural frequency of

the blade and tower. The tilt moment of rotor is defined as

Mtilt(t) :=
∑3

i=1 Mi(t) sin(φi(t)).
The state-space representation of (8) can be formulated as

follows:

ẋ(t) = A(t)x(t) +Bu(t) +Bdd(t),

y(t) = Cx(t), (9a)

with

x(t) =
[
Ṁ(t) M(t) ẋfa(t) xfa(t)

]T
∈ R

nx , (9b)

u(t) =
[
θ1(t) θ2(t) θ3(t)

]T
∈ R

nu , (9c)

d(t) =
[
Md

1 Md
2 Md

3

]T
∈ R

nd , (9d)

y(t) = M(t) ∈ R
ny , (9e)

A(t) =






−2ζbωbI −ω2
bI −kMx1+ kMϕS(φ) 0

I 0 0 0
0 2

3h
S(φ)T −2ζtωt − kFxω

2
t −ω2

t

0 0 1 0




 ,

(9f)

B =







ω2
b
dMa

dθ
I

0
ω2
t
1
3

dFa

dθ
1
T

0






, Bd =






ω2
bI
0

ω2
t
1
3
r−1
eff 1

T

0




 , (9g)

C =
[
0 I 0 0

]
, (9h)

where M(t) := [M1(t),M2(t),M3(t)]
T , S(φ) := [sin(φ(t)),

sin(φ(t)+ 2π
3 ), sin(φ(t)+ 4π

3 ]T , 1 := [1, 1, 1]T and I ∈ R
3×3

is an identity matrix. Notice that φ(t) := ω(t)t, where ω(t) is

the rotor speed.
Remark 1: An implicit assumption in the linear system (9)

is that the rotor operates at a rated speed ω(t) = ω0 in the

above-rated wind conditions, as that implies φ(t) := ω0t.

Thus, the system (9) is a linear periodic system with the period

of T = 2π
ω0

.
Lemma 3.1: Under an assumption of a fixed rotor speed

ω(t) = ω0, the linear periodic system (9) is asymptotically

stable.
Proof: Given that the system (9) is a linear periodic sys-

tem, from Theorem 2.1, direct numerical integration of (9) [13]

showed that the eigenvalues of Φ(T, 0) of (9) are all within

the unit circle. Thus, the system (9) is asymptotically stable.

IV. ANALYSIS OF THE SYSTEM OBSERVABILITY

This section examines the observability properties of the

linear system (9). Subsequently, transformations are introduced

which transform the linear time-varying system into a time-

invariant system, for which a substantial body of mature

estimation theory can immediately brought to bear upon the

design of tower disturbance estimator.

A. Observability of the periodic system

Lemma 4.1: Assume a constant rotor speed ω(t) = ω0,

the linear periodic system (9) is observable over the interval

[t0, tf ].

Proof: Given that system (9) is asymptotically stable as

proved in Lemma 3.1, to examine the observability of (9), from

Theorem 2.2, the observability Gramian Wo(t0, tf) of (9):

W0(t0, tf) =

∫ tf

t0

ΦT (t, t0)C
TCTΦ(t, t0)dt, (10)

needs to be positive definite. However, finding the analytical
expression of Φ(t, t0) and W0(t0, tf) is not trivial for time-
varying systems like (9). Nonetheless, there is a theorem
proposed by [14] that can examine the observability without
computing the state transition. Assume A(t) ∈ R

nx×nx and
C ∈ R

ny×nx are q−1 and q times continuously differentiable,
respectively, and consider a matrix defined as follows:

N(t) = [N0(t), · · · , Nq(t)]
T
, (11a)

where

N0(t) = C, (11b)

Nm+1 = NmA(t) + Ṅm, m = 1, 2, · · · , q, (11c)

If N(t), where t ∈ [t0, tf ], has rank nx, then W0(t0, tf) is
positive definite [14]. Consider q = 3, N(t) becomes:

N(t) =







0 I 0 0
I 0 0 0

−2ωbζbI −ω2
bI N (3,3)(t) 0

(4ω2
bζ

2
b − ω2

b)I N (4,2)(t) N (4,3)(t) N (4,4)(t)






,

(12a)

where

N
(3,3)(t) = kMϕ(S)(ω0t)− kMx1, (12b)

N
(4,2)(t) = 2ζbω

3
bI −

3

2h
S(φ(t))

(
kMx1− kMϕS

T (φ(t))
)
,

(12c)

N
(4,3)(t) =

(
kFxω

2
t + 2ζtωt + 2ζbωb

)
×

(
kMx1− kMϕS(φ(t))

)
+ kMϕṠ(φ(t)), (12d)

N
(4,4)(t) = ω

2
t (kMx1− kMϕS(φ(t))(ω0t)). (12e)

It is clear that N(t) has rank nx over t ∈ [t0, tf ]. Thus, the

system (9) is observable.

Lemma 4.1 indicates that use of observers can reconstruct

the tower disturbance based on the periodic model (9). How-

ever, it is non-trivial to design an observer based on periodic

models, the periodic model (9) can be transformed into a time-

invariant model, as discussed in the following section.

B. Transformations of the periodic systems

The measurements of the flap-wise blade root bending mo-

ments are obtained upon a rotating frame of reference, whilst

the tower fore-aft motion is on a fixed co-ordinate frame.

Thus, the Coleman transformations [15] can be employed to

accommodate the mixed reference frame nature.
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The typical Coleman transform Tcm(φ(t)) ∈ R
3×3 is

defined as follows [15]:




M̄(t)
Mtilt(t)
Myaw(t)



 :=
2

3





1 1 1
sin(φ(t)) sin

(
φ(t) + 2π

3

)
sin

(
φ(t) + 4π

3

)

cos(φ(t)) cos
(
φ(t) + 2π

3

)
cos

(
φ(t) + 4π

3

)





︸ ︷︷ ︸

Tcm(φ(t))

×





M1(t)
M2(t)
M3(t)



 . (13a)

where Mtilt,Myaw denote the collective tilt and yaw referred
flap-wise blade root bending moments, respectively. The in-
verse Coleman transform T inv

cm (φ(t)) ∈ R
3×3 is as follows:





Ma1(t)
Ma2(t)
Ma3(t)



 :=





1 sin(φ(t)) cos(φ(t))
1 sin

(
φ(t) + 2π

3

)
cos

(
φ(t) + 2π

3

)

1 sin
(
φ(t) + 4π

3

)
cos

(
φ(t) + 4π

3

)





︸ ︷︷ ︸

T inv
cm (φ(t))





M̄a(t)
Matilt(t)
Mayaw (t)



 .

(13b)

where M̄a,Matilt ,Mayaw represent the collective, tilt and yaw

referred aerodynamic forces upon a non-rotating reference

frame, respectively.
Lemma 4.2: Under a given fixed rotor speed ω0 and Cole-

man transformations (13), the linear periodic (9) can be
transformed into the following time-invariant form:
[

ξ̇(t)
ẋt(t)

]

=

[
Aξ Bξt

BtM At

]

︸ ︷︷ ︸

Az

[
ξ(t)
xt(t)

]

︸ ︷︷ ︸

z(t)

+

[
Bξθ

Btθ

]

︸ ︷︷ ︸

Bz

ucm(t) +

[
Bξd

Btd

]

︸ ︷︷ ︸

Bdz

dcm(t),

ycm(t) =
[
Cξ 0

]

︸ ︷︷ ︸

Cz

z(t) (14a)

with z ∈ R
nz the referred measurements of flap-wise blade

moments, pitch angle signals and wind-induced blade distur-
bance upon a non-rotating coordinate frame are defined as
follows:

ycm(t) =
[
M̄(t),Mtilt(t),Myaw(t)

]T
∈ R

ny (14b)

ucm(t) =
[
θ̄(t), θtilt(t), θyaw(t)

]T
∈ R

nu (14c)

dcm(t) =
[
M̄d(t),Md

tilt(t), M
d
yaw(t)

]T
∈ R

nd (14d)

where Az ∈ R
nz×nz is Hurwitz. The matrices Az, Bz, Bdz

, Cz

are obtained from (19), (20), (21) and (22).
Proof: The proof uses the following properties:

L[u(t) sinφ(t)] = L

[

u(t)
j(e−jω0t − ejω0t)

2

]

,

=
j

2
(u(s+ jω0)− u(s− jω0)), (15a)

L [u(t) cosφ(t)] = L

[

u(t)
ejω0t + e−jω0t

2

]

=
1

2
(u(s− jω0) + u(s+ jω0)) (15b)

where u(t) is an arbitrary input signal, u(s) is
its Laplace transform and φ(t) = ω0t is assumed. Substituting
identities (15a) into Coleman transformations (13) yields:




M̄(s)
Mtilt(s)
Myaw(s)



 :=
2

3
C

−





M1(s− jω0)
M2(s− jω0)
M3(s− jω0)



+
2

3
C+





M1(s+ jω0)
M2(s+ jω0)
M3(s+ jω0)



 ,

(16a)




Ma1(s)
Ma2(s)
Ma3(s)



 := C
T
−





M̄a(s)
Matilt(s− jω0)
Mayaw (s− jω0)



+ C
T
+





M̄a(s)
Matilt(s+ jω0)
Mayaw (s+ jω0)



 ,

(16b)

where C
−

and C+ are defined as:

C
−
:=

1

2





2 0 0
0 1 −j
0 j 1









1
2

1
2

1
2

sin(0) sin( 2π
3
) sin( 4π

3
)

cos(0) cos( 2π
3
) cos( 4π

3
)



 , (16c)

C+ :=
1

2





2 0 0
0 1 j
0 −j 1









1
2

1
2

1
2

sin(0) sin( 2π
3
) sin( 4π

3
)

cos(0) cos( 2π
3
) cos( 4π

3
)



 . (16d)

Consider the blade model upon a rotating frame of refer-

ence (8a) and its Laplace transform:

Mi(s) = G(s)Mai(s), (17)

where G(s) := Cb(sI −Ab)
−1Bb, with Ab ∈ R

nb×nb , Bb ∈
R

nb , Cb ∈ R
1×nb . Subsequently, substituting the model (17)

into (16) yields the following Coleman-transformed model
upon a fixed co-ordinate frame:




M̄(s)
Mtilt(s)
Myaw(s)



 :=





G(s) 0 0
0 G+(s) G

−
(s)

0 −G
−
(s) G+(s)









M̄a(s)
Matilt(s)
Mayaw (s)



 (18a)

where G+, G−
∈ R are real and proper transfer functions defined

as follows:

G+(s) :=
G(s+ jω0) +G(s− jω0)

2
, (18b)

G
−
(s) := j

G(s+ jω0)−G(s− jω0)

2
(18c)

and G(s + jω0) := Cb(sI − (Ab − jω0I))
−1Bb and G(s −

jω0) := Cb(sI − (Ab + jω0I))
−1Bb. Subsequently, the

Coleman transformed model (18) can be expressed in a state-

space form, with state xcm ∈ C
5nb , as follows:

ẋcm(t) = Acmxcm(t) +BcmMacm(t), ycm(t) = Ccmxcm(t),
(19a)

where Acm ∈ C
5nb×5nb , Bcm ∈ C

5nb×3, Ccm ∈ R
3×5nb are

defined as follows:

Acm =







Ab 0 0 0 0
0 Ab − jω0I 0 0 0
0 0 Ab + jω0I 0 0
0 0 0 Ab − jω0I 0
0 0 0 0 Ab + jω0I







,

(19b)

Bcm =








Bb 0 0
0 Bb jBb

0 Bb −jBb

0 −jBb Bb

0 jBb Bb








, C
T
cm =








Cb 0 0
0 1

2
Cb 0

0 1
2
Cb 0

0 0 1
2
Cb

0 0 1
2
Cb







,

(19c)

and Macm
can be obtained by substituting Coleman trans-

form (13) into (7b):

Macm
(t) =

dMa

dθ
ucm(t) + dcm(t) + kMxcm

ẋfa(t), (19d)

where kMxcm
=

[

−kMx, kMϕ, kMϕ

]T
. Equivalently, let a

similarity transformation matrix T ∈ C
5nb×5nb , such that

xcm ∈ C
5nb is mapped into ξ = Txcm ∈ R

5nb , define as

follows:

T :=





1 0 0
0 Tc 0
0 0 Tc



 , Tc =
1

2

[

(1 + j) (1− j)
(1− j) (1 + j)

]

(20)



5

The equivalent model of (19) with the real-valued state ξ
becomes:

ξ̇(t) = Aξξ(t) +BξMacm(t), ycm(t) = Cξξ(t), (21a)

where

Aξ = TAcmT
−1 =








Ab 0 0 0
0 Ab −ω0I 0 0
0 ω0I Ab 0 0
0 0 0 Ab −ω0I
0 0 0 ω0I Ab







, (21b)

Bξ = TBcm =








Bb 0 0
0 Bb Bb

0 Bb −Bb

0 −Bb Bb

0 Bb Bb







, Cξ = CcmT

−1 = Ccm.

(21c)

Let the tower dynamics model (8b) in state-space form be:

[
ẍfa(t)
ẋfa(t)

]

=

[
−2ωtζt −ω2

t

1 0

]

︸ ︷︷ ︸

At

[
ẋfa(t)
xfa(t)

]

︸ ︷︷ ︸

xt(t)

+

[
dFa

dθ
E1

0

]

︸ ︷︷ ︸

Btθ

ucm(t)

+

[
dMa

dv
r−1
eff E1

0

]

︸ ︷︷ ︸

Btd

dcm(t) +

[
3
2h

C
(2,:)
ξ

0

]

︸ ︷︷ ︸

Btξ

ξ(t). (22)

where E1 = [ω2
t , 0, 0] and C

(2,:)
ξ denotes the second row of

Cξ. Finally, augmenting (21) with the tower dynamics (22)

yields (14).

Lemma 4.3: The linear time-invariant system (14) is ob-

servable.

Proof: Given that the model (14) is linear time-invariant,

the observability proof can be established if the observability

matrix has full rank. The observability matrix O of (14) is

defined as follows:

O :=
[

Cz CzAz · · · CzA
nz−1
z

]T
, (23)

which has rank nz . Thus, the system (14) is observable.

Results from Lemma 4.2 and 4.3 indicate the time-invariant

form of the linear blade and tower model (9) is observable,

that lay the foundation for observer design in the following

section.

V. ESTIMATION AND CONTROL FOR TOWER VIBRATIONS

This section presents an estimator design. Figure 2 depicts

the architecture of the proposed system, where the estimator

reconstructs the fore-aft velocity of the tower-top ˆ̇xfa based

on the blade moment measurements M̄, M̃tilt, M̃yaw and pitch

signals θ̄, θ̃tilt, θ̃yaw upon a fixed co-ordinate frame.

The estimator employed in this work is an unknown in-

put disturbance observer [16] that uses the modelled sys-

tem (14) augmented with a wind-induced disturbance model.

For brevity, a constant wind-induced disturbance model is

assumed (e.g. [4]):

ḋcm(t) = 0, (24)

Wind
Turbine

CPC & IPC

Coleman
transform

Estimator

ω(t)
M1(t)
M2(t)
M3(t)

θ1(t)

θ2(t)

θ3(t)

M̄,Mtilt,Myaw(t)

θ̄, θtilt, θyaw(t)
ˆ̇xfa(t)

Proposed estimation system

Fig. 2: Schematic of the proposed estimator.

Thus, the augmented model is described as follows:
[

ˆ̇z(t)
ˆ̇
dcm(t)

]

=

[

Az Bdz

0 0

] [

ẑ(t)

d̂cm(t)

]

+

[

Bz

0

]

ucm(t)

+ L(ycm(t)−
[

Cz 0
]

[

ẑ(t)

d̂cm(t)

]

), (25)

where the hat symbol denotes estimate and L represents

estimator gain, which can be optimised by Kalman filtering

theory [17].

Theorem 5.1: The augmented system (25) is detectable.

Proof: The proof is based on that the pair {Az, Cz} is

observable and the following conditions [18] :

rank

[

I −Az Bbz

Cz 0

]

= nz + nd (26)

Remark 2: Results from Theorem 5.1 is equivalently to say

that the fore-aft motion of the tower-top can be reconstructed

based on the referred blade moments upon a fixed coordinate.

VI. NUMERICAL RESULTS AND DISCUSSION

This section presents simulation results to demonstrate the

performance of the proposed estimator and estimation-based

controller for the tower fore-aft motion. The turbine model

employed in this work is the NREL 5MW turbine [19] and the

simulations are carried out on FAST [20]. The high-fidelity tur-

bine model is of much greater complexity than the model (25)

employed in the estimator and with the exception of the yaw

axis, all degrees-of-freedom were enabled, including flap-wise

and edge-wise blade modes, in addition to the tower and shaft

dynamics. Simulations in this study were conducted under a

turbulent wind field with a mean wind speed 18 ms−1 and

turbulence intensity of 16%, generated from TurbSim [21],

chosen since this value is near the centre of the range of wind

speeds covering above-rated wind conditions.

A. Performance of estimator

The performance was compared by examining the estimated

signals of the tower fore-aft velocity and the actual mea-

surements from the simulation turbine. Figure 3(a) illustrates
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(a) Estimate ˆ̇xfa(t) (dash line) and actual measurement ẋfa(t)
(solid line) of the tower-top velocity signal.
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(b) The error between the estimate and actual signals of tower-
top fore-aft velocity.

Fig. 3: Time histories of wind speed at the hub height, estimate

and actual measurement of tower-top velocity and error.
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Fig. 4: Histogram of the error between the estimate and actual

signals of tower-top fore-aft velocity. Bar represents the error

samples and solid line shows a Gaussian distribution.

the time histories of the estimates alongside actual signals

of the tower-top fore-aft velocity. It can be seen that the

estimate matches the actual signal well across the above-rated

wind conditions. Nonetheless, there exist slight differences in

magnitude as shown in Figure 3(a). Such small discrepancies

arise from the model uncertainties in the blade model and

disturbance models. Nevertheless, Figure 3(b) reveals the time

series of the error between these two signals e(t) where the

maximum error is no larger than ±0.06ms−1. Interestingly, by

running the simulation long enough, the error has a Gaussian

distribution with mean value of 0ms−1 and standard deviation

of 0.033ms−1, as evident by the histogram in Figure 4.

VII. CONCLUSION

This paper has presented analysis on observability of the

periodic blade and tower system and the Coleman transformed

time-invariant system. Based on these insights, this current

work subsequently proposed an estimator for reconstructing

the tower-top motion based on measurements of the blade

that are already accessible to the IPC. Analytical and nu-

merical results are presented that show the estimator based

on a Coleman-transformed blade model can perform good

and reliable estimations. Future work will look to extend

the concepts of tower disturbance estimation to an offshore

floating wind turbine.
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