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Abstract— Flexure joints are frequently used in precision mo-
tion stages and micro-robotic mechanisms due to their monolithic
construction. The joint compliance, however, can affect the static
and dynamic performance of the overall mechanism. In this
paper, we consider the analysis and design of general platform
type parallel mechanisms containing flexure joints. We consider
static performance measures such as task space stiffness and
manipulability, while subject to constraints such as joint stress,
mechanism size, workspace volume, and dynamic characteristics.
Based on these performance measures and constraints, we adopt
the multi-objective optimization approach. We first obtain the
Pareto frontier, which can then be used to select the desired design
parameters based on secondary criteria such as performance
sensitivity. To simplify presentation, we consider only lumped ap-
proximation of flexure joints in the pseudo-rigid-body approach.
A planar mechanism is included to illustrate the analysis and
design techniques. Tools presented in this paper can also be
applied to a broader class of compliant mechanisms, including
robots with inherent joint flexibility as well as compliant robots
for contact tasks.

I. I NTRODUCTION

Flexure joints have been used in precision instruments such
as watches and clocks for hundreds of years, and continue
to be used today in applications such as optical systems,
micro-robots, and clean room equipment. Flexure joints offer
significant advantages over conventional joints [1], [2] in
terms of both manufacturing and operational characteristics.
Mechanically assembled joints inevitably reduce accuracy due
to manufacturing tolerances. Flexure joints are typically man-
ufactured monolithically and therefore avoid assembly errors.
The monolithic construction also implies a relatively easy
manufacturing process and potentially very compact design.
In terms of operation, flexure joints have little friction losses
and do not require lubrication. They generate smooth and
continuous displacement without backlash. With a suitable
choice of material, flexure joints exhibit a predictable and
repeatable relationship between force and displacement. These
attributes have endeared flexure mechanisms to meso- and
micro-scale precision motion applications, from optical stages
to micro-electro-mechanical-systems (MEMS).

Thorough treatments on the characterization and design
of flexure joints and mechanisms may be found in [1], [3].
Flexure mechanism design is usually addressed either from a
kinematic synthesis point of view with the overall mechanism

compliance as a secondary criterion, or from the compliance
point of view [1] with the emphasis on synthesizing desired
compliance characteristics using, for example, topological op-
timization [4], [5] or finite element analysis [6], [7]. The gen-
eral problem of compliance synthesis has been addressed using
simple springs [8] with specific solutions proposed for tor-
sional and line springs in [9]–[11]. However, such an approach
has several drawbacks: the design criterion only involves the
desired compliance; constraints are not taken into account;
and the overall mechanism is passive without consideration
of actuators. The specific problem of synthesizing a desired
grasp compliance by choosing appropriate finger compliance
is used in [12]. Independent of joint compliance, optimization
based design methods have also been developed for parallel
mechanisms [13], [14], but the joint compliance is not taken
into account. The goal of this paper is to present analysis and
design tools for parallel mechanisms containing flexure joints
based on the pseudo-rigid-body model. Our approach is to
balance the motion and compliance consideration through a
multi-objective optimization.

A well established criterion for assessing the behavior of
a serial or parallel manipulator is the manipulability ellipsoid
which is the task space image of a ball in the active joint
velocity space. This concept was first proposed for serial
manipulators [15] and later extended to parallel robots [16],
[17]. We pose the design problem as a multi-objective op-
timization problem with the performance metrics based on
manipulability and stiffness subject to constraints (such as
the maximum joint stress, workspace, mechanism size, etc.)
and bounds on the design parameters. The Pareto frontier
[18] is then calculated and the final design determined based
on secondary considerations such as dynamic characteristics
and performance sensitivity. As an example, we include a
1-D stage designed by the National Institute of Standards
and Technology (NIST) to illustrate the modeling and design
approach described in the paper.

II. D IFFERENTIAL K INEMATICS

Consider a parallel mechanism with active joints denoted by
the vectorqa and passive joints denoted byqp. The differential



kinematics may be described as[
∆xT

0

]
=

[
JTa

JTp

JCa JCp

]
︸ ︷︷ ︸

J:=

[
JT

JC

]
[

∆qa

∆qp

]
︸ ︷︷ ︸

∆q

(1)

For parallel mechanisms with conventional passive joints,
JCp

is typically square (same number of passive joints as
constraints) so that there are no undesirable internal constraint
forces. It is also essential to ensure thatJCp

is invertible
so that there would not be undesired motion (this is the
kinematic stability condition). IfJCp is a tall matrix, the
mechanism is overconstrained and it cannot move unless some
of the constraints are redundant. If this is the case for a
working mechanism, the rigid body kinematic description is
not adequate, and either more lumped joints need to be added
or a distributed description should be used. IfJCp is a fat
matrix, the mechanism is underconstrained. For conventional
parallel mechanisms, this is not desirable, since there could be
uncontrolled motion resulting from disturbances. However, we
shall see that for flexure mechanisms, this may be acceptable
provided that the stiffness in the direction of unwanted motion
is sufficiently large.

We now consider a fully constrained mechanism (when
active joints are locked) or underconstrained mechanism, i.e.,
JCp is square or fat, and full rank. IfJCp is fat, ∆qp cannot
be uniquely solved since any vector in the null space ofJCp

may be added to the solution. In this case, we assume that the
solution∆qp minimizes the strain energy in the passive joints,
i.e., ∆qp is found from

min
∆qp

1
2
∆qT

p Kqp∆qp, subject to0 = JCa∆qa + JCp∆qp, (2)

where we have assumed linear spring characteristics with
spring constantKqp

. We treat∆qp as the actual joint dis-
placement since we assume that the joint displacement from
the equilibrium is small. The solution of (2) may be readily
found:

∆qp = −J‡
Cp

JCa∆qa (3)

where
J‡

Cp
:= K−1/2

qp
(JCpK−1/2

qp
)† (4)

and † denotes the Moore-Penrose pseudo-inverse. IfJCp is
square invertible, thenJ‡

Cp
= J−1

Cp
.

The relationship between active joint displacement and task
displacement is then:

∆xT = (JTa
− JTp

J‡
Cp

JCa
)︸ ︷︷ ︸

:=JTcomp

∆qa. (5)

By applying the principle of virtual work, we obtain the
dual relationship:[

τa

τp

]
︸ ︷︷ ︸

τ

=

 JT
Ta

JT
Ca

JT
Tp

JT
Cp

[
fT

fC

]
, (6)

where fT is the externally applied spatial force,fC is the
constraint spatial force (to enforce the kinematic constraint,
the bottom portion of (1)),τa and τp are the torque vectors
applied at the active and passive joints, respectively. When
the passive joints are free (e.g., pin, spherical, etc.),τp = 0.
However, for flexure joints,τp is related to∆qp.

By far the most common configuration of parallel mech-
anism is a platform supported by multiple legs. For anM -
leg platform mechanism, the differential kinematics may be
written as

∆xT = JT 1∆qa1+JC1∆qp1 = . . . = JT M∆qaM+JCM∆qpM .
(7)

We can rewrite this relation as

Ja1 0
... 0

JaM

Jp1

0
...

JpM


︸ ︷︷ ︸

J


∆qa1

. . .
∆qaM

∆qp1
. . .

∆qpM



=

 ∆x1

. . .
∆xM

 =

 I
. . .
I


︸ ︷︷ ︸

A

∆xT . (8)

SinceA is of full column rank, we can immediately transform
this to the form (1):

∆xT = A†J∆q (9)

0 = ÃJ∆q (10)

whereA† is the pseudo-inverse ofA andÃ is a full row rank
matrix whose null space coincides with the column space of
A.

III. PERFORMANCEMEASURES

A. Manipulability

Manipulability is characterized byJTcomp
as in (5). Depend-

ing on the design objective, different metrics may be imposed.
If it is desirable to have an isotropic mechanism (the task

frame is equally easy to move in all directions, for active joint
motion constrained in a unit ball), then the metric to minimize
may be

µM (JTcomp
) = (

smax(JTcomp
)

smin(JTcomp)
− 1)2 (11)

where smin and smax denote the minimum and maximum
singular values, respectively (equivalently, the lengths of the
principal major and minor axes of the manipulability ellipsoid).

It may also be desirable to maximize the overall workspace.
In this case, we can choose to maximize the volume of the
manipulability ellipsoid by minimizing the metric

µM (JTcomp
) =

∏
j

sj(JTcomp
)

−1

. (12)
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If it is desired to increase manipulability in directions
given by the unit vectors{ui} and decrease manipulability in
directions given by{vi}, then a possible metric to minimize
is the following weighted sum:

µM (JTcomp
) =

∑
i

αi

(
uT

i JT
Tcomp

JTcomp
ui

)−1

+
∑

i

βi

(
vT

i JT
Tcomp

JTcomp
vi

)
. (13)

B. Maximum Joint Stress

The maximum stresses in the flexure joints are approxi-
mately proportional to the maximum deflections of these joints.
For example, for a circular notch hinge joint with radiusR,
hinge widtht, and Young’s ModulusE, the maximum stress,
σmax, is related to the angular deflection,θmax, by [3]

θmax =
3π

4E

√
R

t
σmax. (14)

For a cantilevered joint with lengthL and width t, the
relationship is approximately

θmax =
0.148

E

L

t
σmax. (15)

If the maximum joint stress is given (e.g., from the yield stress
of the material), it can be converted to an equivalent maximum
joint displacement,∆q

(max)
p by using the above formulas. The

max joint stress constraint can then be stated as a maximum
deflection constraint:

|∆qp| ≤ ∆q(max)
p , (16)

where|·| and≤ are treated in the componentwise sense.

C. Task Space Stiffness

The task space stiffness is defined from the force balance
between the applied external spatial forcefT and the corre-
sponding task frame displacement∆xT :

fT = KT ∆xT . (17)

Rewrite the force balance equation (6) as

τ = JT
T fT + JT

C fC . (18)

By assumption,JCp is full row rank, therefore,JC is full row
rank. Let J̃C be the full column rank matrix whose column
space coincides with the null space ofJC . Then

J̃C

T
τ = J̃C

T
JT

T fT . (19)

Substituting in (17) and using the differential kinematics (top
portion of (1)), we get

J̃C

T
τ = J̃C

T
JT

T KT ∆xT

= J̃C

T
JT

T KT JT ∆q. (20)

Assume the joint torque is related to the joint displacement
through a linear spring relationship:[

τa

τp

]
=

[
Kqa

0
0 Kqp

]
︸ ︷︷ ︸

Kq

[
∆qa

∆qp

]
, (21)

whereKqa denotes the active joint stiffness andKqp denotes
the passive joint stiffness. If proportional-derivative type of
feedback is used for the active joints, then

Kqa
= K(p)

qa
+ K(a)

qa
(22)

whereK
(p)
qa denotes the passive portion andK

(a)
qa denotes the

proportional feedback gain.
Substituting (21) into (20), we get

J̃C

T
Kq∆q = J̃C

T
JT

T KT ∆xT

= J̃C

T
JT

T KT JT ∆q. (23)

From the kinematic constraint (bottom portion of (1)), we
know ∆q may be expressed as

∆q = J̃Cφ (24)

for some vectorφ. Substituting into (23), we get

J̃C

T
KqJ̃Cφ = J̃C

T
JT

T KT JT J̃Cφ. (25)

Since this holds for anyφ, we obtain the expression for the
task space stiffness

J̃C

T
KqJ̃C = J̃C

T
JT

T KT JT J̃C . (26)

If the mechanism is kinematically stable, i.e.,JCp
is square

invertible, then

J̃C =
[

I
−J−1

Cp
JCa

]
, (27)

and (26) becomes

Kqa
+ JT

Ca
J−T

Cp
Kqp

J−1
Cp

JCa
= JT

Tcomp
KT JTcomp

, (28)

which is the same expression as obtained in [19].
For a circular notch hinge type of flexure joint (see

Fig. 1(a)), the joint stiffness modeled as a pure rotation is
given by [3]

K ≈ 2Ep

9π

√
t5

R
, (29)

whereE is the Young’s Modulus of the hinge material,p is
the depth of the joint,t the thickness of the thinnest portion of
the joint, andR is the radius of the circle. A full 3D (planar
translation and rotation) joint stiffness model is also given in
[3].

For a cantilevered joint (see Fig. 1(b)), the joint stiffness
may be approximately modeled as

K ≈ 2γKθ
EI

L
, (30)

where E is the Young’s Modulus,I = pt3

12 is the moment
of inertia about the axis perpendicular to the joint,L is the
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length of the joint andγ andKθ are experimentally determined
constants:

γ = 0.8517,Kθ = 2.6762.

(a) Circular Notch Hinge Joint (b) Cantilevered Joint

Fig. 1. Flexure Joint Modeling

Similar to the manipulability matrix, different metrics may
be used depending on the application. For example, in [19],
the goal is to ensure the stiffness matrix is decoupled. In that
case, the metric may be chosen to be

µK(KT ) = ‖KT − diag(KT )‖ . (31)

If maximum stiffness is desired, the metric may involve
maximizing the volume ofKT or minimizing its reciprocal:

µK(KT ) =

∏
j

sj(KT )

−1

. (32)

If it is desired to increase stiffness in directions given by the
unit vectors{ui} and decrease stiffness in directions given by
{vi}, a possible metric to minimize is the following weighted
sum:

µK(JTcomp
) =

∑
i

αi

(
uT

i KT ui

)−1
+

∑
i

βi

(
vT

i KT vi

)
.

(33)

IV. EXAMPLE : NIST 1-D STAGE

A. Mechanism Architecture

A 1-degree-of-freedom (DOF) macro-scale precision mo-
tion stage using flexure joints was designed and fabricated
by NIST [20], [21]. Several meso-scale (about the size of a
credit card) models have also been built [22]. A schematic of
the mechanism is shown in Fig. 2. A piezoelectric actuator
transmits they-axis motion through joints 1 and 4 to the two
lower arms. These arms pivot about joints 2 and 5 and move
the output stage through joints 3 and 6. To support the output
stage (and to reduce the angular crosstalk, i.e., undesirable
angular motion), two additional arms also support the platform
through joints 7-10. The goal of the design is to achieve
desired manipulability (pure translation iny) and stiffness
(large stiffness in the angular andx directions). The joints
are constructed as circular notch joints (see Fig. 3 from [20]).
However, depending on the exact joint model used, the design
result would be different. This is discussed in the next section.
By replicating the design along the orthogonal axis, a 2-DOF

version has also been designed and built. Such stages are
currently being considered for satellite optical communication
[23].

Fig. 2. Schematic of NIST 1-D Mechanism

Fig. 3. Flexure Joint in NIST 1-D Mechanism

B. Kinematic Models

The mechanism consists of 6 kinematic chains constrained
at the platform. This means that there are 15 total constraints
(5 loops involving(x, y, θ)).

If all the joints in Fig. 2 are chosen to be idealized 1D
rotational joints, then there are 10 passive DOF’s and the
mechanism is overconstrained (JCp is 15 × 10). Indeed, in
this case, the mechanism cannot move from the equilibrium
position shown. This means that the 1D joint approximation
is not adequate to describe this mechanism.

There are a number of possible modifications that we could
introduce. At this point, we do not know which model matches
closest with the physical mechanism; we intend to conduct
calibration tests at NIST in the near future. To illustrate the
design procedure, we have considered the following two joint
models:

• A: Replace joints 1, 3, 4, 6, 8, 10 by two rotational joints
connected by a short rigid segment (cantilevered joint
model). The motivation of this assumption is to allow
rotation as well as shear type of translation at these joints.
Joints 2, 5, 7, 9 serve as pivots and are retained as pure
rotational joints (circular notch joint model). In this case,
there are 16 passive joints and 15 constraints, i.e.,J̃C

is rank 2 (including one active joint). SinceJT J̃C (in
(26)) is rank 2, only thex-y components ofKT can be
determined.
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• B: Replace all joints by double joints (cantilevered joint
model). Now there are 20 passive joints and 15 con-
straints, andKT may be fully determined.

The flexure mechanism is made from 6061-T6 Aluminum
alloy. The Young’s Modulus isE = 70 GPa. The four
quadrants of the stage are nominally all symmetric. We use
the following dimensions:

a = 1.5 mm, b = 15 mm, L = 0.425 mm, d = 8.625 mm.

For circular notch joints, the passive joint stiffness is calculated
using (29) with r = L

2 = 0.2125 mm, t = 0.1 mm, p =
6.35 mm:

Kp = 0.2140 N-m/rad.

For cantilevered joints, the passive joint stiffness is calculated
using (30) with L = 0.25 mm, t = 0.1 mm, and p =
6.35 mm:

Kp = 0.6701 N-m/rad.

The actuator stiffness is obtained from [22]:

Ka = 2.1569× 107 N/m.

In both cases A and B, the task space Jacobian is (the task
coordinate is arranged as(θ, x, y)):

JTcomp
=

 0
0

−9.9998

 ,

showing onlyy-direction motion of the task frame.
The x-y portion of KT in Case A is almost diagonal:

KT (x,y) =
[

1.4100× 109 −6.7705× 10−5

−6.7705× 10−5 7.2841× 105

]
N/m

with eigenvalues(1.4100 × 109, 7.2841 × 105). The full KT

in Case B is

KT =

 6.9911× 1025 3.1518× 1016 2.4655× 1015

3.1518× 1016 8.3672× 108 1.1115× 106

2.4655× 1015 1.1115× 106 6.4209× 105

 ,

which shows very high stiffness in the rotational direction.
The eigenvalues are(6.9911 × 1025, 8.2251 × 108, 5.5514 ×
105) with eigenvectors almost perfectly aligned with the unit
vectors. The order of stiffness values in thex andy directions
for Cases A and B are very close, demonstrating consistency
between the two approaches.

C. Design Optimization

To illustrate the design optimization procedure, we choose
to maximize the manipulability (alongy) and the relative
stiffness between thex andy directions:

Manipulability: µ1 =
1∥∥JTcomp

∥∥ (34)

Stiffness:µ2 =
10

Kx/Ky
. (35)

Note that the scaling constants are added to normalize between
the two measures.

For the maximum joint stress, we use the yield stress
for AL6061-T6: σmax = 220 MPa. The maximum stress
constraint is imposed when the active joint is at its maximum
extension∆qamax = 9.1 µm. Eqs. (14) and (15) are used
to calculate the joint stress for circular notch joints and
cantilevered joints, respectively. In this case, the maximum
allowed joint deflection for the circular notch joint is 0.6731◦

and for the cantilevered joint 0.1003◦. The design parameters
are chosen to be(a, b, c) with the bounds:

0.5 mm≤ a ≤ 4.5 mm,

5 mm≤ b ≤ 45 mm,

0.08 mm≤ L ≤ 0.75 mm.

The Pareto frontiers for cases A and B are shown in Figures 4–
5. When the two performance indices are combined with equal
weights:

µ = 0.5µ1 + 0.5µ2,

the optimal solutions are shown in Table I with the optimal
performance indices

Case A: Manipulability = 15.9717,
Kx

Ky
= 680.1686

Case B: Manipulability = 13.9626,
Kx

Ky
= 915.0178.

Compared with the nominal manipulability of 9.9998 and
relative stiffnessKx

Ky
= 458.8294, for both cases, the optimal

solutions in both cases improve bothµ1 and µ2, with Case
B showing the greater improvement. However, the absolute
stiffness in thex direction is reduced by a factor of 10. If this is
not acceptable,Kx may be added as an additional performance
measure or a design constraint. The maximum passive joint
deflections range from 0.1880◦ to 0.6731◦ for Case A and
Case B, well within the maximum deflection constraint for
circular notch joint.

Initial Optimal value
value Case A Case B

a 1.5 mm 1.2 mm 1.3 mm
b 15 mm 18.6 mm 18.5 mm
L 0.425 mm 0.506 mm 0.379 mm

TABLE I

OPTIMAL DESIGN VALUES FORCASE A AND CASE B

V. CONCLUSION

In this paper, we have presented analysis and design tools
for parallel mechanisms with lumped flexure joints. The key
difference between flexure mechanism and parallel mecha-
nisms with conventional joints is that kinematic stability is
no longer a design consideration. Instead, task space stiffness
needs to be carefully designed to avoid undesired motion in the
presence of external loads. We pose the design problem as a
multi-objective optimization with manipulability and stiffness
as performance measures and maximum joint stress and design
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Fig. 4. Pareto Frontier for Case A

Fig. 5. Pareto Frontier for Case B

parameter bounds as constraints. A 1-D stage designed by
NIST is used as an example to illustrate the modeling and
design approach. It is also shown that by making different joint
assumptions, e.g., a single circular notch joint vs. a bending
beam joint modeled as a double flexure, the optimal solution
could be quite different. We are currently planning to conduct
experimental trials at NIST to determine the validity of the
models and also fabricate new stages based on the optimization
results.
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