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Abstract

Networked Control has emerged in recent years as a new and exciting area in systems science.

The topic has many potential applications in diverse areas ranging from control of microrobots

to biological and economic systems. The supporting theory is very rich and combines aspects of

control, signal processing, telecommunications and information theory. In this paper, we give a

partial overview of recent developments in Networked Control with an emphasis on the additive

noise model methodology. We also point to several open problems in this emerging area.

Keywords: Networked Control, Performance, Signal-to-noise ratio constraints, Data-Rate Con-

straints, Delays, Data Dropouts.

1 Introduction

Traditionally, control theory has dealt with situations where the communication links between plant

and controller can be regarded as transparent (see, e.g., [22, 67, 74]). There exist, however, cases

where the links in a control system are far from being transparent and may become bottlenecks in the
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achievable performance. Control systems where this happens are collectively referred to as Networked

Control Systems (NCSs).

The study of NCSs has emerged as an active research field during the past years (see, e.g., the

special issues [1, 2]). Key questions within this framework are related to the way in which network

artifacts affect the stability and performance of control loops employing non-transparent communica-

tion channels. Typical channel artifacts include data-rate limits, random delays and data dropouts. A

unifying framework for the treatment of general NCS analysis and design problems does not yet exist.

Nevertheless, there has been significant progress in the study of several subproblems. For example,

data-rate constraints have been investigated in, e.g., [43, 45, 54, 70]. The issue of data dropouts has

been studied in, e.g., [36, 55,57] and random time delays have been considered in, e.g., [35, 46].

A pivotal issue in any closed loop system is that of stability. When focusing on quantization

aspects, a key recent result establishes necessary and sufficient conditions on the channel data-rate

that allows one to achieve closed loop stability (in an appropriate sense; see, e.g., [45] and the many

references therein). These results are expressed in terms of a lower bound on the channel data-rate (that

depends on the unstable plant poles only) over which control and coding schemes can be constructed

so as to achieve stability. These coding schemes are quite involved and may not be attractive from

a practical point of view. This fact has motivated the current authors and colleagues [59, 60] to

study simple coding schemes that achieve rates close to the bounds identified above. In [59, 60], an

important link is established between the average data-rate necessary to achieve stability and signal-

to-noise ratio requirements for stability. This observation reinforces the relevance of signal-to-noise

ratio models in the context of NCS performance analysis (see also [23]), and complements the work

reported in [10,20,52], where stabilization over (analog) Gaussian channels is addressed. The first part

of this paper reviews these results.

The second part of this paper is devoted to the design of control systems subject to signal-to-noise

ratio constraints. For SISO LTI plant models, we show how one can design coding schemes that, for

a given initial non-networked controller design, allow one to minimize the impact of signal-to-noise

ratio constraints on overall closed loop performance. These results emphasize the essential role that

the available degrees of freedom play in NCSs (see [23,63,65] and also [4, 11,12,38,41]).

The issue of performance is particularly interesting in the context of networked control architectures

for MIMO plant models. Practical control systems for MIMO plant models often use structurally con-

strained controllers such as diagonal or triangular ones (see, e.g., [53,67]). The reasons for this choice
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are manifold and include ease of design, simplified tuning, and implementation related aspects such as

cabling or geographic plant distribution. It is well known that restricting the controller architecture

generally limits the achievable performance (see, e.g., [24, 34, 64]). Within this context, networks can

play significative roles. Indeed, it is easy to envisage decentralized control architectures that, when

enriched with additional data paths implemented via (non-transparent) communication links, may pro-

vide enhanced performance. This may (partially) overcome the limitations that arise as a consequence

of the controller structure constraint (see, e.g., [30, 32, 40, 51, 71]). These ideas are illustrated in the

present paper by examining the control of MIMO LTI systems for which a decentralized controller

has been successfully designed. Unsurprisingly, for high-quality additional channels it turns out that

a networked MIMO architecture outperforms the decentralized one. However, an interesting finding

is that, in some situations, the networked architecture will perform better than the decentralized one

only if the channels used to implement the scheme are extremely reliable [61].

Finally, we will briefly mention other networked control problems which lie outside the signal-to-

noise ratio paradigm. In particular, we refer to the problems associated with data dropouts and delays

(see, e.g., [5,13,27,29,36,37,49,55,68]). Provided one can send additional information at each sample

time, then this can be used to provide robustness against data-loss or delay [50].

The remainder of this paper is organized as follows: Section 2 motivates some of the problems to

be addressed in the paper. Section 3 discusses the problem of stabilization of NCSs subject to data

rate constraints. Section 4 discusses the design of coding systems that optimize NCS performance.

Section 5 studies some aspects in MIMO networked control. Section 6 studies control over unreliable

networks. Section 7 draws conclusions.

2 A Simple Motivational Example

Before delving into the problem of NCSs, we will first motivate the key claim that networked control

raises issues that go beyond traditional control theory. The analysis in this section will contain a

number of heuristic steps. In the remainder of the paper, we will show how similar questions can be

addressed in a rigorous fashion.

We consider a simple SISO feedback loop as depicted in Figure 1. In that figure, we have placed a

(communication) channel in the down-link between the controller C(z) and the plant G(z).

Figure 1 immediately gives rise to an important question, namely how should we model the channel.
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Figure 1: A simple networked control system.

There are many options, but for the purpose of our current motivational study, we will simply model

the channel as a bit-rate limited system that sends b bits per sample. We assume that no other sources

of non-ideal behavior exist.

We will be particularly interested in how the channel affects closed loop performance. Thus, we

will focus on the errors introduced by the channel. We will adopt a very simple model for quantization

errors, namely that they are independent, white and uniformly distributed on (−∆
2 , ∆

2 ), where ∆ is

the quantizer step size (see, e.g., [7, 31, 56]). A simple calculation shows that the variance of the

quantization errors, say σ2
q , is then given by

σ2
q =

∆2

12
. (1)

Next we need to determine ∆. If we fix the quantizer step size and the number of bits, then we also fix

the (one-sided) range of the quantizer to be (2b−1)∆
2 . Heuristically, this (one-sided) range needs to be

sufficiently large to be able to deal with the incoming signal v. We will adopt the, so-called, 4σv rule1

which sets the (one-sided) range of the quantizer to be equal to four times the standard deviation of

the signal being quantized, namely v, so as to make quantizer overload a low probability event. This

leads to the following relationship linking ∆, b and σ2
v :

(2b − 1)∆
2

= 4σv. (2)

Using (1) and (2) we obtain

σ2
v

σ2
q

=
3
16

(
2b − 1

)2
= γ, (3)

where γ is a constant. Thus, we see that our assumptions have led to the conclusion that the (non-

transparent) channel effectively introduces an additional white noise source whose variance is pro-
1Commonly used in the signal processing literature [31].
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Figure 2: Networked control system with linear coding for additive noise channel.

portional to the variance of the channel input. In other words, our assumptions lead to a fixed

signal-to-noise ratio additive noise channel model.

With the benefit of hindsight, we realize that it is desirable to pre-process the signal before sending it

through the channel, i.e., before quantizing it. Here, we will adopt the simplest possible pre-processor,

namely a bi-proper filter having transfer function A(z). Also, we do not want the filter to affect the

nominal feedback loop, so we will also include A(z)−1 at the output of the channel. Putting the above

elements together leads to the modified feedback loop shown in Figure 2.2

It is obvious from Figure 2 that the filter A(z) plays no role in the nominal performance, i.e., when

q = 0. However, we will see below that A(z) does affect the networked performance when q 6= 0.

Specifically, we will be interested in the (stationary) variance of y due to q, which we will denote by

σ2
e . A simple calculation, using (3), gives

σ2
e =

σ2
q

2π

∫ π

−π

∣∣∣∣
A(ejω)−1G(ejω)

1 + G(ejω)C(ejω)

∣∣∣∣
2

dω =
σ2

v

2πγ

∫ π

−π

∣∣∣∣
A(ejω)−1G(ejω)

1 + G(ejω)C(ejω)

∣∣∣∣
2

dω. (4)

Finally, we need to evaluate σ2
v . Here we will make the assumption that σ2

v is mainly affected by the

disturbance d, which we assume is a wide sense stationary (wss) process.3 Hence we have

σ2
v =

1
2π

∫ π

−π

∣∣∣∣
C(ejω)A(ejω)Ωd(ejω)

1 + G(ejω)C(ejω)

∣∣∣∣
2

dω, (5)

where Ωd(ejω) is a spectral factor of d [3]. Substituting (5) into (4) yields

σ2
e =

1
γ

(
1
2π

∫ π

−π

∣∣∣∣
A(ejω)−1G(ejω)

1 + G(ejω)C(ejω)

∣∣∣∣
2

dω

)(
1
2π

∫ π

−π

∣∣∣∣
C(ejω)A(ejω)Ωd(ejω)

1 + G(ejω)C(ejω)

∣∣∣∣
2

dω

)
. (6)

An elementary application of the Cauchy-Schwartz inequality now shows that σ2
e is minimized if we

2In Figure 2 we use the term encoder and decoder to refer to A(z) and A(z)−1, respectively. This is consistent with

standard signal processing nomenclature (see, e.g., [16] and the references therein).
3Unless otherwise stated, all signals in this paper are assumed wss processes.
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Figure 3: Networked control system of Figure 2 with a particular optimal coding scheme (see text for

details).

can choose A(z) to satisfy, for every ω ∈ [−π, π],

∣∣A(ejω)−1G(ejω)
∣∣2 = k1

∣∣C(ejω)A(ejω)Ωd(ejω)
∣∣2 ⇔ ∣∣A(ejω)

∣∣4 =
1
k1

∣∣∣∣
G(ejω)

C(ejω)Ωd(ejω)

∣∣∣∣
2

, (7)

where k1 is a constant (see also [23]).

A very interesting special case of practical importance arises when d is step-like and we model it

as a random walk, i.e.,

Ωd(ejω) =
1

ejω − 1
. (8)

Also, if the plant is stable and minimum phase, then we can use a controller C(z) such that

G(z)C(z) =
cz−n

z − 1
, (9)

where n is a suitable positive integer and c is a constant. These choices for C(z) and Ωd(ejω) lead to

A(z) = k2C(z)−1, (10)

where k2 is an arbitrary constant. This result implies that, for the considered architecture, controller

and disturbance description, the optimal pre-processor of the signal v is the inverse of the controller.

If we can change the architecture, then it is sufficient to put the channel in the up-link, since Figure 2

reduces to Figure 3.4

The reader will see that many of the ideas presented above will reappear in the sequel. For example,

examining Figure 4 we see that the communication link has been placed in the up-link and that pre-

and post-processing has been added (see E and D in Figure 4).

Whilst the above motivational study is very simple, it does lead to many important questions:
4Actually, it was a practical experiment that originally led the authors to this remarkably simple observation [47].
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• Is it ever justifiable to model quantization errors as white noise?

• How can one treat the fact (ignored above) that quantization errors also affect the channel

(quantizer) input v?

• Are there better coder-decoder pairs than simple filters?

• Can one have a rigorous alternative to the ad-hoc 4σ-rule?

• Should one redesign the controller C(z) or, perhaps, carry out joint design of the controller and

coder-decoder pair?

• Are there situations where the presence of a communication channel can destabilize a nominally

stable loop?

• What if packet loss occurs (i.e., not all transmitted data is received)?

We will rigorously address many of these issues below, beginning with the key question of closed

loop stability.

3 Stability with Data-rate Limits

An overarching issue in any closed loop system is the potential for instability. For this reason, obtaining

necessary and sufficient conditions which guarantee closed loop stability has remained a central issue in

control theory (see, e.g., [22]). NCSs give rise to new challenges with respect to stability. This section

will give some insights into NCS stability questions.

Consider the networked control situation shown in Figure 4. In that figure, G(z) is a SISO LTI

plant, C(z) is an LTI controller, r is a reference signal and d is a disturbance. Unlike standard non-

networked control systems (see, e.g., [22, 67, 74]) the feedback path in the control system in Figure 4

comprises a non-transparent channel and a coding scheme. The coding scheme is a novel aspect of

networked control that has no equivalent in traditional control theory. The coding scheme has two

parts: the encoder and the decoder. The encoder is in charge of appropriately processing the signal to

be sent over the channel so as to compensate, if possible, channel characteristics and/or to translate the

measurements into symbols that the channel can understand. (This is the case of, e.g., digital channels

7



d

yur
C(z) G(z)

−

decoder
channel

encoder

s
f D E

Figure 4: Basic networked control system (including coding scheme).

where the symbols are binary words.) On the other hand, the decoder is in charge of translating back

the channel symbols into the standard signal domain.

There exist many channel models (see, e.g., [14,69]). To highlight the ideas, in the present section we

will consider error-free and delay-free digital channels, i.e., channels that can transmit a countable set of

symbols (i.e., that have a countable alphabet) without errors or delays. Of course, in practice, channels

always have restricted bandwidth and the channel alphabet is, thus, finite, rather than countable (see

also [15,45,48]).

3.1 Key results

For the setting described above, a recent result states that it is possible to find coders, decoders and

controllers such that the resulting system is mean square stable (MSS) if and only if the asymptotic

time-average length of the channel symbols in bits per sample, say R̄T , satisfies [43]

R̄T >

np∑

i=1

log2 |pi| , (11)

where {pi}i=1,··· ,np denotes the set of unstable plant poles.

The above result is valid for every coder, decoder and controller in the class of (possibly time-

varying and nonlinear) causal systems. Therefore, (11) establishes a fundamental separation between

what is achievable in NCSs over digital channels and what is not, when the problem of interest is

MSS. We note that bounds similar to (11) arise as solutions to quite a few different problems (e.g.,

observability, deterministic stability, etc.) and under different assumptions on the channels and coding

schemes (see, e.g., [19,28,42,43,69,70]). Consequently, the quantity on the right hand side of (11) can

be seen to be a fundamental measure of the difficulty of manipulating a system, as explored in [44,54].

Proving that the rate at which a stable control system is transmitting data must satisfy (11) (i.e.,
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necessity) is fairly simple and employs standard tools (see also [17, 21, 39]), whereas constructing an

actual coding scheme that achieves stability at any rate above the absolute limit (i.e., the proof of

sufficiency) is much more involved (see [43, 70]). These observations motivate the remainder of this

section.

3.2 Some insights into the problem of stabilization with data-rate con-

straints

In this section we provide insights into the limitations that finite data-rates impose. To fix ideas, we

will consider the coding scheme depicted in Figure 5, where F (z) is a LTI filter, and Ē and D̄ are

abstract systems that translate the discrete time signal v into channel symbols s, and channel symbols

into the discrete time signal w, respectively.5 Our presentation will start at a heuristic level and will

then move towards a more formal approach based on information theoretic considerations.

3.2.1 Additive noise model for quantization

Since the channel is digital, Ē must quantize v prior to transmission. We will focus on the simplest

situation where D̄ is the identity and Ē is a finite uniform quantizer (see, e.g., [25, 31]), i.e.,6

s(k) = Q(v(k)) , satV

(
∆

⌊
v(k)
∆

⌋)
. (12)

In (12), V > 0 is the quantizer dynamic range, ∆ , 2V (L − 1)−1 is the quantization step and L is

the number of quantization levels. We say the the quantizer is overloaded if and only if |v(k)| > V for

some k. (If in (12) satV is removed and ∆ is fixed at any arbitrary positive value, then Q becomes an

infinite uniform quantizer with a countable output set.)
5Figure 5 represents a generalization of the simple filter plus quantizer architecture used in Section 2.
6satV (x) , x if |x| ≤ V and satV (x) , x

|x|V if |x| > V ; bxc denotes the integer part of x.
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Quantization is a non-linear operation and hence, the exact analysis of quantized systems is difficult

(see, e.g., [15,26,48]). Thus, and as already mentioned in Section 2, it has become standard, particularly

in the signal processing literature (see, e.g., [7, 31, 56]), to (approximately) describe the quantization

errors, defined via

q , w − v, (13)

by an additive i.i.d. noise source, uniformly distributed on the interval (−∆
2 , ∆

2 ) and independent7 of

the input to the quantizer v. This model is valid only if ∆ is “small enough”, the quantizer does not

overload and v has a smooth probability density function (see, e.g., [6]).

In order to avoid quantizer overload, it is usual in practice to choose a quantizer dynamic range

(i.e., one-sided range) such that the probability of overload is negligible [31]. Indeed, if v is wss and β

is any positive real value, then one can always find a finite α such that8 V = ασv guarantees that the

probability of overload is less than β; α is called the quantizer loading factor.9 With such a choice for

the loading factor, it is immediate to see that, provided q is as described above, then

γ , σ2
v

σ2
q

=
3
α2

(L− 1)2, (14)

where γ is the quantizer signal-to-noise ratio. Thus, at least at an heuristic level, bit-rate limits

translate into signal-to-noise ratio constraints.

It is important to note that the previous model for quantization can actually be rendered exact by

a simple randomization procedure. Indeed, it suffices to consider a dithered uniform quantizer. In such

a quantizer, one adds a specially designed random process, the so-called dither signal, to the signal

being quantized and then subtracts it at the receiving end. More precisely, if dh denotes the dither

signal, then we have

s(k) = satV

(
∆

⌊
v(k) + dh(k)

∆

⌋)
,

w(k) = s(k)− dh(k),

where the dh is chosen i.i.d., uniformly distributed on (−∆
2 , ∆

2 ) and such that dh(k) is independent of

v(k). In this situation, and provided no overload occurs, q in (13) becomes distributed as −dh (see,

7Sometimes q is assumed only to be uncorrelated with v.
8σv denotes the standard deviation of v.
9For example, if v(k) is Gaussian, then α = 4 gives an overload probability of 6.33 · 10−5.
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e.g., [25,72,73]). In other words, q has the properties in the simplified model described above. Again,

in order to render quantizer overload a low probability event, one needs to consider an appropriate

quantizer loading factor and a signal-to-noise ratio constraint arises. In practice, implementation of

dithered quantizers is not trivial since it requires the availability of the dither signal dh at both the

sending and receiving ends. Usually the dither is generated using pseudo-random number generators

that are initialized with the same seeds.

The above quantization model does not in general hold in the case of non-dithered quantizers.

Nevertheless, even in that case, if one employs a uniform quantizer with as small as, say, 4 levels, it

turns out that the predictions made using the simple additive quantization model described above are

surprisingly accurate (see simulation studies in [16,23,56,63]).

3.2.2 Limits imposed by signal-to-noise ratio constraints

Consider the setting in Figure 5 and assume that Ē and D̄ are such that q obeys the additive model

for quantization described in Section 3.2.1. We note that, since q depends on the way in which Ē and

D̄ are designed, the variance of q, say σ2
q , becomes a decision variable.10 Within this setting, a basic

question arises, namely finding the conditions on the signal-to-noise ratio γ that guarantee MSS.

It is possible to show via standard control theoretic arguments [60] that, for any strictly proper

plant model G(z) and any wss processes r and d, there exist C(z), F (z) and a finite σ2
q such that the

resulting NCS is MSS if and only if

γ > γinf ,
(

np∏

i=1

|pi|2
)
− 1, (15)

where {p1, · · · , pnp} is the set of unstable plant poles. From this result we conclude that, as was the

case for (11), the degree of instability of the plant plays a key role in the interplay between stability

and communications constraints (as expressed by signal-to-noise ratio constraints in our current frame-

work). It is interesting to note that if one adds one and takes logarithms in (15), then one recovers

the right hand side in (11). We have shown in [60] that this connection is not a mere coincidence (see

also [59]).

It is easy to see from (15) and (14) that, if the additive model for quantization holds, then MSS is

10For the additive model described previously, we have σ2
q = ∆2

12
.
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equivalent to

b > binf , log2


1 +

√√√√α2

3

((
np∏

i=1

|pi|2
)
− 1

) 
, (16)

where b , log2 L is the number of bits in the quantizer. In other words, provided no overload occurs

and the noise model for quantization holds, (16) gives a bound on the instantaneous data-rate over the

channel that guarantees MSS.11 Clearly, this bound on b is optimistic. Indeed, it is only exact if one

employs a dithered uniform quantizer and there is no overload. Note that, if r, d or the initial plant

state have unbounded support, then it is impossible to guarantee that the input to the quantizer is

deterministically bounded. Even if r, d and the plant initial state have bounded support, and thus v

is bounded, the previous analysis usually requires a large value for the loading factor α. Equation (16)

then provides only a conservative bound on binf .

In practice it is often sufficient to assume that v is such that a sensibly small value for α gives

negligible overload probability (a typical value is α = 4; see [31] and also Sections 4 and 5).

3.2.3 Average data-rates

In the previous section we dealt with instantaneous data-rates. There are at least two reasons that can

be advanced for considering alternative settings. First, if the external signals have unbounded support,

then it is impossible to give any guarantees using the above reasoning, unless one employs quantizers

with infinitely many levels so as to avoid overload (thus, incurring infinite instantaneous data-rates).

Second, if the external signals are bounded, then the quantizer loading factor α may need to be quite

large in order to accommodate v without overload. This implies that, even in those cases, one needs to

use a quantizer with either a large number of bits (which increases the instantaneous rate), or a large

quantization step (which implies poor performance). We thus conclude that, at least from a theoretical

point of view, it is interesting to study average data-rates.12 (Of course, guaranteeing that average

data-rates are bounded does not ensure that instantaneous rates will be bounded.)

11Clearly, binf is in general greater than the right hand side in (11).
12Alternatively, one could also examine time varying (i.e., adaptive) quantizers that are scaled on-line according to the

statistics of the input signals. This topic is interesting, but is beyond the scope of this paper (see references in [45]).
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We will measure average data-rates via

R̄ , lim
k→∞

1
k

k−1∑

i=0

R(i), (17)

where R(i) is the expected length of the symbol sent at time instant i over the channel, i.e., of s(i)

(see [59] and also [14, 58]). In the sequel, we will reserve the term average data-rate to refer to R̄ in

(17). Note that R̄ in (17) is not equal to R̄T in (11). However, under certain regularity conditions13

E {
R̄T

}
= R̄ (as revealed by the corresponding definitions).

A popular way to deal with average data rate constraints is to use an entropy coded dithered

quantizer (ECDQ; see, e.g., [72]). Figure 6 shows the architecture of an ECDQ and its relationship to

Ē and D̄ in Figure 5. An ECDQ uses a dithered infinite uniform quantizer with step ∆, as described

earlier, but instead of sending the quantizer output directly over the channel, it entropy-codes it prior

to transmission. The basic idea behind the entropy-coder EC in Figure 6 is to exploit the fact that

some of the quantizer output values are more likely than others. Thus, one can assign short channel

symbols (i.e., few bits) to very frequent quantizer output values and long symbols (i.e., many bits) to

infrequent ones [14]. Correspondingly, the task of the entropy-decoder ED is to convert the channel

symbols back into the exact quantizer output at the receiving end.

A key property of ECDQs is that the average data-rate at which data is transmitted can be related

to the signal-to-noise ratio

γ =
σ2

v

σ2
q

, (18)

where σ2
q is the variance of the equivalent additive noise in the dithered quantizer, and σ2

v is the

variance of the input to the ECDQ, namely v. Indeed, it is possible to show that, if the dither signal
13E {·} denotes the expectation operator.
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is as in Section 3.2 and if it is also independent of r, d and the filter initial states, then the coding

scheme proposed in Figure 5, when Ē and D̄ form an ECDQ, is such that the average data-rate is upper

bounded by [60]

R̄ ≤ 1
2

ln (1 + γ) +
1
2

log2

(
2πe

12

)
+ 1. (19)

Thus, we see that signal-to-noise ratio considerations give an upper bound on the average data-rate. In

other words, there exists a strong link between signal-to-noise ratio constraints and average data-rate

constraints. This goes beyond the heuristic discussion in Section 3.2.1, and serves as a basis for a

simple but rigorous treatment of average data-rate constraints in networked control.

In particular, one can use (11), (15), (19), and the relationship between R̄ and R̄T mentioned above,

to show that it is possible to choose the filter F (z) in the scheme of Figure 5 so that MSS is guaranteed

and the average data-rate R̄ satisfies [60] (see also related results in [59])
np∑

i=1

log2 |pi| < R̄ ≤
np∑

i=1

log2 |pi|+ 1
2

log2

(
2πe

12

)
+ 1 + f(∆), (20)

where f is a positive function that goes to zero as the quantization step ∆ goes to infinity. Therefore,

the use of an ECDQ with a sufficiently large (but finite) quantization step ∆, allows one to achieve

MSS at an average rate that can be made arbitrarily close to the absolute minimum rate in (11) plus
1
2 log2

(
2πe
12

)
+ 1 bits per sample (i.e., ≈ 1.25 bits per sample). This additional rate is composed of two

terms: the first one is due to the divergence of the distribution of quantization noise from Gaussianity,

and the second one originates from the inefficiency of the loss-less coding scheme employed to generate

the channel symbols (i.e., the inefficiency of EC; see [14]).

4 Performance

Next we turn to the question of performance. Motivated by the analysis presented in the previous sec-

tion, we will utilize an independent additive noise channel model with a signal-to-noise ratio constraint.

This hypothesis covers many situations:

• Architectures where the actual physical channel is additive and with a signal-to-noise ratio con-

straint.

• Situations where the channel is digital, has a finite alphabet and one assumes that quantization

noise is white, independent, and the quantizer is properly scaled (recall Section 3.2.1).
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Figure 7: Linear model for the NCS in Section 4.

• Cases where the channel is digital, has a countable alphabet, and one employs an ECDQ (see

Section 3.2.3).

• Situations where the channel is analog, but prone to i.i.d. data dropouts (i.e., analog erasure

channel; see also [18, 55, 57]). Indeed, it has been shown in [36, 62] (see also Chapter 7 in [59])

that, for such data dropout profiles, analog erasure channels are equivalent, up to second order

statistics, to an additive white noise channel with a fixed signal-to-noise ratio.

4.1 Setup and Analysis

We will focus on the NCS depicted in Figure 7, which is an extension of the setup studied in Section 2

by the addition of feedback around the channel (quantizer). In that figure, the controller C(z) is any

given admissible controller for G(z).14 We will show how to design the coding system filters F (z) and

A(z) so as optimize overall closed loop performance. (We refer the reader to [66] for controller design

procedures.)

It is easy to see from Figure 7 that the variance of the tracking error, i.e.,

e , r − y, (21)

is given by15

σ2
e = ||Tdre(z)Ωdr(z)||22 + J(A(z), F (z)), (22)

14i.e., an internally stabilizing controller that defines a well posed control loop (see, e.g., [74]).

15We define ||X(z)||22 , trace
n

1
2π

R π
−π X(ejω)X(ejω)Hdω

o
.
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where

J(A(z), F (z)) ,
||A(z)Tdry(z)Ωdr(z)||22

∣∣∣∣T (z)A(z)−1(1− F (z))
∣∣∣∣2

2

γ − ||T (z) + S(z)F (z)||22
,

and where Tdre(z) and Tdry(z) denote the transfer functions from [d r]T to e and y, respectively, Ωdr(z)

denotes a spectral factor of [d r]T , γ is the channel signal-to-noise ratio and

S(z) =
1

1 + G(z)C(z)
, T (z) , 1− S(z).

A straightforward calculation shows that Tdre(z) depends on C(z) only, which is fixed in our setting.

Thus, to optimize performance we only need to minimize J(A(z), F (z)).

A simple calculation shows that, provided C(z) is an admissible controller for G(z), the model in

Figure 7 is MSS and well-posed if and only if F (z) is stable, strictly proper, A(z) is stable, minimum

phase (MP), biproper, and the signal to noise ratio satisfies

γ > ||T (z) + S(z)F (z)||22 . (23)

This implies that, for any given γ and even if C(z) is a stabilizing controller for G(z), it is possible

to choose a filter F (z) such that the resulting NCS is not MSS. This highlights the interplay between

communication aspects (namely, γ) and coder-controller design issues (namely, the choice of F (z); see

also Section 3.2.2).

It is illustrative to note that, if γ → ||T (z) + S(z)F (z)||22, then J(A(z), F (z)) → ∞ (unless all

exogenous signals have zero spectral density, in which case J(A(z)F (z)) ≡ 0). Also, if γ → ∞, then

J(A(z), F (z)) → 0 and we recover the non-networked performance achieved with controller C(z) and

a transparent communication link.

4.2 Coding system design

Based on (22) and noting that Tdrw(z)Ωdr(z) is fixed, we next study the problem of finding16

Jopt , inf
A(z)∈U∞

F (z)∈RH2

||T (z)+S(z)F (z)||22<γ

J(A(z), F (z))

16RH2 denotes the set of all stable and strictly proper real rational transfer functions, and U∞ denotes the set of all

stable, MP and biproper transfer functions.
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and filters A(z) and F (z) that achieve Jopt (or approximate Jopt arbitrarily well). This is an extension

of the simple optimization problem studied in Section 2. The exact solution of this problem is not

straightforward, so we describe a simple iterative solution (see also related results in [16]).

If F (z) is a given strictly proper and stable filter satisfying (23) (as required for MSS), then the

reasoning used in Section 2 implies that the optimal filter A(z), say A
F (z)
opt (z), satisfies [23,65]

∣∣∣AF (z)
opt (ejω)

∣∣∣
4

= β

∣∣T (ejω)(1− F (ejω))
∣∣2

Tdry(ejω)Ωdr(ejω)Ωdr(ejω)HTdry(ejω)H
, (24)

where β is any arbitrary positive real. We note that the characterization of A
F (z)
opt (z) given above

is explicit but is in general not satisfied by any stable, biproper and MP rational transfer function.

(Indeed, the 4th root of the right hand side in (24) is usually irrational.) Nevertheless, since the

condition (24) applies only to the magnitude of A(z), it is always possible to find a filter with the desired

characteristics that achieves a performance that is as close as desired to the optimal performance. In

practice, it is usually sufficient to consider reasonably low order filters to approximate A
F (z)
opt (z) (see

also [23]).

Next, let us assume that A(z) is any given stable, MP and biproper transfer function. For any such

A(z), it is possible to show that [65]

F
A(z)
opt (z) = Fε∗(z), (25)

where Fε(z), ε ∈ [0, 1], is defined via

Fε(z) , arg inf
F (z)∈RH2

εJ1(F (z)) + (1− ε)J2(F (z)),

J1(F (z)) ,
∣∣∣∣T (z)A(z)−1(1− F (z))

∣∣∣∣2
2
, J2(F (z)) , ||T (z) + S(z)F (z)||22 ,

and

ε∗ , arg min
ε∈(0,ε̂)

J1(Fε(z))
γ − J2(Fε(z))

. (26)

In (26), ε̂ is defined as follows: If there does not exist an ε ∈ (0, 1] such that J2(Fεγ (z)) = γ, then

ε̂ = 1. Otherwise, ε̂ = εγ , where εγ is the unique real in (0, 1] such that J2(Fεγ (z)) = γ.

We note that the problem of finding Fε(z) is a standard convex problem that can be tackled using

well-known tools (see, e.g., [8,9]). On the other hand, calculating ε∗ amounts to carrying out a (scalar)

line search. This is also a simple problem to solve.
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By utilizing the previous results, it is immediate to design an iterative procedure that allows one

to construct approximations to the optimal (A(z), F (z)) pair: In a first step, one fixes A(z) (or F (z));

trivial choices are F (z) = 0 and A(z) = 1. Then, one uses (25) to calculate the optimal F (z) for the

initial choice of A(z) (or (24) to calculate the optimal A(z) for the initial choice of F (z)). This is

repeated fixing A(z) or F (z) intermittently. This algorithm is guaranteed to converge, at least, to a

local minimum.

In general, we have that A
F (z)
opt (z) 6= 1 and F

A(z)
opt (z) 6= 0. Thus, fixing A(z) or F (z) and optimally

choosing the other filter, will obviously provide a coding system that enhances closed loop performance

when compared with a non-coded networked situation.17 From the above, it is also clear that the

use of the iterative procedure proposed above allows one to design coding systems that will always

outperform simpler coding systems that are not feedback based (i.e., where F (z) = 0; see Section 2

and also [23]). This again highlights the role of architectures (equivalently, of the available degrees of

freedom) in NCSs. Further discussions regarding the interplay between coding system architecture and

networked performance can be found in [23].

4.3 Example

Consider a nominal loop with plant and controller given by

G(z) =
1

z − 0.8
, C(z) =

z − 0.8
z − 1

.

The disturbance d is assumed zero, whilst the reference is considered to have a power spectral density

with spectral factor

Ωr(z) =
0.02z

z − 0.9
.

We consider a finite uniform quantizer with b bits and overload factor α = 4. In our design, we assume

that the additive noise model for quantization holds. We send the output of the quantizer directly

through the channel (i.e., without entropy coding). Thus, b corresponds to the instantaneous channel

data-rate in bits per sample.

Figure 8 shows the steady state tracking error variance σ2
e (see (22)) as a function of the number

of iterations in the proposed design algorithm for γ = 9.1875, which corresponds to b = 3. Cases 1 and
17Provided both situations use the same channel and the same quantizer.
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Figure 9: Tracking error as function of the channel data-rate (see Section 4.3).

2 refer to iterations that start with A(z) = 1 and F (z) = 0, respectively. In Case 1, we initially fixed

A(z), whereas in Case 2 we start by fixing F (z). Case 3 refers to iterations that start with the choices

suggested in [63] (where we assumed that γ is “high enough”).

In Figure 8 we have identified three points. The first of these (point (1)) refers to the performance

achieved without coding (F (z) = 0 and A(z) = 1). The second (point (2)) refers to the performance

achieved when employing the optimal coding system proposed in [23]. The third (point (3)) refers to

the performance achieved using the approximately optimal filters described in [63].

The results show that coding is, indeed, necessary to achieve high closed loop performance. (Com-

pare point (1) with, e.g., the value of σ2
e after 10 iterations.) It is also possible to see that use of the
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proposed procedure yields coding systems that perform better than the simpler proposals in [23, 63];

see also the discussion at the end of Section 4.2. (Compare points (2) and (3) with the limiting value

for σ2
e .)

Finally, we examine the behavior of the tracking error variance as a function of the channel data-

rate b. The results are presented in Figure 9, where “Nominal performance” refers to the performance

achieved by the nominal loop (without quantization), “No coding (empirical)” refers to simulated

results18 when no coding is employed (i.e., when A(z) = 1 and F (z) = 0), “Opt. coding (empirical)”

refers to simulated results obtained with the filters suggested in Section 4.2 (after 10 iterations), and

“Opt. coding (analytical)” refers to the corresponding predictions made using the simplified noise

model for quantization. One can see that, as expected, the effects of quantization vanish as b → ∞.

Interestingly, the predictions made by the additive noise model turn out to be very accurate for every

bit rate: indeed, for b ≥ 3 the relative errors are of less than 1% and, for b ∈ {1, 2}, the relative errors

are around 8%. (We note that F (z) = 0 turns out to be non-admissible for b = 1, i.e., (23) is not

satisfied. Accordingly, we have omitted the results for b = 1 without coding.)

5 MIMO systems

Next we turn to MIMO systems. Our development here is largely based on [61]. We focus on control of

2× 2 MIMO LTI plants models and explore the potential benefits of enhancing a traditional diagonal

non-networked control architecture with additional non-transparent channels which are subject to

signal-to-noise ratio constraints. We will show how to design LTI coding systems which optimize

overall performance.

5.1 Setup

As before, G(z) denotes the plant model. We assume that an admissible full MIMO controller, say

C(z) =


C11(z) C12(z)

C21(z) C22(z)




18All simulations use an actual uniform finite quantizer with L = 2b levels. For each b, the results correspond to the

average of 200 simulations (each one is 105 samples long and uses a different realization for the reference signal).
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Figure 10: i-th communication link.

has already been designed for G(z). The diagonal terms of this controller are implemented with-

out communication constraints. However, the off-diagonal terms communicate using non transparent

communication links.

We will focus on a situation where the non transparent communication links are as modeled in

Figure 10. In that figure, Fi(z) is the i-th (i ∈ {1, 2}) coder transfer function, vi is the i-th channel

input and wi is the i-th channel output. These signals are related via

wi = vi + qi,

where qi is the i-th channel noise. Each noise sequence is considered white, having variance 0 ≤ σ2
i < ∞

and power spectral density Σi(ejω) = σ2
i , ∀ω ∈ [−π, π]. As in previous sections, we assume that σ2

i is

a design parameter that is proportional to the variance of the channel input (namely, proportional to

σ2
vi

). We define the associated i-th channel signal-to-noise ratio as

γi ,
σ2

vi

σ2
i

.

The NCS which results from employing the links described above to implement the off-diagonal

terms of C(z) can be visualized as in Figure 11. In that figure, u = [u1 u2]T is the plant input,

y = [y1 y2]T is the plant output, r = [r1 r2]T is the reference sequence, and e = [e1 e2]T denotes the

tracking error, i.e.,

e , r − y.
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Figure 11: Partly networked MIMO control architecture (see Section 5).

5.2 Analysis

It is easy to see from Figure 11 that19

σ2
e = ||S(z)Ωr(z)||22 +

2∑

i=1

σ2
i ||S(z)G(z)εiFi(z)||22 , (27)

σ2
vi

= ||Ai(z)Ωr(z)||22 +
2∑

j=1

σ2
j ||Ai(z)G(z)F (z)εj ||22 , (28)

where Ωr(z) is a spectral factor of r and

F (z) , diag {F1(z), F2(z)} , S(z) , (I + G(z)C(z))−1,

A1(z) , F1(z)−1C12(z)εT
2 S(z), A2(z) , F2(z)−1C21(z)εT

1 S(z).

Equation (28) allows one to establish that the NCS described above is MSS if and only if both

F1(z) and F2(z) are stable, MP and biproper,

γ1 > B1 ,
∣∣∣∣C12(z)εT

2 S(z)G(z)ε1

∣∣∣∣2
2
, γ2 > B2 ,

∣∣∣∣C21(z)εT
2 S(z)G(z)ε2

∣∣∣∣2
2
, (29)

and

(γ1 −B1) (γ2 −B2) > ||A1(z)G(z)F (z)ε2||22 ||A2(z)G(z)F (z)ε1||22 . (30)

19εi is the i−th element of the canonical basis in R2.

22



Thus, and as expected from the SISO case examined earlier, we see that MSS imposes lower bounds

on the allowable channel signal-to-noise ratio.

An immediate consequence of the previous result is that, for any C(z), any choice for F1(z) and

F2(z), and provided (29)-(30) hold,

lim
(γ1,γ2)→(γ̄1,γ̄2)

σ2
e = ∞,

where (γ̄1, γ̄2) is any pair in

S ,
{
(γ1, γ2) ∈ R2 : γ1 and γ2 achieve equality in (30)

}
.

As a consequence, we see that for any given full MIMO controller, and no matter how the coding

system is chosen, there exist sufficiently poor channels which render the performance of the resulting

partly networked closed loop arbitrary bad. In these cases, any stabilizing decentralized controller (that

makes no use of the non-transparent channels) will provide better performance than the proposed NCS.

Stated a different way, for the situation under study, there are cases where sending poor information is

much worse than not sending information at all. Of course, this conclusion is tied to the fact that we

are considering a pre-designed controller C(z). If one were to design a centralized controller considering

the communication constraints from the very beginning, then one could outperform (or, at least, equal)

any decentralized design.

5.3 Coder Design

In this section we show how to design the coders F1(z) and F2(z) under a mild simplifying assumption.

From (27) and (28) one can immediately conclude that, provided (29)-(30) are satisfied and γ1, γ2

are large enough, then σ2
e ≈ J , where

J ,
2∑

i=1

||Ai(z)Ωr(z)||22 ||Sd(z)εiFi(z)||22
γi −Bi

.

We will denote the coders that minimize J by F o
1 (z) and F o

2 (z).

Using the arguments of Section 2, it is possible to see that

∣∣F o
i (ejω)

∣∣4 = βi
Mi(ejω)Mi(ejω)H

(Sd(ejω)εi)
H

Sd(ejω)εi

,

23



where

M1(z) , C12(z)εT
2 S(z)Ωr(z), M2(z) , C21(z)εT

1 S(z)Ωr(z),

and βi is an arbitrary positive constant. This results shows how to synthesize coding systems that

aim at minimizing the impact of the communication links on overall closed loop performance. An

interesting feature of the proposed filters is that they do not depend on the channel signal-to-noise

ratios γi. This allows one to conjecture that the optimal filters will perform well for a large class of

communication channels.

5.4 Example

We end this section with an example that considers (instantaneous) bit-rate limited channels modelled

using additive noise channels. For simplicity, we assume equal bit rates on each channel, i.e., b1 = b2 =

b, and take the sampling interval as 1[s]. The plant model is given by

G(z) =




0.6
(z−0.8)

0.4
(z−0.8)

1
(z−0.5)

1
(z−0.5)


 .

For this plant we (somewhat arbitrarily) synthesize the decentralized controller

Cd(z) =




1.3333(z−0.8)
(z+0.8)(z−1) 0

0 0.8(z−0.5)
(z+0.8)(z−1)


 ,

and the full MIMO controller

C(z) =




5(z−0.8)
z−1

−2(z−0.5)
z−1

−5(z−0.8)
z−1

3(z−0.5)
z−1


 .

We also assume that the reference signal spectral description is given by

Ωr(z) =
0.0049627(z + 0.9934)
(z2 − 1.97z + 0.9802)

I,

and that the quantizers are as in Section 4.3.

Figure 12 shows the tracking error variance in the proposed networked MIMO architecture as a

function of the per-channel bit-rate b in several situations:20 “Analytical no coding” refers to the
20The analytical results for non-integer values of b correspond to cases where arbitrary values for the channel signal-

to-noise ratios were chosen (see (14)).
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Figure 12: Tracking error variance as a function of the per-channel bit rate (see Section 5.4).

performance predicted by (27) and (28) when no coding is employed; “Empirical no coding” refers to

simulated performance when no coding is considered; “Analytical opt. coding” and “Empirical opt.

coding” refer to analytical and simulated performance when the coders suggested in Section 5.3 are

employed. For comparison purposes, Figure 12 also shows the non networked full MIMO performance

(“Ideal full MIMO”) and the performance achieved when using Cd(z) (“Decentralized”). The results

allow one to conclude that, in this case, the benefits of coding are significative (compare solid-black

with solid-gray lines).

As expected, non-networked full MIMO performance is recovered as b → ∞, irrespective of the

coders used. Moreover, it is apparent that the non coded networked full MIMO architecture should

be preferred to the decentralized one for b > 3.36. On the other hand, the optimally coded networked

MIMO architecture provides significant improvement in performance for b > 3.20, when compared to

the decentralized architecture. It is also interesting to note that, if b → 3.07, then the performance

becomes arbitrary poor no matter what the coding is. This is consistent with (29)-(30) as straightfor-

ward calculations reveal, and brings back the question of how to actually design MIMO controllers for

the considered situation (not just coding systems for a given fixed controller design).

6 Data Loss and Delays

Up to this point in this paper, we have focused on quantization and signal-to-noise ratio aspects

in NCSs. However, there are other questions and challenges in NCSs which are more appropriately
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addressed by other paradigms. One problem that falls into the latter category is that of (non-i.i.d.21)

data loss or delays (see, e.g., [29,55]). The background of this problem is that in some modern network

protocols (e.g., Ethernet; see [33]), data is sent in large packets. Accordingly, quantization effects may

become negligible in those situations, and the fact that data packets may get corrupted, delayed or lost,

becomes the dominant issue. One strategy to deal with this problem is to encode additional information

in each control packet (e.g., predicted values of future control signals). For example, in [50], the current

authors present a scheme that exploits the assumption that it is possible to transmit relatively large

packets that cover multiple data-dropout and delay scenarios. This provides additional information to

the controller and allows remedial action to be taken in the event that packets are delayed or lost.

7 Conclusions

NCSs are control systems in which the communication channels between plant and controller are

not transparent. Specifically, NCSs are control systems which include non standard features such as

quantization (i.e. data rate limits), data dropouts and random delays. NCS theory brings together

fundamental (and contemporary) ideas from control theory, information theory, signal processing and

communications theory. It is, thus, an exciting area for the systems scientist to contribute to.

Significant results have been found in specific areas that allow one to analyze and synthesize net-

worked control strategies. Nevertheless, we feel that the big picture is still missing. Many questions

remain unanswered. For example, the issues of robustness to plant and channel model errors and adap-

tation need further work. More ambitious is the search of explicit solutions to certain kinds of problems,

which would certainly increase the understanding of the interactions between control objectives and

communications constraints.

Beyond technical details, the key open problem in NCSs is the development of a unified framework

which takes channel issues into account and gives practice-oriented design methodologies. This makes

this research area a challenging and interesting one, with a high development potential.
21Recall from Section 4 that it is possible to use the signal-to-noise paradigm to deal with i.i.d. dropouts in an exact

manner [36,62].
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