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ABSTRACT This study attempts to analyze and design multi-agent systems in the spatial frequency domain

and demonstrates that the spatial frequency-based approach is useful for distributed spatial filtering in

sensor networks. First, we take the consensus of multi-agent systems (i.e., letting the states of all agents

converge to an identical value) as an example and analyze it using the concept of spatial frequencies. We

then show that consensus by typical controllers corresponds to lowpass filtering in the spatial frequency

domain. This demonstrates that spatial frequencies can characterize the behavior of multi-agent systems.

Second, we present a controller design method in the spatial frequency domain. The designed controllers

provide the feedback system with a desired spatial frequency characteristic given in advance. We further

derive a sufficient condition for the spatial frequency characteristic to ensure that the designed controllers

are distributed. Finally, the effectiveness and applicability of our design method are demonstrated through

an example of distributed denoising in a sensor network.

INDEX TERMS Distributed control, graph signal processing, multi-agent systems, sensor networks, spatial

frequency domain.

I. INTRODUCTION

The control of multi-agent systems has been an active

research topic in the systems and control field. This is because

multi-agent control is necessary for realizing a variety of

modern systems, such as unmanned aerial vehicles, sensor

networks, and smart grids [1]. In fact, these systems consist of

numerous agents (corresponding to subsystems) and require

control techniques for achieving coordination among them.

To date, multi-agent control has been mainly studied in

the time [2]–[8] or frequency [9]–[11] domain, but control

in the spatial frequency domain will be important in the

future from the viewpoint of applications. An example is

noise mitigation in sensor networks. When measuring the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianxiang Xi .

temperature at different locations using a sensor network,

as shown in Fig. 1, temperature generally has a low spatial

frequency because its values remain similar at spatially close

locations. In contrast, the noise has a high spatial frequency

because its magnitude does not depend on sensor locations,

as shown in Fig. 1. Hence, we can mitigate noise through

spatial lowpass filtering. As illustrated by this example, there

are applications in which we should use signal characteristics

in the spatial frequency domain rather than those in the time

or frequency domain.

This study employs graph signal processing [12]–[14] to

introduce the concept of spatial frequencies to multi-agent

control. Graph signal processing treats graph signals where

the signal values are located on the vertices of graphs, and

the relations between them are given by the edges of the

graphs, as shown in Fig. 2. An example of a graph signal is
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FIGURE 1. Sensor network for measuring temperature at different
locations.

FIGURE 2. Graph signal comprising values (nodes) and their relation
(edges).

the measurements from a sensor network, where the sensors

and connections between them form the vertices and edges

of a graph, respectively. The reason for employing graph

signal processing is that it provides a spatial frequency-based

representation of graph signals by the Fourier transform. We

wish to use this technique to describe the behavior of systems

based on spatial frequencies.

This study aims to establish a framework for the spatial

frequency-based analysis and design of multi-agent systems

and to verify its effectiveness and applicability. Our main

contributions are threefold. First, we focus on the consensus

[15] of multi-agent systems and analyze it from the viewpoint

of spatial frequencies using the Fourier transform of graph

signals. The consensus indicates that the states of all agents

converge to an identical value, which is fundamental to multi-

agent systems. We show that consensus by typical controllers

can be considered as the spatial lowpass filtering of agent

states, which demonstrates that a spatial frequency-based

approach is available for multi-agent systems. Second, we

present a controller design method in the spatial frequency

domain. The proposed method provides controllers by which

the feedback system has a desired spatial frequency char-

acteristic known in advance. Further, we derive a sufficient

condition for the spatial frequency characteristic under which

the resulting controllers are distributed. Although we cannot

always obtain distributed controllers by directly using the

proposed method, the resulting controllers are ensured to be

distributed if this condition is satisfied. Third, to demonstrate

the effectiveness and applicability of the proposed design

method, we present its application to distributed denoising in

a sensor network. The results show that by considering spatial

frequencies, the proposed method can effectively mitigate the

measurement noise in the sensor network.

Before ending this section, we provide the following three

remarks.

First, we comment on differences from related works.

Works on graph signal processing: Consensus by graph

signal processing was studied in [16], [17]. They showed

that the consensus is achieved by the lowpass filtering of a

graph signal based on the relation between the initial and final

agent states. In contrast, we show that consensus by typical

controllers corresponds to the iterative lowpass filtering of a

graph signal by focusing on the behavior of agents at each

timestep. Meanwhile, [16], [17] focused only on achieving

consensus and did not consider spatial frequencies, whereas

we develop a method to design controllers in the spatial fre-

quency domain and show its application to a sensor network.

In addition, there are other related works [18], [19]. Shuman

et al. [18] proposed a method to encode filters for graph sig-

nals into agents using Chebyshev polynomial approximation.

However, this method is not directly applicable to our prob-

lem. As a typical setting in multi-agent control, we assume

that each agent can only obtain information on the differences

between its state and the states of neighboring agents and that

the controllers of agents are memoryless, but such practical

restrictions were not imposed in [18]. Segarra et al. [19] pro-

posed a method to encode a filter for achieving a given linear

transformation between two graph signals into agents. How-

ever, their work focused only on obtaining desired signal val-

ues given in advance, and thus, the results cannot be applied to

spatial filtering where desired signal values are not explicitly

provided.

Works on multi-agent control: Various studies on multi-

agent control have been conducted to date. Recent stud-

ies include [20]–[24]. Zheng et al. [20] addressed a con-

sensus problem for hybrid multi-agent systems composed

of both agents with continuous-time dynamics and those

with discrete-time dynamics. Wang and Ishii [21] consid-

ered resilient consensus through event-based communica-

tion for multi-agent systems with adversarial agents. Bow-

man et al. [22] proposed a self-triggered control method for

cloud communication-based consensus. Besides consensus,

Wang et al. [23] studied robust formation control for time-

varying desired configurations in the presence of external

disturbances. Liu et al. [24] also proposed a robust formation

control method for a group of nonlinear and underactuated

quadrotors subject to external disturbances. These studies,

however, did not consider spatial frequencies for multi-agent

systems.

Second, we would like to emphasize that this study does

not aim to solve a consensus problem using graph signal pro-

cessing. Our aim is to develop a framework for the analysis

and design of multi-agent systems in the spatial frequency

domain. As a result, the proposed controller design method

is available not only for consensus but also for other tasks

including distributed spatial filtering where the desired states

of agents are generally different from each other, unlike in

consensus.

Finally, this study is based on our preliminary results [25]

presented at a conference, but provides the following novel

contributions: (i) this study focuses on the spatial frequency-

based analysis and design of multi-agent systems as an
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extension of [25] where graph signal processing was only

applied to multi-agent control; (ii) this paper provides com-

plete explanations and rigorous proofs of the main results,

omitted in [25]; (iii) we present a controller design method

in the spatial frequency domain; (iv) to demonstrate the

effectiveness and applicability of our design method, we

show its application to distributed spatial filtering in a sensor

network.

Notation: Throughout this paper, we use the following

notation. Let R and R+ denote the field of real numbers

and the set of positive real numbers, respectively. We denote

by I the identity matrix. For the numbers x1, x2, . . . , xn ∈

R, diag(x1, x2, . . . , xn) represents the diagonal matrix whose

i-th entry on the diagonal is xi; we further let [xi]i∈I :=

[xi1 xi2 · · · xim ]
⊤ ∈ R

m, where I := {i1, i2, . . . , im} ⊆

{1, 2, . . . , n}. An example of the latter is [xi]i∈I := [x1 x3]
⊤

for x1, x2, . . . , x5 and I := {1, 3}. We use |S| to represent the

cardinality of the set S. Moreover, for the graph Laplacian

L of an undirected graph, the following properties [26] are

employed.

(L1) The matrix L is positive-semidefinite; that is, its

eigenvalues are nonnegative real numbers. More-

over, all the eigenvalues are smaller than or equal

to 2dmax for the maximum degree dmax ∈ R+ of the

graph.

(L2) If the graph is connected, L has only one zero

eigenvalue.

II. GRAPH SIGNAL PROCESSING

In this section, an overview of graph signal processing is

provided.

Consider the undirected graph G = (V,E) with n ver-

tices, where V := {1, 2, . . . , n} is the vertex set and E ⊂

V × V is the edge set. Then, a graph signal is defined as

the pair of G and s, where s ∈ R
n is the collection of

signal values located on all vertices. For example, we can

represent the graph signal shown in Fig. 2 by G with V :=

{1, 2, 3, 4, 5} and E := {(1, 2), (2, 3), (2, 4), (3, 4), (3, 5)},

and s := [6.7 1.2 2.6 9.3 5.1]⊤.

The Fourier transform of graph signals is referred to as the

graph Fourier transform, which is described below. Consider

the graph signal (G, s). Let L ∈ R
n×n be the graph Laplacian

of G and λi (i ∈ V) be the eigenvalue of L whose modulus is

the i-th smallest. Then, according to [13], [14], we define the

graph Fourier transform f ∈ R
n as

f (λ1, λ2, . . . , λn) := V⊤s, (1)

where V ∈ R
n×n is a matrix that satisfies V⊤ = V−1 and

V⊤LV = 3 (2)

with 3 := diag(λ1, λ2, . . . , λn). Note that the existence of

such a V is guaranteed, because the matrix L is symmetric

from property (L1) in Section I. The graph Fourier trans-

form f (λ1, λ2, . . . , λn) in (1) converts the graph signal (G, s)

into one in the spatial frequency domain. More precisely,

FIGURE 3. Two graph signals with (a) same graph but (b) different signal
values at vertex i .

FIGURE 4. Graph Fourier transforms of graph signals shown in Fig. 3.

it represents the magnitude of the differences between signal

values on the neighboring vertices of G. The eigenvalue λi
(i ∈ V) indicates the magnitude of the spatial frequency and

the component of λi is given by fi, i.e., the i-th entry of the

vector f , where we note that λ1, λ2, . . . , λn are nonnegative

real numbers because of (L1). Meanwhile, focusing on the

relation V⊤ = V−1, we define the inverse graph Fourier

transform as

s = Vf (λ1, λ2, . . . , λn). (3)

Let us illustrate the graph Fourier transform through an

example. Consider the two graph signals depicted in Fig. 3,

where si is the i-th entry of the vector s. We show the graph

Fourier transforms of these signals in Fig. 4, where, similar

to Fig. 3 (b), the triangles and circles are used to represent

the two signals. Noting that the vertices whose indices are

close to each other are connected on the graph in Fig. 3 (a),

we can observe from Fig. 3 (b) that the spatial frequency

of the graph signal indicated by the triangles is high com-

pared to the other signal. By contrast, we can observe from

Fig. 4 that this graph signal has large components in the high

spatial frequency range compared to the other signal. Hence,

it is demonstrated that a spatial frequency-based representa-

tion of graph signals can be obtained by the graph Fourier

transform.
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For extracting specific frequency components from graph

signals, such as denoising, we use the filtering in the spatial

frequency domain. A filter is given by

s̃ = Vdiag(h(λ1), h(λ2), . . . , h(λn))V
⊤s, (4)

where s̃ ∈ R
n is the vector containing the signal values

of a filtered graph signal and h : R+ ∪ {0} → R is

a filter function. As an example of the filter function, if

h is chosen such that |h(λi)| decreases as i increases, a

lowpass filter is obtained because higher frequency compo-

nents decrease. Equations (1), (3), and (4) imply that spatial

frequency domain filtering comprises the following three

steps: (i) obtaining the graph Fourier transform f of a given

graph signal, (ii) multiplying the resulting f by the matrix

diag(h(λ1), h(λ2), . . . , h(λn)) given by the filter function, and

(iii) performing the inverse graph Fourier transform.

III. ANALYSIS OF MULTI-AGENT SYSTEMS IN SPATIAL

FREQUENCY DOMAIN: CASE OF CONSENSUS

In this section, we focus on consensus, which is fundamental

to multi-agent systems, and analyze it from the viewpoint of

spatial frequencies using graph signal processing techniques.

A. MULTI-AGENT CONSENSUS

Consider the multi-agent system 6 with n agents, illustrated

in Fig. 5. Agent i (i ∈ {1, 2, . . . , n}) is modeled as

xi(t + 1) = xi(t) + ui(t), (5)

where xi(t) ∈ R and ui(t) ∈ R are the agent state and the

control input, respectively. We suppose that agent i can obtain

information on the differences between its own state and the

states of neighboring agents over the network, i.e., [xj(t) −

xi(t)]j∈Ni ∈ R
|Ni| where Ni ⊂ {1, 2, . . . , n} is the index set

of the neighbors (see Section I for the definition of [xj(t) −

xi(t)]j∈Ni ). The network is modeled as the undirected graph

G = (V,E) where the vertex set V represents the agents and

the edge set E ⊂ V × V represents the connections between

them. Moreover, x(t) ∈ R
n denotes all the agent states, that

is, x(t) := [x1(t) x2(t) · · · xn(t)]
⊤.

Consensus is defined as the convergence of every agent

state to an identical value:

lim
t→∞

(xi(t) − xj(t)) = 0 ∀(i, j) ∈ V × V. (6)

Consider the following local controller Ki for agent i (i ∈ V):

Ki : ui(t) = k
∑

j∈Ni

(xj(t) − xi(t)), (7)

where k ∈ R+ is the gain of the controller. Then, according to

[26], if the following two conditions hold, (6) holds for every

x(0) ∈ R
n.

(C1) The graph G is connected.

(C2) For the maximum degree dmax ∈ R+ of G, the gain

k satisfies k < 1/dmax.

FIGURE 5. Multi-agent system 6.

FIGURE 6. Analysis in spatial frequency domain.

B. ANALYSIS IN SPATIAL FREQUENCY DOMAIN

From the discussion in Section II, we notice that the pair of

the network topology G and the collective state x(t) can be

considered as a graph signal. This is because G and x(t) can

be considered as the graph that specifies the signal structure

and the collective signal value, respectively. Based on this

observation, we analyze consensus in the spatial frequency

domain. The concept of the analysis is illustrated in Fig. 6.

For timesteps t1 and t2 satisfying t1 < t2, we regard x(t1)

and x(t2) as s and s̃ in the spatial frequency domain filtering

(4), respectively. Then, we can consider that there is a relation

between the multi-agent system and the filtering (4) if there

exists a filter (i.e., a function h) such that the transformation

from x(t1) to x(t2) is equivalent to (4). By investigating this

filter, we can characterize consensus in the spatial frequency

domain.

Using (5) and (7), we can write the feedback system in

vector form:

x(t + 1) = (I − kL)x(t). (8)

Applying V⊤ = V−1 and (2) to (8) yields

x(t + 1) = (VV⊤ − kV3V⊤)x(t)

= V (I − k3)V⊤x(t)

= Vdiag(1 − kλ1, 1 − kλ2, . . . , 1 − kλn)V
⊤x(t).

(9)

In (9), we regard x(t), x(t+1), and 1−kλi (i ∈ V) as s, s̃, and

h(λi) (i ∈ V) in (4), respectively, which yields the following

theorem.

Theorem 1: Consider the multi-agent system 6 with the

local controllers K1,K2, . . . ,Kn given by (7). For the fre-

quency variable λ ∈ R+ ∪ {0}, let the filter function be of
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FIGURE 7. Network topology G.

the form h(λ) := 1− kλ. Then, the behavior of the system 6

is equivalent to filtering the graph signal (G, x(t)) using h(λ)

at each timestep t ∈ {0, 1, . . .}.

In this theorem, h(λ) := 1 − kλ provides a filter such

that nonzero frequency components decrease under condition

(C2) discussed in Section III-A. The proof is given as follows.

The filter function, h(λ) := 1 − kλ, implies

1 − kλ ≥ 1 − kλn

≥ 1 − 2kdmax

> 1 − 2

= −1

for every λ ∈ [0, λn], where k ∈ R+, (L1), and (C2) are used

to derive the first, second, and third relations, respectively.

Meanwhile, 1 > 1 − kλ holds for every λ ∈ (0, λn]

from k ∈ R+. Hence, we obtain |1 − kλ| < 1 for every

λ ∈ (0, λn], and the proof is complete. Regarding this as a

lowpass filter characteristic and considering Theorem 1, we

can conclude that consensus obtained from (7) corresponds

to the lowpass filtering of the graph signal (G, x(t)), i.e., the

spatial lowpass filtering of the agent states, at every timestep

t ∈ {0, 1, . . .}.

As an example, consider consensus for n := 8 and the

network topology G shown in Fig. 7. Let the local controllers

K1,K2, . . . ,K8 be given by (7) and k := 0.05. In this setting,

conditions (C1) and (C2) are satisfied. Fig. 8 shows the

time evolutions of the agent states x1(t), x2(t), . . . , x8(t) for

x(0) := [−9 6 − 7 8 − 3 9 − 8 4]⊤, where consensus

is achieved. Fig. 9 shows each agent state at the timesteps

t = 0, 8, and 80. We observe that high spatial frequency

components decrease with time.

Remark 1: The difficulty of the spatial frequency-based

analysis considered here concerns how the concept of spa-

tial frequencies should be introduced to the multi-agent sys-

tem 6. We overcome this difficulty by using the idea of

graph signal processing and associating the system 6 with

the filtering (4) in the spatial frequency domain as shown

in Fig. 6.

Remark 2: The results presented here not only provide the

characterization of consensus in the spatial frequency domain

but also imply that controllers of the form (7) are important

in the spatial frequency-based design. As shown in Fig. 6,

V⊤ and V appear in the spatial frequency domain filtering;

thus, all controllers do not provide feedback systems that

can be handled in our framework. However, as demonstrated

in this section, controllers of the form (7) provide feedback

systems that can be handled in the spatial frequency domain.

The results in the next section are based on this fact.

FIGURE 8. Time evolutions of agent states by (7).

FIGURE 9. Each agent state at t = 0 (circle), 8 (triangle), and 80 (square).

IV. CONTROLLER DESIGN IN SPATIAL FREQUENCY

DOMAIN

Next, taking consensus as an example, we present a controller

designmethod in the spatial frequency domain. The effective-

ness and applicability of our design method are demonstrated

through an example of distributed spatial filtering in a sensor

network.

A. PROBLEM FORMULATION

We again consider the multi-agent system 6 discussed in

Section III. Let the local controller Ki (i ∈ V) be given by

Ki : ui(t) = g([xj(t) − xi(t)]j∈Ni , t), (10)

where [xj(t) − xi(t)]j∈Ni , ui(t), and g : R|Ni| × {0, 1, . . .} →

R are the input, the output, and a function specifying the

controller, respectively.

Then, we address the following problem.

Problem 1: For the multi-agent system6, design the local

controllersK1,K2, . . . ,Kn (i.e., the function g) that satisfy (6)

for every x(0) ∈ R
n.

B. PROPOSED METHOD

To solve Problem 1 in the spatial frequency domain, we recall

Fig. 6. We suppose here t1 := 0 and t2 := ∞; that is, the

initial state x(0) and the final state x(∞) correspond to s and

s̃, respectively. Then, the multi-agent system 6 works as a

spatial filter for the graph signal (G, x(0)). Therefore, we can

achieve (6) by designing the local controllers K1,K2, . . . ,Kn
such that the resulting system6 works as a filter for achieving

consensus.

Based on this idea, we propose the following method to

design the local controllers K1,K2, . . . ,Kn.

(i) Select a filter (i.e., a function h) for achieving consen-

sus as the final state.
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(ii) Encode the selected filter intoK1,K2, . . . ,Kn such that

the relation between the initial and final states of the

resulting system 6 is equivalent to (4).

However, we cannot always encode a given filter into the local

controllers K1,K2, . . . ,Kn because only restricted informa-

tion (i.e., [xj(t) − xi(t)]j∈Ni ) is available to each local con-

troller, as shown in (10). How do we select the filter to obtain

the distributed controllers?

An answer is given by the following result.

Theorem 2: Consider the multi-agent system 6. Let the

filter function be given by

h(λ) := amλm + am−1λ
m−1 + · · · + a1λ + 1, (11)

where a1, a2, . . . , am ∈ R are the coefficients of the polyno-

mial with the degree m ∈ R+, and we assume that the roots

r1, r2, . . . , rm are real numbers. Further, let K1,K2, . . . ,Kn
be given by (10) and

g([xj(t) − xi(t)]j∈Ni , t) := k(t)
∑

j∈Ni

(xj(t) − xi(t)) (12)

with

k(t) :=







1

rt+1
if t ∈ {0, 1, . . . ,m− 1},

0 otherwise.

(13)

Then, the behavior of the system 6 is equivalent to filtering

the graph signal (G, x(0)) using h(λ).

Proof: It follows from (5), (10), (12), and (13) that

x(m) = Vdiag(h(λ1), h(λ2), . . . , h(λn))V
⊤x(0). (14)

The proof is given in Appendix A. Using (10), (12), and (13),

we can show that ui(t) = 0 holds for every i ∈ V and t ∈

{m,m + 1, . . .}, which yields x(m) = x(∞) because of (5).

By applying this to (14) and considering x(∞) and x(0) as s̃

and s in (4), respectively, we complete the proof.

It is remarked in (13) that the index of the root rt+1 depends

on the timestep t .

From Theorem 2, we see that (10), (12), and (13) construct

the local controller Ki (i ∈ V) when the filter function h is

selected as the polynomial given by (11). Thus, by selecting

the filter based on (11), we can obtain distributed controllers.

Based on the above discussion, we propose Algorithm 1 as

a method to solve Problem 1 in the spatial frequency domain.

In Step 1, we should select the filter function h such that

|h(λ1)| = 1 (i.e., |h(0)| = 1) and |h(λi)| is sufficiently small

for i ∈ {2, 3, . . . , n}. The reason is as follows. As explained

in Section III-B, consensus is achieved by attenuating the

components of frequencies other than zero. Moreover, when

the graph G is connected, L has only one zero eigenvalue,

i.e., λ1 = 0 and λ2 > 0, as mentioned in (L2). Hence, we can

achieve consensus by selecting an h such that the frequency

components at λ2, λ3, . . . , λn decrease.

Remark 3: The difficulty in obtaining Theorem 2 concerns

how the controller of each individual agent should be found

such that the resulting network can be analyzed in a manner

similar to that discussed in Section III-B. We overcome this

Algorithm 1 Design of Consensus Controllers in Spatial

Frequency Domain

Step 1 Select the filter function h as a lowpass filter for

achieving consensus.

Step 2 Describe h as the polynomial given by (11) with

real roots through, for example, fitting.

Step 3 Construct the local controllers K1,K2, . . . ,Kn
using (10), (12), (13), and the roots of the resulting h.

difficulty by focusing on the fact that one of such controllers

is of the form (7) as stated in Remark 2 and by employing it

with a time-varying gain.

Remark 4: Although a similar condition for the filter func-

tion h can be found in [16], [17], our main contribution

here is to present a generalized method to design the local

controllers K1,K2, . . . ,Kn for achieving a desired spatial fre-

quency characteristic. Compared to the methods in [16], [17],

our method can handle not only the consensus problem but

also other problems by changing h in Step 1 of Algorithm 1.

This is demonstrated in Section IV-D.

C. ILLUSTRATIVE EXAMPLE

Let us illustrate the proposed method through an example.

Consider consensus for n := 8 and the network topology

G shown in Fig. 7. The desired filter function is selected as

h(λ) := e−5λ. This and λ1, λ2, . . . , λ8 are depicted as the

thick line and circles in Fig. 10, respectively, where it should

be noted that a few of λ1, λ2, . . . , λ8 are equal. It turns out

that the filter function satisfies the condition described in

Section IV-B. Then, the selected h(λ) is approximated by a

polynomial written as (11) with real roots, which gives

h(λ) := −0.00122λ7 + 0.0283λ6 − 0.265λ5

+1.29λ4 − 3.49λ3 + 5.11λ2 − 3.69λ + 1 (15)

with m := 7. The thin line in Fig. 10 shows h(λ) in (15). It

turns out that the approximation captures the selected filter

function well. For the approximated h(λ), we calculate its

roots as r1 = 5.91, r2 = 5.36, r3 = 4.47, r4 = 3.37,

r5 = 2.22, r6 = 1.17, and r7 = 0.663. Hence, we employ

the local controllersK1,K2, . . . ,K8 determined by (10), (12),

(13), and r1, r2, . . . , r7. For x(0) := [6−2−5 0 3 8−9 1]⊤,

the time evolutions of the agent states x1(t), x2(t), . . . , x8(t)

are illustrated in Fig. 11, where consensus is achieved using

the proposed method.

Remark 5: Even though we must only achieve consensus

asymptotically in Problem 1 from (6), if the proposed method

achieves consensus, it is completed in a finite time, i.e., m

timesteps. This is proven as follows. As ui(t) = 0 holds

for every i ∈ V and t ∈ {m,m + 1, . . .} (see the proof of

Theorem 2), it follows from (5) that x(t) does not change

for t ≥ m. Thus, the control of x(t) by the proposed method

finishes at t = m, which proves the statement. This statement

can be interpreted as follows. From (23) in Appendix A, the

filter function in (11) can be written as the product of m
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FIGURE 10. Filter function h(λ) := e−5λ (thick line) and its polynomial
approximation (thin line), where the circles represent λ1, λ2, . . . , λ8.

FIGURE 11. Time evolutions of agent states by (10), (12), and (13).

first-order polynomials. Each polynomial corresponds to the

transition from x(t) to x(t + 1) following the discussion in

Section III-B. Therefore, the proposed controllers obtained

from the filter function in (11) achieve state transition in m

timesteps.

Remark 6: We comment on the choice of the degree m of

the polynomial in (11). The error in the approximation of

the filter function in Step 2 of Algorithm 1 decreases as m

increases, which gives better controllers in terms of achiev-

ing the desired filtering performance. However, Remark 5

implies that the agent states have slower convergence as m

increases. In addition, Theorem 2 requires the roots of the

polynomial in (11) to be real, but it is generally difficult to

find a high-order polynomial without complex roots. From

these facts, we should determine m by considering the trade-

off between filtering performance and convergence speed,

as long as the resulting polynomial does not have complex

roots.

Remark 7: The proposed method guarantees the scalabil-

ity of the entire system in the following two points. First,

from (10), (12), and (13), the structure and gain of the

resulting local controller Ki are the same for all i ∈ V.

Second, the filtering of graph signals by directly using (4)

requires the eigendecomposition of the graph Laplacian L,

whose computational complexity increases with n, but the

proposed method does not necessarily require it. As demon-

strated in the example above, we can obtain K1,K2, . . . ,Kn
by simply calculating the roots of the polynomial in (11)

and using (10), (12), and (13). Meanwhile, if the eigenvalues

λ1, λ2, . . . , λn are obtained, the time and effort spent to find

an appropriate filter function h are reduced because they cor-

respond to the spatial frequencies at which target signals have

components.

FIGURE 12. Noisy observation from each sensor (triangle) and its true
value (circle).

FIGURE 13. Filter function h(λ) := −1/(1 + e−6(λ−0.5)) + 1 (thick line) and
its polynomial approximation (thin line), where the circles represent
λ1, λ2, . . . , λ15.

D. APPLICATION: DISTRIBUTED SPATIAL FILTERING IN

SENSOR NETWORK

As previously mentioned, the proposed method allows us to

design the local controllers K1,K2, . . . ,Kn for achieving a

desired spatial frequency characteristic, and can be applied

to other tasks as well as consensus. To demonstrate this, we

illustrate distributed spatial filtering in a sensor network.

Consider the multi-agent system 6 with n := 15 and the

network topology G shown in Fig. 3 (a), where the agents

correspond to sensors. Fig. 12 depicts a noisy observation yi ∈

R from sensor i (i ∈ V) and the true value of the observation.

Then, we assume that each sensor i estimates the true value

of yi in a distributed manner and design distributed denoising

filters using the proposed method.

Considering that noise has a high spatial frequency com-

pared to the true values, we select the filter function

h(λ) := −1/(1+ e−6(λ−0.5))+ 1 for mitigating noise. Fig. 13

depicts h(λ) in the samemanner as Fig. 10, where we note that

a few of λ1, λ2, . . . , λ15 are equal. It turns out that the filter

has a lowpass characteristic, where we select a different filter

from that shown in Fig. 10 for preserving the low-frequency

components. Then, the selected h(λ) is approximated by a

polynomial written as (11) with real roots, which gives

h(λ) := −0.000587λ8 + 0.0150λ7 − 0.157λ6 + 0.869λ5

−2.68λ4 + 4.44λ3 − 3.13λ2 − 0.293λ + 1 (16)

with m := 8. The thin line in Fig. 13 shows h(λ) in (16).

We observe that the approximation captures the selected filter

function well. The roots of the approximated h(λ) are r1 =

5.94, r2 = 5.50, r3 = 4.78, r4 = 3.86, r5 = 2.85, r6 =

1.87, r7 = 1.19, and r8 = −0.445. Hence, the distributed
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FIGURE 14. Time evolutions of agent states by proposed denoising filters.

FIGURE 15. Estimation results obtained using proposed method
(triangles) and average filter (squares), and true values (circles).

filters are obtained as the local controllers K1,K2, . . . ,K15

determined by (10), (12), (13), and r1, r2, . . . , r8. That is,

our filters correspond to the consensus controllers discussed

in Section IV-C with a different gain k(t). These filters are

applied to x(0) := y with y := [y1 y2 · · · y15]
⊤.

As the filtering process, the time evolutions of the states

x1(t), x2(t), . . . , x15(t) are shown in Fig. 14. We observe that

all the states do not converge to an identical value unlike in

consensus because the filter function (i.e., the gain k(t)) is

designed for achieving not consensus but noise mitigation.

The resulting estimate ŷi := xi(10) (i ∈ V) and the true values

are shown in Fig. 15.We see that the estimates agree well with

the true values. This is because we considered the difference

between the spatial frequencies of the true values and noise

and designed an appropriate filter formitigating noise. Fig. 15

also shows the estimates obtained using an average filter

[27] which is typically used for spatial lowpass filtering in

image processing. The average filter provides the estimate

ŷi (i ∈ V) as

ŷi :=
yi +

∑

j∈Ni
yj

|Ni| + 1
. (17)

For the vector y∗ consisting of the true values and ŷ :=

[ŷ1 ŷ2 · · · ŷ15]
⊤, the estimation error ‖y∗ − ŷ‖∞ is 1.39

for the proposed method and 3.24 for the average filter.

Therefore, we can conclude that the filter designed using the

proposed method provides high accuracy compared to the

average filter.

V. CONCLUSION

In this study, we have addressed the spatial frequency-based

analysis and design of multi-agent systems and shown the

usefulness for distributed spatial filtering in sensor networks.

First, by focusing on the graph Fourier transform, we have

analyzed the consensus in the spatial frequency domain.

Then, we have shown that consensus by typical controllers

is equivalent to the spatial lowpass filtering of agent states in

the sense of decreasing nonzero frequency components. This

demonstrates that the spatial frequency-based approach can

be used for multi-agent systems. Second, a controller design

method in the spatial frequency domain has been presented,

where a desired spatial filter is realized as the feedback

system. We have proven that this method gives distributed

controllers if the filter function is selected as a polynomial.

Finally, to demonstrate the effectiveness and applicability

of our design method, we have presented its application to

distributed noise mitigation in a sensor network.

A limitation of the design method presented in this paper is

that it can handle only specific types of agents and filters. For

example, the dynamics of each agent is restricted to single

integrator dynamics. Relaxing this constraint is part of our

future work.

APPENDIX A

PROOF OF (14)

Using x(0), we can express x(m) as

x(m) =





m−1
∏

j=0

(

I −
1

rm−j
L

)



 x(0)

=





m−1
∏

j=0

(

VV⊤ −
1

rm−j
V3V⊤

)



 x(0)

=





m−1
∏

j=0

V

(

I −
1

rm−j
3

)

V⊤



 x(0)

= V





m−1
∏

j=0

(

I −
1

rm−j
3

)



V⊤x(0), (18)

where the first equality is derived from (5), (10), (12), and

(13), the second one follows from V⊤ = V−1 and (2), the

third one is trivial, and the final one is obtained using V⊤V =

I . Noting that I − (1/rm−j)3 is a diagonal matrix for every

j ∈ {0, 1, . . . ,m− 1}, we obtain

x(m) = Vdiag





m−1
∏

j=0

(

1 −
λ1

rm−j

)

,

m−1
∏

j=0

(

1 −
λ2

rm−j

)

,

. . . ,

m−1
∏

j=0

(

1 −
λn

rm−j

)



V⊤x(0). (19)

Next, we prove that

h(λi) =

m−1
∏

j=0

(

1 −
λi

rm−j

)

(20)
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for every i ∈ V. Equation (11) is factorized as

h(λ) = am

m−1
∏

j=0

(λ − rm−j). (21)

By a simple calculation, it follows that

am

m−1
∏

j=0

(λ − rm−j)

= am

m−1
∏

j=0

(

rm−j

(

λ

rm−j
− 1

))

= am





m−1
∏

j=0

rm−j









m−1
∏

j=0

(

λ

rm−j
− 1

)





= (−1)mam





m−1
∏

j=0

rm−j









m−1
∏

j=0

(

1 −
λ

rm−j

)



 . (22)

From the fact that the constant term of (11) is 1, we obtain

(−1)mam
∏m−1

j=0 rm−j = 1. Therefore,

h(λ) =





m−1
∏

j=0

(

1 −
λ

rm−j

)



 (23)

holds. Substituting λ = λi (i ∈V) for (23) results in (20) for

every i ∈ V. This, together with (19), proves (14).
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