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Recent methods of synthesizing logic that is fully and robustly testable for dynamic faults, namely path delay,
transistor stuck-open and gate delay faults, rely almost exclusively on flattening given logic expressions into sum-
of-products form, minimizing the cover to obtain a fully dynamic-fault testable two-level representation of the
functions, and performing structural transformations to resynthesize the circuit into a multilevel network, while
also maintaining full dynamic-fault testability. While this technique will work well for random or control logic,
it is not practical for many regular structures.
To deal with the synthesis of regular structures for dynamic-fault testability, we present a method that involves

the development of a library of cells for these regular structures such that the cells are all fully path-delay-fault,
transistor stuck-open fault or gate-delay-fault testable. These cells can then be utilized whenever one of these
standard functions is encountered.
We analyze various regular structures such as adders, arithmetic logic units, comparators, multipliers, and parity

generators to determine if they are testable for dynamic faults, or how they can be modified to be testable for
dynamic faults while still maintaining good area and performance characteristics. In addition to minimizing the
area and delay, another key consideration is to get designs which can be scaled to an arbitrary number of bits
while still maintaining complete testability. In each case, the emphasis is on obtaining circuits which are fully
path-delay-fault testable. In the process of design modification to produce fully robustly testable structures, we
have derived a number of new composition rules that allow cascading individual modules while maintaining robust
testability under dynamic fault models.
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ecent methods of synthesizing logic that is fully
testable for dynamic faults, namely path delay,

transistor stuck-open and gate delay faults (e.g.
Kundu and Reddy, and Kundu et al. [6, 7]), rely
almost exclusively on flattening given logic expres-
sions into sum-of-products form, minimizing the
cover to obtain a fully dynamic-fault testable two-
level representation of the functions, and performing
structural transformations to resynthesize the circuit
into a multilevel network, while also maintaining full
dynamic-fault testability. While this technique will
work well for random or control logic, it is not prac-
tical for many regular structures.
There are two major problems with applying these

synthesis techniques to .regular structures. First, for
many of these type of circuits, the number of product
terms in the flattened structure becomes prohibitive.

Consider a binary adder as an example. In an adder,
the number ,of product terms grows exponentially
with the number of bits. For an N-bit adder, the most
significant bit of the sum output has 2u+2 4 product
terms in its flattened representation. Another ex-
ample is a parity generator. An N-bit parity gener-
ator has 2N-1 product terms in the flattened repre-
sentation of the circuit. As a result of this exponential
growth in the number of product terms, it can quickly
become prohibitive in terms of both the CPU time
required and the memory requirements to flatten
even relatively small regular structures such as adders
and parity generators.
A second problem is that in flattening the original

logic expressions, the structure that the designer has
created in the overall architecture is lost. This can
result in a number of problems if the optimization
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algorithms cannot synthesize an implementation
which has similar area or performance characteris-
tics, which is often the case for regular structures.
For example, often a bit-slice approach works best
for many data path structures. The basic building
block can be optimized and laid out, and then the
overall circuity constructed by simply replicating this
one block many times. Once the structure is flat-
tened, all of the information about the original struc-
ture is lost which may not be recoverable by synthesis
procedures.
As a result of the problems identified with trying

to flatten regular structures and then synthesizing a
dynamic-fault testable implementation, it is desirable
to develop an alternative method for dealing with
such circuits. In Devadas and Keutzer [4] a simple
composition rule for robustly path-delay-fault test-
able circuits was developed that allowed for the de-
velopment of a robustly path-delay fault testable rip-
ple-carry-adder and a parity generator. A number of
new composition rules are developed here in order
to develop a library of cells for these regular struc-
tures which are all fully dynamic-fault testable which
can then be utilized whenever one of these standard
functions is encountered.
The following sections use and extend the theory

of Devadas and Keutzer [3, 4] to create a library of
regular structures such as a variety of adders, arith-
metic logic units, comparators, multipliers, and par-
ity generators. The theory is used to determine if
common structures are testable for dynamic faults,
or how they can be modified to be testablefor dynamic
faults while still maintaining good area and perform-
ance characteristics. In addition to minimizing area
and delay, another key consideration is to get designs
which can be scaled to an arbitrary number of bits
while still maintaining complete testability for delay
faults. In each section, the emphasis is on obtaining
circuits which are fully robustly path-delay-fault test-
able. This implies that they are fully robustly testable
for gate-delay-faults and stuck-open faults as well [3].
When this is not achievable without significant area
or speed penalties, methods of obtaining transistor
stuck-open-fault testable and robustly gate-delay-
fault testable circuits are analyzed.

PREVIOUS WORK

Because of the importance of regular arithmetic and
logical structures in digital design, a number of re-
searchers have sought to develop testing methods for
these structures, but most of the attention has ap-

parently been focussed on functional testing (for a
survey see Abramovici et al. [1] chapter 8). These
functional tests are useful in detecting faults that af-
fect the logical behavior of circuits, but they do not
address the temporal behavior of the circuit. Fur-
thermore, many implementations of regular struc-
tures which are completely testable functionally, may
be poorly testable for faults such as path-delay-faults,
even when the functional vectors can be applied at
speed.

In light of this, if there is interest in detecting delay
faults then attention must be given to the precise
logic-gate-level implementation of regular logic
structures. The testability of transistor-level design
of arithmetic regular structures is considered in Mon-
toye [8]. Unfortunately, delay defects are not ex-
plicitly considered there and the results are tied to
particular transistor structures in an nMOS custom
design methodology.

DEFINITIONS

A gate has an input/output stuck-at-1 if the logical
value associated with the input/output is 1 indepen-
dently of the value presented at the input. Stuck-at-
0 can be defined similarly. If a fault is stuck-at-1
untestable then the input net or gate in the circuit
associated with that fault can be replaced by a con-
stant 1. Similarly for stuck-at-0.
A circuit has a gate delay fault if there is one gate

in the circuit such that the output of the circuit is
slow to make a 0--> 1 (or 1 ---> 0) transition even
when one or more of the gate’s inputs change values.
Each single gate delay fault is assumed to be so cat-
astrophic as to cause a delay along any path to any
output.
A gate in a CMOS circuit has a transistor stuck-

open fault if there is one transistor in the gate that
is permanently non-conducting.
A circuit has a path delay fault if there exists a

path from a primary input to a primary output via a
set of gates and interconnecting nets such that a pri-
mary input event is slow to propagate along the path
to the primary output.

Necessary and sufficient conditions for path-delay-
fault testability were given in Devadas and Keutzer
[3]. In order for a gate delay fault to be detected, it
is sufficient for a path through the gate to be robustly
testable. Similarly, in order for a stuck-open fault at
the input of a gate to be detected, it is sufficient for
a path through that input to be robustly testable.
A robust test for a dynamic (gate delay, transistor

stuck-open, path delay) fault is one which is valid
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under arbitrary delays and is therefore not invali-
dated by hazards or races.
Throughout this paper we will assume that a robust

test for a dynamic fault in a circuit C is a vector pair
(v, v2)such that C(v) 0 and C(v2) 1. Let the
expected transition time on the vector pair be z. The
application of the vector pair is as follows: Vector Vl
is applied to C and the values on nets are allowed
to settle for an arbitrary amount of time. Vector v2
is then applied to C. At time " the output of C is
sampled; if the value is 1 then no fault is detected,
otherwise a fault is detected. Next, the vector pair
(v2, v) is applied to propagate the opposite event
along the path and detect faults corresponding to the
1 - 0 event.

ADDERS

There are numerous types of adder designs which
provide various performance and area tradeoffs. We
have analyzed various adder structures to determine
if they are testable for the various classes of dynamic
faults, or how they can be made to be testable for
these classes of faults. Since data path structures
often form the critical path in a system, it is important
that these paths be testable for delay. We will not
describe the analysis in its entirety (the reader is
referred to Bryan [2]) but will simply present a novel
design of a carry bypass adder which is fully testable
for path delay faults.
The composition rule below was proved in De-

vadas and Keutzer [4].

All of the circuit implementations in this paper are
given in terms of AND gates, OR gates, and in-
verting buffers, as well as exclusive OR gates which
are modeled using these three types of gates. In some
of the cases the inverters are not explicitly repre-
sented in the logic diagrams, but are implied by in-
version bubbles on the inputs or outputs of the other
gates. In the actual models these inverters must be
explicitly represented in order to accurately repre-
sent all possible gate delay faults. Describing the
circuits in this manner provides a good method to
easily analyze whether the implementation is testable
for robust path-delay-faults as well as the other
classes of dynamic faults. The paths in an actual tran-
sistor-level implementation in a particular technol-
ogy and design style (such as static CMOS) will have
a one-to-one correspondence to the paths in the gate-
level implementations used in this paper.
The carry lookahead and bypass adders create

both the propagate (P) and generate (G) terms for
each bit. The propagate term is asserted whenever
a carry input would propagate through the adder
section based on the values of the operands. Thus
for a 1-bit section, P A B. The generate term
is asserted whenever a carry is generated by an adder
section based on only the values of the operands (i.e.
regardless of the value of the carry input). Thus for
a 1-bit section, G A B. The carry output which
is created from the propagate and generate terms is
defined as CO G + P CI. In Figure l(a), the
standard logic for generating the propagate, gener-
ate, and sum outputs for each bit is shown. An al-
ternate representation is shown in Figure l(b).

Composition Rule: Given a set of robustly path-
delay-fault testable circuits, C1, C2, CN, iffor 1 <-
< N a single output of Ci, namely li feeds Ci+ and

for 1 <- i, <- N when j the inputs of C and C
are disjoint, then the composition is fully robustly
path-delay-fault testable.

Carry Bypass Adder

The carry bypass adder is just an offshoot of the carry
lookahead adder. It becomes very inefficient to ex-
tend the carry generation scheme for lookahead ad-

A

(a) Conventional Implementation (b) Alternate Implementation

FIGURE Propagate/generate logic implementation.
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4-bit adder 4-bit adder

A S S{4:7}

B(0:3) G B G
Cl

Cl P Cl, P CO

FIGURE 2 Carry bypass adder implementation.

ders to very large bit-widths. Typically, the carry
signals are only calculated in this manner for up to
4-bit sections. By creating a propagate and generate
signal for each 4-bit section, the carry signal can be
bypassed through each stage as shown in Figure 2.
The logic for the cumulative propagate and generate
signal for each 4-bit stage can be expressed in terms
of the propagate and generate signals for each bit,
where P P0. P1. P2. P3 and G G3 + G2.
P3 + G1 P3. P2 + GO. P3. P2. P1. An imple-
mentation is shown in Figure 3. Using a carry bypass
scheme allows each N-bit stage (4-bit in this case) to
be identical, and thus makes layout simpler since
only one stage needs to be laid out, and then an
arbitrary number of these blocks can be intercon-
nected to form a larger adder..
The carry bypass generation is an algebraic fac-

torization of the carry signal. This circuit is thus fully
testable assuming that the individual propagate sig-
nals for each bit are implemented as P A + B,
i.e. the alternate implementation of Figure l(b). If
the propagate signal is implemented as P A ( B,
then the circuit will not be fully testable.
For a 28-bit carry select adder composed of 7 4-

bit stages, the longest path for a carry select adder
would be 10 stages of logic (each stage being two
levels). For the carry bypass adder, the worst case
delay for the carry output signal would be 8 stages
of logics7 carry bypass chains and the propagate/
generate logic in the first stage. The worst case sum
output would go through 10 stages of logics6 up to
the carry input of the last stage, and 4 in the last
stage of the adder to generate the sums (assuming a

Note that the commonly used implementation of the carry
bypass adder has a single stuck-at fault redundancy. Removing
this stuck-at fault redundancy results in a circuit that is consid-
erably slower than the original circuit. In Keutzer et al. [5], an
implementation of a carry bypass adder that was fully testable for
stuck-at faults with equal or better performance than the redun-
dant adder was given. However, the circuit of Keutzer et al. [5]
was not fully robustly path-delay-fault testable. The circuit pre-
sented here is completely robustly path-delay-fault testable, and
maintains the performance of the original circuit.

ripple adder). By adjusting the stage size, the per-
formance of the carry bypass adder can be made to
exceed that of the carry select adder. However, the
significant advantage of the carry bypass adder is that
it does not need to generate two different sums at
each stage and then multiplex the outputs, creating
a large savings in area.

Summary of Testability of Adders

It was shown [2] that all four types of adders analyzed
can be made to be fully testable for all three classes
of dynamic faults. It was also shown that the carry
select adder becomes inferior to the carry bypass
adder and has no significant advantages which would
result in it being chosen over the carry bypass adder..
While versions of the carry lookahead and carry by-
pass adder were shown that are fully testable, the
most commonly used implementation of these adders
is not fully testable. The testable version adds a small
amount of logic to the common implementation (1
OR gate per adder bit), but retains the same per-
formance characteristics or improves the perform-
ance slightly.

G3

P3
G2

P2
G1

P1

PO

FIGURE 3
tion.

G

Cumulative propagate and generate implementa-
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A>Bin_

A<Bin

A-Bin

FIGURE 4 1-bit extensible comparator implementation.

A>B

A<B

COMPARATORS

Binary magnitude comparators are another type of
regular structure. It is desirable to have a comparator
which is fully testable for dynamic faults that can also
be scaled to an arbitrary number of bits. Performance
is also an important cost function when evaluating
alternate comparator designs. In this section the test-
ability of some typical comparator implementations
and methods to cascade comparators are analyzed.

Ripple Comparator

An N-bit comparator can be constructed by simply
connecting N 1-bit extensible comparators in series.
An implementation of a 1-bit extensible comparator
is shown in Figure 4. It has five inputs, 2 of which
are the operands A and B, and the remaining three
are the results of the comparison of the less signifi-
cant bits. The three outputs indicate whether A is
greater than, less than, or equal to B. The imple-
mentation shown in Figure 4 is fully testable for dy-
namic faults. It has 14 gates, 25 links, and 15 paths,
all of which are robustly testable.
The 1-bit extensible comparator shown in Figure

4 can be cascaded together to form an N-bit com-

parator by simply connecting the comparison outputs
of the ith stage to the comparison inputs of the +
lth stage. A 3-bit ripple comparator is shown in Fig-
ure 5. Note that the first stage has been simplified
by using the fact that A > B 0, A < Bg 0,
and A B, 1. The ripple comparator is fully
testable for path delay faults since each stage is fully
testable and the inputs that affect each output of a
given stage are fully controllable. Note that the entire
input set for a given stage is not fully controllable,
since the inputs A > B, A < B;, and A B for
a given stage can only take on the values (100), (010),
or (001). However, the output A > B of the ith stage
only depends on the inputs A, B;, and A > Bi-l.
Thus for A > Bi to be testable for path delay faults
only requires that A;, B, and A > B;-1 be indepen-
dently controllable and that the stage itself be fully
testable. A > Bg_ is independent of Ag and Bg, so A
> B is fully testable. Similar arguments can be made
for the outputs A < B and A B.

Figure 5 above indicates a more general compo-
sition rule than the rule given in Devadas and
Keutzer [4].

Composition Rule: Consider a set of robustly path-
delay-fault testable circuits, C, C2, Cu, where for
1 <- < N outputs li!, lip from Ci feed Ci+ 1, each

1-bit comp

AIB10

A<Bin A<B

B2._

1-bit comp

A>Bin A>B

A=Bin A=B

A<Bin A<B

FIGURE 5 3-bit ripple comparator implementation.

AB

A-B

..._ A<B
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Ci block receives another set of inputs, namely I such
that for 1 <- i, ] <- N when L I and I have no
common inputs. If, for 1 <- <- N, 1 <- k <- P, li only
depends on Ii and li-, then the composition is fully
robustly path-delay-fault testable.

Each circuit C can be broken up into P parallel cir-
cuits, each receiving Ii and l_1,. Then, given Com-
position Rule on Carry Bypass Adder, we have the
above result.

one additional comparator is required. This com-
parator receives as inputs the A > B and A < B
outputs of the other comparators, with the result of
the comparison of the most significant input bits
being connected to the most significant bits of the
final comparator.
The parallel comparator implementation in Figure

6 is not fully testable for dynamic faults. The un-
testability occurs since theA and B inputs of the final
comparator are not fully controllable.

Parallel Comparator

While an arbitrary size ripple comparator can be con-
structed, delays become prohibitive when perform-
ing comparisons of large operands. An alternate
method of performing comparisons of operands with
a large number of bits is to construct a parallel com-
parator. A parallel comparator of two N-bit operands
can be constructed out ofN/M M-bit extensible com-
parators. An implementation of an 8-bit comparator
constructed out of 4 2-bit extensible comparators is
shown in Figure 6. In this commonly used imple-
mentation, the comparator with the least significant
bits of the operands is connected in the typical man-
ner. However, the comparators that receive the other
bits of the operands can accept one additional bit,
with the operand Ai being connected to the A > Bin
input, and the operand Bi being connected to the A
< Bi, input. TheA B, input is tied low. In addition
to the comparators which receive the primary inputs,

Alternate Parallel Comparator

Figure 7 is an alternate method for implementing a
parallel comparator. The comparator in Figure 7 is
a 6-bit comparator, and is composed of 3 initial stages
each of which does a 2-bit comparison, and then an
output stage which performs the final comparison.
This implementation is fully testable for path delay
faults. It has a total of 85 gates, 187 links, and 144
paths, all of which are robustly testable.

Figure 8 shows the detailed implementation of the
initial 2-bit stage used in the parallel comparator of
Figure 7. There are 4 outputs from each of the com-
parators in the input stage. These outputs are A >
B, A < B, EQA, and EQB. OutputA > B is asserted
wherlever A is greater than B, and A < B is asserted
wheneverA is less than B for the bits of the operands
which are inputs to the particular stage. Output EQA
is the minimal expression obtained from using A
B as the ON-set, and A > B as the DC-set. Thus

2-bit comp

A6
A0

B7
B1

i_.1A5
A>Bin A>BI 2-bit comp

0
A-Bin A-B

A4
B5

A<Bin A<B
, A1

2
A>Bin
A-Bin

B2
A<Bin

AI__
AO__
BI__
BO._.
0

0

2-bitomp

A1
A0
B1
B0
A>Bin A>B
A-Bin A=B
A<Bin A<B

A>B"
A-B
A<B"

2-bit comp

A>Bin
A=Bin
A<Bin

FIGURE 6 8-bit parallel comparator implementation.

A>BA>B
A=BA-B

A<B A<B
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A5

A1 ’A1
A0

A0
B1

B1
B0

B0

2-bit comp

A1 A>B final comp

B1 EQ A>B2
EQA2

msbB0 A<
2-bit comp EQB2

A3
A1 A t_,..__.

A>B1A2
A0 EQA L__.

EQA1B3
B1 EQ

EQB1
2-bit comp

B2
B0 A<

A<B1
A>B A>BO

EC,_A EQAO
Isb

EQBBI EQBO
A< A<BO

FIGURE 7 Alternate parallel comparator implementation.

A>B
A-B
A<B

whenever EQA is asserted, A is either greater than
or equal to B, but EQA A >_ B. Likewise, output
EQB is the minimal expression obtained from using
A B as the ON-set, and A < B as the DC-set.
Thus whenever EQB is asserted, A is either less than
or equal to B.

Figure 9 shows the detailed implementation of the
final comparison stage used in. the parallel compar-
ator of Figure 7. This logic takes as inputs the 4
outputs of each of the input stages and generates the
final outputs of the comparator. The output A > B
is asserted whenever input A > Bi and inputs
EQA/ :,,_ are asserted, n being the number of input
comparator stages, numbered from 0 to n 1. The

EQA terms can be considered the equivalent of the
propagate terms in the carry lookahead adder. In
order for an assertion of the A > B output of a given
input stage to cause an assertion of the A > B output
of the overall circuit, all of the EQA terms of the
more significant input stages must be asserted. The
A < B output is defined similarly, with it depending
on the A < B and EQB inputs. The A B output
is asserted whenever all of the EQA and EQB inputs
are asserted. Figure 7 gives rise to the following com-
position rule.

Composition Rule: Given a set of individually ro-
bustly path-delay-fault testable circuits, C1, C2, CN

A1

B1

A1

B1

FIGURE 8 Alternate 2-bit comparator initial stage.

A<B

EQB
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A<B2
A<B1
EQB2

A<B0
EQB1

A>B2
A>B1
EQA2

A>B0
EQA1

EQA2

EQAO_._J-I J --L" ’ A-B
EQB2 / /’--

EQB0

FIGURE 9 Alternate comparator final stage.

and D such that C1, C2, CN feed D, iffor 1 <- i, j
<- N when j the inputs of C and C are disjoint,
for 1 <- <- N outputs li, lie from Ci feed D, and
the side-inputs on the paths in D beginning from any
li can be controlled to O 1 by lm, k i, 1 <- rn <- P,
then the composition is fully robustly path-delay-fault
testable.

Since each C is fully testable, a transition through
any path can be propagated to an output li. A tran-
sition on li can be propagated through paths in D,
given that the appropriate values can be produced
by the other C blocks, that have disjoint inputs from
c.
There are two major disadvantages with this al-

ternate parallel comparator. These disadvantages are
the extra area required to implement the circuit, and
the problems which occur when scaling it to a larger
number of bits. For small comparators, the size is
comparable to that of the other comparators pre-
sented. For a 3-bit comparator, the ripple compar-
ator, parallel comparator constructed out of ripple
comparators, and the alternate parallel comparator
would each have 48 literals in their multilevel cover.
However, for an 8-bit comparator, the size of the
first two would scale linearly to 128 literals, while
the alternate comparator would increase to approx-
imately 220 literals. The testability of the alternate
comparator can be maintained for larger designs, but
the area penalty becomes increasingly worse. Thus
the design does not scale well. From a performance
standpoint, the alternate parallel comparator is faster
than the original parallel comparator presented. For
the case of an 8-bit comparator, the longest path in
the original comparator would be through 8 gates,
while the longest path in the alternate comparator
will be through 4 gates. This advantage in speed will
gradually be lost for larger comparators.

From a functional standpoint, an equivalent com-
parator to that shown in Figure 7 could be con-
structed by generating a single A B output from
each input comparator stage. This signal could then
be used in place of the EQA and EQB terms in the
final comparison, with A > B only being asserted
when inputsA > Bi andA Bi+ l:n-I are all asserted.
However, this implementation is not fully testable.
All of the 70 gates and 172 links are robustly testable,
but only 144 out of 192 paths are robustly testable.
It can be shown that all 48 untestable paths corre-
spond to stuck-at fault redundancies, and if they are
all removed from this comparator implementation,
the circuit of Figure7 would result. However, this
design does not scale well to generate arbitrarily
large comparators, and in general the design is in-
ferior to the others presented in this section.

It is of interest to note that when the comparator
"propagate" signals EQA and EQB are defined to
be simply A B, this is equivalent to the case when
the propagate signal for the carry lookahead adder
was defined to be P A B. Both of these cases
define the propagate signal to allow a signal from a
lower stage to propagate through only when the sig-
nal can propagate through and when the signal is not
generated at the current stage. Both of these cases
are also not fully testable for path delay faults. How-
ever, when the propagate signal is defined to allow
a signal from a lower stage to propagate through even
if the signal is generated at the current stage, the
circuits both become fully testable.

Bypass Comparator

The disadvantage of the parallel comparator of Fig-
ure 7 over that of Figure 6 is that the comparator of
Figure 7 requires two different cell types to be de-
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An
An-1
Bn
Bn-1

A>Bin
A<Bin

A-Bin

2-bit comp

A1 A>B
A0 E(

B1 E(

B0 A<B

FIGURE 10 Bypass comparator.

A>B

A<B

signed and laid out. In addition, it does not scale
well, and requires more area to implement. A com-
parator which is fully testable for dynamic faults but
which only requires a single cell type is shown in
Figure 10. This comparator is similar to the carry
bypass adder (see appropriate section). Each stage
is composed of a comparator which generates the A
> B, A < B, EQA, and EQB signals such as that
shown in Figure 8. The stage also receives the A >
B, A B, and A < B signals from the preceding
stage, and adds some additional logic to generate A
> B, A < B, and A B signals which reflect the
total result of the comparison to that point. Thus no
final output stage is needed. The disadvantage is
slower performance. In the case of the N-bit com-
parator constructed out of stages of M-bits each, the
longest path would be through one M-bit compara-
tor, and N/M 1 stages of bypass logic. This im-
plementation is, however, much faster than the rip-
ple comparator of said named section. This design
does .require more area than the comparators which
were not fully testable, but the area is less than that
of the comparator of the previous section. An 8-bit
comparator would have 195 literals in the multilevel
cover for the circuit. This is about 50% more than
for the ripple comparator, but since the area for this
design scales linearly with the number of bits of the
comparator, the area penalty will not grow any worse
for larger designs.

Comparator Tree Structure

In the preceding sections, three fully testable com-
parators were presented. Each of these designs has
some weaknesses associated with it. The ripple com-
parator has a delay which grows linearly with the
number of bits in the comparator. It does, however,
have a compact area. The alternate parallel com-
parator has a delay which is largely independent of
the size of the comparator. However, it has a large

area penalty which becomes increasingly worse for
large comparators. The bypass comparator has a de-
lay which also grows linearly with the number of bits,
although it is faster by a constant factor than the
ripple comparator. This increase in performance re-
sults in a 50% increase in area over the ripple com-
parator. In this section, another comparator is pre-
sented which has good performance and area
characteristics, but which has somewhat reduced
testability.

If full robust path-delay-fault testability is not es-
sential, a comparator can be constructed which is
fully gate-delay and stuck-open fault testable, has an
area approximately 30% less than that of the ripple
comparator, and which has performance approach-
ing that of the parallel comparator. A block diagram
of this comparator is shown in Figure 11. It is im-
plemented using a binary tree structure. The input
cells determine if a given bit of the operand A is
greater than or less than the corresponding bit of the
operand B. The subsequent stages compare sets of
two A > B and A < B signals from the previous
level and generate a single pair of A > B and A <
B signals. This continues until a final result is
achieved. The basic cells for this comparator are
shown in Figure 12.
The structure of Figure 11 inspires the following

rule. The rule can be used repeatedly to show that
the comparator tree is robustly stuck-open and gate-
delay-fault testable.

Composition Rule: Given a robustly stuck-open
fault (gate delay fault) testable circuit, C, and a ro-
bustly path-delay-fault testable circuit C2 such that out-
puts 11, Ip from C1 feed C2, if a transition can be
robustly propagated through every link (gate) in C
to some output of C, namely l, while holding the lk,
k j at constant values that allow the robust prop-
agation of this event through some path in C2, then
the composition is fully stuck-open fault (gate-delay-
faulO testable.
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B2, A>B

A1 A<B
B1

A0
B0

FIGURE 11 4-bit comparator tree.

Holding the lk, k j to constant values is necessary
to ensure that the transition on l can be propagated
robustly through C2. Stuck-open or gate delay faults
in C2 can be detected by robustly propagating an
event along a path that passes through the appro-
priate links or gates.
The delay through this comparator is proportional

to log2 N, N being the number of bits being com-
pared. It is also possible to implement a similar com-
parator using a scheme in which each subsequent
stage combines the results of three stages at the pre-
vious level, making the delay proportional to log3 N.
The area saving in this binary tree comparator design
is a result of not generating an A B signal at every
level in the design. This signal is generated with a
single NOR gate at the output of the circuit, and thus
a 30% area improvement can be obtained over the
ripple comparator for an 8-bit comparator (90 literals
versus 128 literals). This same percentage improve-
ment in area is also maintained for larger compar-
ators. Thus this design scales well in terms of area,
performance, and testability. The disadvantage is
that it is not fully testable for the most restrictive
class of delay faults, namely robust path-delay faults.

ARITHMETIC LOGIC UNITS

Arithmetic logic units are another type of regular
structure for which it is highly desirable to be fully

testable for dynamic faults since they often comprise
the critical path within the design. Typically an ALU
contains a high degree of shared logic and thus is
generally not fully testable. We refer the reader to
Bryan [2] for the analysis and design of adder/incre-
menter circuits and adder/substractor circuits for dy-
namic fault testability. We summarize the composi-
tion rules that are useful in designing such structures.
We do not restrict the subcircuits to have disjoint

inputs as in the Composition Rule dealing with Carry
Bypass Adder.

Composition Rule: Given a set of robustly path-
delay-fault testable circuits, C, C2, Cu such that
for 1 <- < N a single output li of Ci feeds Ci+ and
common inputs 1, Ip that feed all the Ci, if the
remaining inputs to Ci can damp a transition on any
input lj before convergence with paths from l, then
the composition is fully stuck-open fault and gate-
delay-fault testable.

Stuck-open faults corresponding to I links are prop-
agated to l or the outputs of some C. In the former
case, the transition can be propagated through C+
robustly, since the transition on lj never reconverges.
We also give a condition different from the Com-

position Rule on Arithmetic Logic Units that main-
tains testability.

Composition Rule: Given a set of robustly path-
delay-fault testable circuits, C1, C2, Cu such that

(a) Initial compare stage

A>B
A>B0

(b) Subsequent compare stage

FIGURE 12 Comparator tree basic cells.

A<B
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for 1 <- < N a single output li of Ci feeds Ci+ 1, and
common inputs 11, Ie thatfeed all the Ci, iffor each
Ci (1) all links from inputs lj in Ci are testable at some
output of Ci not equal to li and (2) a path through
other links in C is robustly testable up to the point of
output l orsome other output ofC by placing constant
values on the I, then the composition is fully gate-
delay-fault and stuck-open fault testable.

Links connected to any Ii of a C block are tested at
outputs that do not feed other blocks, without re-
convergence occurring between Ii transitions. Other
links do not require I transitions and can be tested
through 1 (further propagation is required) or at the
outputs of Cg.

PARALLEL MULTIPLIERS

A binary multiplier can be implemented as an adder
along with some additional logic. As a result, mul-
tiplier circuits have a number of the same properties
that adders exhibit. However, it is much more dif-
ficult to design a multiplier which is fully testable for
dynamic faults due to the large amount of recon-
vergence present in a multiplier. In this section the
testability of parallel multipliers is analyzed, both for
pipelined and non-pipelined designs.
To perform a parallel multiply, the bitwise AND

of each pairwise combination of the two operands is
performed, and then the appropriate AND outputs
are added together to form the product outputs. The
sum of the indices of the operands which are ANDed
together determines which product term the bitwise
AND contributes to. For example, XOYO contributes
to P0, while X2Y2 contributes to P4. These rela-
tionships between the multiplier partial products are
shown in Figure 13 for a 4-bit by 4-bit multiply. X0:3
and Y0:3 are the two operands to be multiplied, and
P0:7 is the product.

A parallel multiplier of n bits by rn bits can be
constructed to be a n x rn array of cells which com-
pute the partial products and perform the sums. Each
of these cells computes the partial product of the
operand bits which intersect at that cell, and then
adds that value to the incoming sum passed to the
cell and generates an outgoing sum and carry. There
are two typical ways in which this multiplier array is
constructed. One method uses rows of carry prop-
agate adders, the other uses rows of carry save ad-
ders. We will analyze the carry save multiplier here.

Carry Save Multiplier

Figure 14 is a block diagram of a 4-bit by 4-bit parallel
multiplier using carry save adder rows, with operands
X and Y, and product P. Figure 15(a) shows the pin
assignments for the basic cell labeled A-ADD in Fig-
ure 14, while Figure 15(b) is a gate-level implemen-
tation of the cell. This cell is simply a full adder with
two inputs A1 and A2 which are ANDed together
to form one of the operands. In the multiplier array,
the outgoing sums (S) are passed to the incoming
sum (B) of the cell that is below and to the right of
the current cell. If the current cell is on the right
edge of the array then the outgoing sum is one of
the final product outputs. The carry output is passed
to the carry input of the cell immediately below the
current cell. The carry inputs of the top row of cells
are tied to a logic low, and the incoming sums of the
top row and left column are also tied to logic low.
By implementing the multiplier array using carry

save adder rows, an additional set of full adders
needs to be added after the bottom row to propagate
the final carry between the most significant product
bits. In the multiplier shown in Figure 14, this adder
is represented by the three cells labeled ADD at the
bottom of the array. Each cell is a 1-bit full adder,
with the two operands entering at the top, the carry

X3 X2 X1 XO

Y3 Y2 Y1 YO

X3.YO X2.YO XI.YO XO.YO

X3.YI X2.YI XI.YI XO.YI

X3. Y2 X2. Y2 XI Y2 XO. Y2

X3. Y3 X2. Y3 XI Y3 XO. Y3

P7 P6 P5 P4 P3 P2 P1 PO

FIGURE 13 Multiplier partial products.
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Y1

Y3

X3 X2 X1 X0

T i ,I l i

A-ADD

T

A-ADD

T

A-ADD

A-ADD A-ADD A-AD

’1
A-ADD A-AC

A-ADD

ADD

A-ADD

"’] A

A-ADD

 oI-O
P4

FIGURE 14 Carry save parallel multiplier implementation.

P0

P1

P2

P3

input on the right, and the carry output leaving on
the left and the sum on the bottom.
While each cell in the multiplier array can be iden-

tical with some of the inputs tied to logic low as
explained in the preceding paragraphs, typically
some optimization is performed. Optimizing the cir-
cuit can improve area, performance, and testability.
Each of the cells in the top row and the left column
can be replaced simply with AND gates since the
carry input and sum input for each of these cells are
both always low. Likewise, since the second row re-

ceives only a sum input and no carry input from the
first row, these cells can also be simplifed.
The multiplier shown in Figure 14 is not fully test-

able for dynamic faults due to the large amount of
reconvergence. Consider output P2 as an example.
In the A-ADD cell that generates P2, there is re-
convergence of inputs X0, X1, Y0, and Y1. This
reconvergence results in only 24 out of the 48 paths
passing through output P2 being robustly testable.
Figure 16 shows the combined logic for output P2.
Gates 1-3 generate the incoming sum to the cell,

B A1 A2 CI
co S

(a) A-ADD cell

CI

(b) A-ADD cell implementation

FIGURE 15 Carry save multiplier basic cell.

co
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Y1 Y

FIGURE 16 Combined logic for P2 output of carry save multiplier.

gates 4-6 generate the carry input to the cell, and
gates 7-9 are in the A-ADD cell that outputs P2.
To illustrate the untestability caused by reconverg-
ence, consider the two paths originating at input X1
and passing through gates 4, 6, and 9. In order to
propagate a transition on input X1 to the output of
gate 6 requires that Y0 1, X0 1, and Y1 1.
When these three inputs are all high, a transition on
input X1 will also propagate through gates 1, 3, and
8, and a blockage will occur at the input of gate 9.
Thus these two paths from input X1 to output P2
through gates 4, 6, and 9 are not robustly testable.
Testability analysis using our program indicates that
similar reconvergence causes an additional 22 paths
through the circuit of Figure 16 to be untestable.

Modifications to the carry save parallel multiplier
could be made to achieve a fully robustly path-delay-
fault testable circuit. However, doing so would result
in losing the regular structure of the design, and an
arbitrarily large multiplier could not be constructed
simply by connecting up a number of basic building
block cells. A large area penalty would also. occur
since much of the sharing of logic would also be lost.
An alternate approach to building a fully testable
multiplier by using pipelining which maintains the
regular structure is described in the following para-
graphs.
A pipelined version of the 4-bit by 4-bit carry save

multiplier is shown in Figure 17. This multiplier in-
corporates some optimizations, and has three types
of basic cells. The cell A-ADD is the same as was
shown in Figure 15, the AND cell is simply a two
input AND gate, and the A-ADD0 cel is a AND
gate and simplified adder (using the fact that CI
0). Typically large multipliers are implemented in a
pipelined manner to increase the total throughput.
Pipelining the multiplier also increases the testability
by reducing the amount of reconvergence in each
combinational logic block between sets of registers.
In the case of the multiplier in Figure 17 in which
each section is composed of two rows, reconvergence
is limited to only two signals in each of the A-ADD

cells at the bottom of each stage. There is no recon-
vergence in the first stage of the multiplier, or in the
final adder stage.
The reconvergence of the signals in the A-ADD

cells at the bottom of each stage does result in some
untestable paths. Consider output P3 as an example.
In the A-ADD cell that generates P3, there is re-
convergence of inputs X0 and Y2. This reconverg-
ence results in 2 of the 128 paths passing through this
cell being untestable. All 80 of the paths through
output P3 are robustly testable, but 2 of the 48 paths
through the carry output of this cell are not robustly
testable. Figure 18 shows the combined logic for the
outputs of this.cell. Gates 1-3 generate the incoming
sum to the cell, gates 4-8 generate the carry input
to the cell, and gates 7-15 are in the A-ADD cell
that outputs P3. The two untestable paths are given
by the {X0, 4, 6, 8, 12, 15} and {X0, 4, 7, 8, 12, 15}.
These paths are blocked at. gate 12 since the other
input to that gate is dependent on X0 and cannot be
forced to a non-controlling value (high) when X0
transitions.

In order to eliminate the blockage describedin the
preceding paragraph, the logic for the carry output
can be restructured. In the A-ADD cell (Figure 15),
the carry output is implemented in sum of products
form, CO A B + A CI + B CI. Since the
untestable paths originate on the carry input, the
circuit can be made fully testable by implementing
the carry output by factoring out the carry input.
That is, implement the carry output as CO A B
+ CI. (A + B). This modification to the basic carry
save multiplier cell is shown in Figure 19.

Figure 20 shows the combined logic for the outputs
of the cell containing output P3 when the cell in
Figure 19 is used in place of the A-ADD cell. Using
this implementation makes both outputs of this cell
fully testable for dynamic faults. It also makes the
entire pipelined multiplier shown in Figure 17 fully
testable. It should be noted that the modified A-
ADD cell only needs to be used in the second row
of each stage to make it fully testable. However,
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FIGURE 17 Pipelined carry save parallel multiplier implementation.

P0

P1

P2

P3

using it in both rows does not destroy the testability,
and keeps the cells uniform.
The problem with the approach used in this section

to generate a fully testable pipelined multiplier is that
each stage in the multiplier cannot be scaled to an
arbitrary depth. Each stage can be arbitrarily wide,
but can be at most 2 bits deep. A fully testable mul-
tiplier of arbitrary size can of course be created out

of I and 2 bit stages. The approach used in the case
of the ALU circuits could be utilized by duplicating
some or all of the latches generating the X and Y
inputs to the multiplier array. The optimal approach
to utilizing this approach remains to be investigated.
The cell of Figure 19 can be used to produce an n

x rn multiplier (that is not necessarily pipelined) that
is completely gate-delay-fault and stuck-open fault

X0,

Y3

R2

R3
X0
Y2

R4

;) P3

I,

FIGURE 18 Combined logic for P3 output of pipelined carry save multiplier.
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A1 A

B- CO

FIGURE 19 Modified carry save multiplier cell.

testable. Figure 14 suggests the following two-di-
mensional composition rule.

Composition Rule: Given a set of robustly path-
delay-fault testable circuits, Cll CN1 C1M
CNM such that for 1 <- < N, 1 <- j < M, a single
output lij of Cij feeds Ci+ v, a single output mi of Ci/
feeds Ci+ v+ , there exists a common input Xx to each
Cx# 1 <- j <- M and a common input Yy to each Ciy,
1 <- <- N, and a transition on Xi/Y/can be damped
by Y/X before convergence with inputs from pre-
vious cells, then the composition is fully stuck-open
fault and gate-delay-fault testable.

Transitions through links and gates in Cii are first
propagated out to l or m. In the former case, if the
transition began from Xg, it can be robustly propa-
gated down the array to an output, without ever
encountering any other transition, since the Yk, k >
j can damp the Xi transition. If the transition began
from Y/, it can be propagated downward as before.
In the latter case, the transition is propagated to the

C+li+ block, and then downward without encoun-
tering either X or Y transitions.

For a discussion of the testability of carry propa-
gate multipliers, see Bryan [2].

CONCLUSIONS

Few commonly used designs for regular structures
are completely robustly testable for path and gate
delay or transistor stuck-open faults. However, in a
vast majority of the cases, we have developed mod-
ified designs with good area and performance char-
acteristics that are scalable to an arbitrary number
of bits, and which are completely path-delay-fault
testable. In some cases where complete robust path-
delay-fault testability is not achievable, we showed
that completely stuck-open or gate-delay-fault test-
able circuits could be designed. In summary, we
have, in Bryan [2]:

shown that minor perturbations in existing de-
signs of ripple and carry lookahead adders that
are not fully path-delay-fault testable can result
in completely testable circuits. These circuits re-
tain testability when extended to any number of
bits.

x0

Y2
R1
R2
xo
Y2

R3

R4

co

FIGURE 20 Modified logic for P3 output of pipelined carry save multiplier.
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shown that a carry select adder of up to 4 bits
can be designed to be completely path-delay-
fault testable with negligible overhead and 4-bit
blocks can be replicated to form arbitrarily
large, completely testable adders.

shown that a carry bypass adder can be made
fully path-delay-fault testable and extensible for
any number of bits with negligible area and no
performance overhead.

designed a ripple comparator that is completely
path-delay-fault testable and extensible to an
arbitrary number of bits.

developed two parallel comparator designs, the
first of which is completely path-delay-fault test-
able, has negligible performance overhead, but
a significant area overhead. The second has
comparable area and performance characteris-
tics to the traditional parallel comparator de-
sign, and is not completely path-delay-fault test-
able, but is fully gate-delay-fault and stuck-open
fault testable.

analyzed various realizations of parity genera-
tors and ALUs for dynamic fault testability.
designed a completely path-delay-fault testable
n 2 parallel multiplier, for arbitrary n, and a
completely gate-’delay-fault and stuck-open fault
testable n rn parallel multiplier, for arbitrary
n and m.

In the process of design modification to produce
fully testable structures, we have derived a number
of new composition rules that maintain robust test-
ability in dynamic fault models. These composition
rules can be used to analyze and design other regular
structures for robust dynamic testability and to com-
pose regular structures with control sections to create
register-bounded subcircuits that are robustly testa-
ble for all dynamic faults.
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