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Analysis and Design of Straight and 
Skewed Slab Bridges 

Patrick Théoret1; Bruno Massicotte2; and David Conciatori3 

 
 

Abstract: Results of an investigation aimed at determining bending moments and shear forces, required to design skewed concrete slab 

bridges using the equivalent-beam method are presented in this paper. Straight and skewed slab bridges were modeled using grillage and 

finite-element models to characterize their behavior under uniform and moving loads with the objective of determining the most appropriate 

modeling approach for design. A parametric study was carried out on 390 simply supported slabs with geometries covering one to four lane 

bridges of 3- to 20-m spans and with skew angles ranging from 0 to 60°. The analyses showed that nonorthogonal grillages satisfactorily 

predict the amplitude and the transverse distribution of longitudinal bending moments and shear forces, and can be used for the analysis of 

skewed slab bridges. Results of the parametric study indicated that shear forces and secondary bending moments increase with increasing 

skew angle while longitudinal bending moments diminish. Equations are proposed to include, as part of the equivalent-beam method for skew 

angles up to 60°, the increase of shear forces and the reduction of longitudinal bending moments. Equations are also given for computing 

secondary bending moments. A simplified approach aimed at determining the corner forces for straight and skewed bridges is proposed as 

an alternative to a more-refined analysis. The analyses indicated the presence of high vertical shear stresses in the vicinity of free edges 

that justifies suggesting to provide shear reinforcement along the slab free edges. DOI: 10.1061/(ASCE)BE.1943-5592.0000249. © 2012 

American Society of Civil  Engineers. 

CE Database subject headings: Skew bridges; Shear forces; Concrete slabs; Finite-element method; Design. 

Author keywords: Bridges; Skew; Shear forces; Corner forces; Concrete slabs; Grillage model; Finite-element method. 

 

Introduction 

Solid slab bridges are common for short spans up to 25 m, whereas 

voided slabs or other structural systems are more economical for 

longer spans. Slab bridges are often encountered in rigid-frame 

systems and are used as wide beams on abutments and piers in 

simply supported or continuous structural systems, and they are 

an efficient structural system for short skewed crossings. Slabs that 

are on continuous support lines act as wide beams, and are reputed 

to be ductile and redundant structures. However, several questions 

were raised on the safety of solid concrete slabs following the 

collapse of Concorde Bridge in September 2006 in Laval, North 

of Montreal, which was caused by the failure of a deep cantilever 

solid slab supporting a dropping skewed span (Massicotte et al. 

2007). The rupture was attributed to concrete degradation, which 

was caused by saltwater penetration over several years along an 

internal inclined plane, leaving an insufficient concrete area to carry 

the vertical forces. This eventually caused a shear failure, which 

could not be attributed, however, to insufficient shear strength if 

the concrete had been in good condition. Nevertheless, it  resulted 
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in a brittle shear failure with little warning, which in turn caused the 

death of five people and injury to six others. Therefore, the main 

concerns of the bridge authorities regarding solid concrete slabs can 

be summarized in the following questions: (1) What is the actual 

shear  magnification  at  the  obtuse  corner  for  skewed  bridges? 

(2) Can some load redistribution take place once local shear failure 

occurs and what are the conditions that can ensure load distribu- 

tion? (3) Should solid  slab bridges  be reinforced for  shear and, 

if so, up to what extent? The present paper  primarily addresses 

the first question and provides some indications for the third one. 

Very little attention has been paid to the analysis of skewed slab 

bridges, probably because they are generally perceived as one-

way slabs in which the main longitudinal reinforcements carry the 

longitudinal moments, whereas secondary transverse reinforce- 

ments are determined by empirical rules. For skewed slab bridges, 

AASHTO (2007) recommends a reduction factor for bending mo- 

ments, but no magnification factor for shear, as specified for other 

types of bridges, whereas Canadian Standards Association (CSA) 

(2006) imposes a limit for the use of the equivalent-beam method 

for skewed bridges without proposing any alternative beyond that 

limit. Finally, transverse and secondary moments can develop in 

skewed slab bridges, and no guidance on their magnitude is given 

in bridge codes. Menassa et al. (2007) concluded on the flexural 

behavior of skewed slabs that the decrease in longitudinal moments 

with a higher skew angle is offset by the transverse-moment in- 

crease. They recommend a three-dimensional finite-element analy- 

sis for skew angles beyond  20°. 

Various degrees of refinements are possible in bridge analysis. 

Computers and software are constantly increasing the capabilities 

and ease for carrying out refined analysis. This may suggest that 

simplified analysis methods will progressively disappear. Such a 

conclusion is probably incorrect, but it is certainly undesirable. 

When  possible,  a  refined  analysis  should  be  accompanied  by 
 

 

http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000249
mailto:bruno.massicotte@polymtl.ca


 

y 
A SL 

m- 
L+ 

y 

x 
AST m -

mL 

m + 
T 

T 

B 
Support lines 

Traffic 

1 

Distance 
from 
acute 

   r  corne 

Finite-element 
analysis 

   Free edge 

   Ls = B tan  

  L  

MT 

TL 

ML 

Tx 

My 
Mx 

TT Ty 

mx my 

m xy 

mxy 
mx 

x 
mxy my mx 

0.5 (typ) 

0.05x0.05x0.05 (typ) 

0.5 (typ) 

   

[m] 

simpler models. In bridges, the equivalent-beam method has been 

used since the 1930s (Zokaie et al. 1991), and is still used in North 

American bridge codes (AASHTO 2007; CSA 2006). This method, 

which should be on the conservative side, provides a simple and 

quick way to determine the load effects on the main supporting 

elements. Improving the accuracy while retaining the simplicity 

of the equivalent-beam method would contribute to maintaining 

its popularity and usefulness. 

Grillage models are considered as refined method (CSA 2006) 

and would normally be the next step in analysis refinement after the 

equivalent-beam method. Common sense indicates that grillage 

models should remain simple for any type of bridges, and be lim- 

ited to two-dimensional (2D) grids, in turn avoiding the complexity 

of pseudotridimensional modeling. Aside from their simplicity, 

grillage models generate information that is still manageable at the 

human level, but they also offer the advantage of giving load effects 

in members that can directly be linked to strength calculations that 

are specified in the codes. Although orthogonal grids are presented 

in the specialized literature (Hambly 1991; Jaeger and Bakht 1982), 

using nonorthogonal (or skewed) grids with members parallel to the 

slab sides greatly facilitates modeling. However, little information 

has been found in the literature on the appropriateness of this 

approach in the perspective of carrying out analysis for design. 

Ultimately, finite-element analysis would be the preferred finest 

modeling level. However, the more refined the model is, the higher 

the chances are of introducing errors. This is particularly true in 

specifying boundary conditions or introducing hinges for some 

bridge types. Moreover, finite-element models generate large 

amounts of data that can generally only be treated at the software 

level, which suggests greater attention. Stresses need to be inte- 

grated to obtain bending moments and shear forces, whereas in the 

case of concrete structures the load-effect components must be 

computed with respect to reinforcement orientation. For slab 

bridges, one should choose between plate elements or solid ele- 

ments, the former being  the  natural  choice. A gradual  increase 

in analysis refinement is always a good practice. Because engineers 

would likely be more inclined to use the latest and most-efficient 

features that are offered by modern software, such an approach 

should be encouraged, and simplified methods such as the 

equivalent-beam analogy must be maintained in the  codes. 

This paper’s objective is threefold. First, the paper was aimed 

at  illustrating  the  behavior  of  straight  and  skewed  solid   slab 

bridges under uniform traffic loads by using the appropriate refined 

models with the goal of determining the maximum shear forces and 

bending moments in the context of a design or strength appraisal. 

The second objective was to derive a series of equations for the 

equivalent-beam method for considering the skew effects for lon- 

gitudinal shear and bending moments, for both dead and live 

loads. The final objective was to develop a simple approach for 

determining the magnitude of secondary bending moments as a 

complement to the equivalent-beam method. The proposed simpli- 

fied approach is developed to be used with either AASHTO (2007) 

or CSA (2006) specifications. 

In the first part of the present paper, the behavior of straight and 

skewed slabs is examined in bending and shear, with the objective 

of determining the most-efficient grillage model between orthogo- 

nal and nonorthogonal arrangements, on the basis of a comparison 

against plate or solid finite-element model results. The second  

part of the paper presents the results of a parametric study on    

390 solid slab bridges that served to derive equations for consid- 

ering the skew effects in slab bridges when using the equivalent- 

beam method. Most bridges considered in this study were simply 

supported structures of one to four lanes, with spans L ranging from 

3 to 20 m. The selected skew angles θ varied from 0 to 60°. Def- 

initions are provided in Fig.  1. 

 

Analysis for Design 

 
Selected Refined Models 

The behavior of solid slabs was studied by using four types of re- 

fined models: two grillage arrangements and two types of finite 

elements, as shown in Fig. 2. These models were selected with  

the objectives of comparing the advantages and limitations for 

each, and to identify the most appropriate in the context of design 

for bending and shear. Orthogonal-grillage models are recom- 

mended in various specialized publications (Hambly 1991; Jaeger 

and Bakht 1982). Although these models give load effects that can 

be handled more naturally for determining transverse moments, 

they bring limitations in setting the grid member spacing, which 

does not facilitate automating grid generation for skewed bridges. 

In contrast, nonorthogonal grillages with members parallel to   the 
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Fig. 1. Bridge geometry and  bending-moment definitions Fig. 2. Grillage and finite-element  models 
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slab edges enable the generation of models without limitations     

in member spacing in both directions. However, little information 

is available on the accuracy of these models or how transverse 

moments can be treated. Plate elements would naturally be the 

preferred choice for slab bridges. However, near discontinuities 

such as the corners along the support lines, especially for skewed 

slabs, some plate elements can be susceptible to stress concentra- 

tion or present limitations in the mesh refinement considering the 

slab thickness if a finer mesh is required. Finally, solid elements can 

very accurately represent the actual structures. However, the mesh- 

refinement level that is needed to obtain accurate results is often 

disproportioned for practical applications. 
 

Design Bending Moments from Finite-Element Analysis 

Determining flexural reinforcement from elastic finite-element 

bending moments requires including the contribution of the tor- 

sional moment. The following equations, obtained from equilib- 

rium along axes parallel to the flexural cracks (Wight and 

MacGregor 2009), are used to evaluate the minimum positive   

and negative flexural resistances in the case of an orthogonal- 

reinforcement layout, in which the algebraic values of the bending 

moments per unit width are  used: 

 
mþ

L  ¼ mx þ γjmxyj ≥ 0 ð1Þ 

 
1 

T ¼ my þ γ 
jmxyj ≥ 0 ð2Þ 

MXC ¼ MX þ υMY ð5Þ 

 
MYC ¼ MY þ υMX ð6Þ 

where MX and MY = bending moments obtained in grillage mem- 

bers parallel the x and y axes, respectively; and MXC and MYC = 

bending moments that approximately account for the coupling of 

orthogonal bending moments. 

The second point is related to adopting nonorthogonal-grillage 

models as subsequently recommended in this  paper.  In  this  

case, the flexural and torsional moments in the skewed transverse 

members (MT and TT ) must be transformed in the x; y-axes system 

as follows if orthogonal reinforcements are used (Fig.   1): 

MY ¼ MT cos θ þ TT sin θ ð7Þ 

 
TY  ¼ -MT sin θ þ TT cos θ ð8Þ 

The bending and torsional moments per unit width (mx, my, and 

mxy) must then be computed by dividing the grillage member bend- 

ing and torsional moments by the corresponding member spacing. 

Finally, the design moments required for determining the reinforce- 

ment are obtained using Eqs. (1)–(4) for orthogonal-reinforcement 

layouts. 
 

Design for Shear 

Shear strength has not been a concern for solid concrete slab 

bridges until recently with the collapse of the Concorde Bridge. 

Although shear stresses are generally small in slab bridges sup- 

m-
L  ¼ mx 

 
m- ¼ m 

- γjmxy 

 
1 - jm 

 
 

j ≤ 0 ð3Þ 

 
j ≤ 0 ð4Þ 

ported on continuous supports, closer attention should be paid     

to shear forces, especially at the obtuse corners of skewed bridges, 

but also in the presence of sidewalks and heavy parapets, or when 

discrete supports are used. For voided slab bridges that are analyzed 

as solid slabs, the design of webs for shear must correctly account 

T y     γ xy 

As indicated in Fig. 1, mx and my in these equations = longitu- 

dinal and transverse bending moments that are obtained in elastic 
analysis; mxy = associated torsional moment; and mL and mT = 

bending moments that are required to design concrete slab 
reinforcement oriented in the longitudinal and transverse directions 
(ASL and AST in Fig. 1), respectively. Codes conservatively specify 

γ 1, but other positive values can be chosen freely  (Nielsen 
1999). Bending moments in the traffic (or longitudinal) direction 
for straight slab bridges are dominant, whereas torsional and trans- 
verse moments are negligible. However, for skewed bridge geom- 

etries, torsional and secondary moments, as given in Eqs. (2)–(4), 

can become important and require special attention as recom- 
mended by Menassa et al. (2007). Moreover, for concrete skewed 
bridges, longitudinal bending moments that are given by the 

equivalent-beam method must implicitly include the effect of 
torsion for designing reinforcement. 

 

Design Bending Moments from Grillage Analysis 

Two aspects require special considerations when modeling slabs 
with grillage models. First, the coupling of bending moments in 

each direction (MX and MY in Fig. 1) associated with the Poisson’s 

ratio cannot be reproduced in grillage models. Jaeger and Bakht 
(1982) proposed an approximate approach presented in the 
following equations, but, as they pointed out, the contribution of 
the transverse bending moment MY  in the longitudinal direction   

is small and can be neglected:  υ 

for the effect of skew and the presence of   sidewalks. 

Limited information is available on the one-way shear strength 

of skewed slabs. Morrison and Weich (1987) carried out two large- 

scale tests on skewed slabs in which they measured high support 

reactions at the obtuse corner, as predicted by analysis. The failure 

was governed, however, by bending when using the typical flexural 

reinforcement ratio. They also observed shear-stress redistribution 

after shear cracking, which suggests that redistribution can take 

place in concrete slabs under certain conditions even without shear 

reinforcement. Sherwood et al. (2006) studied the shear behavior 

of wide beams and concluded that one-way shear strength is not 

affected by the beam width. Determining the critical shear sections 

would differ, depending on the load configuration, or if continuous 

or discrete supports are used. In the present study, simply supported 

continuous support conditions and a Poisson’s ratio υ 0:2 were 

considered. These support conditions were chosen because they are 

representative of several existing structures, but also because the 

conclusions could be extended to single-span rigid-frame systems 

or structures supported on discrete  supports. 
 

Proposed Analytical Approach 

Two approaches are proposed in this paper for designing skewed 
slabs. The first one uses the equivalent-beam method for determin- 
ing the longitudinal bending moments and shear forces with 
correction factors to account for bending-moment reduction (CM ) 

and shear magnification (CV ) associated with the bridge skewed 

geometry. These factors were determined from a parametric study 
carried out using grillage analysis and are meant to be used    with 

 



 

¼ ¼ 

AASHTO (2007) and CSA (2006) equivalent-beam methods. 

Along with these factors, a set of empirical equations are proposed 

for determining the secondary bending moments and the additional 

shear forces at the obtuse corner. These equations were obtained 

from plate and solid finite-element  analyses. 

The second approach consists of using grillage models for 

determining dead-load effects using Eqs. (1)–(8). However, as 

shown in the following section, the longitudinal bending moment 

(ML) obtained using nonorthogonal-grillage layout for skewed 

bridge geometry (Fig. 1) can be directly used to compute the 

design bending moment in Eq. (1) using the following equation, 

where SL = longitudinal grillage member  spacing: 

mþ
L  ¼ mx ≈ MX=SL ¼ ML=SL ð9Þ 

This approach avoids combining the concomitant bending and 

torsional moments caused by traffic loads as required in Eq.   (1). 

 

Flexural Behavior 

 
Reference Bridge Geometry 

The maximum longitudinal bending moments that are predicted 

by nonorthogonal-grillage models are first compared with those 

obtained by using orthogonal-grillage and finite-element plate 

models for two typical 10-m-long, 0.5-m-thick, 12-m-wide three-

lane slab bridges with θ 0° and θ 30°. The behavior of  these 

structures was found to be typical of other slab bridges with a 

different geometry and is used in this paper to illustrate the char- 

acteristic responses of slab bridges. The results from a broader 

geometry spectrum are subsequently presented. 

Both the orthogonal and nonorthogonal bridge models (Fig. 2) 

comprised 10 longitudinal members spaced at 1.3 m. For the non- 

orthogonal grillage, the transverse elements were spaced at 1.0 m, 

but transverse spacing for the orthogonal model was adjusted at 

approximately 0.75 m to accommodate the spacing of the supports 

along the longitudinal direction. The models were defined accord- 

ing to the rules presented in Appendix A. For the four-node plate 

shell elements adopted in the model (Fig. 2),  the  orthogonal  

plate dimensions were specified at 0.5 m. For the grillage models, 

rotations about an axis perpendicular to the support line were re- 

strained, replicating the actual boundary conditions of continuous 

support lines. All the rotations were left free for the plate model 

because the vertical displacement restraint was sufficient to elimi- 

nate any rotation about an axis perpendicular to the support line. 

Not restraining the rotation as for the grillage model eliminated the 

need to include the support torsional moment for computing the 

reaction forces. Grillage and plate finite-element analyses were 

performed using SAP2000 [Computers & Structures, Inc. (CSI) 

2009] software. 

Bending  Moments under  Uniform Load 

The  results  for  a  uniform  load  of  12 kN=m2  corresponding   

to the slab self-weight are shown in Fig. 3. For all the models,   

the bending-moment values per unit slab width that were 

measured perpendicular to traffic (Fig. 1) are given along a line   

at midspan parallel to the supports. Finite-element longitudinal 

bending moments are given with and without consideration for  

the torsional moment (mxy) as defined in Eq. (1). Orthogonal-   

and nonorthogonal-grillage model bending moments mx were 

computed using Eq. (9). 

As expected for the straight bridge in Fig. 3, all three models 

gave virtually the same results because of the absence of a torsional 

moment at midspan. The analysis showed the significant reduction 
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        Fig. 3. Dead-load midspan bending moment for L ¼ 10   m         

 
of the longitudinal bending moments with the increase of the skew 

angle. For the skewed bridge, the design bending moment that was 

predicted by the nonorthogonal-grillage model compared very sat- 

isfactorily with the finite-element values for in which the torsional 

moments were considered according to Eq. (1). This illustrates the 

ability of nonorthogonal-grillage models to compute directly the 

bending moments that are required for concrete slab design without 

requiring any postprocessing for combining concomitant bending 

and torsional moments. This is explained by the fact that in 

nonorthogonal-grillage models, most of the load is being carried 

by the longitudinal grillage members, and the transverse  torsional 

moment TT is an order of magnitude smaller than MY of the 

orthogonal-grillage geometry. Conversely, the results obtained with 

the orthogonal-grillage model indicated that the design bending 

moments are not well captured when torsion is ignored. However, 

the magnitudes of all four moments in the orthogonal models were 

very close to the finite-element counterpart and are all of the same 

order of magnitude, which confirms the requirement of combining 

bending and torsional moments indicated in Eqs.   (1)–(4). 

Bending Moments under Truck  Load 

Fig. 4 illustrates the truck-load configurations used to compare the 

refined model predictions. The live load corresponds to CAN/CSA- 

S6-06 (2006) 625-kN five-axle truck loading that is defined in 

Fig. 4. The tire print  sizes specified in CSA (2006) were used     

to apply the corresponding pressure in the finite-element model, 

whereas point loads on the members were used for the grillage 

models. Load configurations #1 and #2 approximately correspond 

to the governing load cases for flexure, whereas load configurations 

#3 and #4 were retained for shear according to the influence surface 

of the support reaction in the obtuse corner region. For configura- 

tions #3 and #4, the axle closest to the support was located at twice 

the slab thickness, which approximately corresponds to the gov- 

erning condition giving the least shear strength for members with- 

out shear reinforcement (Wight and MacGregor 2009), as predicted 

by the general procedure in AASHTO (2007) in the case of 

tandem axle. 

As shown in Fig. 5, the longitudinal bending-moment distribu- 

tions at midspan (along line A-A) that were  obtained by using  

the nonorthogonal grillage determined with Eq. (9) compare 

closely to the design moment distributions along the same line that 

were obtained with plate finite-element models using Eq. (1). Both 

shapes and amplitudes are well captured by the nonorthogonal 

models. Conversely, the bending-moment distribution obtained 

with  the  orthogonal  model  using  Eq.  (9)  underestimates    the 
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Fig. 4. Truck-load configurations 
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finite elements for skew angles of 0, 15, 30, 45, and 60°. A constant 

span-to-thickness ratio (L=h) equal to 20 was used in all the models. 

The bridges were modeled with the same refinement as described 

previously. The maximum bending moments along a line at mid- 

span parallel to the supports are compared for the case of a uniform 

load. Table 1 shows a grillage and finite-element model of the 

bending-moment ratios (mG=mFE) for  three different  conditions: 

(1) maximum bending moments ignoring torsional moments in the 

finite-element analysis (mG max=mX max), (2) maximum bending 

moments  by  using  Eq.  (1)  for   the   finite-element   results   
(mG max=mL max), and (3) comparison of the average bending mo- 

ments for both models  (mGAverage=mLAverage). 
Globally,    the    comparison    is    acceptable    with    a  ratio 

mG max=mL max ¼ 1:0 when considering all the cases. All the bend- 

     Fig. 5. Truck-load bending moment at midspan for L ¼ 10   m      

 
amplitude of the design moment for skewed bridges when the tor- 

sion effects are not  included. 
 

Nonorthogonal-Grillage  Validation 

Analyses of a series of nonorthogonal-grillage and plate finite- 

element models were carried out to evaluate the accuracy of non- 

orthogonal grillages for determining the design bending moments 

for skewed bridges. Twenty 12-m-wide bridges with spans of 5, 10, 

15, and 20 m were modeled as nonorthogonal grillages and   plate 

ing moments obtained with the grillage model exceed the finite- 

element values when ignoring the torsion effects in processing 

finite-element results (mG max > mX max). For θ 0°, all the ratios 

are virtually equal to 1.0, whereas the grillage-model values for 

θ 60° and L 5 m are very conservative, and, therefore, the 

results for these cases will not be included in the following com- 

parison because they are limit cases. On average for the 15 other 

cases, the maximum bending-moment values (mG max) computed 

with the nonorthogonal-grillage model underestimated by 7% with 

a standard deviation of 6% of the corresponding finite-element 

values in which the torsional moment [mL max with Eq. (1)] were 

included. The flexural ductility of reinforced concrete slabs often 

justifies the consideration of the average moments over the slab 
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Table 1. Accuracy of Nonorthogonal-Grillage  Models 

L (m) mG=mFE θ ¼ 0° θ ¼ 15° θ ¼ 30° θ ¼ 45° θ ¼ 60° Average 

5 mG=mX max 1.04 1.10 1.35 1.82 2.97 1.66 

 mG max=mL max 1.04 0.94 0.96 1.07 1.59 1.12 

 mGavg=mLavg 1.15 1.05 1.07 1.28 2.07 1.33 

10 mG=mX max 1.02 1.05 1.21 1.48 2.04 1.36 

 mG max=mL max 1.02 0.89 0.90 0.97 1.16 0.99 

 mGavg=mLavg 1.04 0.95 0.94 1.07 1.92 1.18 

15 mG=mX max 1.01 1.06 1.19 1.46 1.73 1.29 

 mG max=mL max 1.01 0.89 0.87 0.94 1.04 0.95 

 mGavg=mLavg 1.03 0.94 0.91 1.38 1.26 1.10 

20 mG=mX max 1.02 1.06 1.18 1.42 1.66 1.27 

 mG max=mL max 1.02 0.89 0.86 0.88 1.00 0.93 

 mGavg=mLavg 1.03 0.93 0.89 0.95 1.11 0.98 

Average mG=mX max 1.02 1.07 1.23 1.54 2.10 1.39 

 mG max=mL max 1.02 0.90 0.90 0.97 1.20 1.00 

 mGavg=mLavg 1.06 0.97 0.95 1.17 1.59 1.15 

 

width at ultimate limit state as for the yield line analysis. In that 

case, the grillage models overestimated by 4% the finite-element 

values for all the cases considered in this comparison. It is note- 

worthy that the largest discrepancy occurs for θ  30°, which is   

the skew angle that was purposely selected previously for illus- 

trating the behavior of skewed slabs. The results of the θ  30°   

and L   10 m case that are shown in Fig. 3 for a uniform load    

and in Fig. 5 for the truck load, illustrate the adequacy of 

nonorthogonal-grillage models to satisfactorily predict bending- 

moment amplitudes and distribution across the  slab. 

Analysis of the nonorthogonal-grillage model predictions for all 

the cases considered allows for the conclusion that it is the pre- 

ferred approach for computing the longitudinal bending moments 

that are needed to design main flexural reinforcement. Its accuracy 

is comparable to the plate finite-element models without the asso- 

ciated complexity of combining the concomitant quantities mx and 

mxy according to Eq. (1). In addition, on the basis of these analyses, 
one concludes that orthogonal-grillage models are not appropriate 

for obtaining the required bending moments for the reinforcement 

design unless combining the concomitant quantities mx and mxy as 

for finite-element analysis, which makes its application less appeal- 

ing. Finally, grillage models require postprocessing to   determine 

the positive and negative transverse  bending  moments  required 

to design the reinforcement [Eqs. (2) and (4), respectively]. 

Although this can be done relatively simply for dead load using 

Eqs. (7) and (8), this approach is not practical in the case of live 

load if these moments require an accurate  evaluation. 

 
 

Shear Forces 

 
Plate Behavior 

Simply supported straight plates that are subjected to uniform load- 

ing present additional reaction forces at the corners that are caused 

by a transverse curvature, which is a well-known phenomenon in 

plate theory (Timoshenko and Woinowsky-Krieger 1959). Fig. 6 

illustrates the variation of the vertical reaction expressed as the 

ratio of the local reaction force divided by the average reaction  

for a 10-m-long and 12-m-wide bridge subjected to a uniform load 

that was analyzed by using finite-element plate elements. Results 

are given for normal and limit cases (e.g., zero Poisson’s ratio and 

slabs, it can be observed that corner reactions gain in importance 

with increasing slab slenderness while it significantly reduces for 

fixed ends and vanishes for a zero Poisson’s ratio or for restrained 

torsional rotation. For skewed bridges, corner reactions are impor- 

tant at the obtuse corner, with a magnification factor above 10 for 

the reference slab and nearly 9 with zero Poisson’s ratio. However, 

this factor considerably reduces for fixed ends. Orthogonal- and 

nonorthogonal-grillage models for the skewed slab in Fig. 6 gave 

magnification factors of 2.52 and 1.36, respectively, very far from 

the 10.1 value obtained with the plate finite-element   model. 

Questions were raised regarding the actual magnitude and extent 

of the reaction forces at the corners. Further analyses of the same 

slabs with refined solid finite-elements carried out using ABAQUS 

(Hibbitt et al. 2009) with 10 50-mm-thick eight-node elements with 

reduced integration over the slab depth (see Fig. 2), showed    that 
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Fig. 6. Plate-element vertical reaction at support for a uniform   load 

fixed rotation) to identify the governing parameters. For    straight    
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stress concentrations at the supports are real with a magnitude less, 

but still close to those given by plate finite-element analysis (2.8 

and 2.6 for the plate and solid finite-element models, respectively). 

However, a detailed examination of the shear-stress distribution  

in the case of a uniform load indicated a magnification factor    

that varied from 2.6 at the corner of a straight slab to nearly 1.0   

at a distance equal to the slab thickness (h) when traveling along 

the corner diagonal. Moreover, the solid finite-element analyses 

pointed out the presence of additional vertical shear stresses along 

the slab free edges that vanish within a distance perpendicular to 

the side equal to the slab  thickness. Fig. 7 shows the amplitude  

of the vertical shear stress measured in the slab longitudinal direc- 

tion (from midspan to the support) along lines located at various 

distances from the slab free edge (0, 0.1 h, 0.5 h, and h). These 

results illustrate that the corner reaction force is not a local effect, 

but rather the accumulation of vertical shear forces that are induced 
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Fig. 7. Vertical shear stress along the free   edge 

by the transverse curvature. Even at sections away from the support 

line (e.g., at 2 h corresponding to 4 m in Fig. 7), the shear stress 

near the free edge is approximately twice the beam-theory value. 

Except with very refined models using solid finite-element, such 

as the one used in this study, these forces cannot be estimated.  

For solid slabs, the associated shear stresses are relatively small. 

However, when combined with a sidewalk or in the case of voided 

slabs, these shear forces need to be considered adequately. A closer 

look at these forces is presented  afterward. 
 

Shear along the Support Lines at the Obtuse   Corners 

Fig. 8 shows the shear forces  computed  along the support line  

for the 10-m-long, 12-m-wide reference bridge for a uniform load 

of 12 kN=m2 corresponding to the slab self-weight. The results  

are given per unit slab width measured perpendicular to traffic. 

Shear forces were obtained using solid finite-elements and the 

nonorthogonal-grillage model for two  skew  conditions:  θ  0° 

and θ  30°. Fig. 8 also shows the shear forces computed along   

the support line for the four truck-load configurations shown in 

Fig. 4 for the same two skew angles. These results show important 

corner forces for a straight bridge under a uniform load, but little 

effect in the case of truck load. In contrast in the case of skewed 

bridges, the corner reaction is significant for all the cases. However, 

the length along which support shear forces are affected is relatively 

small, typically equal to approximately the slab thickness. A close 

examination of the results suggests separating the localized corner 

effects to the rest of the support shear   forces. 

A comparison of the reaction forces in Fig. 8 between con- 

figurations #1 and #2 or configurations #3 and #4 indicates that 

increasing the skew angle changed the shape and  amplitude of  

the shear-force distribution. The position of the shear-force  peaks 
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Fig. 8. Support vertical reaction for a 10-m-long   bridge 

 

 
Beam theory 

Free Edge 

0.1h 

0.5h 
 

h 

12 kN/m
2
 

 
 

          Grillage model 3D Solid model 

          
Grillage model 3D Solid model 

12 kN/m
2
 

 
 

 
Nonorthogonal-Grillage model 

Orthogonal-Grillage model 

3D Solid model 

 
 

Nonorthogonal-Grillage model 

Orthogonal-Grillage model 

3D Solid model 

 

 
Nonorthogonal-Grillage model 

Orthogonal-Grillage model 

3D Solid model 

A
v

e
ra

g
e
 v

e
rt

ic
a

l 
s

h
e

a
r 

s
tr

e
s

s
 (

M
P

V
e

rt
ic

a
l 

re
a

c
ti

o
n

 (
k

N
/m

) 
V

e
rt

ic
a

l 
re

a
c

ti
o

n
 (

k
N

/m
) 

V
e

rt
ic

a
l 

re
a

c
ti

o
n

 (
k

N
/m

) 

V
e

rt
ic

a
l 

re
a

c
ti

o
n

 (
k

N
/m

) 
V

e
rt

ic
a

l 
re

a
c

ti
o

n
 (

k
N

/m
) 

V
e

rt
ic

a
l 

re
a

c
ti

o
n

 (
k

N
/m

) 



 

¼ 

¼ 

≈ 

¼ 
¼ 

¼ 

≥ 

¼ 

≤ ≤ 
¼ 

¼ - ≤ 

V
e

rt
ic

a
l 

s
h

e
a

r 
ra

ti
o

 

moved toward the obtuse corner for the skewed bridges. Although 

the load conditions were not identical between straight and skewed 

geometries, and cannot be compared directly, these results allow 

interesting observations. First, the corner effects are virtually inex- 

istent for straight bridges (configurations #1 and #3), whereas their 

contribution cannot be neglected for skewed geometry. Second, the 

shear forces associated to the remote axles (configurations #1 and 

#2) are distributed evenly over the support length, a phenomenon 

well captured by the grillage models. Finally, corner effects are 

more significant for the uniform load case for straight and skewed 

geometries. The analyses showed that nonorthogonal grillages 

satisfactorily predict the amplitude and the transverse-distribution 

shape of shear forces when compared with refined solid finite- 

element analysis, and, therefore, can be used confidently for the 

analysis of shear in skewed slab bridges, with the exception of   

the corner reactions. 

Corner reactions must be considered separately because it 

would be inappropriate to use these forces to design slabs for shear 

over their full width, whereas simplified approaches such as the 

equivalent-beam method must predict the amplitude of the maxi- 

mum shear forces for straight and skewed slabs across the entire 

slab width. 
 

Corner Forces 

Several parameters affect the amplitude of corner forces. Factors 

such as continuity, slab geometry, support configuration (continu- 

ous or discrete), support stiffness, cracking, and load configura- 

tions, just to name  a few,  should be considered. Although such  

an undertaking is beyond the scope of the study presented in      

the present paper, refined linear analyses contributed to illustrate 

the behavior. Observation of Figs. 6–8 results suggests that the am- 

plification of the shear force near the corners originates from two 

distinct phenomenon: a first one attributed to bending and the 

associated transverse curvature, and a second one related to the 

skewed geometry. Fig. 9 illustrates for straight slabs (θ  0°) 

loaded uniformly that the maximum shear force at the slab corner 

increases almost linearly beyond the beam-theory level (vertical 

shear ratio equal to 1.0) with increasing aspect ratio B=L up to 

B=L ¼ 0:5, and reaches a maximum value of approximately    2.0 
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for B=L 1:2, with the case illustrated in Fig. 8. Results in Figs. 8 
and 9 for skewed bridges clearly show that corner forces become 

more significant with larger skew angle. Conveniently, corner 
forces (RC) are defined as the summation of the shear forces beyond 

the beam-theory shear-force level at the corners,  and  are equal 
to the contribution of the bending (RB) and the skewed geometry 

(RS) components. The magnitude of these forces is presented in the 

following as a function of R0, the load applied to a quarter of the 

slab and defined as R0 qBL=4. The examination of the analysis 

results of simply supported slabs    with 0:3 B=L 1:0 under a 
uniform load indicates that RB 0:1R0 for a Poisson’s ratio of 0.2. 

Solid finite-element analyses of slabs with span ranging   from 

5 to 20 m and for skew angle varying from 0° to 60° allowed 

capturing the value of effect of skew of the corner reactions. Fig. 9 

illustrates the variation of the obtuse corner forces as a function 

skew angle for three conditions: simply supported, fixed against 

rotation at the supports, and simply supported with a Poisson’s ratio 

equal to zero. This later condition is aimed at illustrating a limit 

case that could exist for example with extensive cracking. For   

the reference slab (simply supported and υ    0:2), RC=R0 is equal 

to 0.1 for θ    0° and increases almost linearly up to 30°. The same 
trend was obtained for the fixed conditions, but values are less than 

half those of the simple slab. The condition with υ 0 illustrates 

that important reaction forces can be obtained for large skew angles 

without any coupling between longitudinal and transverse bending. 

Results for span between 5 and 20 m were identical to those 

obtained for the 10-m slab presented in Fig.   9. 

Finally, the analyses indicated that corner forces associated 

with skewed geometry become important for skew angle beyond 

20° and that 40% of gravity loads are concentrated at corners     

for θ 30° for simply supported slabs and half this value for fixed 

conditions. 

 
 

Analysis of Skewed Slabs Using the 
Equivalent-Beam Method 

 
Current  Code  Specifications  and Limitations 

For skewed slab bridges, AASHTO (2007) recommends a reduc- 

tion r 1:05 0:25 tan θ 1 factor for bending moments, but no 

indications are provided to consider shear magnification attribut- 

able to skew, as specified for other types  of  bridges.  CSA  

(2006) does not specify any correction factors for shear or bending 

moment, but rather imposes a maximum limit of 1=6 to the param- 

eter ε B=L tan θ for using the equivalent-beam method for 

skewed bridges, where ε corresponds to the ratio of the slab width 

B projected in the longitudinal direction (LS) to the span length   L 

(see Fig. 1). 

No indications are given in any codes for specifying transverse 

and secondary reinforcements. For this reason, Menassa et al. 

(2007) recommended limiting the application of the equivalent- 

beam method to 20° skewed bridges. Their study also indicated 

that the  reduction  factor  r  is  appropriate  for  a  short  span  

(7.2 m), but it is overly conservative for longer spans (16.2 m). 

Codes would benefit, therefore, from clearer specifications on 

several aspects regarding skewed slab design that is associated with 

the equivalent-beam method, particularly for shear, moment reduc- 

tion, and secondary reinforcements, as considered in the next 

sections. 
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Fig. 9. Corner forces 

Parametric Study 

An extensive parametric study was performed on straight and 

skewed slab bridges for determining the effects of the geometrical 
 

Skew angle effect on corner force - L = 10m 
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bridge characteristics on bending moments and shear forces caused 

by dead and live  loads. 

Slab bridges were selected to cover the most common geom- 

etries encountered in highways. Only simply supported bridges 

with simple spans ranging from 3 to 20 m were selected because  

it was assumed that the skew effects would be less important for 

continuous bridges as indicated by the results presented previously. 

The width was varied from 6.9 to 17.9 m, covering one to four lane 

bridges. The slab thickness h was assumed equal to L=20. Three 

different lane widths were considered for each bridge type (narrow, 

normal, and wide) to account for lane-width variation in determin- 

ing the critical cases for live-load distribution. For each skew angle, 

a total of 78 bridge geometries were determined, whereas five skew 

angles were studied, from 0 to 60° by increments of 15°, for a total 

of 390 grillage models. Nonorthogonal-grillage models were used 

because they definitely appear to be the most optimal modeling 

approach to obtain the design bending moments and shear. CSA 

(2006) 625-kN five-axle truck model defined in Fig. 4 was applied 

using the software SAP2000 (CSI 2009) for all the possible 

configurations of the lane number and transverse truck   position. 
 

Shear Magnification 

For each of the 78 bridge configurations, the skew effects were 

obtained by comparing the values of the skewed bridges with those 

of the corresponding straight bridge. Such comparison is, therefore, 

independent of the type of truck-load model and would therefore 

apply to both AASHTO (2007) and CSA (2006) truck models. The 

ratios of the maximum bending moment and shear in skewed 

bridges to the corresponding straight bridge values were computed 

for each of the 312 skewed bridges, expressed as   follows: 

CV ¼ V θ>0=V θ¼0 ð10Þ 

 
CM ¼ Mθ>0=Mθ¼0 ð11Þ 

A comparison of the parametric study values to the CAN/CSA- 

S6-06 parameter ε is shown in Fig. 10 for dead and live loads. The 

results clearly indicate that there is no definite tendency as a func- 

tion of this parameter, but also that the ε 1=6 limit validity seems 

inappropriate. A closer examination of the results indicated that 

several of the bridges that are found under that limit are of common 

geometry, with spans between 10 and 20 m and a skew angle as 

small as 15°. This observation leads to the conclusion that the 

3 

 
2.5 

 
2 

 
1.5 

 
1 

 
0.5 

3 

 
2.5 

 
2 

 
1.5 

 
1 

 
0.5 

 

Cv for Dead Load - CSA S6-06 

 
               = 1/6 limit 

 

 

    
 

 

 

Cv for Live Load - CSA S6-06 

 
=  1/6 limit 

 

 
     

 

0 1 2 3 4 5 6 7 8 9 10 
 

 

 
Fig. 10. CAN/CSA-S6-06 skew parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Influence surfaces for obtuse corner  reaction 

 

 

CVL ¼ 1 þ ð0:075B - 0:15Þβ ð14Þ 

parameter ε is not adequate to characterize the shear magnification 

factor CV  in the case of skewed slab  bridges. 

The observation of the influenced surface for the obtuse corner 

reaction as illustrated in Fig. 11 revealed that part of the shear 

amplification factor observed in the grillage models is related to 

the ratio of the triangular surface originating from the obtuse corner 

over the total surface of the bridge, expressed   as. 

β ¼ ðL=BÞ sin θ cos θ ð12Þ 

Fig. 12 shows the  variation  of  CV  as  a  function  of  β  and 

the number of lanes for dead and live loads. It is shown that the 

magnification factor can be as high as 2.0 in some cases, and is 

equal on average to 1.37 and 1.19 for dead and live loads, respec- 

tively. Two sets of equations are proposed to determine CV for 

dead (CVD) and live loads (CVL) with the equivalent-beam method. 

The first one gives the best fit for the analytical results, whereas the 

second one is for a 95% confidence   interval. 

Best fit. 

CVD ¼ 1 þ ð0:085B þ 0:15Þβ ð13Þ 

with 95% confidence interval. 

CVD95% ¼ 1 þ ð0:095B þ 0:25Þβ ð15Þ 

 
CVL95% ¼ 1 þ ð0:095B - 0:125Þβ ð16Þ 

Fig. 12 also shows the  ratio  of  the  proposed  equations  to 

the analysis for the 95% confidence interval. The average values 

are equal to 1.09 and 1.12 for dead and live loads, respectively, 

with corresponding standard deviations of 6.67 and 8.57%. The 

proposed equations provide satisfactory results. 
 

Moment Reduction 

Fig. 13 presents the bending-moment reduction factor CM that is 

given in Eq. (13) (or r  in AASHTO) as a function of parameter    
β that is expressed in Eq. (12). The tendency for dead loads is 
clearly dependent on the skew angle and independent from param- 
eter β. For live loads, CM varies with the skew angle and parameter 

β. Closer study of the analysis results leads to the conclusion    
that the amplitudes of the bending moments in a skewed slab 
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Fig. 12. Skewed bridge shear magnification  factor 

 

 

 
are directly related to the ratio of the span perpendicular to support 

edges. Two sets of equations are proposed to determine CM for 

dead and live loads with the equivalent-beam method. The first 

one gives the best fit for the analytical results, whereas the second 

one  is  on  the  conservative  side  for  95%  confidence   interval. 

Although the analyses were carried out using CSA (2006) loading, 

 
 

results presented the same trend expressed in AASHTO (2007) 

recommendations given in Eq. (18). This observation supports   

the assumption made that the proposed equations are relatively 

independent of the live-load model for bridges with short to 

medium spans for which critical effects are obtained with concen- 

trated loads. 

Best fit. 

CMD ¼ 1:05 - 0:28 tan θ ð17Þ 

CML ¼ 1:05 - 0:25 tan θ ð18Þ 

With 95% confidence interval. 

CMD95% ¼ 1:05 - 0:335 tan θ ð19Þ 

CML95% ¼ 1:05 - 0:16 tan θ ð20Þ 

The average values given by the proposed equations to the 

analysis  for  the 95%  confidence interval  prediction  are equal to 

1.09 and 1.15 for dead and live loads, respectively, with corre- 

sponding standard deviations of 8.54 and 8.83%. From the results 

of the parametric study, the equation proposed by AASHTO for 

live load provides satisfactory results for a small skew angle and 

is increasingly conservative as the skew angle becomes  larger. 
 

Secondary  Bending Moments 

The effects of torsion are negligible on straight slab bridges, and 

transverse reinforcement design is governed by other requirements, 

such as minimum reinforcement limits. In the case of skewed slab 

bridges, torsion induces transverse and negative moments that 

cannot be neglected. 
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Proposed Equation for Dead Load / Analysis Results 
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In the present study, the results of the finite plate element models 

on 20 bridges described previously were used to compare the sec- 

ondary moments, obtained with Eqs. (2)–(4), to the maximum main 

longitudinal bending moments given by Eq. (1). Limited truck-load 

cases were also considered. Although the scope of this study is lim- 

ited, clear tendencies were observed as shown in Fig. 14 in which 

the maximum value of each secondary moment is compared with 

the maximum longitudinal moment. The proposed relationships 

were kept on the safe side because of the limited number of cases 

considered. 

m-
L  ¼ mþ

L ð-0:14 þ sin θÞ ≥ 0 ð21Þ 

mþ
T  ¼ mþ

L ð0:2 þ sin θÞ ð22Þ 

m-
T  ¼ mþ

L ð0:1 þ 0:4 sin θÞ ð23Þ 

All of the secondary moments increase in amplitude with in- 

creasing skew angle. The longitudinal negative bending moments 

are negligible for a skew angle up to 10°, and can become as 

important as the longitudinal moments attributable to the torsion 

effects for a 60°  skew angle. Eq. (21), as plotted  in Fig.  14, is  

on the conservative side. Transverse positive bending-moment 

ratios start at 0.2 for a straight bridge, which are compatible with 

the adopted Poisson’s ratio, and increase to 1.0 of a 60° skew angle, 

which complies with the Menassa et al. (2007) conclusions. Neg- 

ative transverse bending moments are approximately half the 

positive-moment values as shown in Fig. 14 and as expressed in 

Eqs. (22) and (23). The ratios for the truck-load cases considered 

were less than the uniform load values and are below the values 

 

 

 
Fig. 15. Suggested shear reinforcement along free  edges 

 
 

 

The bending moments given by these equations, presented as 

positive quantities, are meant to be used with the equivalent-beam 

method. Other code requirements, such as minimum reinforcement, 

must also be used in  parallel. 

Corner Forces and Support  Reactions 

The solid finite-element analysis results allowed quantifying the 

two corner-force components identified previously as a function 

of geometrical parameters. These equations were derived for a 

uniform load for spans ranging from 5 to 20 m, with 0:1 ≤ B=L ≤ 
1:4 and L=h ¼ 20. At obtuse corners, the total force is equal to  

RC ¼ RB þ RS (Fig. 9), whereas at acute corners the reaction force 

is equal to RB - RS, where 

given by Eqs. (21)–(23). 
RB ¼ 0:5ν
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Fig. 14. Secondary moments 

RS ¼ 0:6R0 sin θ ≤ 0:3R0 ð25Þ 

In these equations,  B  should  not  be  assumed  greater  L 

(B=L 1:0 and R0     qBL=4 qL2=4). The values obtained with 

these equations may be reduced by half for fully fixed conditions. 

The uniform support reactions can be obtained by subtracting the 

corner forces to the total reaction force. In the case of discrete 

supports, the corner force must be attributed to the outermost 

supports, whereas it can be assumed that the remaining load is 

equally supported by the interior  supports. 

Free-Edge Reinforcement 

The analyses reported in the present paper clearly indicate that 

important, but rather localized, shear forces develop along slab free 

edges, for straight and skewed geometries. As indicated previously, 

the shear forces in most of the slab area are not affected by these 

local effects. Fig. 15 presents suggestions for providing reinforce- 

ment details along the edges with the objective of providing some 

shear ductility. Similar reinforcement details were suggested by 

Morrison and Weich (1987) for skewed slab bridges, and by 

Nielsen (1999). 

 

Summary  and Conclusions 

The paper presented the results of an investigation aimed at deter- 

mining the bending moments and shear forces required to design 

skewed concrete slab bridges using the equivalent-beam method. 

Straight and skewed slab bridges were modeled using grillage  

and finite-element models to characterize their behavior under 

uniform and moving loads with the objective of determining the 

most appropriate modeling approach for design. A parametric study 
 

Transverse negative moment 

Proposed Equation 

m
T

-/
m

L
+

 
m

T
+
/m

L
+

 
m

L
- /

m
L

+
 



 

± þ ≈ 
¼ ± 

was carried out on 390 simply supported slabs with geometries 

covering one to four lane bridges of 3- to 20-m spans and with 

skew angles ranging from 0 to  60°. 

Comparison of finite-element analyses with grillage models 

suggested that nonorthogonal grid arrangements are preferred over 

orthogonal grillages. Not only are nonorthogonal arrangements 

simpler to realize than orthogonal grid models for skewed geom- 

etries, but their accuracy was found comparable to finite-element 

plate model values for determining the longitudinal bending mo- 

ments in skewed slab bridges. In orthogonal-grillage and finite- 

element analysis, concomitant flexural and  torsional  moments 

for moving loads must be combined for determining the bending 

moments required for designing reinforcements which was found 

unnecessary with skewed grillage models in the longitudinal direc- 

tion. Finally, all grillage and finite-element models require postpro- 

cessing to correctly predict the transverse bending moments using 

concomitant flexural and torsional moments. 

Finite-element analyses confirmed that important reaction 

forces develop at slab corners. Theses forces are caused by the com- 

bination of transverse curvature and skew effects. Refined solid 

finite-element analyses indicated that the corner forces are related 

to additional vertical shear forces along the slab free edges that are 

present in a band equal to the slab thickness. It was concluded that 

corner reactions must be considered separately to beam shear be- 

cause it would be inappropriate to use these forces with the 

equivalent-beam method to design for shear over the slab width. 

In that perspective, a simplified and conservative approach aimed 

at determining the corner forces for straight and skewed bridges 

was presented as an alternative to a more refined analysis. Recom- 

mendations for shear-reinforcement details along slab edges were 

also proposed to enhance the behavior of slab bridges in   shear. 

At the exception of the corner reactions, the analyses showed 

that nonorthogonal grillages satisfactorily predict the amplitude 

and the transverse distribution of shear forces along the support 

lines when compared with the refined solid finite-element analysis, 

and can therefore be used confidently for the analysis of shear in 

skewed slab bridges. The shear forces obtained with orthogonal 

grillages also compared satisfactorily with the finite-element val- 

ues, but were not better than the nonorthogonal-grillage values    

to obtain the corner  forces. 

The results of a parametric study carried out on 390 slab bridges 

indicated that the shear forces and the secondary bending moments 

increase with increasing skew angle while longitudinal bending 

moments diminish. The study allowed proposing equations to 

consider the increase in shear forces attributed to skewed slab 

geometries to be used with the equivalent-beam method. The study 

also showed that the moment reduction factor in AASHTO is ac- 

curate for skew angles of up to 30°, but becomes very conservative 

for larger skew angles. Finally, equations for computing the secon- 

dary bending moments as part of the equivalent-beam method were 

proposed for slab bridges. 

Equations and recommendations presented in this paper would 

allow to safely design slab bridges using the equivalent-beam 

method for bending moments and shear for skew angles up to 60°, 

for bridge with one to four lanes with spans up to 20 m. These 

equations are compatible with AASHTO (2007) and CSA (2006) 

for the ranges of parameters considered in this study. If more re- 

fined analyses are required, nonorthogonal-grillage models would 

be the preferred refined method for computing live-load longitudi- 

nal bending moments and shear forces. Plate finite-element models 

are suitable to evaluate secondary bending moments, but are not 

appropriate to determine the maximum amplitude of the reaction 

forces near support corners. However, the average amplitude of 

the reaction force obtained along a distance from the slab    corner 

equal to the slab thickness conveys reasonable values.  Finally,  

the use of shear reinforcement is recommended along the slab free 

edges. 

 
Appendix.  Grillage Modeling 

Grillage layout and properties were determined according to 

Hambly (1991) recommendations. The maximum spacing of 

longitudinal grid element was measured as half the truck width  

for internal grid elements (3:0=2    1:5 m) and this value plus     

the curb width for external grid elements ( 1:5 0:45 2 m). 

Maximum longitudinal grid-element spacing was measured less 

than one quarter of the bridge span. Beams at exterior edges were 

placed at a distance of 0:3h of the slab side, where h is the slab 

thickness. Member spacing in both directions should be similar 

when possible. For simplifying the modeling process with different 

bridge geometries, a fixed spacing of 1 m between transverse 

elements was used. This value is relatively close and generally 

smaller than the selected longitudinal grid spacing. It also simpli- 

fies the automation of grid model  generation. 

The two required member properties  are. 

 
J ¼ bh3=6 ð26Þ 

 
I ¼ bh3=12ð1 - ν2Þ ð27Þ 

where b = slab width associated to a given member; and h = slab 

thickness. For nonorthogonal grillage, b = width measured 

perpendicular to the member orientation. 
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