
Dissertation

Analysis and Design of

Symmetric Cryptographic Algorithms

Submitted to the Faculty of Computer Science and Mathematics

of the University of Passau in Partial Fulfilment of the Requirements

for the Degree Doctor Rerum Naturalium

Philipp Jovanovic

May 2015

Thesis Advisors: Prof. Dr. Martin Kreuzer Chair of Symbolic Computation,
Faculty of Computer Science and Mathematics,
University of Passau

Prof. Dr. Ilia Polian Chair of Computer Engineering,
Faculty of Computer Science and Mathematics,
University of Passau

External Referee: Prof. Dr. Andrey Bogdanov Section for Cryptology,
Department of Applied Mathematics and Computer Science,
Technical University of Denmark

Abstract

This doctoral thesis is dedicated to the analysis and the design of symmetric cryptographic
algorithms.

In the first part of the dissertation, we deal with fault-based attacks on cryptographic
circuits which belong to the field of active implementation attacks and aim to retrieve
secret keys stored on such chips. Our main focus lies on the cryptanalytic aspects of those
attacks. In particular, we target block ciphers with a lightweight and (often) non-bijective
key schedule where the derived subkeys are (almost) independent from each other. An
attacker who is able to reconstruct one of the subkeys is thus not necessarily able to
directly retrieve other subkeys or even the secret master key by simply reversing the key
schedule. We introduce a framework based on differential fault analysis that allows to
attack block ciphers with an arbitrary number of independent subkeys and which rely on
a substitution-permutation network. These methods are then applied to the lightweight
block ciphers LED and PRINCE and we show in both cases how to recover the secret
master key requiring only a small number of fault injections. Moreover, we investigate
approaches that utilize algebraic instead of differential techniques for the fault analysis
and discuss advantages and drawbacks. At the end of the first part of the dissertation,
we explore fault-based attacks on the block cipher Bel-T which also has a lightweight
key schedule but is not based on a substitution-permutation network but instead on the
so-called Lai-Massey scheme. The framework mentioned above is thus not usable against
Bel-T. Nevertheless, we also present techniques for the case of Bel-T that enable full
recovery of the secret key in a very efficient way using differential fault analysis.

In the second part of the thesis, we focus on authenticated encryption schemes. While
regular ciphers only protect privacy of processed data, authenticated encryption schemes
also secure its authenticity and integrity. Many of these ciphers are additionally able
to protect authenticity and integrity of so-called associated data. This type of data is
transmitted unencrypted but nevertheless must be protected from being tampered with
during transmission. Authenticated encryption is nowadays the standard technique to
protect in-transit data. However, most of the currently deployed schemes have deficits
and there are many leverage points for improvements. With NORX we introduce a novel
authenticated encryption scheme supporting associated data. This algorithm was designed
with high security, efficiency in both hardware and software, simplicity, and robustness
against side-channel attacks in mind. Next to its specification, we present special features,

security goals, implementation details, extensive performance measurements and discuss
advantages over currently deployed standards. Finally, we describe our preliminary
security analysis where we investigate differential and rotational properties of NORX.
Noteworthy are in particular the newly developed techniques for differential cryptanalysis
of NORX which exploit the power of SAT- and SMT-solvers and have the potential to be
easily adaptable to other encryption schemes as well.

Zusammenfassung

Diese Doktorarbeit beschäftigt sich mit der Analyse und dem Entwurf von symmetrischen
kryptographischen Algorithmen.

Im ersten Teil der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf
kryptographische Schaltungen, welche dem Gebiet der aktiven Seitenkanalangriffe zuge-
ordnet werden und auf die Rekonstruktion geheimer Schlüssel abzielen, die auf diesen
Chips gespeichert sind. Unser Hauptaugenmerk liegt dabei auf den kryptoanalytischen
Aspekten dieser Angriffe. Insbesondere beschäftigen wir uns dabei mit Blockchiffren, die
leichtgewichtige und eine (oft) nicht-bijektive Schlüsselexpansion besitzen, bei denen die
erzeugten Teilschlüssel voneinander (nahezu) unabhängig sind. Ein Angreifer, dem es
gelingt einen Teilschlüssel zu rekonstruieren, ist dadurch nicht in der Lage direkt weitere
Teilschlüssel oder sogar den Hauptschlüssel abzuleiten indem er einfach die Schlüsselex-
pansion umkehrt. Wir stellen Techniken basierend auf differenzieller Fehleranalyse vor, die
es ermöglichen Blockchiffren zu analysieren, welche eine beliebige Anzahl unabhängiger
Teilschlüssel einsetzen und auf Substitutions-Permutations Netzwerken basieren. Diese
Methoden werden im Anschluss auf die leichtgewichtigen Blockchiffren LED und PRINCE
angewandt und wir zeigen in beiden Fällen wie der komplette geheime Schlüssel mit
einigen wenigen Fehlerinjektionen rekonstruiert werden kann. Darüber hinaus unter-
suchen wir Methoden, die algebraische statt differenzielle Techniken der Fehleranalyse
einsetzen und diskutieren deren Vor- und Nachteile. Am Ende des ersten Teils der
Dissertation befassen wir uns mit fehlerbasierten Angriffen auf die Blockchiffre Bel-T,
welche ebenfalls eine leichtgewichtige Schlüsselexpansion besitzt jedoch nicht auf einem
Substitutions-Permutations Netzwerk sondern auf dem sogenannten Lai-Massey Schema
basiert. Die oben genannten Techniken können daher bei Bel-T nicht angewandt werden.
Nichtsdestotrotz werden wir auch für den Fall von Bel-T Verfahren vorstellen, die in der
Lage sind den vollständigen geheimen Schlüssel sehr effizient mit Hilfe von differenzieller
Fehleranalyse zu rekonstruieren.

Im zweiten Teil der Doktorarbeit beschäftigen wir uns mit authentifizierenden Verschlüs-
selungsverfahren. Während gewöhnliche Chiffren nur die Vertraulichkeit der verarbeiteten
Daten sicherstellen, gewährleisten authentifizierende Verschlüsselungsverfahren auch deren
Authentizität und Integrität. Viele dieser Chiffren sind darüber hinaus in der Lage auch
die Authentizität und Integrität von sogenannten assoziierten Daten zu gewährleisten.
Daten dieses Typs werden in nicht-verschlüsselter Form übertragen, müssen aber dennoch

gegen unbefugte Veränderungen auf dem Transportweg geschützt sein. Authentifizierende
Verschlüsselungsverfahren bilden heutzutage die Standardtechnologie um Daten während
der Übertragung zu beschützen. Aktuell eingesetzte Verfahren weisen jedoch oftmals De-
fizite auf und es existieren vielfältige Ansatzpunkte für Verbesserungen. Mit NORX stellen
wir ein neuartiges authentifizierendes Verschlüsselungsverfahren vor, welches assoziierte
Daten unterstützt. Dieser Algorithmus wurde vor allem im Hinblick auf Einsatzgebiete
mit hohen Sicherheitsanforderungen, Effizienz in Hardware und Software, Einfachheit,
und Robustheit gegenüber Seitenkanalangriffen entwickelt. Neben der Spezifikation
präsentieren wir besondere Eigenschaften, angestrebte Sicherheitsziele, Details zur Im-
plementierung, umfassende Performanz-Messungen und diskutieren Vorteile gegenüber
aktuellen Standards. Schließlich stellen wir Ergebnisse unserer vorläufigen Sicherheitsanal-
yse vor, bei der wir uns vor allem auf differenzielle Merkmale und Rotationseigenschaften
von NORX konzentrieren. Erwähnenswert sind dabei vor allem die für die differenzielle
Kryptoanalyse von NORX entwickelten Techniken, die auf die Effizienz von SAT- und
SMT-Solvern zurückgreifen und das Potential besitzen relativ einfach auch auf andere
Verschlüsselungsverfahren übertragen werden zu können.

Acknowledgements

After four years of working on my PhD and after months of thesis writing, it is time to
come to the most important part of this dissertation. I am indebted to many people who
I have met and worked with and who have supported me along the way. I doubt that my
path in life would have turned out the way it did without their involvement. It is therefore
a real pleasure for me to hereby take the opportunity and express my acknowledgements
to all of them.

First of all, I would like to thank my supervisors, Martin Kreuzer and Ilia Polian, for
accepting me as a PhD student, for continuously supporting me in all matters, be it
scientific or otherwise, and especially for their open-door policy. Moreover, I would like
to thank them for allowing me to pursue my own path in research which was in many
cases only loosely connected to the main research topics of their respective groups. I also
want to express my deep appreciation to Andrey Bogdanov who kindly agreed to serve as
the external referee for this dissertation.

During my time as a PhD student at the University of Passau, I had the fortune to meet
and collaborate with many very smart and highly knowledgeable researchers and I want
to acknowledge in particular my co-authors: Jean-Philippe Aumasson, Christof Beierle,
Wayne Burleson, Martin Kreuzer, Raghavan Kumar, Martin Lauridsen, Gregor Leander,
Atul Luykx, Bart Mennink, Samuel Neves, Ilia Polian, and Christian Rechberger.

My special thanks go to Jean-Philippe Aumasson and Samuel Neves for teaming up with
me back in early 2013 to participate in CAESAR, and for the countless, evening-filling,
scientific and non-scientific discussions on IRC and during the all too rare occasions when
we met in person. Working with you was lots of fun and I learned so much in the process.
Thanks a lot, you are the best.

Furthermore, I would like to thank Christian Rechberger for enabling me to visit
DTU in 2014 and for allowing me to work with him and his team. Many thanks also
to all the other members of DTU’s Cryptology Research Group, and in particular to
Andrey Bogdanov, Stefan Kölbl, Martin Lauridsen, Arnab Roy, Tyge Tiessen, and Elmar
Tischhauser for making my stay in Copenhagen such a great and memorable experience.

Moreover, I want to express my acknowledgements to all my current and former
colleagues and friends at the University of Passau. Particularly, I would like to thank
Markus Kriegl, Jan Limbeck, Severin Neumann, Stefan Schuster, and Thomas Stadler for
the countless both scientific and non-scientific discussions and their readiness to help in
any situation. I am also deeply grateful to our secretaries Nathalie Vollstädt and Anna

i

Acknowledgements

Weikelsdorfer for their constant support in all organisational concerns. Thanks, you all
contributed to this thesis in one way or the other.

My deepest and sincerest gratitude goes also to my family, my parents Christine and
Michael, and my brother David. Thank you so much for your never-ending support,
for the possibilities you have given me in life, and for always being there when needed.
Moreover, my thanks go as well to my family (in-law), Ingrid, Alois, and Dominic, for all
the enjoyable moments that I was allowed to share with you over the past years.

Finally, I would like to express my utmost gratefulness to Sabrina, my wonderful girl-
friend. You have accompanied, encouraged, and supported me with your love, friendship,
understanding, and humour through all the ups and downs of my PhD and beyond.
Without you, I would have never made it this far. Thank you for everything.

Philipp Jovanovic
Passau, May 2015

ii

Contents

Acknowledgements i

Motivation vii

List of Symbols xi

1 Introduction 1
1.1 Cryptography . 1

1.1.1 Block Ciphers . 2
1.1.2 Stream Ciphers . 6
1.1.3 Hash Functions . 7
1.1.4 Message Authentication Codes . 8
1.1.5 Authenticated Encryption Schemes 8

1.2 Cryptanalysis . 17
1.2.1 Brute-Force Attacks . 20
1.2.2 Differential Attacks . 23
1.2.3 Linear Attacks . 30
1.2.4 Algebraic Attacks . 32
1.2.5 Rotational Attacks . 35
1.2.6 Implementation Attacks . 35

1.3 Security Notions . 40

2 Fault-based Attacks on the Block Ciphers LED and PRINCE 43
2.1 Introduction . 43
2.2 The Block Cipher LED . 44

2.2.1 General Layout . 44
2.2.2 Round Function . 46

2.3 The Block Cipher PRINCE . 48
2.3.1 General Layout . 48
2.3.2 Round Function . 48

2.4 Fault Attacks on LED-64 . 50
2.4.1 Fault Models . 50
2.4.2 Fault Equations . 51

iii

Contents

2.4.3 Key Filtering Mechanisms . 54
2.4.4 Experimental Results . 60
2.4.5 Extensions of the Fault Attack . 61

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE 64
2.5.1 The Multi-Stage Fault Attack Framework 64
2.5.2 Applications to LED-128 . 66
2.5.3 Experimental Results . 68
2.5.4 Applications to PRINCE . 69
2.5.5 Experimental Results . 72
2.5.6 Extensions of the Fault Attacks . 73

2.6 Algebraic Fault Attacks on LED-64 . 74
2.6.1 Algebraic Representation of LED 74
2.6.2 Algebraic Representation of the LED Fault Equations 79
2.6.3 Experimental Results . 79

2.7 Conclusion . 80

3 Fault-based Attacks on the Bel-T Block Cipher Family 83
3.1 Introduction . 83
3.2 The Block Cipher Bel-T . 84
3.3 Fault Attacks on Bel-T . 85

3.3.1 Bel-T-128 . 87
3.3.2 Bel-T-192 . 89
3.3.3 Bel-T-256 . 90
3.3.4 Experimental Results . 90

3.4 Practical Issues and Countermeasures . 91
3.5 Conclusion . 92

4 NORX: Parallel and Scalable Authenticated Encryption 95
4.1 Introduction . 95
4.2 Specification . 99

4.2.1 Preliminaries . 99
4.2.2 Parameters and Interface . 100
4.2.3 Layout Overview . 101
4.2.4 The Round Function . 102
4.2.5 Encryption Mode . 103
4.2.6 Decryption Mode . 111
4.2.7 Datagrams . 113

4.3 Security Goals . 114
4.4 Features . 119

4.4.1 List of Characteristics . 119
4.4.2 Recommended Parameter Sets . 121

iv

Contents

4.4.3 Performance . 121
4.5 Design Rationale . 130

4.5.1 The Parallel MonkeyDuplex Construction 130
4.5.2 The Functions F, G, and H . 131
4.5.3 Selection of Constants . 133
4.5.4 Number of Rounds . 135
4.5.5 The Padding Rule . 137

4.6 Conclusion . 137

5 Analysis of NORX 139
5.1 Introduction . 139
5.2 General Observations on G and F . 139

5.2.1 Fix Points . 139
5.2.2 Weak States . 140
5.2.3 Algebraic Properties . 141
5.2.4 Slide Attacks . 142

5.3 Differential Cryptanalysis . 142
5.3.1 Simple Differentials . 143
5.3.2 Impossible Differentials . 147
5.3.3 NODE – NORX Differential Search Engine 149

5.4 Rotational Cryptanalysis . 163
5.5 Conclusion . 165

Bibliography 167

Test Vectors for NORX 187

Publications 195

v

Motivation

Cryptology consists of two interacting counterparts: cryptography, the science of designing
secure communication channels in presence of third parties, on the one hand, and crypt-
analysis, the science of evaluating the security of cryptographic constructions, on the other.
Traditionally deployed by military and secret services — we refer to Kahn [146] for an
extensive treatment of the early history and to the seminal publications of Kerckhoffs [151]
and Shannon [223, 224] for the foundations of modern cryptology — the situation changed
drastically in the past decades where cryptology found its way into our everyday life.
The main reason, undoubtedly, is the Digital Revolution triggered by the evolution of the
computer and the introduction of the Internet, which led to a rapid-increasing influence
of technology and digital media on basically every aspect of modern society.

Protection of sensitive digital data against unauthorised access is nowadays not only a
highly relevant topic for industry and governments but a concern for principally everyone.
Security of data in phone calls, email, mobile messaging, online shopping, online banking
or in emerging fields such as electronic currency systems (e.g. bitcoin [193]), smart grids, or
the Internet-of-Things would be unthinkable without sound cryptographic constructions.
The strength of the cryptographic protection is determined by the (in)feasibility of
deriving secret information by unauthorized parties. Goals of modern cryptology include
for example confidentiality, integrity, authenticity, anonymity, and non-repudiation to
name just a few of the many objectives.

Although there exist many cryptographic schemes which are considered secure, there
is no single, universally applicable solution. Due to ever-changing requirements and
new application fields, there is a constant demand for innovative solutions that master
emerging challenges. Another problem is that deprecated cryptographic constructions
are still relatively widespread. Those designs often date back to times when basically no
one could anticipate the dimensions current technologies, such as today’s Internet, could
reach and are now usually outdated and not suitable for usage in modern applications.
One prominent example is the RC4 stream cipher, which was designed by Rivest in 1987,
became publicly known in 1994, and found widespread adoption due to its simplicity and
relatively good performance. The security of RC4 has been analysed very thoroughly over
the past decades and many weaknesses in the algorithm itself and in systems it has been
deployed in were uncovered [5, 114, 157, 221, 232]. Cryptographers have been advising
against its usage already for years but phasing out such a widely deployed system is
usually a difficult task and a very slow process due to complex interdependencies, issues

vii

Motivation

with backwards compatibility, and various other reasons. For example, in early 2014,
RC4 was still one of the most widely used ciphers in implementations of the Transport
Layer Security (TLS) protocol which secures communication on the Internet. In 2015,
the Internet Engineering Task Force (IETF) finally prohibited its usage in TLS [207].
There are many similar examples of cryptographic primitives whose weaknesses have been
revealed thanks to continuous advances in cryptanalysis. Understandably, the interest is
huge to replace legacy designs by new, modern variants that amend the flaws of their older
counterparts, provide new features, and often promise a drastic reduction of operational
costs. Moreover, modern ciphers are commonly designed with big enough security margins
so that they are able to resist future cryptanalytic or computational breakthroughs. This
is absolutely vital to ensure security in the long run since many cryptographic primitives
are used for decades, as can be seen on the example of RC4.

One big threat to many of the known cryptographic systems are quantum comput-
ers [197]. While there currently exist early prototypes that can only be used for very
elementary computations, the interest from academia, industry, and governments alike is
substantial to construct a real and practically usable quantum computer. It would provide
huge computational benefits in comparison to classical computers. Although there are still
many challenges to overcome, unforeseen innovations in engineering could quickly lead to
the construction of a first quantum computer with a reasonable number of quantum-bits
(qubits). We refer to the quantum algorithms of Grover [120] and Shor [226] which yield,
in comparison to the best known classical algorithms, considerable speed-ups to the
problems of database search and integer factorisation. Ciphers such as RSA which belongs
to one of the most widely deployed public-key crypto systems and whose security is based
on the hardness of integer factorisation could be broken easily by a quantum computer
equipped with enough qubits. It is therefore no surprise that post-quantum cryptography
is a highly active research field where cryptographers investigate new systems that remain
secure even in presence of quantum computers.

On the other end of the spectrum there is a huge interest in the field of lightweight cryp-
tography motivated by pervasive computing, enabled through small mobile and embedded
devices, like RFID chips and nodes of sensor networks. These appliances increasingly
find their way into our everyday life and are often utilised to process sensitive (personal)
data, for example in the form of financial or medical information. Obviously, protecting
such information is essential and is in large parts achieved through the deployment of
cryptographic methods. However, the acceptable complexity of cryptographic algorithms
implementable on low-end devices is typically restricted by stringent cost constraints, by
power consumption limits due to battery life-time, or by heat dissipation issues. The
design of cryptographic primitives that provide acceptable security against conventional
cryptanalysis and implementation attacks, and that can be realised on devices with strictly
limited resources is a very challenging task and has raised significant interest in the last
few years [158]. It is therefore no surprise that numerous new algorithms [15, 61, 71, 72,
73, 78, 85, 86, 125, 126] were proposed addressing the manifold challenges of lightweight

viii

cryptography.
To summarize, cryptology is a highly active and challenging research field with countless

unsolved and practice-oriented issues. The ever increasing necessity and demand for
security and privacy of digital communication of our high-tech society in the information
age ensures that research in cryptology will stay relevant for many years to come.

Research Contributions and Outline

This thesis deals with research problems in symmetric cryptology, where it is assumed
that the communicating parties share a secret key. In particular, we investigate techniques
for fault-based cryptanalysis of block ciphers, discuss the design of a novel authenticated
encryption scheme, and also describe our security evaluation of the latter. The outline of
the thesis is as follows.

In Chapter 1, we discuss basic concepts from symmetric cryptology. We introduce
block ciphers, stream ciphers, hash functions, and message authentication codes, the
basic primitives from symmetric cryptography, and also discuss authenticated encryption
schemes, a more advanced construction. Moreover, we give an introduction to the basic
tools of cryptanalysis including brute-force, differential, linear, algebraic, rotational, and
implementation attacks. The purpose of this chapter is to initiate basic terminology
required later on in the thesis.

In Chapter 2, we discuss techniques for fault analysis of the lightweight block ciphers
LED and PRINCE. We start with a fault-based attack on LED-64 and introduce filtering
techniques which quickly eliminate wrong key hypotheses. We show that the number
of remaining key candidates is already small enough after a single fault injection to
make exhaustive search feasible. We also motivate why those techniques are not directly
applicable to LED-128 and PRINCE. Afterwards, we present a generalisation of the LED-
64 attack which leads to the multi-stage fault attack framework and allows differential
fault analysis of both LED-128 and PRINCE. We show that in both cases between 3 and
5 fault injections are sufficient for a successful reconstruction of the entire 128-bit key
and also present the results from our extensive simulation-based experiments. Finally, we
discuss an extension of the LED-64 attack to an algebraic setting. The results of this
chapter are published (partially as preprints) in [138, 139, 140]. Furthermore, in [172,
173], the applicability of the fault analysis techniques in combination with new methods
for high-precision fault injections is investigated.

In Chapter 3, we present differential fault analysis of the block cipher family Bel-T
which has been adopted recently as a national standard of the Republic of Belarus. Our
attacks successfully recover the secret key of the 128-bit, 192-bit, and 256-bit versions of
Bel-T using 4, 7, and 10 fault injections, respectively. We also discuss the feasibility of the
required fault injections and show the results from our comprehensive simulation-based
experiments. The results of this chapter are published in [143].

In Chapter 4, we introduce NORX, a novel authenticated encryption scheme with support

ix

Motivation

for associated data, which was submitted in 2014 as a first-round candidate to CAESAR,
the Competition for Authenticated Encryption: Security, Applicability and Robustness.
NORX was designed with a focus on high-security, simplicity, high-performance, and
side-channel robustness. It is based on the monkeyDuplex construction which belongs
to the family of sponge functions and features an original domain separation scheme for
simple processing of header, payload, and trailer data. NORX was optimised for efficiency
in both soft- and hardware, having a core suitable for vectorized implementations, almost
byte-aligned rotations, no secret-dependent memory lookups, and only bitwise logical
operations. On a Haswell processor, a serial version of NORX runs at 2.51 cycles per
byte. Simulations of a hardware architecture for 180nm UMC ASIC give a throughput
of approximately 10Gbps at 125MHz. The main results of this chapter are published
in [20] and further improvements on the generic security bounds can be found in [141]. In
addition, a talk about CAESAR and NORX was given at the 31st Chaos Communication
Congress (31C3) [17].

In Chapter 5, we present a thorough security analysis of NORX and focus, in particular,
on differential and rotational properties. After the discussion of some basic properties,
we introduce mathematical models that describe differential propagation with respect to
the non-linear operation of NORX. Afterwards, we present NODE, the NORX differential
search engine, which is an adaptation of a framework previously proposed for ARX designs,
allowing us to automate the search for differentials and characteristics. We give upper
bounds on the differential probability for a small number of steps of the NORX core
permutation. For example, in a scenario where an attacker can only modify the nonce
during initialisation, we show that there are no differential characteristics with higher
probabilities than 2−67 (32-bit) and 2−62 (64-bit) after only one round. Furthermore, we
describe how we found the best characteristics for four rounds, which have probabilities
of 2−584 (32-bit) and 2−836 (64-bit), respectively. Finally, we discuss some rotational
properties of the core permutation which yield some first, rough security bounds and can
be used as a basis for future studies. The results of this chapter are published in [19].

x

List of Symbols

N set of natural numbers including 0

Z ring of integers

Zn residue class ring of integers modulo n

K[x1, . . . , xn] polynomial ring in indeterminates x1, . . . , xn over the field K

Q field of rational numbers

Fpn finite field with pn elements, p prime, n ≥ 1

Fn
2 F2-vector space of bit strings X = (x0, . . . , xn−1) with length n ≥ 1

F∗2 set of bit strings with arbitrary but finite length

0n bit string consisting of n zeroes

|X| length of bit string X in bits

|X|r length of bit string X in r-bit blocks

hw(X) Hamming weight of bit string X

⌊X⌋n truncation of bit string X to its first, i.e. least-significant, n bits

X ‖ Y concatenation of bit strings X and Y

X ≪ n left-shift of bit string X by n bits

X ≫ n right-shift of bit string X by n bits

X ≪ n cyclic left-rotation of bit string X by n bits

X ≫ n cyclic right-rotation of bit string X by n bits

¬, ∧, ∨, ⊕ bitwise logical NOT, AND, OR, and XOR

⊞, ⊟ integer addition and subtraction

a← b assignment of value b to the variable a

x
$←− X sample x uniformly at random from the set X

f ◦ g composition of functions f and g

xi

Chapter 1

Introduction

1.1 Cryptography

There are three major categories of cryptographic primitives, namely unkeyed, symmetric,
and asymmetric algorithms. Figure 1 gives an overview on the most common cryptographic
primitives. The distinguishing property of those categories is the different usage of key
material: unkeyed algorithms do not require any secret information to be used. Symmetric
algorithms use a single secret key that is shared among all valid communication partners
and is used by all of them to execute cryptographic operations such as encryption and
decryption of data. For the usage of asymmetric algorithms each participant is required
to posses a pair of keys, a public key and a private key. The two keys of a participant
are strongly related to each other and each has its own purpose which can be roughly
summarised as follows: the public key is used for encryption or verification of digital
signatures, whereas the private key is used for decryption or creation of digital signatures.
In practice, the different kinds of primitives are usually not just used on their own but
instead are combined to form cryptographic protocols. This thesis focusses on symmetric
cryptography and the section at hand introduces its core principles. Additionally, we also
give a brief overview on hash functions due to their important role in cryptography. For the
other topics, we refer the interested reader to standard literature about cryptography [202].

There are many goals that can be achieved with (symmetric) cryptography, but three
of the fundamental ones are:

• Confidentiality. It ensures that an adversary who has access to a communication
channel is not able to derive information about the content of messages exchanged
by the communications partners.

• Integrity. It ensures that an adversary who has access to a communication channel
is not able to modify the content of exchanged messages in an unauthorised way.
In other words, it prevents an active adversary from tampering with transmitted
messages without the manipulation being noticed.

• Authenticity. It ensures that an adversary who has access to a communication
channel is not able to modify the information about the origin of exchanged messages,

1

Chapter 1 Introduction

Cryptography

Asymmetric Algorithms

Public-Key Ciphers

. . .

Signature Schemes

Symmetric Algorithms

Authenticated Encryption Schemes

Message Authentication Codes

. . .

Stream Ciphers

Block Ciphers

Unkeyed Algorithms

Randomness Extractors

. . .

Hash Functions

Figure 1: Categories of common cryptographic algorithms.

i.e. it prevents an attacker from impersonating as a valid source of messages to any
of the true communication partners.

Different kinds of symmetric cryptographic constructions can be specified which achieve
a varying number of the above goals. In the following, we introduce the basic symmetric
cryptographic primitives, as listed in Figure 1, and describe their respective roles in
achieving the three goals above. As a basis, we use standard literature on (symmetric)
cryptography such as [162, 202].

1.1.1 Block Ciphers

Block ciphers are a core building block of symmetric cryptography and ensure the
confidentiality of processed data. They are often used to design other cryptographic
primitives, such as stream ciphers, hash functions or message authentication codes. In the
following, we introduce the basic definition and discuss thereafter common approaches for
the construction of block ciphers.

Let k, b ≥ 1. A block cipher is a tuple Π = (E ,D) such that the encryption function

E : Fk
2 × Fb

2 → Fb
2, (K,M) 7→ C

is a permutation on the set of plaintexts M ∈ Fb
2 for a fixed secret key K ∈ Fk

2 . The value
b is also called the block size. The inverse of the encryption function E−1, also called the
decryption function, is denoted by D. In particular, the equation DK(EK(M)) = M holds
for all plaintexts M ∈ Fb

2 and a fixed secret key K ∈ Fk
2 , where we denote EK(·) = E(K, ·)

and DK(·) = D(K, ·), respectively.
Common values for k are 64, 80, 96, 128, 192, and 256 bits and for b often values of

64, 128 or 256 bits are used. Block ciphers specify families of permutations. The block

2

1.1 Cryptography

size of b bits determines the space of all possible permutations, while the key size of k
bits determines the number of permutations that are actually created. More precisely,
for a given key size of k bits there exist 2k different keys, and choosing one of them (at
random) selects one of the permutations on the set of 2b inputs (at random). There
are (2b)! different permutations on b-bit input blocks which corresponds roughly to the
value 2(b−1)2

b
by Stirling’s approximation. Usually, one also demands that keys which are

related to each other in some way, yield permutations sharing no recognisable relations,
which could be exploited in cryptanalytic attacks otherwise.

Block ciphers are commonly constructed in an iterative way based on bijective, key-
dependent round functions fi(Ki, ·) which operate on b-bit blocks of data. Note that
Ki denotes the ith round key for i ∈ {0, . . . , r − 1} and r denotes the number of rounds.
Thus, the encryption function of such an iterative block cipher can be described by

E(K, ·) = fr−1(Kr−1, ·) ◦ fr−2(Kr−2, ·) ◦ · · · ◦ f1(K1, ·) ◦ f0(K0, ·)

where ◦ denotes function composition. Analogously, decryption can be described by

D(K, ·) = f−10 (K0, ·) ◦ f−11 (K1, ·) ◦ · · · ◦ f−1r−2(Kr−2, ·) ◦ f−1r−1(Kr−1, ·)

where f−1i (Ki, ·) denotes the inverse to fi(Ki, ·). To obtain the round keys Ki the master
key K is expanded using a key schedule g, meaning

g : Fk
2 → F

qr
2 : K 7→ (K0,K1, . . . ,Kr−2,Kr−1)

where q denotes the bit size of a round key. In many cases, q coincides with the block size
b, i.e. q = b. Figure 2 illustrates the encryption function of such an iterative block cipher.
Depending on the design of the block cipher often so-called whitening keys are used
before and after the application of all the round functions to mask plain- and ciphertext,
respectively.

M f0 f1 fr−2 fr−1 C

K0 K1 Kr−2 Kr−1

g

K

Figure 2: Encryption function of an iterative block cipher.

If the block cipher design can be modelled as a sequence of unkeyed round functions
interleaved with addition of round keys using bitwise logical XOR, then we usually speak
of a key-alternating [97] construction. Note that Feistel ciphers can also be key-alternating
in some sense but cannot necessarily be modelled in such a way directly.

3

Chapter 1 Introduction

Now we give a brief overview on three common design approaches for block ciphers,
namely Feistel networks, substitution-permutation networks, and Lai-Massey schemes.
Figure 3 illustrates the concepts of the rounds functions for each of the aforementioned
design strategies.

.

.

.

.

.

.

f

Ki

Xi Yi

Xi+1 Yi+1

(a)

Xi

Xi+1

.

.

.

.

.

.

. . .S S S S

P

Ki

(b)

H

.

.

.

.

.

.

⊟

f

⊞ ⊞

Ki

Xi Yi

Xi+1 Yi+1

(c)

Figure 3: Round functions of (a) Feistel networks, (b) substitution-permutation networks,
and (c) Lai-Massey schemes.

Feistel Networks

Block ciphers based on Feistel networks, see Figure 3a, have their state split into two
halves, usually denoted by a left one Xi and a right one Yi, for 0 ≤ i ≤ r. The plaintext
is loaded into X0 ‖ Y0. In a single round, a non-linear function f depending on a round
key Ki is applied onto one of the halves and the result is XORed to the other. Finally,
the two halves are swapped, which also finishes the round. Thus, a single encryption
round of a Feistel network can be described through

Xi+1 = Yi

Yi+1 = Xi ⊕ fKi(Yi)

which is also depicted in the first illustration of Figure 3. This process is repeated
as long as specified by the number of rounds r. The ciphertext finally corresponds to
Xr ‖ Yr. Note that f does not necessarily have to be bijective. Decryption can be
achieved in a very similar way to encryption, by simply exchanging the roles of Xi and
Yi and possibly adapting the key schedule. The similarity of encryption and decryption
functions obviously helps to cut down costs, for example when the cipher is implemented
in hardware. Therefore, it is not surprising that block ciphers based on Feistel networks

4

1.1 Cryptography

are often used in devices which only have access to very limited resources. Prominent
representatives of this category are the Data Encryption Standard (DES), the AES finalist
Twofish [219], or Simon [27], a lightweight block cipher designed and published by the
NSA.

Substitution-Permutation Networks

Another prevalent approach to design block ciphers are substitution-permutation networks
(SPN), see Figure 3b. The basic building blocks of SPN block ciphers are a substitution
layer S, which transforms the state in a non-linear way through parallel substitution of
groups of bits according to certain substitution tables, better known as S-boxes, a linear
permutation layer P , which permutes either single bits or entire groups of bits, and finally
addition of a round key Ki usually using bitwise XOR or integer addition. Sometimes the
round function also includes an operation for addition of a round constant, to make the
single rounds distinct from each other, which impedes certain kind of attacks such as
slide attacks [65]. The basic variant of the round function can be described as follows:

Xi+1 = P (S(Xi))⊕Ki .

SPN block ciphers are by definition key-alternating and the decryption function is usually
quite different from encryption compared to their Feistel network based counterparts.
Lately however, there have been increased efforts to create SPN ciphers using involutive
building blocks which allow to specify encryption and decryption functions in similar ways.
For instance, PRINCE [78] falls into the latter category. Other prominent examples of
substitution-permutation network based block ciphers include AES [96], PRESENT [71],
and LED [126]. In Chapter 2, we analyse the ciphers LED and PRINCE against certain
cryptanalytic attacks.

Lai-Massey Schemes

A third but less common option for block cipher design is the so-called Lai-Massey scheme,
see Figure 3c. Like Feistel networks, the scheme works with a state divided in two parts
Xi and Yi. The building blocks of the round function are a half-round function H and a
keyed transformation fKi , where Ki denotes the round key. The function H commonly
updates the left state element Xi by application of a special operation σ, i.e. (σ(Xi), Yi),
which is required to prevent trivial distinguishing attacks [236]. The above components
are then combined as follows:

(Ai, Bi) = H(Xi, Yi)

Ci = fKi(Ai ⊟Bi)

(Xi+1, Yi+1) = (Ai ⊞ Ci, Ai ⊞ Ci) .

5

Chapter 1 Introduction

Analogously to Feistel block ciphers, the function f does not have to be invertible. The
Lai-Massey scheme was introduced alongside of IDEA [176]. Other representatives are
FOX [144], now better known as IDEA-NXT, and, to some extent, also Bel-T [98], the
national encryption standard of the Republic of Belarus. We analyse Bel-T in more detail
in Chapter 3.

Block Cipher Modes

Block ciphers can encrypt only a single fixed-size block of data at a time. To be able
to process messages of arbitrary length, though, a block cipher has to be used together
with a proper block cipher mode of operation. The first block cipher modes were proposed
and standardised by NIST for usage with DES in FIPS 81 [194] and were later also
standardised for the usage with AES [195]. The basic modes include Electronic Codebook
(ECB), Block Cipher Chaining (CBC), Ciphertext-Feedback (CFB), Output-Feedback
(OFB), and Counter (CTR). We are not discussing the details of those modes at this
point but instead refer the interested reader to standard literature [162, 202].

1.1.2 Stream Ciphers

Stream ciphers accompany block ciphers as the second important class of symmetric-
key primitives. While block ciphers encrypt data block-wise, a stream cipher achieves
encryption by first producing a pseudo-randomly generated stream of bits (sometimes
in the form of whole bit-blocks), the key stream, of the same size as the message and by
XORing this key stream subsequently to the plaintext to obtain the ciphertext. This
property makes stream ciphers very flexible as usually no message-padding or special
mode of operation is required and arbitrary-sized messages can be processed right-away.
However, note that a given block cipher can be easily transformed into a stream cipher
using, for example, the already above mentioned counter mode (CTR).

Let k, n ≥ 1. A stream cipher S is specified by

S : Fk
2 × Fn

2 × F∗2 → F∗2, (K,N,M) 7→ S ⊕M

where K is a secret key, N is either a initialisation vector (IV) or nonce, M a message, and
S a pseudo-randomly generated key stream of length |M |. The ciphertext C corresponds
to the output S ⊕M of S. Since XOR is an involution, the same function can be used
for decryption with exchanged roles of C and M . Hence, the plaintext can be recovered
by simply computing S(K,N,C) = S ⊕ C = M .

Note that there is a difference between an IV and a nonce: IVs are required to be
chosen uniformly at random while nonces only have to be unique in order to guarantee the
security of the algorithm. Thus, a nonce can be implemented through a simple counter,
which is not possible for an IV. Whether an IV or nonce has to be used depends on the
concrete cryptographic construction.

6

1.1 Cryptography

Undoubtedly, one of the most well-known stream ciphers is RC4, which was invented
by Rivest in 1987 and is still in wide use today in spite of the many discovered weaknesses
that very often allow to mount practical attacks on RC4. Modern and secure counterparts
include Salsa20 [41], ChaCha [40], Trivium [86] and Grain-128a [2].

1.1.3 Hash Functions

Cryptographic hash functions are another important primitive and can be used to ensure
the integrity of processed data. In symmetric cryptography, they are also often used
as building blocks for other cryptographic primitives such as stream ciphers, message
authentication codes, or authenticated encryption schemes. Although not covered in-
depth within the thesis at hand, we nevertheless discuss them briefly below due to their
importance and for the sake of completeness. Hash functions do not use a secret key, unlike
the symmetric primitives discussed so far, and compress an arbitrary-sized but finite input
to a fixed-sized output. The latter can be seen as the fingerprint, i.e. the “unique” identifier
of the input. These primitives belong to the family of so-called one-way functions which
means that they are considered practically impossible to invert. Due to their versatility,
hash functions are often referred to as the “Swiss-army knife” of cryptography. Their
field of application includes, but is not restricted to, data integrity checks, password
verification, pseudorandom number generation, and message authentication. The formal
definition of a hash function is as follows.

Let n ≥ 1. A (cryptographic) hash function is a mapping

H : F∗2 → Fn
2 , M 7→ H

that takes as input a message M of arbitrary but finite length and compresses it into a
fixed-size digest or hash H of length n.

Informally, a cryptographic hash function should be indistinguishable from a random
function with the same parameters and it should fulfil the following four properties:

• Efficiency. Given the input M it is easy to compute H(M).

• Collision Resistance. Finding two distinct inputs M 6= M ′, such that H(M) =
H(M ′) should require at least 2n/2 operations.

• Preimage Resistance. Given an image Z of H, it is hard to find an input M
such that H(M) = Z.

• Second Preimage Resistance. Given an input M , it is hard to find a second
input M ′, such that H(M) = H(M ′).

Due to the above properties the value n is required to have a certain size. Common
choices for n are 160, 256 and 512 bits.

7

Chapter 1 Introduction

Well-known cryptographic hash functions include MD5, SHA1, SHA256, SHA512,
Keccak [47], which was the winner of the SHA3 competition [222] and is now the new
SHA3 standard, Grøstl [118], BLAKE [16], and BLAKE2 [21].

1.1.4 Message Authentication Codes

Hash functions that take a secret key as an additional input, are better known as message
authentication codes. These primitives do not only provide data integrity but also allow
to verify the authenticity of a message. This means that the receiver of a message can
verify that it originates from a valid sender, namely the one with whom the receiver had
exchanged the secret key before.

Concretely, a message authentication code (MAC) is a tuple (T ,V) consisting of a tag
generation function T and a tag verification function V. The tag generation function is
specified by

T : Fk
2 × F∗2 → Ft

2, (K,M) 7→ T

and takes as input a secret key K and an arbitrary long message M and compresses it
into a fixed-size authentication tag T of length t. The tag verification function is specified
through

V : Ft
2 × Ft

2 → {⊥,⊤}, (T, T ′) 7→
{

⊤ if T = T ′

⊥ if T 6= T ′

and checks if the received tag T matches the computed tag T ′. If they agree, then V
returns the symbol ⊤ for success, and otherwise the symbol ⊥ for failure.

There are many ways to construct MACs. A common approach is to take a cryptographic
hash function and use it within the HMAC mode [30]. Another option are sponge
functions [45] which are discussed further below.

1.1.5 Authenticated Encryption Schemes

Authenticated encryption (AE) schemes [32, 67] are an enhancement of common symmetric
encryption algorithms and provide not only privacy of processed data but also ensure
its integrity and authenticity. In other words, AE schemes try to achieve all of the three
fundamental goals of symmetric cryptography introduced in the beginning of this section.
Authenticated encryption with associated data (AEAD) [211] is an extension of AE that
allows to process additionally so-called associated data (AD) which is not encrypted, i.e.
it is transmitted in clear, but whose authenticity and integrity is ensured. Nowadays,
AE(AD) schemes are the standard tool to protect in-transit data. AD can have many
forms, like routing information in headers of datagram packets. Obviously, such a header
(containing information like an IP address) has to remain unencrypted in order to be
able to transmit the packet to the correct destination. Furthermore, the sender wants to
ensure that the packet indeed reaches its destination and that a possible tampering with

8

1.1 Cryptography

the in-transit packet through Man-In-The-Middle attacks is detected. Finally, the receiver
wants to be able to verify that the received data is from a valid source, namely the one
with whom he exchanged secret keys. Below, we introduce the mathematical notation for
AEAD and denote that AE is a special case of the prior where AD is left empty.

Let k, n, t ≥ 1. An authenticated encryption scheme with associated data is a tuple
Π = (K, E ,D), where K is a key derivation function, E is an encryption and D a decryption
function. The function K takes as input k and picks a secret key K uniformly at random
from Fk

2. We denote this operation by K
$←− K(k) or just K

$←− K if the context is clear.
The encryption function is specified as

E : Fk
2 × Fn

2 × F∗2 × F∗2 → F∗2 × Ft
2, (K,N,A,M) 7→ (C, T)

where K is a secret key, N a nonce, A associated data, M a plaintext message, C a
ciphertext, and T an authentication tag. The decryption function, on the other hand, is
defined by

D : Fk
2 × Fn

2 × F∗2 × F∗2 × Ft
2 → F∗2 ∪ {⊥}, (K,N,A,C, T) 7→

{

M if T = T ′

⊥ if T 6= T ′

where T ′ denotes the computed and T the received authentication tag.
Conceptually, a typical communication between two parties Alice and Bob is conducted

as follows: assuming Alice and Bob have already exchanged a secret key K, Alice performs
EK(N,A,M) = (C, T) and sends the tuple (N,A,C, T) over the communication channel to
Bob. Under the assumption that the AEAD scheme Π is secure, an adversary intercepting
(N,A,C, T) can neither learn something about the message M from C or T nor can
he modify any of N , A, C or T without being detected. In particular, he is not able
to construct tuples (N ′, A′, C ′, T ′) of his own that seem valid to Bob since he is not
in possession of the shared secret key K. Bob, the valid communication partner, uses
the decryption function DK of Π on (N,A,C, T), which first verifies that the received
authentication tag T is valid by comparing it with the computed tag T ′ and if so DK

returns the message M . If tag verification fails, DK outputs nothing except for an error
⊥ and securely erases all intermediate results. Now, we will give an overview on common
AE(AD) constructions.

Generic Composition

There are several ways to construct AE(AD) schemes. A very common approach is generic
composition [32], for which we give a brief overview in the following and discuss its pros
and contras. Generic composition combines a symmetric encryption scheme, such as a
block or stream cipher and a message authentication code (MAC) to form an AE(AD)
scheme. Usually two different secret keys Ke and Km are used for encryption E(Ke, ·)
and authentication tag generation T (Km, ·), respectively. To achieve AE using generic

9

Chapter 1 Introduction

composition there exist three well-known approaches which are discussed in more detail
below.

Encrypt-and-MAC (EaM). The sender encrypts the message using the symmetric
encryption algorithm, compresses the message using the MAC to obtain the tag and
appends the tag to the ciphertext:

EKe(M) ‖ TKm(M) .

The receiver first decrypts the ciphertext to obtain the message and then uses the MAC
on the message to verify the received authentication tag. Extending EaM to include
associated data is straightforward:

A ‖ EKe(M) ‖ TKm(A ‖M) .

The very well-known SSH protocol [248] is one representative that uses EaM-based schemes
for authenticated encryption.

MAC-then-Encrypt (MtE). The sender compresses the message using the MAC, ap-
pends the generated authentication tag to the message and encrypts the result:

EKe(M ‖ TKm(M)) .

The receiver first decrypts the ciphertext, extracts message and tag, and then uses the
MAC on the message to check if the received authentication tag is valid. The AEAD
variant of MtE can be again constructed in the obvious way:

A ‖ EKe(M ‖ TKm(A ‖M)) .

MtE-based authenticated encryption is used for example in (D)TLS [104], the protocol
that enables secure communication on the Internet.

Encrypt-then-MAC (EtM). The sender encrypts the message to produce the ciphertext,
uses the MAC on the ciphertext to produce the authentication tag and finally appends
the tag to the ciphertext:

EKe(M) ‖ TKm(EKe(M)) .

The receiver first checks if the received authentication tag is valid by using the MAC on
the ciphertext and if so only then decrypts the ciphertext. The extension of EtM that
includes associated data is specified as follows:

A ‖ EKe(M) ‖ TKm(A ‖ EKe(M)) .

IPSec [150], the end-to-end security scheme operating on the IP layer of the Internet
Protocol Suite, is using EtM to realise authenticated encryption.

10

1.1 Cryptography

Pros and Contras. Each of the above variants represents a valid approach to construct
an AE(AD) scheme. However, one has to carefully consider which option to choose,
because all of them have some disadvantages in one way or the other. We briefly discuss
these issues below. From a security perspective only EtM satisfies all conditions for the
construction of a secure AE scheme, see [32] for more details, and thus EtM is the only
construction among the three that can be recommended without restrictions. All three
variants can be found in real-world protocols and applications, though, as we have already
seen above.

EaM obviously provides no integrity for the ciphertext since the authentication tag
is computed from the plaintext. Moreover, an attacker could (theoretically) derive
information on the plaintext from the MAC, for example, if the MAC only provides weak
security. This issue is obviously avoided with EtM, where the tag is computed from the
ciphertext. Another drawback of EaM-based schemes is the necessity to spend valuable
resources on the decryption of the ciphertext before tag verification can be performed.
If the latter fails then time spent on decrypting the ciphertext is wasted. In the worst
case, this could lead to an increased vulnerability of applications to Denial-of-Service
attacks, where an attacker floods a target with invalid ciphertexts trying to shut down
the system through the overload. One well-known attack on the SSH protocol exploiting
the above-mentioned EaM-weaknesses is described in [31].

MtE, the second variant, is from a theoretical perspective a better choice than EaM, see
again [32]. From a practical point of view, though, it is unfortunately not ideal either and
suffers from similar drawbacks as EaM: the ciphertext is not protected by the MAC and
the authentication tag can only be verified after the ciphertext has been decrypted. Thus,
resources spent on ciphertext decryption are wasted if tag verification fails. Additionally,
the inclusion of the authentication tag into the ciphertext easily leads to security issues
as exploited by so-called padding oracle attacks [237]. This attack basically allows an
adversary to decrypt an entire message without the knowledge of the secret key if the
Cipher Block Chaining (CBC) mode is used for data encryption. This is particularly
problematic since CBC has been one of the standard block cipher modes used in a broad
range of protocols. The problem can be traced back to flaws in the interaction between
tag verification and plaintext expansion to the block length of the block cipher through
the padding scheme.

EtM avoids the above problems since the authentication tag is computed from the
ciphertext. The first step on the receiver’s side is thus to verify the tag and only if it
is valid, decrypt the ciphertext. On the one hand, this eliminates any potential danger
to leak information on the plaintext through the MAC, and, on the other, allows to
discard invalid ciphertexts much faster while no resources are wasted on the decryption
of bogus messages as in the case of EaM and MtE. In summary, EtM not only has
theoretical but also practical advantages over the other two variants and should be chosen
if generic composition is considered for AE(AD). For example, the continued problems
with MtE-based scheme in (D)TLS eventually led to discussions to replace the latter

11

Chapter 1 Introduction

with EtM-ciphers which promise much better security, performance, and robustness. The
results of these discussions are summarised in [127].

All the generic composition-based schemes, however, share the drawback that two
passes are required over the data, namely one for encryption and one for tag generation.
While modern AE(AD) schemes derive very useful security features from the two-pass
methodology, it is also often desirable to have one-pass AE(AD) solutions. This can
be usually achieved through special AE(AD) block cipher modes or dedicated AE(AD)
schemes. We discuss some of those options in the next sections below.

AE(AD) Block Cipher Modes

AE(AD) block cipher modes of operation allow to transform an arbitrary block cipher
into an authenticated encryption scheme usually supporting associated data as well. In
the following, we present a short overview on the most important ones.

Galois Counter Mode (GCM). GCM [196] is a one-pass nonce-based AE block cipher
mode of operation supporting associated data. Its layout is suitable to achieve good
speeds in soft- and hardware and can be parallelised for even higher performance. For
example, GCM instantiated with AES, which is basically the default presently, achieves
software speeds of 1.03 cycles per byte on the Intel Haswell micro-architecture [121], due
to the availability of the special instructions AES-NI [122] and PCLMULQDQ [123]. In
hardware, very high speeds (even beyond 100Gbps) can be easily reached on FPGAs [190]
or ASICs [189]. AES-GCM can be found, for instance, in TLS 1.2 [104] as an alternative
to common MtE-based AEAD modes, in the IEEE 802.1ae media access control security
(MACSec) standard [133], or in a number of industry cores [134, 179, 231].

Implementing AES-GCM is a rather complicated task, though, and constant-time
implementations [149], necessary to thwart timing side-channel attacks [35], are even more
challenging to realise without access to special CPU instructions, like AES-NI. Additionally,
non-AES-NI constant-time implementations suffer from a noticeable performance-loss.
Moreover, Joux presented an attack [136] showing that GCM is susceptible to forgery
attacks if a nonce-key pair is repeated, essentially allowing an attacker to retrieve the
secret key used for the computation of the authentication tag.

Offset Codebook Mode (OCB). Like GCM, OCB1-3 [171, 212, 214] is a one-pass
nonce-based AE block cipher mode supporting a block size of 128 bit. It is usually
instantiated with AES, where it achieves very good performance in soft- and hardware
exceeding that of AES-GCM. For instance, AES-OCB runs at around 0.69 cycles per
byte on the Haswell micro-architecture when AES-NI [122] instructions are used [121].
To achieve even greater speeds, OCB allows parallelization of data processing as well.
Starting with version 2 [212], OCB also supports associated data making it effectively an
AEAD scheme. OCB3 [171] introduced some minor changes regarding offset computation

12

1.1 Cryptography

and improved once more the performance of the scheme. A further advantage of OCB,
when compared to GCM, is that it is much easier to implement, which also holds for
constant-time implementations. Unfortunately, OCB never found wide-spread adoption
due to patent restrictions. In 2013, Rogaway simplified licensing of OCB considerably, e.g.
allowing free usage of the scheme in open-source software. Despite its many advantages it
is also not completely without flaws. One minor problem pointed out in [111] is a collision
attack that could be exploited if very large amounts of data are processed. In order to
prevent this attack, the size of processed data per key has to be limited to about 64GiB.

Counter with CBC-MAC (CCM). CCM [242] is an AE block cipher mode for block
lengths of 128 bit. It is usually instantiated with AES and was meant to be an alternative
for OCB avoiding the patenting issues of the latter. CCM combines CBC-MAC for
authentication with CTR mode for encryption in a MAC-Then-Encrypt manner. CTR
makes the scheme effectively a stream cipher that requires unique nonces for initialisation
as long as the key is fixed. This is necessary, as confidentiality can not be guaranteed
for CTR if nonces are repeated. A drawback of CCM is that it is not online, meaning,
the length of the processed data has to be known in advance before one can proceed
with encryption and thus processing of data streams is prevented. In [215] even more
design-flaws are discussed, targeting different topics such as efficiency, parametrization,
complexity, variable-tag-length subtleties, and wrong security claims. These all lead to
the impression that CCM was not designed thoroughly. Despite these issues, CCM found
its way into various protocols like IEEE 802.11i (WPA2), IPSec [150] and TLS 1.2 [104].

EAX Mode. EAX [33] is a nonce-based AEAD block cipher mode with no restrictions
on the block length and supports authentication tag sizes up to the cipher’s block size,
which makes EAX very flexible. EAX was designed by the OCB team, aiming to address
the many problems of CCM [215]. EAX has many desirable features: first of all it is
accompanied with a proof of security showing that the security of the scheme can be
reduced to the security of the underlying block cipher; ciphertext expansion is minimal, in
the sense that the ciphertext has the same length as the plaintext plus the length of the
authentication tag; CTR mode requires no decryption function per se, since encryption
and decryption are done simply by XORing the plaintext and ciphertext with a stream of
pseudo-randomly generated bits; it is an online algorithm capable of processing streams of
data without the necessity to know the total length of data in advance; finally EAX can
process static AD, which is for example useful when handling session data that changes
only infrequently.

Sponge Functions

Many of the symmetric-key modes are based on block or stream ciphers, as we have
already seen above, but there exist also modes that use a fixed-size permutation as the

13

Chapter 1 Introduction

underlying primitive. Designing such a permutation in a cryptographically strong way
is, in some sense, equivalent to designing a block cipher without a key schedule. A very
famous representative of these modes are the family of cryptographic sponge functions [45]
which were introduced alongside of Keccak [47] during the SHA-3 competition [222].
One of the remarkable features of sponge functions are their support for arbitrarily long
input and output sizes which allows to build various kinds of primitives like hash functions,
such as Keccak, or stream ciphers.

Beyond that, sponge functions can also be used to construct authenticated encryption
schemes supporting associated data. These variants are then better known as duplex
constructions. We will focus in the following on this type, since NORX, the authenticated
encryption scheme introduced in Chapter 4, is also based on a duplex construction.
Regarding basic definitions and notation we let ourselves guide by the work of Bertoni et
al. [48] which presents a comprehensive introduction to the topic. Besides the specification
we give an overview on the most important properties of duplex constructions as well.

Duplex Constructions. Duplex constructions (and sponge functions) are defined over a
fixed-length function f , a padding scheme pad, and a parameter r in bits. The function f
is specified as

f : Fb
2 → Fb

2

with b = r + c bits, where b, r, and c are called width, rate and capacity, respectively.
The first r bits of the state are used for data processing while the last c bits ensure the
security of the primitive and are never affected directly by the input blocks or returned
as output. Although not essential, the function f is usually chosen to be a permutation
on b bits, which gives better security properties in general. The second component of a
duplex construction, the padding rule

padr : F
n
2 → Frm

2

extends an n-bit string X to a multiple of the rate r, which is necessary for processing
data of arbitrary sizes. In order to guarantee security, such a padding scheme has to
be sponge compliant [45], which means that it must be injective, non-empty, and has to
ensure that the last block is non-zero. We assume in the following that all input data has
been padded accordingly and write X = X0 ‖ · · · ‖ Xm−1 with |Xi| = r for 0 ≤ i ≤ m− 1.

While sponge functions are stateless in between calls, a duplex construction accepts,
after initialisation, calls that take as input a bit string Xi and a requested number of
output bits li, with 0 ≤ li ≤ r, and returns an li-bit sized output string Yi such that
the latter depends on all Xj for 0 ≤ j ≤ i. In other words, an output of a duplex
construction depends on all the inputs received so far. The process detailed above is also
called duplexing and is denoted by

Yi = D.duplexing(Xi, li)

14

1.1 Cryptography

where D denotes a duplex object, which is a concrete instance of a duplex construction.
Internally, first the input block Xi is XORed into the first r bits of the state, then the
function f is applied to the latter, and finally the first li bits of the state are extracted
and returned as output. Figure 4 shows the layout of a generic duplex construction.

0

0

r

c

f f f

init. duplexing duplexing duplexing

. . .

pad
r

⌊·⌋l0 pad
r

⌊·⌋l1 pad
r

⌊·⌋l2

X0 X1 X2Y0 Y1 Y2

Figure 4: The duplex construction.

Designing an authenticated encryption scheme with support for associated data from
a duplex construction can be achieved as follows. First, the state is initialised with 0b,
followed by absorption of a secret key K and a nonce N in the first duplexing call. Usually,
no output is produced in this phase. Depending on the concrete sizes of r, N , and K,
multiple duplexing calls might be necessary until all of the data has been absorbed. After
this initial setup-phase, one can start processing actual data.

Now, let A = A0 ‖ · · · ‖ Aa−1 denote the (already padded) associated data, i.e. |Ai| = r
for 0 ≤ i ≤ a− 1, and let M = M0 ‖ · · · ‖Mm−1 denote the (already padded) message,
i.e. |Mj | = r for 0 ≤ j ≤ m−1. Without loss of generality, we assume that A is processed
before M , but it is also allowed to be the other way round. In fact, duplex constructions
enable to process arbitrarily interleaved data of different types, but we omit this case
here for reasons of simplicity.

Authentication of associated data is done by calling D to absorb block Ai without
requesting any output bits. Thus, the call is of the form D.duplexing(Ai, 0) for 0 ≤
i ≤ a − 2. Finally, during the duplexing of the last block Aa−1 of associated data,
r output bits are requested, i.e. Y−1 = D.duplexing(Aa−1, r), which are then used to
encrypt the first plaintext block M0 and obtain the corresponding ciphertext block via
C0 = Y−1 ⊕M0. During plaintext processing r bits of output are requested in each call
Yj = D.duplexing(Mj , r) and the ciphertext blocks are obtained by Cj = Yj−1 ⊕Mj for
0 ≤ j ≤ m− 2. Then again, the last block of plaintext processing is handled differently,
by requesting t instead of r output bits which are used as the authentication tag T , or,
in other words, the last call is equivalent to T = D.duplexing(Mm−1, t). This finishes
authentication of A and authenticated encryption of M and the tuple (N,A,C, T) can
be transmitted.

15

Chapter 1 Introduction

Properties of Duplex Constructions. Authenticated encryption modes based on duplex
constructions have many desirable properties:

• Duplex constructions inherit all the strong security bounds of the sponge function
family and benefit from the extensive analysis conducted on sponge functions [7, 43,
45, 46, 48, 51, 141].

• Encryption is performed like in a stream cipher namely by XORing the plaintext
with a pseudo-randomly generated key stream, which allows to perform decryption
analogously. Thus, the function f is sufficient for both encryption and decryption
and no inverse function f−1 is necessary.

• Data that requires authentication and data that requires authenticated encryption
can be interleaved arbitrarily.

• Duplex constructions can issue intermediate tags due to their flexible data processing
capabilities.

• Encryption is not expanding, i.e. plaintext and ciphertext have the same length.

• Duplex constructions are single-pass and require only one call to the function f for
every processed data block.

There are also some limitations, though. Firstly, the basic variant of the mode is serial
and cannot be parallelized on an algorithmic level. Nevertheless, in Chapter 4 we will
introduce a modified version of the duplex construction for NORX which is capable of
processing data in parallel. Secondly, since encryption works like in a stream cipher, it is
essential for the security of the scheme that the nonce freshness is guaranteed. Otherwise,
the first differing plaintext blocks M 6= M ′ that are encrypted with the same key stream
block Y leak their respective XOR through the XOR of the corresponding ciphertexts C
and C ′, namely C ⊕ C ′ = (M ⊕ Y)⊕ (M ′ ⊕ Y) = M ⊕M ′.

Other AE Constructions

There are also AE(AD) schemes following other design approaches that do not fall into one
of the aforementioned categories. For example, Helix [113], Phelix [243], and Hummingbird-
2 [106] are dedicated hybrid AE primitives offering efficient stream encryption and MAC
computation at the same time, similar to the duplex construction described above.
However, all three of these primitives were shown to be weak [192, 201, 203, 247]. Another
example is the stream cipher Grain-128a [2] which offers optionally an extension for
authenticated encryption. At this point, we do not go into further details but refer the
interested reader instead to the referenced literature.

16

1.2 Cryptanalysis

1.2 Cryptanalysis

How secure is a given cryptographic construction? The main goal of cryptanalysis is to find
the answer to this questions. There are countless ways how a given cryptographic primitive
can be analysed. In the following, we introduce the general categories of cryptanalytic
attacks. An overview is given in Figure 5 which is of course neither exhausting nor exact
in every detail.

Cryptanalysis

Implementation Attacks

Fault-based Attacks

Electromagnetic Attacks

. . .

Timing Attacks

Power-Analysis Attacks

Conventional Attacks

Rotational Attacks

Algebraic Attacks

. . .

Linear Attacks

Differential Attacks

Brute-Force Attacks

Figure 5: Categories of common cryptanalytic attacks.

The success of an attack is usually measured in terms of required time, memory, and
data. It usually depends on two factors, namely on the attack outcomes, which categorises
the goals an adversary tries to achieve with his attack, and the adversarial model, which
specifies what an adversary is allowed or capable of doing during an attack. Further, an
attack against a class of cryptographic constructions is called generic, if it works without
exploiting any concrete details of the members of that class. For example, exhaustively
searching through all candidates of the key space of a symmetric-key primitive is a generic
attack. Otherwise, if an attack requires certain features of a concrete cryptographic
construction, it is called non-generic.

In the field of cryptanalysis, one usually assumes that the adversary knows all the
details of the attacked cryptographic primitive except for the secret key that was supplied
by the user. This assumption is also known as Kerckhoffs’ Principle, which dates back to
Auguste Kerckhoffs who laid out requirements for a usable field cipher in 1883 [151].

Time, Memory and Data

In cryptanalysis, the success of an attack is measured according to the amount of resources
it consumes. As already noted above, there are usually three types of resources that are

17

Chapter 1 Introduction

interesting for an attack:

• Time. The time, or work effort, required to mount an attack. How time is
measured concretely, often depends on the given attack. One example is the amount
of necessary encryption operations. Time is usually the basic resource by which
the effectiveness of an attack is categorised but it is not the only one. Time is also
often referred to as the offline complexity of an attack.

• Memory. The required amount of memory to execute an attack is in many cases
another important factor. Generally, if an attack has a high memory consumption
it is far more worse than having the same amount of time consumption. There
exists a rule of thumb saying that “time is cheaper than memory” [128], which nicely
captures the intuition that, for example, when given a 128-bit block cipher, it is
easier to perform 240 encryption runs than storing 240 encryption results (= 16TiB)
in memory.

• Data. The required amount of data is the third important resource of an attack.
If the time required to retrieve the data for an attack far exceeds normal usage
patterns, then the practical impact of the attack is limited. Data is also often
referred to as the online complexity of an attack.

Note that attacks usually do not require just a single one of the above resources but
rather a combination of all three. Resources can be also traded against each other, which
leads to so-called trade-off attacks, a concept which is briefly discussed later.

The amount of consumed resources adds another dimension to the categorisation of
an attack: if it is not feasible to raise the required resources in a practical context
(with current technology), then the attack is called theoretical. Otherwise, it is denoted
practical. For example, an attack that targets a 128-bit block cipher and that requires
2120 encryption runs, can obviously be categorised as theoretical. In contrast, an attack
on the above cipher that requires 240 encryption runs (and negligible other resources),
can certainly be considered practical.

Attack Objectives

The possible results of an attack can differ greatly and depend on various factors. A
somewhat simplified categorisation of attack objectives for block ciphers, as introduced
in [162], can be given as follows:

1. Key Recovery. The attacker is able to recover the secret key K. This is the most
powerful result of an attack.

2. Global Deduction. The attacker is able to compute encryption EK(·) or decryption
DK(·) without knowing the secret key K.

18

1.2 Cryptanalysis

3. Local Deduction. The attacker can compute encryption EK(M) or decryption
DK(C) without knowing K for some messages M or ciphertexts C.

4. Distinguishing. The attacker can effectively distinguish EK(·) from a permutation
chosen uniformly at random. Trying to distinguish encrypted from random data is
the most basic attack an adversary can mount on a cryptographic primitive.

These attack outcomes are ordered such that an adversary achieving one of them
automatically achieves all that follow. This means in particular if an attacker is not
capable of distinguishing a given block cipher from a permutation chosen uniformly at
random, then the block cipher is, in some sense, ideal.

Note that the above hierarchy of attack outcomes might differ for other cryptographic
primitives. For example, an attack objective for stream ciphers might be the reconstruction
of the internal state, which is obviously a very powerful result, but does not necessarily
lead directly to recovery of the secret key. Adversaries targeting keyless hash functions
have yet again differing attack objectives. While distinguishing a hash function from a
pseudorandom function still forms the basis in this context, the objective of key recovery is
obviously meaningless. Instead, attackers are usually interested in constructing collisions,
pre-images, or second pre-images, see Section 1.1.3.

Adversarial Models

The capabilities of an adversary in terms of operations he is able or allowed to execute, is
another important factor during a cryptanalytic attack. These conditions are commonly
summarised in adversarial models and are categorised by the type of data and by the
type of access an adversary requires to successfully mount a given attack. The type of
data differentiates between inputs and outputs of a cryptosystem such as secret keys,
plaintexts, and ciphertexts, and the type of access differentiates between reading, writing
and adaptive writing access, which are denoted as known values, chosen values and
adaptively chosen values, respectively. An overview on the main adversarial models in
conventional cryptanalysis, as presented in [162], is given below:

1. Ciphertext-only Attacks. The adversary knows only the ciphertext and has no
access to the plaintext. A cryptographic primitive vulnerable to such kind of attacks
is considered exceptionally weak, since it is possible to distinguish it from a random
permutation by analysing only ciphertexts.

2. Known-plaintext Attacks. The adversary has reading access to plain- and
corresponding ciphertexts processed by the cipher. A representative of this category
is, for example, linear cryptanalysis [182].

3. Chosen-plaintext Attacks. These are similar to known-plaintext attacks, with
the difference that an adversary is allowed to choose the concrete plaintexts to

19

Chapter 1 Introduction

be encrypted prior to the attack. A well-known attack type of this category is
differential cryptanalysis [58].

4. Chosen-ciphertext Attacks. The adversary can choose ciphertexts to be de-
crypted by the cipher before the attack starts and has reading access to the resulting
plaintexts.

5. Adaptively Chosen-plaintext Attacks. The adversary can select plaintexts to
be encrypted during the attack and is not forced to choose them before the attack
starts as in the case of the chosen plaintext scenario. The attacker also has access
to the resulting ciphertexts.

6. Adaptively Chosen-ciphertext Attacks. The adversary can select ciphertexts
to be decrypted during the attack and is not forced to choose them before the attack
starts as in the case of the chosen ciphertext scenario. The attacker also has access
to the resulting plaintexts.

7. Related-key Attacks. The adversary can encrypt plaintexts and decrypt cipher-
texts with the attacked key and with keys related to the latter [53], which, for
example, differ only at certain bit positions.

The attacker has more control over the analysis of the block cipher with each of
the above steps and allows him to create increasingly powerful attacks. However, at
the same time collecting data of a given type becomes more and more demanding the
further we go down that list. The above categorisation also presents an indication on the
(im-)practicability of the attacks.

The above models also form the basis for implementation attacks, however, an attacker
is assumed to have additional capabilities. Concrete details are discussed later in this
chapter.

1.2.1 Brute-Force Attacks

A conceptually very simple attack, operable against any symmetric cryptographic primitive,
is an exhaustive search for the shared secret key K. Obviously, this approach is independent
of the design of the cipher. For example, in the case of block ciphers, the adversary simply
enumerates all key candidates of the search space and tests every single one of them
against a known message-ciphertext pair until the correct key is found. This particular
category of cryptanalytic techniques is also known as brute-force attacks. Since there is
no way of preventing an adversary from mounting such an exhaustive search, designers
of cryptographic primitives try to ensure that brute-force is the best attack available
to an adversary. Exhaustive search techniques are also often part of more advanced
cryptanalytic attacks.

20

1.2 Cryptanalysis

More formally, an attacker who knows a message-ciphertext pair (M, EK(M)) and the
corresponding encryption algorithm E , “just” needs to try 2k keys to find the secret key
K with probability one, where k = |K|. In general, if he checks n ≤ 2k keys, he succeeds
with a probability of n/2k and if he targets m < n/2k keys at once, he succeeds with a
probability of mn/2k.

Time-Memory Trade-Offs

Exhaustive search techniques test one key after another but take no role for memory into
account. However, in many cases it is possible to improve certain attacks if some form of
memory is available which also holds for brute-force. An obvious application of memory
in cryptanalysis of block ciphers are so-called dictionary attacks which are, in some way,
the counterpart to exhaustive search. In the offline phase, i.e. before the actual attack
starts, an attacker pre-computes all 2k possible ciphertexts for a single known plaintext
and stores all of the key-ciphertext tuples in a table sorted by the value of the ciphertext.
If an adversary then intercepts a ciphertext in the online phase of the attack, he just
needs to look up the ciphertext thereby retrieving the corresponding key which represents
a candidate for the secret key. The requirements for such dictionary attacks are 2k words
of storage where the size of a word depends on the attacked cipher. These two extreme
situations, i.e. exhaustive search versus dictionary attacks, call out for a trade-off.

Time-memory trade-offs (TMTO) were introduced in the context of cryptanalysis by
Hellman [128] in 1980. The idea here is simple: if a certain attack has to be carried out
multiple times, it may be possible to execute the exhaustive search in advance and store
all results in memory. In other words, the values pre-computed in the offline phase are
used to improve the running time of the attack in the online phase. However, the storage
requirements compared to a dictionary attack are greatly reduced. The typical application
of this method is the recovery of a key K when a plaintext M and its corresponding
ciphertext C = EK(M) are known. The basic idea of Hellman’s TMTO attack is to
compute from a chosen plaintext M and a sequence of key candidates K0,0, . . . ,Ks−1,0, the
starting points, key sequences Ki,j+1 = R(EKi,j (M)) of length t, with i ∈ {0, . . . , s− 1}
and j ∈ {0, . . . , t− 2}, where R is a reduction function that maps a ciphertext to a key
candidate. From those sequences only the starting and end points are saved in a table as
pairs (K0,0,K0,t−1), . . . , (Ks−1,0,Ks−1,t−1). Once an attacker intercepts a ciphertext C he
can use the precomputed tables to check for potential key candidates by going step-wise
through the table partially reconstructing intermediate results of the t key sequences if
no match is found. Without going into the exact details at this point, the work in [128]
shows that, for a cryptosystem with 2n keys, the secret key can be recovered in 22n/3

operations and 22n/3 words of memory. To put Hellman’s TMTO attack into perspective,
it is estimated that the above attack can be used against DES requiring approximately
64GiB of memory and 248 DES operations instead of 256 DES operations for exhaustive
search (in the worst case scenario).

21

Chapter 1 Introduction

Over the years many enhancements were published for Hellman’s TMTO attack. In
1992, Rivest introduced distinguished points [102] where only key candidates of a particular
shape are saved as end points in the table, like keys that only have zeroes in the ten
leftmost bits. This approach offers a couple of advantages over normal Hellman tables.
The structural knowledge can be used to reduce the number of memory accesses in the
online phase of the attack. However, distinguished points also have some disadvantages.
For example, it is harder to estimate the actual key coverage since the computed sequences
are very likely to have different lengths. For a more detailed discussion we refer the
interested reader to the literature [102, 162].

In 2003, Oechslin [200] introduced another improvement, the so-called rainbow tables
which resolve some issues of Hellman’s work and additionally offer computational benefits
in the online phase. The most significant change is that rainbow tables use a sequence of
reduction functions R1, . . . , Rl instead of just a single one, which gives them advantages
similar to distinguished points while avoiding their weaknesses. An attack based on
rainbow tables requires about half the online work effort compared to an attack based
on Hellman’s tables while both attacks have the same key coverage, and requirements
with respect to precomputation and memory. Rainbow tables became widely known
through their application in password-cracking. A comprehensive coverage of the topic is
beyond the scope of this doctoral thesis. Hence, we refer the interested reader again to
the literature [162, 200].

Time-Processor Trade-Offs

One great advantage of brute force cryptanalysis is that it is trivial to parallelise. An
attack that checks n keys can be simply distributed to c nodes, lowering the workload
on each to n/c guesses. Obviously, parallelisation offers a linear speedup to brute-force
attacks.

The design of dedicated hardware for parallel cryptanalytic attacks, so-called time-
processor trade-offs, was discussed by Bernstein [38] in 2005. The work shows by estimation
that a decently designed parallel machine can be much more efficient than a serial
counterpart and the parallel machine being only about twice as expensive. Using AES as
an example, the work illustrates that a parallel machine consisting of 232 AES circuits
and a comparable amount of memory has a probability of success of about 2−69 to find an
AES key in only 227 AES computations. If more than one key is targeted, say 210 keys,
then the probability increases to 2−59 but the number of required AES computations
remains fixed at 227. For comparison, the serial machine is expected to find a single
secret key respectively one out of 210 keys with probabilities of 2−69 and 2−59 where both
scenarios require 259 AES computations. In other words, the parallel machine is by a
factor of about 259/227 = 232 more efficient than its serial counterpart. In the context of
brute-force attacks, time-processor trade-offs are (conjecturally) much more efficient than
a time-memory trade-off, since the latter often neglects the communication cost between a

22

1.2 Cryptanalysis

processor and a large memory. In comparison, the time-processor trade-offs above assume
that each circuit has its own small memory where only a couple of intermediate results
(about 24) are buffered, i.e. memory accesses are kept at the bare minimum. For further
reading we also refer to the work of Wiener from 2004 [244] where he presented a survey
on the true costs of cryptanalytic attacks.

1.2.2 Differential Attacks

Differential cryptanalysis was discovered by Biham and Shamir in the early 1990s [58, 59]
where they investigated differential attacks on various block ciphers and hash functions.
They noted, in particular, that DES seems to be remarkably resistant against differen-
tial attacks and would be much more vulnerable with only a few minor modifications.
Coppersmith, who is one of the original designers of DES, published a paper in 1994
revealing that the IBM design team of DES had been aware of differential cryptanalysis
as early as 1974 [88]. Differential cryptanalysis belongs to the most powerful tools in the
repertoire of every cryptanalyst and, despite being invented for the cryptanalysis of block
ciphers [162], was extended to other symmetric primitives as well [124, 187, 233, 247].

The basic idea of differential attacks is the exploitation of correlations between input
and output differences of a cryptographic primitive, i.e. differential attacks utilise non-
ideal propagation of differences in a primitive when considering plaintext-ciphertext pairs.
Differences are usually computed with respect to bitwise XOR, but there are also other
use cases where differences are considered, for example, with respect to modular integer
addition. Differential cryptanalysis belongs to the category of chosen-plaintext attacks as
introduced above.

In the simplest case, consider a cryptosystem very similar to a one-time pad which
encrypts a plaintext M with a key K to a ciphertext C by computing C = M ⊕K. If K
is used a second time to encrypt another message M ′, i.e. C ′ = M ′⊕K, then an attacker
who intercepts both C and C ′ is able to trivially derive information on the plaintexts by
computing the XOR-difference of the ciphertexts

C ⊕ C ′ = (M ⊕K)⊕ (M ′ ⊕K) = M ⊕M ′ .

Although this is a very simple example, it nevertheless illustrates the basic idea of
differential cryptanalysis very well. Since real-world ciphers are much more complex than
the above example, a more general approach to differential cryptanalysis is required.

Differences and Differentials

In this part, we introduce the basic notions and concepts that are used in differential
cryptanalysis.

Let x, x′ ∈ Fn
2 be n-bit strings. We call α = x ⊕ x′ the n-bit difference of x and x′

with respect to bitwise XOR or just XOR-difference in short. For an n-bit difference α with

23

Chapter 1 Introduction

Hamming weight hw(α) = m, we call the m 1-entries of α also the active bits of α. Let f
be a vector Boolean function of the form

f : Fn
2 −→ Fm

2 , x 7→ y

with n,m ∈ N and let α ∈ Fn
2 and β ∈ Fm

2 be XOR-differences. We call (α, β) an XOR-
differential with respect to f , if there exists a bit string x ∈ Fn

2 such that the following
equation holds:

f(x⊕ α)⊕ f(x) = β .

If no such bit string x exists, then (α, β) is called an impossible XOR-differential with
respect to f . We denote a differential by

α
f−→ β .

If the context is clear we skip the f above the arrow and just write α −→ β. Furthermore,

we call α the input difference and β the output difference of the differential with respect
to the function f .

Each differential has an associated probability, which describes the likelihood that, for
input pairs x and x⊕α where x was chosen uniformly at random, the output difference β
indeed appears after the application of f . Let f be a vector Boolean function as specified
above and let δ = (α, β) be an XOR-differential with respect to f . The probability xdpf

that δ holds is defined as

xdpf (δ) = |{x ∈ Fn
2 : f(x⊕ α)⊕ f(x) = β}| · 2−n .

The value xdpf (δ) is also called the XOR-differential probability of δ. Moreover, for
xdpf (δ) = 2−w we call w the XOR-(differential) weight of δ.

Note that the differential probability of an impossible differential is always 0 by definition,
since {x ∈ Fn

2 : f(x⊕ α) ⊕ f(x) = β} = ∅. To capture all information on a differential
(α, β) of f having probability p in a compact form, we write

α
f−→
p

β .

Differential cryptanalysis was originally developed for the security analysis of block
ciphers as already mentioned in the introduction. These cryptographic primitives are
usually built from a (cryptographically weak) round function f which is then iterated r
times. However, for decently designed block ciphers, it is usually infeasible to directly
find differentials of high probability for all r rounds. Therefore, it is reasonable to not
only consider input and output differences of the cryptographic primitive but to analyse
intermediate values after each of the r rounds as well. This leads to the concept of

24

1.2 Cryptanalysis

differential characteristics (or paths, or trails). Let f0, . . . , fr−1 be a sequence of vector
Boolean functions defined by

fi : F
n
2 −→ Fn

2 , x 7→ y

for i ∈ {0, . . . , r − 1} and let α0, . . . , αr ∈ Fn
2 denote differences such that

αi
fi−→ αi+1 .

We call (α0, . . . , αr) a (XOR-differential) characteristic, or path, or trail with respect to
the functions f0, . . . , fr−1 and denote it by

α0
f0−→ . . .

fi−1−→ αi
fi−→ . . .

fr−1−→ αr .

The values α0 and αr are called the input- and output difference and αj with j ∈
{1, . . . , r − 1} are called the internal differences of the characteristic.

A visualisation of such a differential characteristic in an iterated block cipher with
rounds fi and round keys Ki is given in Figure 6 for i ∈ {0, . . . , r − 1}.

M f0 f1 fr−2 fr−1 C

M ′ f0 f1 fr−2 fr−1 C ′

K0 K1 Kr−2 Kr−1α0 α1 αr−1 αr

Figure 6: XOR-differential characteristic in an iterated r-round block cipher.

To compute the differential probability p of the entire characteristics, one generally
assumes that the sequence of differences forms a Markov chain and that the plaintexts
and round subkeys are independent and uniformly random [177]. Thus, p is simply the
product of the probabilities of each single step. More formally, let (α0, . . . , αr) be a
differential characteristic with

αi
fi−→
pi

αi+1

where pi = xdpfi(αi, αi+1) for i ∈ {0, . . . , r − 1}. The overall probability p of the
characteristic (α0, . . . , αr) is then approximated by

p ≈
r−1
∏

i=0

pi .

An obvious question that comes to mind at this point is how differentials and char-
acteristics relate to each other. Differentials can be composed of multiple differential

25

Chapter 1 Introduction

characteristics which share the same input and output differences α0 and αr, respectively,
but have distinct internal differences αi for i ∈ {1, . . . , r − 1}. In a first step, it is often
assumed that the probability of a differential can be approximated by the highest proba-
bility of one of its differential characteristics. While it works in most cases as an initial
approximation, the latter usually turns out to be too rough due to differential effects
such as trail clustering [49, 64] where many characteristics with a similar probability and
the same input and output differences form a differential and equally contribute to its
probability. As a consequence, the probability of the differential is much higher than that
of the single characteristics.
XOR-differentials are the most common type used in differential cryptanalysis. However,

one could transfer the above concepts to other group operations and their inverses, too.
One such class are, for example, f -differentials with respect to XOR where f is a vector
Boolean function. We briefly motivate this approach below. Assume that differences are
expressed through a vector Boolean function

f : F2n
2 −→ Fn

2

instead of XOR. A tuple (α, β, γ) of differences is called an f -differential with respect to
XOR, if there exist n-bit strings x and y such that the following equation holds:

f(x, α)⊕ f(y, β) = f(x⊕ y, γ) .

If no such n-bit strings x and y exist, the f -differential is called impossible with respect
to XOR. We denote such an f -differential by (α, β) −→ γ, where α and β are the input

differences and γ is the output difference.
Let f be a vector Boolean function and δ be a f -differential. The probability fdp⊕ that

δ holds is defined as

fdp⊕(δ) = |{x, y ∈ Fn
2 : f(x, α)⊕ f(y, β)⊕ f(x⊕ y, γ) = 0}| · 2−2n .

We call fdp⊕(δ) the f-differential probability of δ. Moreover, for fdp⊕(δ) = 2−w we call w
the f-(differential) weight of δ.

The notions of an f -differential characteristic and its associated probability can be
defined analogously to those of XOR-differential characteristic above.

Using Differentials

Differentials can be used for cryptanalysis in various ways. Below we review the most
common applications, which are distinguishers, key recovery, and construction of collisions
in hash functions.

26

1.2 Cryptanalysis

Distinguishers. Let E be a block cipher with a k-bit key and an n-bit block size and let
(α, β) be a differential for E having probability p≫ 2−n, where ≫ means “significantly
larger”. A simple application of (α, β) is to mount a distinguishing attack on E , i.e. an
attack that tries to distinguish E from an ideal cipher. For more information, refer to the
attack objectives as introduced at the beginning of the current section. The sketch of
such an attack is given in Algorithm 1. It takes as input the above differential and an
encryption oracle OEK , which, when queried with a plaintext M , returns the corresponding
ciphertext C. Note that the secret K is unknown to the attacker and is assumed to remain
fixed for the duration of the experiment. Then two oracles are queried 1/p times with
randomly chosen messages M and M ⊕ α and it is checked if the outputs C = OEK (M)
and C ′ = OEK (M ⊕ α) exhibit the required output difference, i.e. if C ⊕ C ′ = β. If, at
some point, such a match is found the distinguisher returns false, meaning that E is
not ideal. If no match is found it returns true. The attack is expected to succeed with
probability close to 1, since 1/p checks are executed before two plaintext-ciphertext pairs
that match the differential are found. In contrast, for an ideal cipher it is expected that
about 2n−1 trials are necessary.

Algorithm 1: distinguish((α, β),OEK)
Inputs:

differential (α, β) for E of probability p, encryption oracle OEK

Outputs:

{true, false}

Algorithm:

1. for i ∈ {0, . . . , 1/p− 1} do

2. M
$
←− Fn

2

3. if OEK
(M)⊕OEK

(M ⊕ α) = β then

4. return false

5. end

6. end

7. return true

Key Recovery. The ultimate aim of an attacker is not only to distinguish a cipher from
a random permutation but to recover the secret key. A distinguishing attack can be
converted into a key recovery attack as follows: Suppose the encryption E of an n-bit
block cipher is composed of round functions fi for i ∈ {0, . . . , r − 1}, uses n-bit sub keys
Kj for j ∈ {0, . . . , r}, with K = K0 ‖ · · · ‖ Kr, and can be written as

C = E(K,M) = fr−1(fr−2(... f1(f0(M ⊕K0)⊕K1) ... ⊕Kr−2)⊕Kr−1)⊕Kr .

In other words, E can be modelled as shown in Figure 7.
Further assume that an attacker found a differential (α, β) of probability p stretching

over the first r − 1 rounds fr−2 ◦ · · · ◦ f0. The attacker initialises counters T0, . . . , Tn−1

27

Chapter 1 Introduction

M f0 f1 fr−2 fr−1 C

K0 K1 K2 Kr−2 Kr−1 Kr

Figure 7: The encryption function EK of a block cipher.

with the value 0 each. For randomly chosen plaintexts M and M ′ = M ⊕ α he then
queries the encryption oracles to obtain C = OEK (M) and C ′ = OEK (M ′). Afterwards,
he iterates over all possible values k ∈ {0, . . . , 2n−1} of Kr and checks if

β = f−1r−1(C ⊕ k)⊕ f−1r−1(C
′ ⊕ k) .

If the equation holds then the counter Tk is increased by 1. This event occurs with
probability p if the kth guess for Kr is correct and with another probability p′ if it is
incorrect. It is expected that p ≫ p′, i.e. that p is much larger than p′. If the above
experiment is repeated for l≫ 1/p randomly chosen message pairs M and M⊕α then the
correct counter is expected to have a value of approximately l · p whereas the counters for
the incorrect key hypotheses have values of approximately l · p′. Since p≫ p′, it follows
that l · p ≫ l · p′, i.e. the counter for the correct key should be clearly distinguishable
from the counters of the other key hypotheses and the attacker can thus reconstruct Kr.
Afterwards, the last round can be stripped off and Kr−1 can be attacked by a similar
technique using a differential over r − 2 rounds. Obviously, the attacker can repeat this
approach until he has retrieved all subkeys. A sketch of the above key recovery attack is
shown in Algorithm 2. Obviously, the described attack can be transferred to other cipher
constructions as well.

The so-called signal-to-noise ratio SN = p/p′ measures the quality of a differential
attack and is used to describe the advantage of the differential attack over exhaustive
search [220]. Instead of trying to rank the correct n-bit key as the most significant one,
as shown in Algorithm 2, one instead tries to rank it within the top m out of 2n key
candidates. We then say that the attack yields a log2m-bit advantage over exhaustive
search, i.e. the complexity is reduced by a factor of 2n−log2 m. Assuming that the key
counters T0, . . . , Tn−1 are independent and that they are identically distributed for all
wrong key candidates, one can compute the probability of success ps for a differential
attack using N plaintext-ciphertext pairs as follows

ps = Φ

(√
pNSN − Φ−1(1− 2− log2 m)√

SN + 1

)

where Φ is the cumulative distribution function of the standard normal distribution [220].
The work [220] also shows, how to reformulate this result such that, given the targeted
probability of success ps, one can compute the corresponding data complexity of the

28

1.2 Cryptanalysis

Algorithm 2: recover_key((α, β),OEK)
Inputs:

(r − 1)-round differential (α, β) of probability p, encryption oracle OEK

Outputs:

round key Kr

Algorithm:

1. (T0, . . . , Tn−1)← (0, . . . , 0)

2. for i ∈ {0, . . . , l − 1} do

3. M
$
←− Fn

2

4. C ← OEK
(M)

5. C′ ← OEK
(M ⊕ α)

6. for k ∈ {0, . . . , n− 1} do

7. if f−1
r−1(C ⊕ k)⊕ f−1

r−1(C
′ ⊕ k) = β then

8. Tk ← Tk + 1

9. end

10. end

11. end

12. Tj ← max(T0, . . . , Tn−1)

13. return j

differential attack:

N =
(
√
SN + 1Φ−1(ps) + Φ−1(1− 2− log2 m))2

SN
p−1 .

In summary, this also shows that the data complexity of differential cryptanalysis is
expected to be proportional to 1/p. However, these results can only be used as a rough
estimation, since the assumption that the counters T0, . . . , Tn−1 are independent is rather
unrealistic.

From a theoretical perspective, the above approach gives the impression to be easily
executable. From a practical point of view, though, an attacker has to overcome many
obstacles, which were not mentioned above. Firstly, it is usually rather hard to find
suitable differentials of a reasonably low probability over r − 1 rounds for any decently
designed cipher. It counts as a theoretical break if an attacker finds a differential whose
probability p is larger than 2−b where b is the block size (and often also the round key
size) of the attacked cipher. For example, an attacker who targets a block cipher with
128-bit blocks (round keys) and who found an r − 1-round differential having probability
p = 2−120, is able to mount an attack which can break the block cipher theoretically.
From a practical perspective, though, the attack is infeasible, since gathering 2120 (or
more) plaintext-ciphertext pairs is obviously impracticable. If p is sufficiently large so that
the required amount of data could be indeed gathered then it counts also as a practical
break. Secondly, differential attacks require plaintext pairs with a chosen difference which
are harder to come by in practical scenarios than arbitrary plaintexts. Additionally, an
attacker does not require only one or two of such pairs but usually a very large amount,

29

Chapter 1 Introduction

as has been pointed out already in the example above. Thirdly, the memory costs for
keeping a large number of counters for a large number of plaintext-ciphertext pairs can
be substantial.

Collisions. Mounting collision attacks against hash functions is a third use case of
differentials. Suppose an attacker targets a hash function

H : Fn
2 × Fm

2 → Fn
2 , (X,M) 7→ H(X,M)

where X is the chaining value [202] and M is a message block. Further assume he
found a differential (α, β) of probability p in H where β = 0. The adversary processes
message blocks M and M ⊕ α and checks if H(X,M) ⊕ H(X,M ⊕ α) = 0, i.e. if
H(X,M) = H(X,M ⊕ α) where X is the fixed IV of the hash function. On average, it
is sufficient to process about 1/p message block pairs M and M ⊕ α to find a collision.
Differentials of the above type are usually called vanishing differentials. If the Hamming
weight hw(β) of the output difference β is low, the differential can be used to produce
so-called near collisions [56] which are often used as a first step to construct full collisions.

Prominent examples are the collision attacks against the hash functions SHA-0, SHA-
1, and MD5 [239, 240, 241]. The attack against MD5 exploits non-trivial vanishing
differentials and the one against SHA-0 basically starts from an impossible differential
which is then modified to make it possible and construct collisions. Another speciality
of the above MD5 attack is that it does not rely on XOR-differentials but instead uses
differentials where differences are computed with respect to modular integer addition.

Further Techniques

Differential cryptanalysis actually covers not only the simple notions described in this
part but includes a very broad range of techniques such as impossible differentials [54],
boomerang attacks [238] or truncated and higher order differentials [159]. Although we
briefly discuss impossible differentials in Chapter 5, the other techniques are not covered
in this thesis and we refer the interested reader to the cited literature.

1.2.3 Linear Attacks

Although we present no new results on linear cryptanalysis [162] in this thesis, we
nevertheless give a brief introduction to the basic concepts due to the general importance
of the topic and for the sake of completeness.

Linear cryptanalysis was introduced by Matsui in 1992 to attack the block cipher
FEAL [183] and was extended afterwards also to DES [182]. The latter belongs to
the first publicly reported results on the cryptanalysis of DES. Linear cryptanalysis is,
after differential cryptanalysis, the second most important technique for the analysis of
cryptographic primitives. As already mentioned above, it has the advantage of requiring

30

1.2 Cryptanalysis

only known plaintexts instead of chosen plaintexts as in the case of differential attacks.
In general, however, linear attacks tend to be much less successful and much less versatile
in comparison to their differential counterparts.

The basic idea of linear cryptanalysis is to build systems of equations which express
key bits in terms of plaintext and ciphertext bits where non-linear components of the
cipher are modelled by linear approximations. The attacker tries to construct such a
linear approximation for the first r − 1 rounds fr−2 ◦ · · · ◦ f0 of the cipher that holds
with probability p such that α0 · x0 ⊕ αr−1 · xr−1 = 0, where α0 and αr−1 are so-called
linear masks for the input and the output after r − 1 rounds of the block cipher. We
denote by · the scalar product over F2, i.e. given two elements x = (x0, . . . , xn−1),
y = (y0, . . . , yn−1) ∈ Fn

2 , it is specified as x · y =
⊕n−1

i=0 xiyi. The probability of the
linear approximation is modelled as p = 1/2 + ε where ε denotes the so-called bias. If
fr−2 ◦· · ·◦f0 is an ideal block cipher then it is expected that ε = 0, i.e. the above equation
holds with probability 1/2. If the bias ε differs significantly from 0 and thus p deviates
significantly from 1/2, the linear approximation can be used to distinguish fr−2 ◦ · · · ◦ f0
from an ideal cipher by encrypting plaintexts x0, chosen uniformly at random, to outputs
xr−1 and checking how often the linear relation between them holds. Note that ε can be
positive or negative but it is usually modelled as 0 ≤ |ε| ≤ 1

2 and the larger |ε|, the better
it is for the attacker.

As in the case of differential attacks, once a distinguisher is found, it can be converted
into a key recovery attack on the full block cipher fr−1 ◦ · · · ◦ f0 by guessing the bits
of the last round subkey needed to determine the bits of xr−1 from the ciphertext xr
utilising the output mask αr−1. The bias is estimated for each key candidate, and given
enough plaintext-ciphertext pairs, the correct key candidate is likely to correspond to the
one having the highest bias.

The notions of linear probability, linear characteristics, and linear hulls can be specified
analogously to differential probability, differential characteristics and differentials [162]. An
essential tool to compute the linear probability of a linear hull from its linear characteristics
is the so-called piling-up lemma [162] which says that the probability p of the sum of m
(independent) Boolean expressions holding with probabilities pi, for i ∈ {0, . . . ,m− 1},
can be computed by

p =
1

2
+ 2m−1

m−1
∏

i=0

(

pi −
1

2

)

.

An alternative and very frequently used tool in linear cryptanalysis for the study of Boolean
functions is the representation of the latter through so-called correlation matrices [94].
In [220] not only the success probability of differential cryptanalysis with respect to the
advantage over exhaustive search is investigated but also the one for linear attacks. Again,
let ps denote the success probability, let N denote the number of available plaintext-
ciphertext pairs and suppose an adversary aims for an advantage of m bits over exhaustive

31

Chapter 1 Introduction

search. Then one gets

ps = Φ
(

2ε
√
N − Φ−1(1− 2−m−1)

)

under the assumption that the probability for a linear approximation is independent for
each key candidate and is equal to 1/2 for wrong guesses, and m and N being sufficiently
large. This result can be reformulated again, in order to determine an estimation of the
data requirement N depending on a given success probability ps, as

N =

(

Φ−1(ps) + Φ−1(1− 2−m−1)

2

)2

ε−2 .

In other words, the data complexity is proportional to 1/ε2. In the same work it is
furthermore verified experimentally that the above estimations for linear cryptanalysis
are relatively precise, in contrast to the differential variant, which also indicates that the
made assumptions seem to be quite realistic. Later Bogdanov and Tischhauser were able
to derive a more accurate and better formula to determine the success probability ps
which, as a consequence, also improves the data complexity for linear attacks, see [75] for
more information.

Although linear cryptanalysis is not as versatile as its differential counterpart, there
exist several extensions for it. By considering multiple linear approximations in parallel,
it has been shown that there are scenarios where the required amount of data can be
reduced [148]. Knudsen showed for the case of DES that the complexity of linear attacks
can be reduced through the exploitation of chosen-plaintexts [161]. Another generalisation
of linear cryptanalysis by Knudsen uses non-linear approximations which can potentially
lead to the recovery of additional information [163]. Moreover, the analogue technique to
impossible differentials in linear cryptanalysis are the so-called zero-correlation attacks,
proposed by Bogdanov and Rijmen in 2011, which exploit linear approximations having
probabilities of exactly 1/2, see [74, 76].

1.2.4 Algebraic Attacks

Attacking a cipher using algebraic cryptanalysis [24] usually consists of two steps: first,
model the operations of the cipher algebraically by a system of non-linear multivariate
polynomials f1, . . . , fs ∈ P , where P = K[x1, . . . , xn] is a polynomial ring in n indeter-
minates x1, . . . , xn over a field K. In the case of symmetric cryptography, K is usually
the finite field F2r of characteristic 2 with r ≥ 1. Second, solve the resulting system of
equations S given by

f1(x1, . . . , xn) = 0

...

fs(x1, . . . , xn) = 0

32

1.2 Cryptanalysis

for the key variables, thereby breaking the cipher. Although the basic idea sounds simple,
the problem of solving generic systems of multivariate non-linear equations over finite
fields is known to be NP-hard [117]. However, this is the generic complexity and there
are also problem instances where solutions can be recovered efficiently. For example, the
cipher Crypto-1 [91] was broken successfully using algebraic attacks. Moreover, algebraic
techniques turn out to be quite efficient when used in combination with side-channel
attacks [70] and are frequently used in the latter context.

Note that modelling a cipher through the polynomials f1, . . . , fs can be done in different
ways and distinct representations might have a substantial impact on the solving time
of the system [137]. In many cases, the polynomial system can be expressed purely as
a function of the key indeterminates. However, the resulting polynomials usually have
a huge degree and consist of a large number of monomials which is in general counter-
productive for solving the system. In many cases, additional indeterminates and equations
are therefore introduced. This results in an overdefined system, i.e. there are more
equations than variables. Moreover, since the polynomial system might have solutions
in the algebraic closure F2r of F2r , one usually adds the field equations x2

r

i − xi = 0 for
i ∈ {1, . . . , n} to S, which guarantees that all the solutions found by the solver are in
F2r . Solving such a system of equations can be done in various ways and we describe two
approaches below.

Gröbner Bases

One classical approach to solve generic systems of non-linear multivariate polynomial equa-
tions are the so-called Gröbner bases, a tool from the field of computer algebra [169, 170].
A Gröbner basis is a generator set with special properties of an ideal I = 〈f1, . . . , fs〉 ⊂ P
and can be computed from the polynomials f1, . . . , fs that generate I. It allows to analyse
many important properties of I and of its associated algebraic variety, i.e. the set of
solutions of the equation system f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0. For instance,
Gröbner bases can be used to compute the dimension of ideals or to test for ideal equality
or membership.

A Gröbner basis is specified with respect to a particular term ordering. For example,
the lexicographic term ordering lex first compares the exponents of x1 in the terms, and in
case of equality compares exponents of x2 and so on. The lex term ordering is very useful
for applications like elimination [169], a technique that can be used to determine the
solutions for a subset of the indeterminates appearing in a system of equations. However,
computing a lex Gröbner basis is usually much harder than determining a Gröbner basis
for certain other term orderings. A common approach is therefore to first calculate a
non-lex Gröbner basis and convert it afterwards to a lex Gröbner basis using techniques
like the FGLM algorithm [110].

The first algorithm to compute a Gröbner basis from an arbitrary ideal generator set
was presented by Buchberger in his PhD thesis in 1965, and is nowadays better known

33

Chapter 1 Introduction

as Buchberger’s algorithm [83]. It can be viewed as a generalisation of the Euclidean
algorithm for univariate polynomials and of Gaussian elimination for linear polynomial
systems. Later Faugère introduced the algorithms F4 (1999) [108] and F5 (2002) [109],
two improved versions of Buchberger’s algorithm which nowadays belong to the fastest
known ways for computing Gröbner bases of generic systems of non-linear multivariate
polynomial equations.

Modelling given problems through a system of polynomial equations is a common
approach in many fields. Therefore, it is not surprising that Gröbner bases also found
applications outside of computer algebra and algebraic geometry. For the special case
of cryptography, equation systems often have a unique solution (α1, . . . , αn) in the base
field K. Hence, the reduced Gröbner basis of the ideal I, i.e. a Gröbner basis satisfying
certain minimality properties, is expected to have the form {x1 − α1, . . . , xn − αn}.

SAT-Solvers

Boolean satisfiability (SAT) is another NP-complete decision problem targeting the
question if a given Boolean formula is satisfiable. If it is indeed satisfiable, then a related
question is how to find its solutions. Boolean formulas are constructed from a set of
Boolean variables {x1, . . . , xn}, the two constants True and False, and from the logical
operations conjunction ∧ (logical AND), disjunction ∨ (logical OR), and negation ¬
(logical NOT). An important set of problems involves finding assignments to the variables
of a Boolean formula in Conjunctive Normal Form (CNF) such that the formula is True.
These formulas are conjunctions of clauses, with a clause being a disjunction of literals
and literals being either the variables xi themselves or their negation ¬xi. For example,
(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3 ∨ ¬x4) is a Boolean formula in CNF.

SAT problems can be found in many different scientific fields, like artificial intelligence,
bioinformatics, circuit design and test, automated theorem proving, and in cryptography.
Due to their importance, there is a very high interest in solving such formulas in the
most efficient way. Since SAT is NP-complete, the best algorithms for the generic case
can only have an exponential worst-case run time as a lower bound. However, solving
concrete instances can be done usually much faster than in exponential time, as it is often
the case for NP-complete problems. Over the past years highly optimised SAT-solvers
have been developed that are able to find solutions very efficiently and annual SAT
competitions [217] continuously push the boundaries of solvable instances even further.
Well-known solvers are MiniSat [198], CryptoMiniSat [181], and Lingeling (as well as
its parallel versions Plingeling and Treengeling) [52]. All these solvers are based on the
conflict-driven clause learning algorithm (CDCL) [26, 180], the modern variant of the
Davis-Putnam-Logeman-Loveland algorithm (DPLL) [99] which explores the exponentially
sized search space by a backtracking search procedure in order to find a satisfying variable
assignment.

The power of these highly efficient SAT-solvers can be tapped for problems in crypt-

34

1.2 Cryptanalysis

analysis as well. As usual, the first step is to model the target cipher algebraically by
a system of polynomial equations. Afterwards the system is converted to a CNF [25,
137] which is then given as input to a SAT-solver. If a solution is found, it can be easily
translated back to the algebraic world which then reveals the secret key of the cipher.
In the special case of finite fields of characteristic 2, SAT-solvers are often the tool of
choice due to their excellent performance. In case of more generic systems of equations
over other fields (such as Q) one usually falls back to more general solvers, like Gröbner
bases. In Chapter 2, we give an example how SAT-solvers can be used for algebraic fault
attacks, a combination of algebraic cryptanalyis and differential fault analysis.

An extension of SAT is the so-called Satifiability Modulo Theories (SMT) problem [100],
a decision problem for logical formulas defined over first-order logic theories. Without
going into the details, SMT instances allow to enrich Boolean formulas with additional
theoretical concepts, such as integers, arrays or lists [115]. These extensions certainly
remain NP-complete (and sometimes even become undecidable), but provide a much
richer modelling language. As for SAT, there exist highly efficient SMT-solvers, like
Boolector [82], STP [116], and Z3 [188], to name just a few, and annual competitions [218]
which are a key ingredient for driving progress. SMT-solvers usually have a SAT-solver
at their core which is then extended to handle the additional theoretical concepts. In
Chapter 5, we are bridging the gap between algebraic and differential cryptanalysis and
explore how to use SMT- and SAT-solvers to find differential characteristics.

1.2.5 Rotational Attacks

Rotational cryptanalysis was introduced by Khovratovich and Nikolić in [153] for the
analysis of ARX-based cryptographic primitives. ARX refers to the operations (modular)
integer addition, (bitwise) rotation, and XOR and is a quite common approach to design
cryptographic algorithms. Prominent examples for such primitives are BLAKE(2) [16, 21],
ChaCha [40], Salsa20 [41], SipHash [12], Skein [112], and Speck [27]. The idea of rotational
cryptanalysis is to track propagation of rotational relations through a cryptographic
transformation. Once rotation-invariant behaviour is detected, it can be used to construct
distinguishers, mount key recovery attacks, and so forth, similarly as discussed for
differential attacks. Rotational cryptanalysis was successfully applied to several simplified
versions of cryptographic primitives including Skein [154] and Keccak [186].

In Chapter 5, we examine some rotational properties of the NORX core permutation.

1.2.6 Implementation Attacks

All attacks considered so far fall into the category of conventional cryptanalysis. In this
section, we discuss implementation or side-channel attacks which are an extension of
conventional cryptanalytical techniques. The adversarial models for conventional attacks
as introduced above, provide the basis for implementation attacks as well, but additionally

35

Chapter 1 Introduction

an attacker is allowed to observe and sometimes even modify physical properties of the
concrete implementation of an attacked algorithm. Additional data retrieved in this way
can then be used in the subsequent (mathematical) cryptanalysis and usually drastically
increases the chances for successful retrieval of secret information. This might even lead
to scenarios where attackers are able to reconstruct secret information without having any
knowledge on the processed plain- or ciphertexts at all. Implementation attacks obviously
depend on the concrete realisation of the attacked algorithm in the physical world and
therefore include a number of additional technical parameters, like implementation details,
type of physical access, equipment of the attacker, number of algorithm executions, or
number of required cryptographic devices.

Implementation attacks are categorised into active and passive versions. The latter
derive secret information by observing operational parameters, such as execution time,
power consumption, electromagnetic emissions or even cache behaviour. In contrast,
active side-channel attacks actively interfere with the device, changing temporarily or even
permanently parts of its state or execution flow, to retrieve additional information about
the processed internal data. The so-called fault-based attacks belong to the field of active
side-channel attacks and are particularly effective to break cryptographic systems, i.e.
gain unauthorised access to the secret information. Implementation attacks are usually
executed in three phases:

1. Profiling Phase. During profiling, an adversary has access to duplicates of the
implementation that he plans to attack later. This might include, for example,
hardware prototypes or simulation models. In this stage, the attacker has full control
over all inputs (including secret keys) and outputs. The aim of this phase is to
obtain information on the weaknesses of the implementation that can be exploited
in subsequent steps when the real implementation with unknown secret information
is targeted. Especially interesting are correlations between internal variables of the
algorithm in the implementation and side-channel parameters that are leaked by
the implementation.

2. Online Phase. In this stage, the attacker triggers the real implementation to
execute the algorithm with some inputs and measures the physical side-channel
parameters. Note that the secret information used by the implementation is unknown
to the attacker in this phase. If the attacker is allowed to observe or choose inputs
and outputs of the algorithm, which depends on the adversarial model, he can also
record the data corresponding to these executions.

3. Offline Phase. During the offline phase, the attacker tries to recover the secret
information (usually the unknown secret key) from the recorded side-channel pa-
rameters, the input and outputs, and from his knowledge of the implementation
details obtained in the profiling phase.

36

1.2 Cryptanalysis

Timing Analysis

Timing attacks exploit variations in the execution time of cryptographic algorithms. These
variations often appear if there exist correlations between the running time of the primitive
and secret input data. Gathering enough samples and analysing them with statistical
methods, it is often possible to recover all of the secret information. The first side-channel
attack exploiting timing analysis was proposed by Kocher [166] in 1996 where he observed
timing leaks in implementations of public-key cryptosystems like Diffie-Hellman, RSA,
and DSS. Later, researchers demonstrated practical network-based timing attacks against
SSL-enabled web servers exploiting vulnerabilities in RSA implementations that relied
on the Chinese Remainder Theorem [80, 81]. Although the actual network distance was
small during their experiments, the attack successfully recovered the private key of the
server within a couple of hours.

Kocher also noticed that queries to lookup tables in software can take varying amounts
of time for different inputs due to RAM cache hits or misses. Lookup tables are frequently
deployed in block ciphers in the form of non-linear S-boxes. If the inputs to such a lookup
table depend on the secret key and enough timing samples can be gathered, then it is
usually very easy to recover the key. These techniques were regularly exploited to mount
attacks on various block ciphers including DES [234] and AES [35].

Timing attacks can be avoided by ensuring that all operations take the same amount of
time regardless of the input. While this is often doable with some additional efforts, the
performance of such implementations usually suffers significantly. Writing fast constant-
time software is very often a highly complex task [149]. Thus, efforts increased in recent
years to tackle this problem already on an algorithmic level by designing cryptographic
primitives that have an inherited protection against timing attacks. These algorithms
try to reduce the number of operations that might leak timing information and instead
use building blocks that can be easily hardened against timing attacks or even better are
executed in constant-time by default.

In Chapter 4, we introduce NORX, an authenticated encryption scheme, which was
conceived according to the above approach, i.e. operations were carefully selected such
that leakage of secret information through timing side-channels is prevented.

Power and Electromagnetic Analysis

Side-channel attacks which analyse the power consumption of devices implementing
cryptographic algorithms were proposed by Kocher et al. [167] in 1999. They introduced
two methods: simple power analysis (SPA) and differential power analysis (DPA).

SPA can yield information about the operation of a device as well as key material. It
exploits the facts that different operations exhibit different power consumption behaviour
and that these operations often depend on secret key information in a deterministic
way. These dependencies are, in particular, mirrored in the power consumption profiles

37

Chapter 1 Introduction

of the respective operations. Therefore, it is sufficient for some ciphers to gather and
visually examine a couple of power traces of the encryption process in order to obtain
information on the secret key. For example, in the case of RSA it is often possible to
distinguish between multiplication and squaring operations in exponentiation which then
allows an adversary to reconstruct the secret key bit by bit [165]. While it is relatively
easy to attack (unprotected) modular exponentiation (RSA) or scalar point multiplication
(elliptic curve cryptosystems) with SPA, it is not necessarily as easy for other (symmetric)
cryptographic primitives, such as block ciphers, due to their different internal structure.
However, in the case of DES it was shown that SPA attacks targeting the key schedule
allow an adversary to reconstruct certain parts of the secret key [165].

DPA involves statistical analysis of power consumption measurements and is generally
more powerful than SPA. Advantages of DPA over SPA are that it allows to analyse
power traces containing a high degree of noise and thus cannot be examined with SPA
and that it is much more difficult to protect devices against DPA attacks. In a first step
during DPA, an adversary guesses a part of the key. Using the guess and all known
inputs (or outputs) he computes parts of the state. Afterwards all of the computed values
are classified according to a leakage model and if the side-channel parameters exhibit
correlations to the leakage model then the guess was correct. In the case of an unprotected
AES-128 implementation it can be shown that at most 256 DPA traces are sufficient to
recover one key byte. This means that at most 256 · 16 = 4096 DPA traces are required
to recover the entire 128-bit key [165].

All of the above techniques can be used with measurements of electromagnetic emana-
tions as well where the counterparts to SPA and DPA are simple electromagnetic analysis
(SEMA) and differential electromagnetic analysis (DEMA) [1], respectively.

Fault-based Attacks

The effects of transient faults on electronic systems have been studied since the 1970s.
At that time it was noticed that radioactive particles are capable of causing errors in
chips by inducing small charges in sensitive chip areas which in turn could result in bit
flips. One source for such faults are cosmic rays which are very weak at ground level due
to the earth’s atmosphere but can have more serious effects in the upper atmosphere or
outer space. These observations led to further research aiming to better understand the
effects of faults caused through environmental influences and to subsequently develop
countermeasures preventing these kind of errors. A large driving force was the aerospace
industry which was concerned about the effects such environmental-based faults might
have on airborne electrical systems and especially on machines such as satellites.

The malicious exploitation of errors in electronic systems has been a more recent
development. Fault-based attacks on cryptographic systems were introduced by Boneh
et al. [77] in 1997. The researchers demonstrated that fault injections can be utilised to
reveal the two secret prime numbers used in the RSA system thereby compromising the

38

1.2 Cryptanalysis

security of the cipher. Over the years both symmetric and asymmetric cryptographic
primitives have been attacked using fault-based cryptanalysis, including AES [191, 235],
Trivium [130, 131], RSA [156], and elliptic curve cryptosystems [68]. As mentioned above,
the three steps of fault attacks are:

Profiling Phase: Fault Analysis. In the first phase, the adversary performs an analysis
of the cryptographic algorithm and the device he is trying to attack and determines those
points during the execution of the encryption process which are suitable for a fault injection
in the second phase. “Suitable” means here that the fault propagation behaviour after the
injection satisfies certain conditions which ultimately lead to a successful reconstruction
of secret data in the third step. Obviously, the techniques for the data analysis required
in the final phase are also developed during this initial assessment. The requirements of
the fault injection are usually summarised in a fault model and describe the temporal
and spatial requirements of the fault injection.

Online Phase: Fault Injection and Data Collection. In the second phase, a physical
disturbance (fault) is induced in the hardware on which the algorithm is executed. Some
mechanisms to induce faults are summarised in [23] and include parasitic charge-carrier
generation by a laser beam, manipulation of the circuit’s clock, or reduction of the
circuit’s power-supply voltage. More recently proposed techniques use combinations
of voltage and temperature based manipulations [173] or even insert highly stealthy
hardware Trojans [172] into selected transistors of the cryptographic device. Those
last two approaches especially excel at high-precision fault injections which are usually
a fundamental requirement for being able to successfully mount a fault attack. More
precisely, the success of a fault attack critically depends on the spatial and temporal
resolution of the equipment of the attacker. Spatial resolution refers to the ability to
accurately select the circuit element to be manipulated; temporal resolution stands
for the capability to precisely determine the time (clock cycle) and the duration of
fault injection. Several previously published attacks make different assumptions about
vulnerable elements of the circuit accessible to the attacker and the required spatial and
temporal resolutions [130, 156]. Most fault attacks are based on running the cryptographic
algorithm several times in presence and in absence of the disturbance and gathering
correct and faulty outputs.

Offline Phase: Evaluation and Reconstruction of Secret Data. In the third phase,
the gathered data is used to derive the secret information using the methods developed
in the first step. One particular effective approach to attack symmetric cryptographic
algorithms is the so-called differential fault analysis [60] (DFA) which combines fault
information with differential cryptanalysis [58]. It was employed for successful attacks on
a variety of ciphers, including the initially mentioned attacks on AES [191, 235].

39

Chapter 1 Introduction

In Chapters 2 and 3, we study differential fault attacks in much more detail. We
particularly investigate new techniques for DFA of the block ciphers LED, PRINCE and
Bel-T and show how to successfully break them using realistic fault models. In case of
LED-64, we additionally explore an algebraic variant of DFA.

1.3 Security Notions

In this section, we briefly recall some basic notions from provable security which are
required later on in the thesis.

The notions of privacy (or confidentiality) and authenticity are central to the security
of an AE(AD) scheme [32, 213, 214]. More specifically, an AE(AD) scheme is considered
secure if and only if it is IND-CPA and INT-CTXT. The first notion, IND-CPA, refers
to the property that ciphertexts produced by the AE(AD) scheme are indistinguishable
from the random output of an ideal AE(AD) scheme. The second notion, INT-CTXT,
requires that the AE(AD) scheme is secure against forgery attacks, i.e. that an adversary
is not capable of producing a valid ciphertext-tag pair without knowledge of the secret
key. These notions are usually specified in terms of security experiments. Below, we
briefly recite the formal definitions and also explain their meanings in more detail.

Let Π = (K, E ,D) be an AE(AD) scheme with key derivation function K, encryption
function E and decryption function D as specified in Section 1.1.5. Furthermore, let
$ denote the ideal version of EK which returns a “ciphertext-tag” pair (C, T) chosen
uniformly at random from F

|P |+t
2 on a query with (N,M) for an AE scheme or (N,A,M)

for an AEAD scheme where N is a nonce, A a header, and M a message.
An adversary A is a probabilistic algorithm that has access to one or more oracles O,

denoted by AO. We describe by AO ⇒ 1 the event that A, after interacting with an
oracle O, outputs 1. Adversaries have query access to encryption oracles of the underlying
idealized primitives E or its counterpart $ and possibly to decryption D. We assume that
an adversary A is nonce-respecting [213], which means he never makes two queries to E
or $ with the same nonce N for a fixed key K. However, A is allowed to repeat nonces
for queries to D. The key K is drawn uniformly at random from Fk

2 at the beginning of a
security experiment using K.

IND-CPA Security. Consider the following security experiment: first, the oracle O
tosses a fair coin to obtain a value b ∈ {0, 1}. Afterwards, the adversary A is allowed to
send queries to O. Depending on the value of b, A either obtains real encryptions from
EK or just random outputs from $ for the messages he sends. The challenge for A is to
guess b depending on the obtained answers from O.

The IND-CPA-advantage of a computationally bounded adversary A who is trying to

40

1.3 Security Notions

break the privacy of Π is defined by

Adv
IND-CPA
Π (A) =

∣

∣

∣Pr
[

K
$←− K : AEK ⇒ 1

]

− Pr
[

A$ ⇒ 1
]∣

∣

∣ .

We define Adv
IND-CPA
Π (t, q, l) to be the maximum advantage over all IND-CPA-adversar-

ies A on Π that run in time at most t and make at most q queries of length at most l to the
available oracles. The AE(AD) scheme Π is said to be IND-CPA-secure if the maximum
advantage Adv

IND-CPA
Π (t, q, l) is negligible for any adversary A whose time-complexity is

polynomial in the key size k.

INT-CTXT Security. Consider the following security experiment: Given access to two
oracles, namely one for encryption EK and one for decryption DK , the challenge for an
adversary A is to generate a tuple (C, T) that has never been a response of EK such that
DK on input of (N,C, T) for AE or of (N,A,C, T) for AEAD does not return ⊥. If A is
successful, we say he forged (C, T).

The INT-CTXT-advantage of a computationally bounded adversary A who is trying
to break the authenticity of Π is defined by

Adv
INT-CTXT
Π (A) = Pr

[

K
$←− K : AEK ,DK ⇒ forges

]

.

We define Adv
INT-CTXT
Π (t, q, l) to be the maximum advantage over all INT-CTXT-ad-

versaries A on Π that run in time at most t and make at most q queries of length at
most l to the available oracles. The AE(AD) scheme Π is said to be INT-CTXT-secure
if the maximum advantage Adv

INT-CTXT
Π (t, q, l) is negligible for any adversary A whose

time-complexity is polynomial in the key size k.

41

Chapter 2

Fault-based Attacks on the Block

Ciphers LED and PRINCE

2.1 Introduction

Attacking cryptographic primitives with conventional techniques is undoubtedly a neces-
sary step in the evaluation of the security of any cryptographic construction. However,
a much bigger threat usually originates from side-channel attacks targeted at concrete
implementations of cryptographic algorithms and, in particular, unprotected implemen-
tations are usually an easy target. To secure such implementations, one first tries to
uncover vulnerabilities of the unprotected versions and then constructs countermeasures
which protect the implementations against the revealed attacks. In this chapter, we try to
better understand the vulnerabilities of lightweight constructions which are often used to
protect data in embedded devices, sensor networks or RFID chips, against implementation
attacks. Especially, we investigate fault-based attacks on the LED and PRINCE, two
lightweight block ciphers proposed for the usage in resource-constraint environments.

The fault attack on LED-64 was presented at COSADE 2012 [140] and its algebraic
extension at SCC 2012 [138]. The multi-stage fault attacks on LED-128 and PRINCE [139]
were part of the research presented at IOLTS 2014 [173] and FDTC 2014 [172].

Outline. The remainder of the chapter is organized as follows. The block ciphers LED
and PRINCE are introduced in Sections 2.2 and 2.3. Next we present a detailed fault
analysis of LED-64 in Section 2.4 and show that a single fault injection is sufficient to
reconstruct the entire 64-bit secret key. Moreover, we motivate why a direct application
of those techniques to LED-128 is not feasible. In Section 2.5, we then introduce the
multi-stage fault attack framework which enables fault analysis of AES-like block ciphers
having no or just a very lightweight key schedule, where subkeys are (almost) independent
from each other. Furthermore, we show concrete applications of the framework to the
block ciphers LED-128 and PRINCE and conclude that in both cases an average of 3 to 4
faults suffice to expose the 128-bit key. In Section 2.6, we discuss in detail how to extend
the fault attack on LED-64 to an algebraic setting. First, we introduce the algebraic

43

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

model of LED using multivariate polynomials over F2 and then explain the integration
of the information derived from the fault injection into the polynomial system. In the
experimental phase, we present how the resulting problem description can be solved
efficiently using SAT solvers. Finally, Section 2.7 concludes this chapter.

2.2 The Block Cipher LED

In this section, we recall the design of the block cipher LED, as specified in [126]. We
first describe the general layout of LED in Section 2.2.1, followed by the mechanics of its
round function in Section 2.2.2.

2.2.1 General Layout

As an AES-like block cipher, LED is based on a substitution-permutation network, i.e. its
round function includes a substitution layer that transforms the words of the state through
parallel application of S-boxes and a permutation layer consisting of a row permutation
and a matrix multiplication which mixes the columns of the state. However, as a so-called
lightweight block cipher, its field of application is focussed on environments with restricted
resources. LED uses 64-bit blocks as states and accepts 64- and 128-bit keys. We denote
these two versions by LED-64 and LED-128, respectively. Other key lengths, e.g. the
popular choice of 80 bits, are padded to 128 bits by appending zeros until the desired
key length is reached. Depending on the key size, the encryption algorithm performs
32 rounds for LED-64 and 48 round for LED-128. As already mentioned above, we
discuss the components of such a round in the next Section. The 64-bit state S of LED is
conceptually arranged in a 4× 4 matrix

S =









s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15









where each of the 4-bit sized entry si, with 0 ≤ i ≤ 15, is identified with an element of the
finite field F16

∼= F2[x]/〈x4 + x+ 1〉. In the following, we represent an element g ∈ F16,
with g = c3x

3 + c2x
2 + c1x+ c0 and cj ∈ F2, by

g 7→ c3 ‖ c2 ‖ c1 ‖ c0 .

In other words, this mapping identifies an element of F16 with a bit string. For example,
the polynomial x3 + x+ 1 has the coefficient vector (1, 0, 1, 1) and is mapped to the bit
string 1011. Note that we write 4-bit strings always in their hexadecimal short form, i.e.
1011 = B.

44

2.2 The Block Cipher LED

For encryption, a 64-bit plaintext unit M is considered as a 16-fold concatenation
of 4-bit strings mi with 0 ≤ i ≤ 15, i.e. M = m0 ‖ m1 ‖ · · · ‖ m14 ‖ m15, which are
identified with elements of F16 and arranged row-wise in a matrix of size 4× 4:

M =









m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15









.

Likewise, the key K is arranged in one or two matrices of size 4× 4 over F16, depending
on its size of either 64 bits or 128 bits:

• |K| = 64:

K =









k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15









.

• |K| = 128:

K1 =









k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15









K2 =









k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31









.

Figure 8 presents an overview of the encryption for both LED-64 and LED-128. Notice
that key additions are performed only after four rounds have been executed. The authors
of the original paper [126] call these four rounds a single Step. Keys are added by the
function AddRoundKey (AK). It performs an addition of the state and key matrices using
bitwise XOR. It is applied for input- and output-whitening as well as after every fourth
round. Since LED-64 and LED-128 have 32 and 48 rounds, the ciphertext C is obtained
after 8 and 12 Steps, respectively. Decryption is defined in the obvious way, by starting
with a ciphertext C and going through all inverse operations in reverse order.

M 4 rounds 4 rounds 4 rounds 4 rounds C

K K K K K K

M 4 rounds 4 rounds 4 rounds 4 rounds C

K1 K2 K1 K2 K2 K1

Figure 8: LED key usage: 64-bit key (top) and 128-bit key (bottom).

45

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

Figure 8 also exhibits a special feature of this cipher – there is no key schedule. On the
one hand, this makes hardware implementations especially light-weight and on the other
allows to derive simple security proofs even in a related-key attack model [126].

2.2.2 Round Function

Now we examine one round of the LED encryption algorithm. It is composed of the
operations AddConstants (AC), SubCells (SC), ShiftRows (SR) and MixColumnsSerial (MCS).
Figure 9 provides a rough overview. All matrices are defined over the field F16. Now we
have a look at the individual steps.

AddConstants SubCells ShiftRows MixColumnsSerial

4 cells

4 cells

element of F16

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Figure 9: An overview of a single round of LED.

AddConstants (AC): For each round, a so-called round constant consisting of a tuple of
six bits (b5, b4, b3, b2, b1, b0) is defined as follows. First, the tuple is initialised to zero. In
consecutive rounds, the starting point is the previous round constant. The six bits are
shifted one position to the left and the new value of b0 is computed as b5 + b4 + 1. This
results in the round constants whose hexadecimal values are given in Table 1.

Table 1: The LED round constants.

Rounds Constants

1 – 12 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C

13 – 24 39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25 – 36 21,02,05,0B,17,2E,1C,38,31,23,06,0D

37 – 48 1B,36,2D,1A,34,29,12,24,08,11,22,04

Next, the round constant is divided into x = b5 ‖ b4 ‖ b3 and y = b2 ‖ b1 ‖ b0 and x

and y are interpreted as elements of F16. Moreover, let (a7, a6, a5, a4, a3, a2, a1, a0) denote
the eight bits encoding the key size of LED and let u = a7 ‖ . . . ‖ a4 and v = a3 ‖ . . . ‖ a0.

46

2.2 The Block Cipher LED

Finally, the matrix








0⊕ u x 0 0

1⊕ u y 0 0

2⊕ v x 0 0

3⊕ v y 0 0









is formed and added to the state matrix using bitwise XOR.
SubCells (SC): Each entry x of the state matrix is replaced by the element S[x] from

the S-box given in Table 2. This particular S-box was first used by the block cipher
PRESENT, see [71].

Table 2: The LED S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

ShiftRows (SR): For i = 1, 2, 3, 4, the ith row of the state matrix is shifted cyclically to
the left by i− 1 positions:









s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15









7→









s0 s1 s2 s3
s5 s6 s7 s4
s10 s11 s8 s9
s15 s12 s13 s14









.

MixColumnsSerial (MCS): Each column v of the state matrix is replaced by the product
M · v, where M is the matrix1

M =









4 1 2 2

8 6 5 6

B E A 9

2 2 F B









=









0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2









4

= (M ′)4 .

Recall that multiplication of the elements is done over the finite field F16. M is a Maximum
Distance Separable (MDS) matrix [145] and used for diffusion of the state. But there is
another reason why M was chosen by the designers of LED: it can be decomposed into a
product of four very simple and hardware-friendly matrices M ′, which in turn makes M
suitable for compact serial implementations. This is obviously important for a lightweight
block cipher targeted at running in resource-constrained environments.

1In the specification of LED in the original paper [126], the first row of M is given as 4 2 1 1. This
appears to be a mistake, as the results computed starting with these values do not match those
presented for the test vectors later in the paper. The matrix M used here is taken from the original
authors’ reference implementation of LED and gives the correct results for the test vectors.

47

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

2.3 The Block Cipher PRINCE

In this section, we recall the design of the block cipher PRINCE, as specified in [78]. We
first describe the general layout of PRINCE in Section 2.3.1, followed by the mechanics
of its round function in Section 2.3.2.

2.3.1 General Layout

PRINCE [78] is a 64-bit block cipher with a 128-bit secret key. Before an encryption
(or decryption) is executed, the secret key K = k0 ‖ k1 is extended to 192 bit using the
following mapping:

k0 ‖ k1 7→ k0 ‖ k1 ‖ k2 := k0 ‖ k1 ‖ (k0 ≫ 1)⊕ (k0 ≫ 63) .

The subkeys k0 and k2 are used for input- and output-whitening. The key k1 is solely
used in the core of PRINCE which is a 12-round block cipher. The described layout
corresponds to the so-called FX-construction [62, 155]. Figure 10 gives an overview of
the cipher.

x

k0 k1

RC0

R1

k1

RC1

R2

k1

RC2

R3

k1

RC3

R4

k1

RC4

R5

k1

RC5

S M’ S-1 R-1

6

k1

RC6

R-1

7

k1

RC7

R-1

8

k1

RC8

R-1

9

k1

RC9

R-1

10

k1

RC10RC11

k1 k2

y

MS

RCi k1

M-1 S-1

RCjk1

Figure 10: Layout of PRINCE.

Each round Ri and R−1i+5 with i ∈ {1, . . . , 5} consists of a key addition, an S-layer, a
linear layer which multiplies the state (represented through a 64-bit row vector) by a
matrix, and the addition of a round constant RCj , with j ∈ {0, . . . , 11}. The rounds
Ri and R−1i+5 are separated by an involutive middle layer which consists of two S-layers,
where S-boxes S and S−1 are applied, interleaved with the multiplication of the involutive
matrix M ′. The particular operations of a round are described in the next part.

2.3.2 Round Function

S-Layer: In this operation, PRINCE substitutes every element of the state using the 4-bit
S-box depicted in Table 3.
M -/M ′-Layer: The 64-bit state is multiplied by a 64 × 64 matrix M or M ′. The

matrix M ′ is only used in the middle-layer and thus has to be an involution to ensure

48

2.3 The Block Cipher PRINCE

Table 3: The PRINCE S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

the α-reflection property (see below). For the specification of M ′ the following four bit
matrices are introduced

M0 =









0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









M1 =









1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1









M2 =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1









M3 =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0









which are arranged in two 16× 16 matrices

M̂0 =









M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2









M̂1 =









M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3









.

Both matrices are involutions due to their symmetric structure and the choice of the
building blocks M0, . . . ,M3. Finally, M ′ is specified as the following block diagonal matrix

M ′ =











M̂0 0 0 0

0 M̂1 0 0

0 0 M̂1 0

0 0 0 M̂0











which is a permutation on 64-bit strings. The matrix M ′ is used to specify the second
matrix M , via M = SR ◦M ′, where SR corresponds to the ShiftRows operation as used
in AES, which permutes the sixteen 4-bit elements of a 64-bit string by

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) 7→ (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11) .

Note that multiplication with M is not an involution anymore, since ShiftRows is
non-involutive.

49

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

RCi-add: This operation adds the round constant RCi to the state using bitwise XOR.
The values of RCi are defined in Table 4. Those constants have the special property that,
for all i ∈ {1, . . . , 10}, the equality

RCi ⊕RC11−i = C0AC29B7C97C50DD (=: α)

holds. Together with the fact that M ′ is involutive, it is possible to perform encryption
and decryption using basically the same circuit (or implementation) and is referred to as
the α-reflection property. For more details, see the specification of PRINCE [78].

Table 4: The PRINCE round constants.

i RCi

0 – 2 0000000000000000, 13198A2E03707344, A4093822299F31D0,

3 – 5 082EFA98EC4E6C89, 452821E638D01377, BE5466CF34E90C6C,

6 – 8 7EF84F78FD955CB1, 85840851F1AC43AA, C882D32F25323C54,

9 – 11 64A51195E0E3610D, D3B5A399CA0C2399, C0AC29B7C97C50DD

2.4 Fault Attacks on LED-64

In this part, we describe how to cryptanalyse LED-64, the 64-bit version of the LED
block cipher, by fault injection followed by differential fault analysis. Our fault model
assumes that an attacker is capable of inducing a fault in a particular 4-bit entry of
the state matrix at a specified point during the encryption algorithm, changing it to a
random and unknown value. The attack is based on solving fault equations derived from
the propagation of this fault through the remainder of the encryption algorithm. We
start with an introduction to the fault models used throughout the rest of the chapter.
Then we present a general outline of the fault attack on LED-64, show how to construct
the fault equations and discuss their usage for key filtering. Finally, we illustrate our
experimental results and present a first idea how to extend the attack to LED-128.

2.4.1 Fault Models

The assumptions on the fault-injection capabilities of an attacker must be formalised in a
fault model. In this part, we employ two of them, namely

• the random and known fault model (RKF) and

• the random and unknown fault model (RUF).

50

2.4 Fault Attacks on LED-64

Our focus rests on block ciphers, which have an n-bit sized state and whose operations
usually work on m-bit sized parts of the latter. We therefore assume that a fault f
perturbs exactly one of those m-bit sized elements and leaves the other n − m bits
unaffected. In case of LED (and also later for PRINCE) we have m = 4. In other words, a
fault injection affects precisely one nibble of the state. We represent f as a bit string with
values 1 on the positions where the state is flipped, i.e., the fault injection is described by
a bitwise XOR of f to the state. Consequently, there are at most n/m · (2m − 1) different
faults for a given point of time during encryption which amounts to 240 in case of LED
and PRINCE. The RKF model assumes that the attacker can target a specific nibble,
e.g., the very first one that includes state bit positions 0 through m− 1. The RUF model
assumes that the fault injection perturbs a randomly selected nibble and that it cannot
be observed which nibble was affected. The RUF model is weaker and therefore easier to
match by practical fault-injection equipment, but it requires more complex mathematical
analysis.

2.4.2 Fault Equations

Fault Propagation

The attack starts with a fault injection at the beginning of round r = 30. The attacker
then watches the error spread over the state matrix in the course of the last three rounds.
Figure 11 shows the propagation of a fault injected in the first entry of the state matrix
during the encryption. Every square depicts the XOR difference of the correct and the
faulty cipher state during that particular phase of the last three encryption rounds.

Afterwards, the attacker querys the encryption of the plaintext again, but this time
without a fault injection and ends up with two ciphertexts, the correct C = c0 ‖ . . . ‖ c15
and the faulty C ′ = c′0 ‖ . . . ‖ c′15, with ci, c′i ∈ F16 for 0 ≤ i ≤ 15. By working backwards
from these results, we construct equations that describe relations between C and C ′. Such
relations exist, because the difference between C and C ′ is due to a single faulty state
matrix entry at the beginning of round 30.

With the help of those equations we then try to limit the space of all possible keys,
such that we are able to perform a brute force attack, or in the best case, get the secret
key directly. Next, we discuss the method to establish the fault equations.

Inversion of LED Steps

We consider C resp. C ′ as a starting point and invert every operation of the encryption
until the beginning of round r = 30. The 4-bit sized elements ki with 0 ≤ i ≤ 15 of the
key are viewed as indeterminates. The following steps list the expressions one has to
compute to finally get the fault equations.

1. AK−1: ci + ki and c′i + ki.

51

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

AC

AC

AC

SC

SC

SC

SR

SR

SR

MCS

MCS

MCS AK

r = 30

f f f’ f’ 4f’

8f’

Bf’

2f’

r = 31

4f’

8f’

Bf’

2f’

4f’

8f’

Bf’

2f’

a

b

c

d

a

b

c

d

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

r = 32

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

4a

8a

Ba

2a

2d

6d

9d

Bd

2c

5c

Ac

Fc

1b

6b

Eb

2b

q0

q4

q8

q12

q1

q5

q9

q13

q2

q6

q10

q14

q3

q7

q11

q15

q0

q5

q10

q15

q1

q6

q11

q12

q2

q7

q8

q13

q3

q4

q9

q14

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

Figure 11: Fault propagation in the LED cipher.

2. MCS−1: Use the inverse matrix

M−1 =









C C D 4

3 8 4 5

7 6 2 E

D 9 9 D









of the matrix M from the MCS operation to get the expressions

C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12) resp.

C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12) .

Obviously, the other expressions are computed in a similar way.

3. SR−1: As the operation only shifts the entries of the state matrix, the computed
expressions are unaffected.

4. SC−1: Inverting the SC operation results in

S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12)) resp.

S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12))

where S−1 is the inverse of the LED S-box, as shown in Table 5. The remaining
expressions are computed in the same way again.

52

2.4 Fault Attacks on LED-64

Table 5: The inverse LED S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S−1(x) 5 E F 8 C 1 2 D B 4 6 3 0 7 9 A

Generation of Fault Equations

The XOR difference between the two related expressions, one derived from C and the other
one from C ′, is computed and identified with the corresponding (unknown) fault value.
In case of a fault injected into the first state element s0, the fault value can be read off
the fault propagation in Figure 11 above. In this case, we get

4 · a = S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12)) +

S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12)) .

In summary, we get 16 fault equations for a fault injected at a particular 4-bit element
of the state matrix at the beginning of round r = 30. Before we list the fault equations,
we pause to introduce some notation. Let a, b, c, and d be indeterminates. Their concrete
values are determined in the evaluation phase of the attack and depend on the injected
fault value. In contrast to the example above, faults can occur in each of the 16 state
elements in round r = 30 and hence we need a more general approach to be able to
model all possibilities. Let l ∈ {0, . . . , 15} denote the fault location and let e0, . . . , e15
denote indeterminates, whose values depend on l. We call e0, . . . , e15 the fault coefficients.
Analysing the fault location l in a similar way as in Figure 11, we end up with four
categories, and thus four configurations for e0, . . . , e15. The possible assignments are
shown in Figure 12.

(e0, . . . , e15) =























(4, 2, 2, 1, 8, 6, 5, 6, B, 9, A, E, 2, B, F, 2), if l ∈ {0, 5, 10, 15}
(1, 4, 2, 2, 6, 8, 6, 5, E, B, 9, A, 2, 2, B, F), if l ∈ {1, 6, 11, 12}
(2, 1, 4, 2, 5, 6, 8, 6, A, E, B, 9, F, 2, 2, B), if l ∈ {2, 7, 8, 13}
(2, 2, 1, 4, 6, 5, 6, 8, 9, A, E, B, B, F, 2, 2), if l ∈ {3, 4, 9, 14}

Figure 12: Fault coefficients for the LED key tuple filtering equations.

The fault equations are denoted by Ex,i, where x ∈ {a, b, c, d} identifies the block
the equation belongs to and i ∈ {0, 1, 2, 3} the number of the equation. Figure 13 lists
the 16 equations in their most general form. For a concrete instance of the attack, we
assume that we are given the correct ciphertext C and the faulty ciphertext C ′ and we

53

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

assume henceforth that these values have been substituted for the variables cj and c′j , for
0 ≤ j ≤ 15, in the fault equations.

2.4.3 Key Filtering Mechanisms

The correct key satisfies all the fault equations derived in Figure 13. Our attack is based
on quickly identifying large sets of key candidates which are inconsistent with some of
the fault equations and excluding these sets from further consideration. The attack stops
when the number of remaining key candidates is so small that exhaustive search becomes
feasible. Key candidates are organized using a formalism called fault tuples (introduced
below), and filters work directly on fault tuples. The outline of our approach is as follows:

1. Key Tuple Filtering. Filter the key tuples and obtain the fault tuples together
with their key candidate sets. (This stage is partially inspired by the evaluation of
the fault equations in [191] and [235]).

2. Key Set Filtering. Filter the fault tuples to eliminate wrong key candidate sets.

3. Exhaustive Search. Find the correct key by considering all key candidates left
over from filtering.

Details on the individual stages and the parameter choice for the attacks are given
below.

Key Tuple Filtering

In the following, let x ∈ {a, b, c, d} and i ∈ {1, 2, 3, 4}. Each equation Ex,i depends only
on four key indeterminates, see Figure 13. In the first stage, we start by computing a
list Sx,i of length 16 for each equation Ex,i. The jth entry of Sx,i, denoted Sx,i(j), is the
set of all 4-tuples of values of key indeterminates which produces the jth field element
as a result of evaluating equation Ex,i at these values. Notice that we have to check 164

tuples of elements of F16 in order to generate one Sx,i(j). The computation of all entries
Sx,i(j) requires merely 165 evaluations of simple polynomials over F16. Since all entries
are independent from each other, the calculations can be performed in parallel.

In the next step, we determine, for every x ∈ {a, b, c, d} the set of possible values jx of x
such that Sx,0(jx), Sx,1(jx), Sx,2(jx), and Sx,3(jx) are all non-empty. In other words, we
are looking for jx which can occur on the left-hand side of equations Ex,0, Ex,1, Ex,2, and
Ex,3 for some possible values of key indeterminates. We call an identified value jx ∈ F16

a possible fault value of x.
By combining the possible fault values of a, b, c, d in all available ways, we obtain tuples

t = (ja, jb, jc, jd) which we call fault tuples of the given pair (C,C ′). For each fault tuple,

54

2.4 Fault Attacks on LED-64

e0 · a = S−1(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + k12)) +

S−1(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12)) (Ea,0)

e4 · a = S−1(3 · (c3 + k3) + 8 · (c7 + k7) + 4 · (c11 + k11) + 5 · (c15 + k15)) +

S−1(3 · (c′3 + k3) + 8 · (c′7 + k7) + 4 · (c′11 + k11) + 5 · (c′15 + k15)) (Ea,1)

e8 · a = S−1(7 · (c2 + k2) + 6 · (c6 + k6) + 2 · (c10 + k10) + E · (c14 + k14)) +

S−1(7 · (c′2 + k2) + 6 · (c′6 + k6) + 2 · (c′10 + k10) + E · (c′14 + k14)) (Ea,2)

e12 · a = S−1(D · (c1 + k1) + 9 · (c5 + k5) + 9 · (c9 + k9) + D · (c13 + k13)) +

S−1(D · (c′1 + k1) + 9 · (c′5 + k5) + 9 · (c′9 + k9) + D · (c′13 + k13)) (Ea,3)

e3 · b = S−1(C · (c3 + k3) + C · (c7 + k7) + D · (c11 + k11) + 4 · (c15 + k15)) +

S−1(C · (c′3 + k3) + C · (c′7 + k7) + D · (c′11 + k11) + 4 · (c′15 + k15)) (Eb,0)

e7 · b = S−1(3 · (c2 + k2) + 8 · (c6 + k6) + 4 · (c10 + k10) + 5 · (c14 + k14)) +

S−1(3 · (c′2 + k2) + 8 · (c′6 + k6) + 4 · (c′10 + k10) + 5 · (c′14 + k14)) (Eb,1)

e11 · b = S−1(7 · (c1 + k1) + 6 · (c5 + k5) + 2 · (c9 + k9) + E · (c13 + k13)) +

S−1(7 · (c′1 + k1) + 6 · (c′5 + k5) + 2 · (c′9 + k9) + E · (c′13 + k13)) (Eb,2)

e15 · b = S−1(D · (c0 + k0) + 9 · (c4 + k4) + 9 · (c8 + k8) + D · (c12 + k12)) +

S−1(D · (c′0 + k0) + 9 · (c′4 + k4) + 9 · (c′8 + k8) + D · (c′12 + k12)) (Eb,3)

e2 · c = S−1(C · (c2 + k2) + C · (c6 + k6) + D · (c10 + k10) + 4 · (c14 + k14)) +

S−1(C · (c′2 + k2) + C · (c′6 + k6) + D · (c′10 + k10) + 4 · (c′14 + k14)) (Ec,0)

e6 · c = S−1(3 · (c1 + k1) + 8 · (c5 + k5) + 4 · (c9 + k9) + 5 · (c13 + k13)) +

S−1(3 · (c′1 + k1) + 8 · (c′5 + k5) + 4 · (c′9 + k9) + 5 · (c′13 + k13)) (Ec,1)

e10 · c = S−1(7 · (c0 + k0) + 6 · (c4 + k4) + 2 · (c8 + k8) + E · (c12 + k12)) +

S−1(7 · (c′0 + k0) + 6 · (c′4 + k4) + 2 · (c′8 + k8) + E · (c′12 + k12)) (Ec,2)

e14 · c = S−1(D · (c3 + k3) + 9 · (c7 + k7) + 9 · (c11 + k11) + D · (c15 + k15)) +

S−1(D · (c′3 + k3) + 9 · (c′7 + k7) + 9 · (c′11 + k11) + D · (c′15 + k15)) (Ec,3)

e1 · d = S−1(C · (c1 + k1) + C · (c5 + k5) + D · (c9 + k9) + 4 · (c13 + k13)) +

S−1(C · (c′1 + k1) + C · (c′5 + k5) + D · (c′9 + k9) + 4 · (c′13 + k13)) (Ed,0)

e5 · d = S−1(3 · (c0 + k0) + 8 · (c4 + k4) + 4 · (c8 + k8) + 5 · (c12 + k12)) +

S−1(3 · (c′0 + k0) + 8 · (c′4 + k4) + 4 · (c′8 + k8) + 5 · (c′12 + k12)) (Ed,1)

e9 · d = S−1(7 · (c3 + k3) + 6 · (c7 + k7) + 2 · (c11 + k11) + E · (c15 + k15)) +

S−1(7 · (c′3 + k3) + 6 · (c′7 + k7) + 2 · (c′11 + k11) + E · (c′15 + k15)) (Ed,2)

e13 · d = S−1(D · (c2 + k2) + 9 · (c6 + k6) + 9 · (c10 + k10) + D · (c14 + k14)) +

S−1(D · (c′2 + k2) + 9 · (c′6 + k6) + 9 · (c′10 + k10) + D · (c′14 + k14)) (Ed,3)

Figure 13: The LED fault equations for key tuple filtering.

55

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

we intersect those sets Sx,i(jx) which correspond to equations involving the same key
indeterminates:

(k0, k4, k8, k12) : Sa,0(ja) ∩ Sb,3(jb) ∩ Sc,2(jc) ∩ Sd,1(jd)

(k1, k5, k9, k13) : Sa,3(ja) ∩ Sb,2(jb) ∩ Sc,1(jc) ∩ Sd,0(jd)

(k2, k6, k10, k14) : Sa,2(ja) ∩ Sb,1(jb) ∩ Sc,0(jc) ∩ Sd,3(jd)

(k3, k7, k11, k15) : Sa,1(ja) ∩ Sb,0(jb) ∩ Sc,3(jc) ∩ Sd,2(jd) .

By recombining the key values (k0, . . . , k15) using all possible choices in these four
intersections, we arrive at the key candidate set for the given fault tuple. If the size of
the key candidate sets is sufficiently small, it is possible to skip the second stage of the
attack and search all key candidate sets exhaustively for the correct key.

Each of the above intersections contains typically 24 − 28 elements. Consequently, we
expect key candidate sets with 216− 232 elements for one fault tuple. Unfortunately, often
several fault tuples are generated. The key candidate sets corresponding to different fault
tuples are pairwise disjoint by construction. Only one of them contains the true secret
key, but up to now we lack a way to distinguish the correct key candidate set (i.e. the
one containing the true key) from the wrong ones. Therefore, we would need to search
through all generated key candidate sets in the final bruteforce. Before we address this
problem in the next section, we illustrate key set filtering by an example.

We take one of the official test vectors from the LED specification and apply our attack.
It is given by

K = 01234567 89ABCDEF

M = 01234567 89ABCDEF

C = A003551E 3893FC58

C ′ = DBBA6F7B 1DED088C

where the faulty ciphertext C ′ is obtained when injecting the error e = 3 in the first
entry of the state matrix at the beginning of the 30th round. Although the attack is
independent of the value of the error, we use a specific one here in order to enable the
reader to reproduce our results. Evaluation of the fault equations provides us with the
following tables:

a 0 1 2 3 4 5 6 7 8 9 A B C D E F

#Sa,0 0 214 0 214 0 0 0 0 0 2
14 0 214 0 0 0 0

#Sa,1 0 0 0 0 213 213 214 0 0 2
13 0 213 0 213 213 0

#Sa,2 0 0 0 213 0 214 0 213 0 2
13 0 0 213 0 213 213

#Sa,3 0 0 213 0 213 0 213 213 0 2
14 0 213 213 0 0 0

56

2.4 Fault Attacks on LED-64

b 0 1 2 3 4 5 6 7 8 9 A B C D E F

#Sb,0 0 0 213 214 2
13 0 213 213 0 213 0 0 0 0 213 0

#Sb,1 0 213 213 213 2
14 0 213 0 0 0 213 0 213 0 0 0

#Sb,2 0 0 0 0 2
13 213 213 213 0 0 0 0 213 213 213 213

#Sb,3 0 0 0 214 2
14 0 0 0 213 0 0 213 213 0 0 213

c 0 1 2 3 4 5 6 7 8 9 A B C D E F

#Sc,0 0 0 213 0 2
13 0 213 213 213 2

14 0 0 0 0 0 213

#Sc,1 0 213 0 214 2
14 0 213 0 0 2

13 0 0 0 0 213 0

#Sc,2 0 213 0 0 2
13 0 0 0 0 2

13 213 213 214 213 0 0

#Sc,3 0 0 214 0 2
13 213 0 0 0 2

13 213 0 0 213 0 213

d 0 1 2 3 4 5 6 7 8 9 A B C D E F

#Sd,0 0 213 0 0 213 213 0 213 2
13 214 0 0 0 0 0 213

#Sd,1 0 213 0 0 0 0 213 0 2
14 0 213 0 213 0 213 213

#Sd,2 0 0 0 0 214 0 0 214 2
14 0 0 214 0 0 0 0

#Sd,3 0 213 213 0 0 0 214 0 2
14 0 0 0 213 0 0 213

Those columns that have four non-zero entries contribute to the possible fault values
and thus to the set of possible key candidates, as the correct secret key has to fullfil all
equations simultaneously. Above, these columns are marked in boldface. From this we
see that there are two fault tuples, namely (9, 4, 4, 8) and (9, 4, 9, 8). The corresponding
key candidate sets both have 224 elements, which results in an overall key space size of
225 candidates.

The problematic equations are obviously equations Ec,i for i ∈ {0, 1, 2, 3}. There are
two possible fault values, namely 4 and 9. So far we have no way of deciding which
set contains the key and thus have to search through both of them. Actually, in this
example the correct key is contained in the candidates set corresponding to the fault
tuple (9,4,4,8).

Key Set Filtering

In the following, we study the problem how to decide if a key candidate set contains the
true key or not.

Let xi ∈ F16 with i ∈ {0, 4, 8, 12} be the elements of the first column of the state matrix
at the beginning of round r = 31. The fault propagation in Figure 11 implies the following
equations for the faulty elements x′i:

x′0 = x0 + 4f ′

x′4 = x4 + 8f ′
x′8 = x8 + Bf ′

x′12 = x12 + 2f ′ .

57

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

Next, let yi ∈ F16 be the values that we get after adding the round constants to the
elements xi and plugging the result into the S-box. These values satisfy the following
equations:

S(x0 + 0) = y0

S(x4 + 1) = y4

S(x8 + 2) = y8

S(x12 + 3) = y12

S(x′0 + 0) = y0 + a

S(x′4 + 1) = y4 + b

S(x′8 + 2) = y8 + c

S(x′12 + 3) = y12 + d .

Now we apply the inverse S-box to these equations and take the XOR differences of the
equations involving the same elements yi, which results in the following system:

4f ′ = S−1(y0) + S−1(y0 + a)

8f ′ = S−1(y4) + S−1(y4 + b)

Bf ′ = S−1(y8) + S−1(y8 + c)

2f ′ = S−1(y12) + S−1(y12 + d) .

Finally, we are ready to use a filter mechanism similar to the one in the preceding
subsection. For a given fault tuple (a, b, c, d), we try all possible values of the elements yi
and check whether there is one for which the system has a solution for f ′. Thus, we have
to check four equations over F16 for consistency. This is easy enough and can also be
done in parallel on multiple processors. If there is no solution for f ′, we discard the entire
candidate set. We derived the equations above from a fault in entry s0. However, we can
model those equations also in a generic way, similar to the fault equations for key tuple
filtering as given in Figure 13. Therefore, we introduce another set of fault coefficients e′0,
e′1, e

′
2 and e′3, which depend on the fault location l and allow us to specify the generic

representation of the fault equations for key set filtering, see Figure 14.

e′0 · f ′ = S−1(w) + S−1(w + a)

e′1 · f ′ = S−1(x) + S−1(x+ b)

e′2 · f ′ = S−1(y) + S−1(y + c)

e′3 · f ′ = S−1(z) + S−1(z + d)

Figure 14: The LED fault equations for key set filtering.

For the fault coefficients e′0, e
′
1, e
′
2 and e′3 we get once more four categories of possible

assignments. These are shown in Figure 15.
Thus, if l is known, we just have to pick the corresponding assignments for the fault

coefficients. However, if l is unknown we have to check each of the four possibilities, since

58

2.4 Fault Attacks on LED-64

(e′0, . . . , e
′
3) =























(4, 8, B, 2), if l ∈ {0, 1, 2, 3}
(8, 6, 5, 6), if l ∈ {4, 5, 6, 7}
(B, E, A, 9), if l ∈ {8, 9, 10, 11}
(2, 2, F, B), if l ∈ {12, 13, 14, 15}

Figure 15: Values of the fault coefficients for the LED key set filtering equations.

an incorrectly chosen assignment does not yield any solutions at all, only the correct
one will generate solutions. Note that we are currently not using the absolute values for
w, x, y, and z for the attack, but it might be possible to further speed-up filtering by
integrating these values in the analysis.

Temporal and Spatial Aspects of the Filtering Mechanisms

The successful execution of the attack depends strongly on the fault injection in round 30:

1. Injecting the fault at an earlier round does not lead to useful fault equations, since
they would depend on all key elements k0, . . . , k15 and no meaningful key filtering
would be possible.

2. Injecting the fault in a later round results in weaker fault equations which do not rule
out enough key candidates to make exhaustive search feasible. As a consequence,
more fault injections might be required to successfully reconstruct the secret key.
Later we will describe in an other setting how to exploit multiple fault injections
for secret key reconstruction.

3. Recall that the shape of the fault equations, see Figures 13 and 14, depends on
the location l of the fault injection in round 30. Thus, if we allow fault injections
at random (and unkown) entries of the state matrix in round 30, the overall time
complexity rises by a factor of 4, since there are four fault location categories, as
shown in Figure 12. If we also take key set filtering into account, the time complexity
rises by a factor of 16, since there are an additional four categories for key set
filtering, see Figure 15, which do not overlap with the ones from key tuple filtering.

Relationship to AES

Several properties of LED render it more resistant to the fault-based attack presented in
this section, compared to AES as discussed in [191] and [235]. The derived LED fault
equations are more complex than their counterparts for AES [191, 235]. This fact is due to

59

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

the diffusion property of the MixColumnsSerial function, which is a matrix multiplication
that makes every block of the LED fault equations (Ex,j) (Section 2.4.2) depend on all 16
key indeterminates. In every block we have exactly one equation that depends on one of
the key tuples (k0, k4, k8, k12), (k1, k5, k9, k13), (k2, k6, k10, k14), and (k3, k7, k11, k15). In
contrast, AES skips the final MixColumns operation, and every block of its fault equations
depends only on four key indeterminates.

Note that the fault attacks against AES, as described in [191, 235], would become much
harder by adding the operation MixColumns to the last round of AES, since the time
for evaluating the AES equations rises up to the factor 232. Furthermore, as in the case
of LED, it is possible that several fault tuples have to be considered, further complicating
the attack.

2.4.4 Experimental Results

In this section, we report on some results and timings of our attack. The timings were
obtained on a 2.1 GHz AMD Opteron 6172 workstation having 48 GB RAM. The LED
cipher was implemented in C, the attack code in Python. We performed our attack on
10, 000 examples using random keys, plaintext units, and faults. The faults were injected
at the first element of the state matrix on the beginning of round r = 30. On average, it
took about 45 seconds to finish a single run of the attack, including key tuple and key set
filtering. The time for exhaustive search was not measured at this point. The execution
time of the attack could be further reduced by using a better performing programming
language like C/C++ and parallelization.

Table 6 shows the possible number of fault tuples (#ft) that appeared during our
experiments and the relation between the number of occurrences and the cases where
fault tuples could be discarded by key set filtering (Section 2.4.3). For instance, column 3
(#ft = 2) reports that there were 3926 cases in which two fault tuples were found and in
1640 cases one of them could be eliminated using key set filtering.

Table 6: Effects of key set filtering.

#ft 1 2 3 4 5 6 8 9 10 12 16 18 24 36

occurred 2952 3926 351 1887 1 307 394 15 1 101 39 10 14 2

discarded 0 1640 234 1410 1 268 359 14 1 101 38 10 14 2

ø discarded - 0.4 0.9 1.4 2.0 2.5 3.6 3.7 5.0 6.1 8.4 8.4 12.6 24.0

It is clear that key set filtering is very efficient. Especially if many fault tuples had to
be considered, some of them could be discarded in almost every case. But also in the more
frequent case of a small number of fault tuples there was a significant gain. Figure 16
shows this using a graphical representation (note the logarithmic y scale). Altogether,
in about 29.5% of the examples there was a unique fault tuple, in another 29.6% of the

60

2.4 Fault Attacks on LED-64

examples there were multiple fault tuples, none of which could be discarded, and in about
40.9% of the examples some of the fault tuples could be eliminated using key set filtering.

1 2 3 4 5 6 8 9 10 12 16 18 24 36

Number of Fault Tuples

100

101

102

103

104
Fr

e
q
u
e
n
cy

Key Set Filtering

#Occurrences
#Discards

Figure 16: Efficiency of key set filtering.

2.4.5 Extensions of the Fault Attack

In this section, we discuss some improvements and extensions of the attack as introduced
in Section 2.4.3.

Diagonal Fault Injections

The class of diagonal faults is a generalisation to faults injected only in a single state
element. Diagonal faults were introduced in [216] to attack AES. As the name suggests,
these faults are injected into the diagonal of the state matrix, so that the ShiftRows
operation moves the faulty elements to the same column. In the subsequent MixColumns
operation the faults are then still limited to the same column. Thus, diagonal faults
show the same fault propagation behaviour as faults injected only into a single element
of the state. Due to the similarity of LED to AES, it is not surprising that diagonal
fault injections are also applicable to LED and thus give an attacker some additional
degree of freedom without increasing the cost of the subsequent analysis. Figure 17 shows
an example of four diagonal faults injected in round 30 of the LED-64 encryption that
exhibit the same fault propagation behaviour in rounds 31 and 32. For a 4× 4 matrix
and a fixed diagonal there are

(

4

1

)

+

(

4

2

)

+

(

4

3

)

+

(

4

4

)

= 15

different fault patterns that all share the same propagation behaviour. Furthermore,
Figure 18 shows all of the four possible diagonal fault equivalence classes.

61

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

. . .

AC SC SR MCS

. . .

AC SC SR MCS

. . .

AC SC SR MCS

. . .

AC SC SR MCS

r = 30

r = 30

r = 30

r = 30

Figure 17: Diagonal faults in LED with the same fault propagation behaviour.

Multiple Fault Injections

It is possible to further reduce the key space by running the attack a second time with
the same key but a different plaintext or different fault value. Since the correct key has to
be in one of the candidate sets of both runs, a pairwise intersection of the key candidate
sets from the first and the second attack eliminates many “wrong” candidate sets, on the
one hand, and, on the other, greatly reduces the number of candidates in the correct one.
The following example illustrates this technique.

We repeat the attack from Section 2.4.3 with the same key K and plaintext M but a
different fault having the value e = A. It is again injected in the first entry of the state at
the beginning of round r = 30. This results in the following setup:

K = 01234567 89ABCDEF

M = 01234567 89ABCDEF

C = A003551E 3893FC58

C ′′ = 4FF1AA93 72F38074 .

The key filtering stage returns one fault tuple (3, 1, 6, 1) and the corresponding key
candidate set has a size of 221. Now we form the pairwise intersections of the key candidate

62

2.4 Fault Attacks on LED-64

. . .

AC SC SR MCS

. . .

AC SC SR MCS

. . .

AC SC SR MCS

. . .

AC SC SR MCS

r = 30

r = 30

r = 30

r = 30

Figure 18: Diagonal fault equivalence classes for LED.

sets of the first and second run. The only non-empty one contains just 1 key, which is
also the correct secret key. However, it might be not always the case that just a single
key remains after the computation of the intersections. Note that the attack would also
work if we vary the plaintext instead of the fault value. Obviously, only the key needs to
stay fixed.

A repetition of an attack may or may not be feasible in practice. Experiments demon-
strate that our technique works using a single attack; several attacks just further reduce
the set of key candidates on which to run an exhaustive search.

Extension of the Attack to LED-128

Recall that LED-128 uses a 128-bit key K which is split into two 64-bit subkeys K1

and K2 used alternatingly as round keys, see Figure 8. Since K1 and K2 are independent
from each other, a straightforward application of the procedure would result in fault
equations with too many indeterminates to allow sufficient key filtering. Unlike AES
(where reconstruction of the last subkey allows the derivation of all other subkeys from
the (bijective) key schedule [191]), LED-128 inherently resists the fault attack under the
assumptions of this chapter.

Still, LED-128 is vulnerable to a fault attack if we assume that the attacker has the

63

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

capability assumed in previous literature ([168], p. 298). If the key is stored in a secure
memory (EEPROM) and transferred to the device’s main memory when needed, the
attacker may reset selected bytes of the key, i.e., assign them the value 0, during the
transfer from the EEPROM to the memory. If we can temporary set the round key K2

to 0 (or any other known value) and leave K1 unchanged, then a simple modification of
our attack can derive K1. Using the knowledge of K1, we mount a second fault attack
without manipulating K2. This second attack is another modification of our attack and
is used to determine K2.

The attacker described in the attack on LED-128 has to be obviously very strong and
would not adhere to the fault models as introduced in Section 2.4.1, which is a major
disadvantage of this approach. In the next section, we extend the ideas from above and
derive a framework which allows to attack SPN block ciphers with independent subkeys.
This framework enables us to execute attacks on LED-128 and PRINCE under the more
realistic fault models RKF and RUF.

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

2.5.1 The Multi-Stage Fault Attack Framework

Let E be a block cipher with block size 2n and n ∈ N. We assume that the secret key k is
written as a concatenation of independent subkeys k = k0 ‖ k1 ‖ · · · ‖ ks−1 such that each
subkey is of size 2n. Further, we suppose that the encryption algorithm works on 2m-bit
sized parts (for m = 2 those are called nibbles) of the 2n-bit state. For the 64-bit ciphers
LED-128 and PRINCE two subkeys are used and we have n = 6, s = 2, and m = 2. The
proposed Multi-Stage Fault Attack is a known-plaintext attack, proceeds in s stages (one
stage per subkey) and its realisation in pseudo-code is illustrated in Algorithm 3.

The attack starts by encrypting a known plaintext p in the absence of faults and by
recording the obtained ciphertext c through querying an encryption oracle, which is
denoted by c = OEk (p), see Step 2. The oracle OEk symbolizes the attacked black box
device which, when supplied with a message p, returns its encrypted version c using the
secret key k. It is assumed that k is stored on the device and the attacker has no access
to it.

Each stage i ∈ {0, 1, . . . , s− 1} consists of one or several fault injections. We enumerate
the fault injections by j ∈ N. The particular parameters of a fault injection (location
and time) depend on the cipher under analysis and on the capabilities of the attacker.
For example, ciphers based on substitution-permutation networks typically require fault
injection two rounds before termination for successful differential fault analysis. Let
fij denote the fault induced during the jth fault injection of stage i and let cij be the
ciphertext obtained by a fault-affected encryption of p using k. This operation is denoted
through the oracle query cij = OEk,fij (p), see Step 8. Note that cij is observable by the
attacker, who is assumed to have physical access to the hardware into which he injects

64

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

faults. However, he may or may not know which fault fij was injected, as many physical
fault-injection techniques do not allow perfect control of the bits that flip as a result of
the disturbance. For more details on the fault models, refer to Section 2.4.1. Moreover,
Figure 19 shows an overview of multi-stage fault attacks on SPN block ciphers.

p R0 Rn−2 Rn−1 c′

k0 k1 kn−2 kn−1 knfaults faults

stage 1 stage 0

. . .

Figure 19: Overview on multi-stage fault attacks on SPN block ciphers.

We denote by analyse(c, cij), as used in Steps 10 and 15, a cipher-dependent procedure
that performs differential fault analysis and yields a set Kij of candidates for the ith part
ki of the secret key. We will introduce two instances of the procedure analyse(c, cij) for
the ciphers LED-128 in Section 2.5.2 and PRINCE in Section 2.5.4. Performing multiple
fault injections during the same stage results in multiple invocations of analyse(c, cij)
for different cij and therefore results in different sets of subkey candidates Kij . Since
the correct subkey ki must be contained in all Kij , it must also be contained in their
intersection Ki =

⋂

Kij which is frequently much smaller than the individual sets Kij .
Consequently, multiple fault injections reduce the size of the subkey candidate set. Note
that no reduction occurs if the same fault is injected multiple times, resulting in identical
cij ; in that case, the fault injection must be repeated.

After all stages have been performed, the final candidate set can be obtained by
computing the Cartesian product K = K0 × · · · ×Ks−1, where Ki are subkey candidate
sets calculated during the individual stages. As it will become apparent, it is possible to
further reduce this set and therefore the complexity of the subsequent brute-force search.

The Multi-Stage Fault Attack algorithm incorporates a mechanism to balance between
the available computational power and the number of fault injections necessary in order
to successfully execute the attack. As was observed above, more fault injections in stage i
will reduce the set of subkey candidates Ki. Let T be an estimate of time complexity
of one invocation of procedure analyse(c, cij) (either actual run-time in milliseconds or
number of operations). We define a sequence of threshold values τ0, . . . , τs−1 which have
the same unit as T . The value of τi roughly represents the amount of computational power
allocated to stage i; it will be used to set an upper bound for the number of invocations
of procedure analyse(c, cij) in stage i. In stage 0 at the beginning of the algorithm, fault
injections are continued until subkey candidate set K0 becomes so small that T ·#K0 < τ0
holds. In stage i, subkey candidate sets K0, . . . ,Ki−1 have been calculated already. Each
subkey combination (k0, . . . , ki−1) ∈ K0×· · ·×Ki−1 is used to partially decrypt c and cij

65

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

(see Steps 13 and 14) to obtain intermediate states v and vx. Then analyse is applied on v
and vx to construct candidates for ki. The worst-case number of procedure invocations is
#(K0 × · · · ×Ki−1), and the number of fault injections is set such that Ki is sufficiently
small to fulfil T ·#(K0× · · · ×Ki) < τi. In Step 24, we can leverage the knowledge which
x led to which key candidate set Kij by computing {x} ×Kij instead of the complete
Cartesian product, which obviously keeps the size of the final key candidate set K smaller.

2.5.2 Applications to LED-128

The attack on LED-128 is based on the differential fault analysis of LED-64, as introduced
in Section 2.4. Recall that it employs one fault injection and reduces the number of key
candidates to 219 – 226, a number that can be handled by exhaustive search. Applying
this attack to LED-128 would shrink the key space for the last applied subkey k0, but
considering all combinations of up to 226 candidates for k0 and 264 possibilities for the
second subkey k1 is clearly infeasible. The Multi-Stage Fault Attack algorithm solves
this problem in two stages i ∈ {0, 1}, one for the reconstruction of each 64-bit subkey
ki = ki,0 ‖ · · · ‖ ki,15 with nibbles ki,0, . . . , ki,15. The filtering mechanism is similar to the
one introduced in Section 2.4.3 and reuses the fault equations from Figure 13. However,
the inputs to the analyse function varies depending on the stage in the Multi-Stage Fault
Attack algorithm.

In more detail, to run the Multi-Stage Fault Attack on LED-128, we first produce faulty
ciphertexts c′0 in stage 0, by injecting faults in round r0 = 46. Then we apply analyse to
the pair of ciphertexts c and c′0 which generates a set of key candidates K0. Recall, as
described in Section 2.5.1, that multiple fault injections and thus multiple calls to analyse

might be necessary until the set K0 is smaller than the initially defined threshold τ0. In
stage 1 we inject faults in round r1 = 42 to get faulty ciphertexts c′1. Then, for each
x ∈ K0, we partially decrypt c and c′1 by 4 rounds and apply analyse to each of those
pairs which results in a key candidate set K1(x). The union of the sets K1(x) forms
the candidate set K1 of the subkey k1. As in stage 0, multiple fault injections might
be necessary to shrink K1 until its size is smaller than τ1. The final step of the attack
determines the correct key by a brute-force search on K0 ×K1.

Complexity Analysis of the Attack

Executing one run of the analyse method under the RKF model requires 220 evaluations
of single fault equations, as each one of the 16 fault equations Ex,i (see Figure 13), with
x ∈ {a, b, c, d} and i ∈ {0, 1, 2, 3}, depends on four key nibbles. Compared to that, the
evaluation of the fault equations for key set filtering (see Figure 14) has negligible time
complexity and hence is not considered further. The complexity for the RUF model is
even higher with 224 evaluations. Under that model, the location of the fault injection
is unknown and an attacker has to try all 16 possible combinations for the possible

66

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

Algorithm 3: multi_stage_fault_attack[s](p, τ, T)

Inputs:

p, a plaintext

τ = (τ0, . . . , τs−1), a sequence of thresholds

T , time complexity limit of analyse

Output:

k, the secret key

Algorithm:

1. i← 0, j ← 0, K ← ∅

2. c← OE
k (p)

3. while i < s do

4. Ki ← ∅

5. while τi ≤ T ·#(K ×Ki) or K = ∅ do

6. Kij ← ∅

7. fij
$
←− Fn

2

8. cij ← OE
k,fij

(p)

9. if K = ∅ then

10. Kij ← Kij ∪ analyse(c, cij)

11. else

12. for x ∈ K do

13. v ← partial_decryptx(c)

14. vx ← partial_decryptx(cij)

15. Kij ← Kij ∪ analyse(v, vx)

16. end

17. end

18. if j > 0 then

19. Kij ← Ki ∩Kij

20. end

21. Ki ← Kij

22. j ← j + 1

23. end

24. K ← K ×Ki

25. i← i+ 1, j ← 0

26. end

27. for k ∈ K do

28. if c = encryptk(p) then

29. return k

30. end

31. end

32. return ε

67

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

assignments of the fault coefficients e0, . . . , e15 (Figure 12) and e′0, . . . , e
′
3 (Figure 15).

This results in a complexity of about T · 220 (for RKF) respectively T · 224 (for RUF) for
stage 1 where T is the number of key candidates for k0.

2.5.3 Experimental Results

The results of the Multi-Stage Fault Attack on LED-128 were obtained from 10,000 runs
of the attack using the RUF model. Figure 20 shows the frequency for the numbers of
remaining key candidates after 1 and 2 fault injections for stage i ∈ {0, 1}. The number of
times a particular count of key candidates appeared during our experiments is displayed
on the Y-axis. Table 7 shows the numbers of key candidates if 1 and 2 fault injections
are performed in stage 0 and 1 of the attack. If the attacker injects just a single fault
in stage 0 he has to execute, on average, 224 · 223.64 = 247.64 evaluations of single fault
equations in stage 1. Even in the rare best case where stage 0 yields 217 key candidates,
the complete attack would require 241 evaluations, which is a rather high value if only
a medium amount of computational power is available. However, as soon as we inject
a second fault in stage 0, the number of key candidates for k0 drops very rapidly to an
average value of 23.26 which makes the analysis feasible even on slow hardware. Thus, 3
fault injections are required to break LED-128 on average: 2 in stage 0 and 1 in stage 1.

0 5 10 15 20 25 30

Binary logarithm of keyspace size

50

100

150

200

250

300

Fr
e
q
u
e
n
cy

Stage 0

1 Fault

2 Faults

0 5 10 15 20 25 30

Binary logarithm of keyspace size

50

100

150

200

250

300

Fr
e
q
u
e
n
cy

Stage 1

1 Fault

2 Faults

Figure 20: Frequency of LED-128 key set sizes in stages 0 and 1.

68

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

Table 7: Number of remaining candidates for ki in the LED-128 attack with i ∈ {0, 1}.

#keys after stage 0 #keys after stage 1

#faults 1 2 1 2

min 217.00 1 217.00 1
max 230.00 214.00 231.00 215.00

avg 223.64 23.26 223.71 23.32

median 224.50 28.00 225.00 28.50

2.5.4 Applications to PRINCE

The fault attack2 on PRINCE requires two stages, as k0 can be easily derived as soon
as k2 is known. First, we discuss the functionality of the analyse method. To produce
faulty ciphertexts for stage 0, we inject faults between the application of the S-Layer in
round R−18 and the multiplication with the matrix M ′ in round R−19 . For stage 1, we
inject faults exactly one round earlier. Figure 21 shows the fault propagation of a fault in
PRINCE over two R−1 rounds.

RCi

RCi+1

SR−1

SR−1

M′

M′

S−1

S−1

k1

k1

R-1
i

f f f ϕ(f)
0

ϕ(f)
1

ϕ(f)
2

ϕ(f)
3

w

x

y

z

R-1
i+1

w

x

y

z

w

x

y

z

w

x

y

z

ϕ(w)
0

ϕ(w)
1

ϕ(w)
2

ϕ(w)
3

ϕ(x)
2

ϕ(x)
3

ϕ(x)
0

ϕ(x)
1

ϕ(y)
3

ϕ(y)
0

ϕ(y)
1

ϕ(y)
2

ϕ(z)
3

ϕ(z)
0

ϕ(z)
1

ϕ(z)
2

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

Figure 21: Fault propagation in PRINCE over two R−1 rounds.

In order to construct the fault equations used for key candidate filtering, we start,
as in the case of LED, with the correct and faulty ciphertexts c = c0 ‖ · · · ‖ c15 and
c′ = c′0 ‖ · · · ‖ c′15 (or with the respective intermediate states in stage 1) and work
backward through the encryption, inverting each of the steps, up to the point before the
application of the last S-box. This corresponds to the last “matrix” in Figure 21. Let us
start by fixing notation.

2Note that a similar fault-based attack on PRINCE was developed independently in [228].

69

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

Let i ∈ {0, . . . , 15} and let vi and v′i be variables representing the ith nibble of the
correct and the faulty ciphertext (or the ith correct and faulty state nibble in case of
stage 1 of the attack), respectively. Moreover, the variables pi represent key nibbles and
qi round constants. In stage 0, we substitute the nibbles of RC11 for qi and in stage 1 the
nibbles of RC10 for qi.

Let us point out a particular feature of the attack on PRINCE: an adversary cannot
reconstruct one of the secret keys directly during stage 0 of the attack. The keys k1 and
k2 are applied immediately in succession during one run of the encryption (see Figure 10)
and thus we can only reconstruct the XOR value k1 ⊕ k2. However, this fact presents no
drawback for the feasibility of the attack. In stage 1, we directly reconstruct candidates
for k1 which then obviously allows to derive k2 from k1 ⊕ k2.

Let a = b0 ‖ b1 ‖ b2 ‖ b3 be a 4-bit value and j ∈ {0, . . . , 3}. Then we define ϕj(a) as
the value equal to a where the jth bit bj is set to 0. So, for example, for j = 2 we get
ϕ2(a) = b0 ‖ b1 ‖ 0 ‖ b3. Let w, x, y, and z be variables and let ji ∈ {0, . . . , 3} then we
can describe the fault equations Ei of PRINCE as outlined in Figure 22.

Ei : S(vi ⊕ pi ⊕ qi)⊕ S(v′i ⊕ pi ⊕ qi) =























ϕji(w), i ∈ {0, . . . , 3}
ϕji(x), i ∈ {4, . . . , 7}
ϕji(y), i ∈ {8, . . . , 11}
ϕji(z), i ∈ {12, . . . , 15}

Figure 22: Fault equations for PRINCE.

The values of the indices ji from the variables on the right-hand sides of the equations
Ei are derived from the multiplication of the state with the matrix M ′ (see Figure 21)
and depend on the location l of the injected fault. The possible assignments are listed in
Figure 23.

(j0, . . . , j15) =























(0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 3, 0, 1, 2), if l ∈ {0, 7, 10, 13}
(3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 2, 3, 0, 1), if l ∈ {1, 4, 11, 14}
(2, 3, 0, 1, 0, 1, 2, 3, 1, 2, 3, 0, 1, 2, 3, 0), if l ∈ {2, 5, 8, 15}
(1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3), if l ∈ {3, 6, 8, 12}

Figure 23: Fault location dependent values of the indices ji for the equations Ei.

A 4-bit value t is called valid with respect to pattern ϕji if the binary representation of

70

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

t has a 0 at the bit position ji. In the following, we use bit pattern matching to construct
inductively a set Si which will ultimately contain candidates for the nibble pi of the
subkey. Key candidate filtering is done in three steps: Evaluation, Inner Filtering, and
Outer Filtering which are described next. Note that the first two steps could be executed
together, but for better comprehensibility we describe them separately.

Evaluation

Each equation Ei is evaluated for all possible 4-bit values u of nibble candidates associated
to the variable pi. When the result of an evaluation t = Ei(u) has been computed, the
tuple (t, u) is appended to the set Si.

Inner Filtering

In this step, we check for all tuples (t, u) ∈ Si if the entry t is valid with respect to the
bit pattern ϕji . Those tuples that do not have a valid entry t are discarded, all others
are kept.

For example, we take fault equation E0 and assume that a fault was injected in nibble
l = 0. From the definition of ji above we see that the 0th entry of j0 is 0. Moreover, we
assume that the tuple (t, u) = (7, 3) is an element of S0 and observe immediately that
7 matches the bit pattern ϕj0 = 0 ‖ s1 ‖ s2 ‖ s3. Thus, (7, 3) is a valid tuple and 3 a
potential candidate for the nibble associated to p0.

Outer Filtering

The idea in the final filtering step is to exploit the fact that the elements of the sets
S4m, . . . , S4m+3 are related to each other for a fixed m ∈ {0, . . . , 3}. This is due to
the fact that the right-hand sides of the equations E4m, . . . , E4m+3 are derived from a
common pre-image. This can be utilized to build conditions for filtering candidates of the
nibbles associated to p4m, . . . , p4m+3. First, we fix m ∈ {0, . . . , 3} and order the tuples
(t4m+n, u4m+n) ∈ S4m+n lexicographically for all n ∈ {0, . . . , 3}. Next, we compute the
sets P4m+n containing the pre-images of all the values t4m+n. This is done as follows.
After the Inner Filtering, all values t4m+n match the bit pattern derived from ϕ4m+n.
However, we do not know if the j4m+nth bit of t4m+n had value 0 or 1 before it was fixed
to 0. Hence, we obviously have two possible values for the pre-images of t4m+n. One is
t4m+n itself and the other has a 1 at bit position j4m+n. Then we intersect the pre-image
sets P4m, . . . , P4m+3 with each other and obtain a set Gm of pre-image candidates. After
that, we check for each gm ∈ Gm if, for every n ∈ {0, . . . , 3}, there is at least one tuple
in S4m+n which has the value ϕi4m+n(gm) in its first component. If so, gm is a valid
pre-image. When all pre-images have been processed, all tuples are deleted from the sets
S4m, . . . , S4m+3, except those where the first entry has a valid pre-image gm. This finishes
the filtering stage.

71

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

Finally, after projecting the sets Si to their second components ui, the Cartesian
product over those projections is computed to get the key candidates for k1 ⊕ k2. If the
number of candidates for k1 ⊕ k2 is small enough, i.e., if it falls below the threshold τ0,
stage 0 of the attack ends. Otherwise, the procedure above is repeated as described in
the Multi-Stage Fault Attack algorithm in Section 2.5.1.

In the second stage of the attack, candidates for k1 are computed using the previously
described configurations for the fault injections. This is repeated until the number of
candidates for k1 falls below the specified threshold value τ1. As soon as this is the case,
the candidates for k1 and k1 ⊕ k2 are used to derive candidates for the subkeys k2 and k0.
Finally, a brute-force search on the Cartesian product K0 ×K1 is performed to find the
actual key k0 ‖ k1.

Complexity Analysis of the Attack

The complexity of the analyse method in the case of PRINCE is very low. The computa-
tionally most expensive part is the evaluation of the fault equations. For each of the 16
equations we have to compute 16 evaluations, since there are 16 possible values for the
key nibbles. Altogether, this results in 28 = 256 evaluations. As for the attacks on LED,
the number of evaluations is multiplied by a constant factor when using the RUF fault
model. In the case of PRINCE, this factor has the value 4, as there are four different
bit patterns for key candidate filtering and the attacker does not know which pattern is
the correct one, due to the unknown location of the fault injection. Therefore, all four
patterns ji (see Figure 23) have to be tried, which gives 210 = 1024 evaluations for one
run of analyse. In stage 1, the analyse method may be executed up to T times in the
worst case, where T is the number of k1 ⊕ k2 candidates. This results in a complexity of
about 28 · T or 210 · T evaluations, depending on the fault model which has been used.

2.5.5 Experimental Results

In this section, we describe the results of the Multi-Stage Fault Attack on PRINCE. All
results were obtained from 10,000 runs of the attack. For the computation of the results,
the weaker RUF fault model was used. We observed that the differences in the sizes of
the candidate sets between the fault models RKF and RUF were effectively non-existent.
This can be explained by the observation that in almost all cases the candidate sets
are empty when a wrong bit pattern (ji)i=0,...,15 is used for filtering. Figure 24 gives an
overview (with stacked bars) on the two stages of the attack for multiple fault injections
and Table 8 summarizes the results of the attack on PRINCE.

For stage 0, we get on average 230.89 candidates when injecting a single fault. This
results in an overall complexity of 240.89 evaluations of single fault equations for stage 1
under the RUF model. This is hardly feasible on common hardware. But with a second
fault injection in stage 0, the complexity drops to 211.44 evaluations, which is practically

72

2.5 Multi-Stage Fault Attacks on LED-128 and PRINCE

0 10 20 30 40 50

Binary logarithm of keyspace size

0

1000

2000

3000

4000

5000

Fr
e
q
u
e
n
cy

Stage 0

1 Fault

2 Faults

3 Faults

4 Faults

0 10 20 30 40 50

Binary logarithm of keyspace size

0

1000

2000

3000

4000

5000

Fr
e
q
u
e
n
cy

Stage 1

1 Fault

2 Faults

3 Faults

4 Faults

Figure 24: Frequency of PRINCE key set sizes in stages 0 and 1.

Table 8: Statistics for the number of candidates for k1 ⊕ k2 and k1.

#keys after stage 0 #keys after stage 1

#faults 1 2 3 4 1 2 3 4

min 217.00 1 1 1 216.00 1 1 1
max 250.00 238.00 224.00 212.00 249.00 244.00 240.00 243.00

avg 230.89 211.44 24.12 21.47 230.41 211.64 24.44 21.82

median 234.50 219.50 212.50 27.00 233.50 221.50 221.00 221.00

doable. Thus, on average, we need about two fault injections in stage 0 to be able to
finish stage 1. Furthermore, the numbers for stage 0 do not differ significantly from those
of stage 1, except for the median, which surprisingly stays rather constant after the first
fault injection. But as we only have to search through the generated key candidate sets,
the average of 230.41 is feasible for brute-force. Nevertheless, note that the maximal sizes
of the key candidate sets are still quite high. Thus there might be cases where more than
one fault injection is required for stage 1. In summary, our experiments show that on
average 3 to 4 faults are required to reconstruct the complete 128-bit key of PRINCE
with a Multi-Stage Fault Attack on common hardware.

2.5.6 Extensions of the Fault Attacks

The attacks presented on LED-128 and PRINCE can be extended to the setting of diagonal
faults analogically to LED-64 as discussed in Section 2.4.5. Recall, that diagonal faults give

73

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

an attacker some additional freedom during the fault injection phase, without affecting
the subsequent analysis. Since the structural differences between LED-64 and LED-128
are only minor ones, the same fault propagation patterns as presented in Figures 17
and 18 apply to LED-128. For PRINCE, the four diagonal fault equivalence classes are
depicted in Figure 25.

. . .

RCi SR−1 M′ S−1 k1

. . .

RCi SR−1 M′ S−1 k1

. . .

RCi SR−1 M′ S−1 k1

. . .

RCi SR−1 M′ S−1 k1

R
−1

i

R
−1

i

R
−1

i

R
−1

i

Figure 25: Diagonal fault equivalence classes for PRINCE.

2.6 Algebraic Fault Attacks on LED-64

In this section, we investigate an alternative approach to fault analysis, where we use
algebraic techniques instead of differential fault analysis to search for the secret key. We
also discuss the pros and cons of an algebraic solving strategy. We use the fault attack on
LED-64 as a basis for our investigations. Before going into the details of the attack we
first show how to model LED algebraically.

2.6.1 Algebraic Representation of LED

To get an algebraic representation of the LED cipher, we show for each step of the
encryption algorithm how to model it via multivariate polynomials over F2. For the
operations we refer to Section 2.2, where we described the specification of LED.

74

2.6 Algebraic Fault Attacks on LED-64

Recall that the 64-bit state s of the cipher is divided into 16 nibbles (4-bit strings)
s = s0 ‖ s1 ‖ · · · ‖ s15 and these are arranged in a matrix of size 4× 4 of the shape

s =









s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15









.

Moreover, each 4-bit sized entry si = a4i ‖ a4i+1 ‖ a4i+2 ‖ a4i+3, with 0 ≤ i ≤ 15,
is identified with an element of the finite field F16

∼= F2[x]/〈x4 + x + 1〉, as shown
in Section 2.2.1. The residue classes of {1, x, x2, x3} form an F2-vector space basis of
this field. Then si corresponds to the field element a4ix

3 + a4i+1x
2 + a4i+2x + a4i+3

where aj ∈ F2. In particular, if we combine the input bits to field elements mi =
p4ix

3 + p4i+1x
2 + p4i+2x+ p4i+3, the input state of the encryption map is represented by

the matrix

M =









m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15









of size 4× 4 over the field F16. Similarly, we can represent the key by a matrix K (or two
matrices K1 and K2 in case of LED-128) of size 4× 4 over F16.

To construct the polynomial representation of LED, we use indeterminates p0, . . . , p63
representing the bits of the plaintext, indeterminates k0, . . . , k63 (LED-64) or k0, . . . , k127
(LED-128) representing the key bits, and indeterminates c0, . . . , c63 representing the bits
of a ciphertext unit. The indeterminates x

(r)
i , y(r)i , and z

(r)
i represent the state of the

cipher after the operations AC, SR, and MCS during encryption round r, with more details
following below, where we construct the polynomial representation for each operation, as
introduced in Section 2.2.2. In case of LED-64 it is contained in the polynomial ring

F2[pi, ki, x
(r)
i , y

(r)
i z

(r)
i , ci | i = 0, . . . , 63; r = 1, . . . , 32]

which has no less than 6336 indeterminates. For LED-128 we require an additional 64
indeterminates k64, . . . , k127 to model the second half of the 128-bit key and the upper
limit of r is increased to 48, which results in an overall number of 9472 indeterminates.

AddConstants (AC): This operation forms a matrix from a round constant consisting of
a tuple of six bits (b5, b4, b3, b2, b1, b0) (see Table 1 for the concrete values) and a tuple
of eight bits (a7, a6, a5, a4, a3, a2, a1, a0) which encodes the binary representation of the
key size of LED. The matrix formed in this way (see Section 2.2.2) is added to the state
using bitwise XOR.

To represent this operation by polynomials, we distinguish whether a key addition
precedes AC or not and whether we model LED-64 or LED-128. We start with the

75

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

x
(r)
i = z

(r−1)
i + a7 for i ∈ {0, 16}

x
(r)
i = z

(r−1)
i + a6 for i ∈ {1, 17}

x
(r)
i = z

(r−1)
i + a5 for i ∈ {2, 18}

x
(r)
i = z

(r−1)
i + a4 for i ∈ {3}

x
(r)
i = z

(r−1)
i + a4 + 1 for i ∈ {19}

x
(r)
i = z

(r−1)
i + a3 for i ∈ {32, 48}

x
(r)
i = z

(r−1)
i + a2 for i ∈ {33, 49}

x
(r)
i = z

(r−1)
i + a1 + 1 for i ∈ {34, 50}

x
(r)
i = z

(r−1)
i + a0 for i ∈ {35}

x
(r)
i = z

(r−1)
i + a0 + 1 for i ∈ {51}

x
(r)
i = z

(r−1)
i + 1 for i ∈ {19, 34, 50, 51}

x
(r)
i = z

(r−1)
i + b

(r)
5 for i ∈ {5, 37}

x
(r)
i = z

(r−1)
i + b

(r)
4 for i ∈ {6, 38}

x
(r)
i = z

(r−1)
i + b

(r)
3 for i ∈ {7, 39}

x
(r)
i = z

(r−1)
i + b

(r)
2 for i ∈ {21, 53}

x
(r)
i = z

(r−1)
i + b

(r)
1 for i ∈ {22, 54}

x
(r)
i = z

(r−1)
i + b

(r)
0 for i ∈ {23, 55}

x
(r)
i = z

(r−1)
i otherwise

Figure 26: Polynomials modelling the AC operation of LED.

simplest case, i.e. modelling the operation without a key addition, where we get equations
as shown in Figure 26.

Every fourth round AC is preceded with a key addition which also includes input
whitening. In case of LED-64, we simply add the variable ki to the ith equation above.
For LED-128, the key variables k0, . . . , k63 and k64, . . . , k127 have to be used in an
alternating way according to the key usage, as shown in Figure 8. Further note that for
r = 1 the variables z

(r−1)
i have to be replaced by the plaintext variables pi.

SubCells (SC): During this step, every entry x of the state matrix is replaced by the
element S[x] from the S-box given in Table 2. Let x0 ‖ x1 ‖ x2 ‖ x3 be the 4-bit sized
input and y0 ‖ y1 ‖ y2 ‖ y3 the 4-bit sized output of S. An easy interpolation computation
shows that the S-box can be represented by polynomials as illustrated in Figure 27. In our
polynomial representation of the LED encryption algorithm, this step will be combined
with the next.

y0 = x0x1x3 + x0x2x3 + x1x2x3 + x1x2 + x0 + x2 + x3 + 1

y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x2x3 + x0 + x1 + 1

y2 = x0x1x3 + x0x2x3 + x1x2x3 + x0x1 + x0x2 + x0 + x2

y3 = x1x2 + x0 + x1 + x3

Figure 27: Polynomials modelling the S-box of LED.

ShiftRows (SR): For i = 1, 2, 3, 4, the ith row of the state matrix is shifted cyclically to
the left by i − 1 positions. Equivalently, this permutation of the 64-bit state in cyclic

76

2.6 Algebraic Fault Attacks on LED-64

notation can be described by

σ = (16 28 24 20)(17 29 25 21)(18 30 26 22)(19 31 27 23)

(32 40)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)

(48 52 56 60)(49 53 57 61)(50 54 58 62)(51 55 59 63) .

Note that the first row of the state matrix stays fixed under the SR permutation. Thus,
the indices 0, . . . , 15 do not appear in the above representation of σ.

Now we model the combined effect of SC and SR. Let i1 = 4i, i2 = 4i+ 1, i3 = 4i+ 2,
and i4 = 4i+ 3 for i = 0, . . . , 15. Then, in round r, we get the equations, as shown in
Figure 28.

y
(r)
σ(i1)

= x
(r)
i1

x
(r)
i2

x
(r)
i4

+ x
(r)
i1

x
(r)
i3

x
(r)
i4

+ x
(r)
i2

x
(r)
i3

x
(r)
i4

+

x
(r)
i2

x
(r)
i3

+ x
(r)
i1

+ x
(r)
i3

+ x
(r)
i4

+ 1

y
(r)
σ(i2)

= x
(r)
i1

x
(r)
i2

x
(r)
i4

+ x
(r)
i1

x
(r)
i3

x
(r)
i4

+ x
(r)
i1

x
(r)
i3

+

x
(r)
i1

x
(r)
i4

+ x
(r)
i3

x
(r)
i4

+ x
(r)
i1

+ x
(r)
i2

+ 1

y
(r)
σ(i3)

= x
(r)
i1

x
(r)
i2

x
(r)
i4

+ x
(r)
i1

x
(r)
i3

x
(r)
i4

+ x
(r)
i2

x
(r)
i3

x
(r)
i4

+

x
(r)
i1

x
(r)
i2

+ x
(r)
i1

x
(r)
i3

+ x
(r)
i1

+ x
(r)
i3

y
(r)
σ(i4)

= x
(r)
i2

x
(r)
i3

+ x
(r)
i1

+ x
(r)
i2

+ x
(r)
i4

Figure 28: Polynomials modelling the combined SC and SR operations of LED.

MixColumnsSerial (MCS): Every column v of the state matrix is replaced by the product
M · v, where M is the matrix

M =









4 1 2 2

8 6 5 6

B E A 9

2 2 F B









.

Let y
(r)
0 ‖ · · · ‖ y(r)63 be the state of the cipher after SR has been executed in round r

and let z(r)0 ‖ · · · ‖ z(r)63 be its state after MCS. The entries of the state matrix are the field
elements y

(r)
4i x

3 + y
(r)
4i+1x

2 + y
(r)
4i+2x+ y

(r)
4i+3 of F16. Plugging these into the above matrix

77

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

multiplication yields, for instance, the following first entry of the resulting state matrix:

z
(r)
0 x3 + z

(r)
1 x2 + z

(r)
2 x+ z

(r)
3 = x2 · (y(r)0 x3 + y

(r)
1 x2 + y

(r)
2 x+ y

(r)
3)

+ 1 · (y(r)16 x
3 + y

(r)
17 x

2 + y
(r)
18 x+ y

(r)
19)

+ x · (y(r)32 x
3 + y

(r)
33 x

2 + y
(r)
34 x+ y

(r)
35)

+ x · (y(r)48 x
3 + y

(r)
49 x

2 + y
(r)
50 x+ y

(r)
51) .

After expanding, simplifying, and comparing the coefficients of 1, x, x2, x3, we finally get
64 equations, listed in Figure 29, where jk = 4i+k, jk+4 = 4i+16+k, jk+8 = 4i+32+k,
and jk+12 = 4i+ 48 + k for i, k ∈ {0, 1, 2, 3}.

z
(r)
j0

= y
(r)
j2

+ y
(r)
j4

+ y
(r)
j9

+ y
(r)
j13

z
(r)
j1

= y
(r)
j0

+ y
(r)
j3

+ y
(r)
j5

+ y
(r)
j10

+ y
(r)
j14

z
(r)
j2

= y
(r)
j0

+ y
(r)
j1

+ y
(r)
j6

+ y
(r)
j8

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j15

z
(r)
j3

= y
(r)
j1

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j12

z
(r)
j4

= y
(r)
j0

+ y
(r)
j3

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j8

+ y
(r)
j10

+ y
(r)
j13

+ y
(r)
j14

z
(r)
j5

= y
(r)
j0

+ y
(r)
j1

+ y
(r)
j4

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j14

+ y
(r)
j15

z
(r)
j6

= y
(r)
j1

+ y
(r)
j2

+ y
(r)
j5

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j13

+ y
(r)
j15

z
(r)
j7

= y
(r)
j2

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j9

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j13

z
(r)
j8

= y
(r)
j1

+ y
(r)
j3

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j11

+ y
(r)
j15

z
(r)
j9

= y
(r)
j0

+ y
(r)
j2

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j12

z
(r)
j10

= y
(r)
j0

+ y
(r)
j1

+ y
(r)
j3

+ y
(r)
j6

+ y
(r)
j7

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j13

z
(r)
j11

= y
(r)
j0

+ y
(r)
j2

+ y
(r)
j3

+ y
(r)
j4

+ y
(r)
j5

+ y
(r)
j6

+ y
(r)
j8

+ y
(r)
j10

+ y
(r)
j14

+ Y
(r)
j15

z
(r)
j12

= y
(r)
j1

+ y
(r)
j5

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j13

+ y
(r)
j15

z
(r)
j13

= y
(r)
j2

+ y
(r)
j6

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j14

z
(r)
j14

= y
(r)
j0

+ y
(r)
j3

+ y
(r)
j4

+ y
(r)
j7

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j13

+ y
(r)
j15

z
(r)
j15

= y
(r)
j0

+ y
(r)
j4

+ y
(r)
j8

+ y
(r)
j9

+ y
(r)
j10

+ y
(r)
j11

+ y
(r)
j12

+ y
(r)
j14

+ y
(r)
j15

Figure 29: Polynomials modelling the MCS operation of LED.

The final key addition, which also finishes the algebraic representation of the LED-64

78

2.6 Algebraic Fault Attacks on LED-64

block cipher, is described by the equations

ci = z
(32)
i + ki

for i = 0, . . . , 63. It is clear that LED-128 has a similar description, using additional
indeterminates for the second key and the extra rounds.

2.6.2 Algebraic Representation of the LED Fault Equations

The algebraic representation of LED-64 constructed above is not suitable to launch
a successful algebraic attack. It involves too many non-linear equations in too many
indeterminates. To reconstruct the secret key from given (correct or faulty) plaintext –
ciphertext pairs requires additional information. This information will be furnished by a
fault attack. In Section 2.4, we discussed a method for injecting faults and using it to
break LED-64 by exhaustive search. In the following, we construct a polynomial version
of the fault equations, as shown in Figure 13.

Since these equations involve the inverse S-box map S−1 : F16 −→ F16, we need to find
a polynomial representation of this map. Using the values of this map, as given in Table 5,
and univariate interpolation, we construct the following polynomial representation of S−1:

S−1(y) = (x2 + 1) + (x2 + 1)y + (x3 + x)y2 + (x3 + x2 + 1)y3 + xy4+

(x3 + 1)y5 + (x3 + 1)y7 + (x+ 1)y9 + (x2 + 1)y10 + (x3 + 1)y11+

(x3 + x)y12 + (x+ 1)y13 + (x3 + x2 + 1)y14 .

Next, we plug the right-hand sides of the fault equations into this polynomial. We get
16 polynomial fault equations which are defined over the polynomial ring

F16[a, b, c, d, k̄0, . . . , k̄15, c̄0, . . . , c̄15, c̄
′
0, . . . , c̄

′
15] .

For every group of equations Et,0, Et,1, Et,2, Et,3 having the same left-hand side t ∈
{a, b, c, d}, we can form three differences Et,0 − Et,i = 0 with i = 1, 2, 3. Now, comparing
coefficients for {1, x, x2, x3} yields 48 equations in the bits k0, . . . , k63 of the secret key, the
bits c0, . . . , c63 of the correct ciphertext, and the bits c′0, . . . , c

′
63 of the faulty ciphertext.

Notice that we can use the field equations k2i + ki = 0, c2i + ci = 0, and (c′i)
2 + c′i = 0 for

simplification here.
Altogether, we find 48 polynomials in F2[k0, . . . , k63, c0, . . . , c63, c

′
0, . . . , c

′
63]. They all

have degree 3 and are composed of 3400 – 8800 terms. These polynomials will be called
the fault polynomials.

2.6.3 Experimental Results

In the preceding two sections, we derived polynomials describing the encryption map of
LED-64 and additional information gained from a fault attack. All in all, we found 6208

79

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

polynomials in 6336 indeterminates describing the encryption map, 6336 field equations,
and 48 fault polynomials in 192 indeterminates.

As mentioned previously, we assume that we are able to mount a known-plaintext-
attack and to repeat encryption involving the same key and the fault injection described
previously. For every concrete instance of this attack, we can therefore substitute the
plaintext bits, correct ciphertext bits, and faulty ciphertext bits into our polynomials.
After this substitution, we have 6208 polynomials in 6208 indeterminates for the encryption
map, 6208 field equations, and 48 fault polynomials in the 64 indeterminates of the secret
key.

The resulting fault polynomials consist typically of 40 − 150 terms. Some of them
(usually no more than 5) drop their degree and become linear. Of course, these linear
polynomials are particularly valuable, since they decrease the complexity of the problem
by one dimension. In the experiments reported below, it turned out to be beneficial to
interreduce the fault polynomials after substitution in order to generate more linear ones.

The polynomial systems can be solved using various techniques. For our experiments,
we applied the algorithms for conversion to a SAT-solving problem explained in [137].

All experiments were performed on a workstation having eight 3.5 GHz Xeon cores
and 50 GB of RAM. We used the SAT-solvers Minisat 2.2 (MS) and CryptoMiniSat 2.9.4
(CMS). All timings are averages over ten LED-64 instances with random plaintext, key,
and fault values.

In our first experiments, we measured the time to solve a given polynomial system
without further modifications using SAT-solvers, see the first part of Table 9. For
the second set of experiments, we first interreduced the fault polynomials and then
additionally appended all linear polynomials obtained this way to the system. In some
cases we were able to find more linear dependencies between the key indeterminates,
thereby reducing the dimension even further. Moreover, the SAT-solvers appear to benefit
from this simplification, because it is typically the number of terms in a polynomial that
complicates its logical representation. This seemingly minor modification results in a
meaningful speed-up, as we can see in the second part of Table 9.

In summary, it is clear that the proposed fault attack is able to break the LED-64
encryption scheme. While it is slower than the direct fault attack presented in Section 2.4,
it does not rely on the specific properties underlying the key filtering steps there and it
offers numerous possibilities for optimization.

2.7 Conclusion

In this chapter, we presented multiple contributions to the field of fault analysis of
lightweight block ciphers.

First, we demonstrated that the LED-64 block cipher has a vulnerability to fault-based
attacks which roughly matches that of AES. The improved protection mechanism of

80

2.7 Conclusion

Table 9: Average SAT-solver timings.

SAT solver MS (1 thread) CMS (1 thread) CMS (4 threads)

time (in sec) 90, 852 71, 656 22, 639
time (in h) 25.23 19.90 6.28

(a) Standard.

SAT solver MS (1 thread) CMS (1 thread) CMS (4 threads)

time (in sec) 36, 665 52, 835 11, 829
time (in h) 10.18 14.67 3.28

(b) With additional linear equations.

LED can be overcome through a filtering process of subsets of key candidates using
fault equations. Furthermore, we discussed extensions of single-nibble to diagonal fault
injections, which allow faults in up to four nibbles, without affecting the subsequent
cryptanalysis. Obviously, this gives an attacker a higher degree of freedom when injecting
faults. In our experiments, we could show that in most cases already one fault injection
is enough to break LED-64, i.e. to reconstruct the entire 64-bit key.

The 128-bit key version of LED is more challenging to attack. A direct application of
the techniques used on LED-64 is not sufficient to mount a successful attack on LED-128,
since the latter employs two subkeys, which are independent from each other, i.e. which
are not connected through a key schedule. This is in contrast to AES, where the knowledge
of one subkey allows the reconstruction of the master key, due to the bijectivity of the
AES key schedule. Although LED-128’s strength collapses if an attacker has the ability
to set one half of the key bits to a known value (e.g., during the transfer from a secure
memory location), this is usually quite a restrictive assumption and assumes a very
powerful adversary.

As a second contribution, we introduced the generic concept of multi-stage fault attacks
which target individual subkeys by multiple fault injections. One stage consists of several
fault injections followed by mathematical analysis that yields a set of candidates for a
subkey. We presented an algorithm that balances the number of fault injections allocated
to different stages, in order to keep the sizes of the final key candidate sets sufficiently
small for brute-force search. The generic algorithm estimates the expected effort for
each stage and then decides on the number of fault injections to be performed based on
user-specified threshold variables. Next to LED-128, we also illustrated the successful
application of the general principle to PRINCE, another lightweight block cipher, which
employs (almost) independent 64-bit subkeys. This approach allows us to break both

81

Chapter 2 Fault-based Attacks on the Block Ciphers LED and PRINCE

schemes with 3 to 4 fault injections on average. Similarly to the case of LED-64, we also
discussed diagonal fault injections for LED-128 and PRINCE.

The third contribution of this chapter is the extension of the fault attack on LED-64
to an algebraic setting. After providing a complete algebraic description of the LED
block cipher and showing how to convert the previously introduced fault equations into
fault polynomials, it turned out that the combined polynomial system was solvable by
state-of-the-art SAT solvers. Thus, algebraic attacks augmented with information from
fault injections are able to break the LED-64 encryption algorithm in practice. Extending
algebraic fault attacks to other ciphers, such as LED-128 and PRINCE, might be an
interesting next step. Due to the larger key size of 128 bits and the necessity to use
multiple fault injections, these ciphers are much more challenging to analyse, just as in
the of the classical differential (multi-stage) fault attack scenario.

82

Chapter 3

Fault-based Attacks on the Bel-T

Block Cipher Family

3.1 Introduction

In this chapter we investigate the vulnerability of the block cipher family Bel-T to fault-
based attacks. Bel-T has been approved as a standard of Republic of Belarus in 2011. The
specification of Bel-T in Russian language is available from the web site of its developer,
the Research Institute for Applied Problems of Mathematics and Informatics of the
Belarussian State University [98]. We are not aware of an English-language specification
of this cipher, nor of any published results on its security. Bel-T follows the Lai-Massey
scheme [176] which has similarities with both substitution-permutation networks and
Feistel networks. Earlier ciphers constructed according to this scheme include IDEA [176]
and its extension IDEA NXT, also known as FOX [144]. Fault-based attacks are known
for both IDEA [87] and FOX [79], yet these attacks are cipher-specific and do not utilize
the Lai-Massey construction per se and hence are not applicable to Bel-T. There are three
versions of Bel-T, which use secret keys of different lengths. Our fault-based attack is
applicable to all three versions but requires a different number of fault injections in order
to recover the entire secret key. The attack utilizes the property of Bel-T that the same
functionality with reordered parts of the secret key is used for encryption and decryption.

The differential fault analysis of Bel-T was presented at DATE 2015 [143].

Outline. The remainder of the chapter is organized as follows. Section 3.2 provides
the specification of the Bel-T block cipher family which is the first English-language
description of Bel-T as far as we know. In Section 3.3, the new fault-based attack is
described together with the results of our comprehensive simulation-based experiments.
The requirements on the fault injection precision and the countermeasures against the
attack are discussed in Section 3.4. Section 3.5 concludes the chapter.

83

Chapter 3 Fault-based Attacks on the Bel-T Block Cipher Family

3.2 The Block Cipher Bel-T

We describe the specification of Bel-T using the same notation as in the original (Russian-
language) document [98]. In particular, given u, v ∈ {0, 1}n, u⊕ v stands for the bit-wise
addition modulo 2 (exclusive-or) of u and v, and u ⊞ v and u ⊟ v, respectively, stand
for the arithmetical addition and subtraction of u and v modulo 2n, where u and v are
interpreted as unsigned integers.

According to that document, Bel-T is foreseen for use in six modes: electronic codebook
(ECB), cipher block chaining (CBC), cipher feedback (CFB), counter (CTR), message
authentication code (MAC), and hashing. Since our attack targets the block cipher itself,
we do not discuss these six modes in detail.

Bel-T is a block cipher which encrypts a 128-bit plaintext X using a 256-bit value
θ = θ1 ‖ . . . ‖ θ8 with 32-bit words θi for 1 ≤ i ≤ 8, to obtain the 128-bit ciphertext Y .
The Bel-T family consists of three ciphers which employ secret keys of different lengths
(128 bits, 192 bits, and 256 bits) and are identical otherwise. We call these versions
Bel-T-128, Bel-T-192, and Bel-T-256, respectively (the original document does not use
explicit names for these versions). The key setup is as follows:

• Bel-T-256: The value θ is identical to the 256-bit secret key.

• Bel-T-192: The first six words θ1, . . . , θ6 of θ correspond to the 192-bit secret key
and the remaining two words θ7 and θ8 are obtained by computing θ7 := θ1⊕θ2⊕θ3
and θ8 := θ4 ⊕ θ5 ⊕ θ6.

• Bel-T-128: The first four words θ1, . . . , θ4 of θ correspond to the 128-bit secret
key and the remaining four words θ5, . . . , θ8 are obtained by computing θ5 := θ1,
θ6 := θ2, θ7 := θ3 and θ8 := θ4.

The encryption is written by Y = Eθ(X), the decryption is written by Y = Dθ(X).
Both encryption and decryption are organised in eight rounds. Refer to Algorithm 4
(belt_encrypt) and Algorithm 5 (belt_decrypt) for the respective pseudocodes.

The rounds use different sets of round keys and are identical otherwise. Round keys are
32-bit values K1, . . . ,K56, where K1 = θ1, K2 = θ2, . . . ,K8 = θ8, K9 = θ1, . . . ,K56 = θ8.
In round i ∈ {1, . . . , 8}, seven round keys K7i−j , with 0 ≤ j ≤ 6, are used. Their order
is shown in Table 11, for encryption from top to bottom and for decryption the other
way round. Also note the different ordering of the K7i−j during encryption (top) and
decryption (bottom). The method setup_keys in Algorithms 4 and 5 loads the keys as
discussed above into the array variable K.

Three mappings G5, G13, and G21 : F32
2 → F32

2 are used, where Gr maps a 32-bit word
u = u1 ‖ u2 ‖ u3 ‖ u4, with ui ∈ F8

2, as follows:

Gr(u) = (H(u1) ‖ H(u2) ‖ H(u3) ‖ H(u4)) ≪ r .

84

3.3 Fault Attacks on Bel-T

Algorithm 4: belt_encrypt(θ,X)

Inputs:

θ ∈ F256
2 , X ∈ F128

2

Outputs:

Y ∈ F128
2

Algorithm:

1. K ← setup_keys(θ)

2. a ‖ b ‖ c ‖ d ← X

3. for i ∈ {1, . . . , 8} do

4. b← b⊕G5(a ⊞K7i−6)

5. c← c⊕G21(d ⊞K7i−5)

6. a← a ⊟G13(b ⊞K7i−4)

7. e← G21(b ⊞ c ⊞K7i−3)⊕ 〈i〉32
8. b← b ⊞ e

9. c← c ⊟ e

10. d← d ⊞G13(c ⊞K7i−2)

11. b← b⊕G21(a ⊞K7i−1)

12. c← c⊕G5(d ⊞K7i)

13. swap a and b

14. swap c and d

15. swap b and c

16. end

17. Y ← b ‖ d ‖ a ‖ c

18. return Y

Algorithm 5: belt_decrypt(θ,X)

Inputs:

θ ∈ F256
2 , X ∈ F128

2

Outputs:

Y ∈ F128
2

Algorithm:

1. K ← setup_keys(θ)

2. a ‖ b ‖ c ‖ d ← X

3. for i ∈ {1, . . . , 8} do

4. b← b⊕G5(a ⊞K7i)

5. c← c⊕G21(d ⊞K7i−1)

6. a← a ⊟G13(b ⊞K7i−2)

7. e← G21(b ⊞ c ⊞K7i−3)⊕ 〈i〉32
8. b← b ⊞ e

9. c← c ⊟ e

10. d← d ⊞G13(c ⊞K7i−4)

11. b← b⊕G21(a ⊞K7i−5)

12. c← c⊕G5(d ⊞K7i−6)

13. swap a and b

14. swap c and d

15. swap b and c

16. end

17. Y ← b ‖ d ‖ a ‖ c

18. return Y

Here, H is the S-box specified in Table 12 and ≪ r stands for a cyclical shift to the left
by r positions. The value 〈i〉32 in line 7) of Algorithm 4 stands for the binary number of
the round. The diagram in Figure 30 shows the functionality of a round. It also indicates
how Bel-T can be implemented in hardware.

Decryption, see Algorithm 5, is identical to encryption with one exception: round key
K7i is used in line 4) instead of K7i−6; round key K7i−1 is used in line 5) instead of K7i−5;
and so forth. This reduces the complexity of the algorithm, in particular for a hardware
implementation, where the same circuitry can be used for both encryption and decryption.
However, this feature is also instrumental for the fault-based attack presented in the next
section.

3.3 Fault Attacks on Bel-T

As has been mentioned above, the fault-based attack scenario assumes that the attacker
has physical access to the device that performs the encryption, is capable to encrypt
plaintexts of his choice and observe the resulting ciphertexts, to decrypt ciphertexts of
his choice and observe the resulting plaintexts, and to inject faults during encryption or
decryption. The objective of the attacker is to recover the secret key θ = θ1 ‖ . . . ‖ θ8
(recall that θi ∈ {0, 1}32). The key is stored within the device without being directly

85

Chapter 3 Fault-based Attacks on the Bel-T Block Cipher Family

Table 11: Key Usage in Bel-T.

i K7i−6 K7i−5 K7i−4 K7i−3 K7i−2 K7i−1 K7i

E
n
cr

y
p
ti
o
n

←
−
−
−
−
−
−
−

1 θ1 θ2 θ3 θ4 θ5 θ6 θ7

D
ecry

p
tio

n
←
−
−
−
−
−
−
−

2 θ8 θ1 θ2 θ3 θ4 θ5 θ6
3 θ7 θ8 θ1 θ2 θ3 θ4 θ5
4 θ6 θ7 θ8 θ1 θ2 θ3 θ4
5 θ5 θ6 θ7 θ8 θ1 θ2 θ3
6 θ4 θ5 θ6 θ7 θ8 θ1 θ2
7 θ3 θ4 θ5 θ6 θ7 θ8 θ1
8 θ2 θ3 θ4 θ5 θ6 θ7 θ8

i K7i K7i−1 K7i−2 K7i−3 K7i−4 K7i−5 K7i−6

accessible to the attacker.
Let X ∈ {0, 1}128 be an arbitrary plaintext and let Y ∈ {0, 1}128 be the ciphertext

calculated by the device in absence of any fault injections: Y = Eθ(X). The fault-based
attack is conducted by series of fault injections, where “fault injection” refers to performing
the encryption of the same plaintext X while injecting a transient fault and recording
the faulty ciphertext Y f . It is assumed that the secret key does not change during the
whole attack, that is, all fault-affected encryptions are performed using the same θ (and
the same X) as the fault-free encryption. Each fault injection determines several bits
of θ. Moreover, the same principle is applied to decryptions: Let X̃ be an arbitrary
ciphertext and let Ỹ = Dθ(X̃) be the plaintext obtained by decryption in absence of
faults. Injecting faults during decryption results in deviating plaintexts Ỹ = Df

θ (X̃).
Note that ciphertext X̃ does not need to match plaintext X used when performing fault
injections during encryption, but the secret key θ is assumed to be identical during all
fault-free and fault-affected encryptions and decryptions.

All faults used in our attack are applied during the last of the eight rounds of Bel-T.
Before we describe the concrete attacks on Bel-T, we introduce the two fault models that
are used in our analysis:

• The random fault model (RFM) assumes that an attacker can inject faults into an
element of the state at a freely chosen position, such that its value switches to a
random, unknown value.

• The chosen fault model (CFM) assumes that an attacker can inject faults into an
element of the state at a freely chosen position, such that the value of the state
element switches to a known value.

To perform our attack on Bel-T-128, we require only 4 RFM faults. For Bel-T-192 and
Bel-T-256 we likewise need 4 RFM faults, but 3 respectively 6 additional CFM faults.
We first describe the attack on Bel-T-128, because it also forms the basis for the fault
attacks on Bel-T-192 and Bel-T-256.

86

3.3 Fault Attacks on Bel-T

Table 12: The Bel-T S-box H.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 B1 94 BA C8 0A 08 F5 3B 36 6D 00 8E 58 4A 5D E4

1 85 04 FA 9D 1B B6 C7 AC 25 2E 72 C2 02 FD CE 0D

2 5B E3 D6 12 17 B9 61 81 FE 67 86 AD 71 6B 89 0B

3 5C B0 C0 FF 33 C3 56 B8 35 C4 05 AE D8 E0 7F 99

4 E1 2B DC 1A E2 82 57 EC 70 3F CC F0 95 EE 8D F1

5 C1 AB 76 38 9F E6 78 CA F7 C6 F8 60 D5 BB 9C 4F

6 F3 3C 65 7B 63 7C 30 6A DD 4E A7 79 9E B2 3D 31

7 3E 98 B5 6E 27 D3 BC CF 59 1E 18 1F 4C 5A B7 93

8 E9 DE E7 2C 8F 0C 0F A6 2D DB 49 F4 6F 73 96 47

9 06 07 53 16 ED 24 7A 37 39 CB A3 83 03 A9 8B F6

A 92 BD 9B 1C E5 D1 41 01 54 45 FB C9 5E 4D 0E F2

B 68 20 80 AA 22 7D 64 2F 26 87 F9 34 90 40 55 11

C BE 32 97 13 43 FC 9A 48 A0 2A 88 5F 19 4B 09 A1

D 7E CD A4 D0 15 44 AF 8C A5 84 50 BF 66 D2 E8 8A

E A2 D7 46 52 42 A8 DF B3 69 74 C5 51 EB 23 29 21

F D4 EF D9 B4 3A 62 28 75 91 14 10 EA 77 6C DA 1D

In the following, we denote the fault-free outputs at the end of encryption and decryption,
respectively, by w, x, y, and z, as in Figure 30, and the fault-affected outputs analogously
by w′, x′, y′, and z′.

3.3.1 Bel-T-128

We start our attack on Bel-T-128 with the aim to reconstruct subkey K7i−1 in the last
round of the encryption (i = 8), which corresponds to θ7 = θ3. For this purpose, we
inject the first fault f1 (RFM) into the state at position marked L1 in Figure 30. Note
that f1 can flip an arbitrary number of bits within the 32-bit word and the best results
are achieved during filtering if f1 affects all of the 4 bytes in L1. The value of f1 is not
immediately known to the attacker. However, it can be derived by observing the correct
and faulty ciphertexts Y and Y f1 at positions y and y′ of the output of the cipher and
calculating the XOR of these values: f1 = y ⊕ y′. The fault propagates through the key
addition of θ7, the application of G21 and the XOR with the b-part of the state, and
creates an XOR-difference w ⊕ w′, which is also directly observable at the outputs of the
cipher. Since the value at L1 corresponds to y during a fault-free encryption, subkey θ7
must obey the following formula:

G21(L1 ⊞ θ7)⊕G21((L1 ⊕ f1)⊞ θ7) = w ⊕ w′ . (3.1)

The XOR with the b-part of the state is ignored since it does not influence w ⊕ w′. All
values in the above equation are known except for θ7. Equation 3.1 is checked for all 232

87

Chapter 3 Fault-based Attacks on the Bel-T Block Cipher Family

a b c d

⊞ G5 ⊕ ⊞G21⊕

⊟ G13 ⊞

⊞

G21

⊞ ⊟⊕

⊞ G13 ⊞

⊞ G21 ⊕ ⊕ G5 ⊞

w x y z

K7i−6 K7i−5

K7i−4

K7i−3

K7i−2

K7i−1 K7i

〈i〉32

L1 L2

L3

L4 L5

◦ ◦

◦

◦ ◦

Figure 30: The ith Bel-T round with fault locations Lj .

bit combinations for θ7, and all candidates that satisfy the equation are collected in a set
called Θ7.

Referring again to Figure 30, we observe that keys added at K7i (= θ8 = θ4), can be
reconstructed analogously. Fault f2 is injected at position L2 during encryption in round
i = 8 and we use the information on f2 = x ⊕ x′ and z ⊕ z′ from the corresponding
outputs for our analysis. Thereby, we can reduce the number of candidates for subkey θ8
and store them in set Θ8.

For retrieval of the two missing subkeys θ1 (= θ5) and θ2 (= θ6), we exploit the property
that encryption and decryption of Bel-T are basically the same. We switch from encryption
to decryption and attack again the last round (i = 1). Looking at Table 11, we see that
at positions K7i and K7i−1 subkeys θ1 and θ2 are added to the state. Thus, injecting
faults f3 and f4 at positions L1 and L2 in decryption allows us to reconstruct the two

88

3.3 Fault Attacks on Bel-T

missing subkeys using the same approach as above. The candidates are stored in sets Θ1

and Θ2, respectively.
After the above filtering steps are finished, all of the candidates for the secret key

θ = θ1 ‖ · · · ‖ θ8 = θ1 ‖ θ2 ‖ θ7 ‖ θ8 ‖ θ1 ‖ θ2 ‖ θ7 ‖ θ8 must be obviously contained in the
following set:

Θ1 ×Θ2 ×Θ7 ×Θ8 ×Θ1 ×Θ2 ×Θ7 ×Θ8 .

In our experiments, this set was always sufficiently small to perform a brute-force search
for the correct key. If not, we can reduce this set by repeating one or all of the above
procedures and computing the intersection of the corresponding subkey candidate sets.

3.3.2 Bel-T-192

The attack on Bel-T-192 starts with the same 4 fault injections and the subsequent
analysis as in the Bel-T-128-case. Thus, we retrieve information on the values θ1, θ2,
θ7 = θ1 ⊕ θ2 ⊕ θ3, and θ8 = θ4 ⊕ θ5 ⊕ θ6 and store them in sets Θ1,Θ2,Θ7, and Θ8. Since
θ3 = θ7 ⊕ θ1 ⊕ θ2, the set of subkey candidates Θ3 is obtained from Θ1,Θ2 and Θ7 by
collecting all XOR combinations of values from these three sets. The missing subkeys are
two out of three from θ4, θ5, and θ6, since we already know the XOR of the latter three
from θ8.

Our next target is the key added at position K7i−2 in the last round of encryption,
which corresponds to θ6. The determination of this subkey cannot be achieved by injecting
an RFM fault before the key addition of K7i−2, because the difference propagates through
the latter and G13 but the result is masked by the ⊞-operation with the d-state, which is
unknown at this point and therefore leads to an unpredictable outcome. We switch the
fault model from RFM to CFM and assume that an attacker can inject faults which set a
part of the state to a fixed and known value. We assume for simplicity that this value
is 0 which is also reasonable from a practical perspective, since zeroing registers should
be comparably easy. However, the analysis works for an arbitrary value. The CFM fault
f5 is injected at position L3, resetting the d-state at this point to 0. This allows us to
build an equation for filtering θ6-candidates of the form

G13(s⊞ θ6)⊞ 0 = x′ (3.2)

where s = G5(x⊞ θ8)⊕ z. Recall that we already reduced the number of θ8-candidates at
this point. A search over all combinations of θ6 and θ8 candidates is therefore feasible, as
long as the number of θ8 values is not too large. During our experiments this was never
the case though, as described later. Finally, we again store all θ6 candidates which satisfy
Equation 3.2 in set Θ6.

Repeating the above approach for decryption is not necessary, since subkey θ3 is added
at position K7i−2, see Table 11, and we already restricted the number of candidates for
the latter in our previous analysis.

89

Chapter 3 Fault-based Attacks on the Bel-T Block Cipher Family

Our next target is the key addition K7i−4, where subkey θ4 is processed during the
last round of encryption. We need dual faults f6 and f7 at L4 and L5 which reset the
particular state words to 0 and circumvent masking with unknown state elements a and
b. The θ4 values that satisfy the resulting filtering equation

0⊟G13(0⊞ θ4) = y′ (3.3)

are stored in set Θ4.
The last missing subkey θ5 can be reconstructed from the knowledge of the candidates

for θ4, θ6 and θ8 = θ4⊕ θ5⊕ θ6. All θ5 candidates satisfying these relationships are stored
in set Θ5, and the complete key is again found by the brute force search in Θ1 × · · · ×Θ8.
In summary, 7 faults are sufficient to reconstruct the secret key θ for Bel-T-192.

3.3.3 Bel-T-256

Mounting the Bel-T-128 attack on Bel-T-256 (by injecting 4 RFM faults f1, f2, f3, and
f4) we can reconstruct candidates for subkeys θ1, θ2, θ7, and θ8. Unlike for Bel-T-192,
the remaining subkeys θ3, θ4, θ5, and θ6 are independent from the reconstructed keys.
All following faults are CFMs in the last round of encryption or decryption, which set
the attacked element(s) to 0. Using an approach similar to Bel-T-192, we can collect
information on subkey θ6. Repeating the same attack on the last round of decryption,
fault f6 at position L3 gives us candidates for θ3. The filtering equations for injections of
faults f5 and f6 are of a similar shape as Equation 3.2.

The last two subkeys θ4 and θ5 are reconstructed by dual fault injections f7 and f8, and
f9 and f10 at locations L4 and L5 during last round of encryption and decryption, respec-
tively, see again Table 11 and Figure 30, with filtering equations similar to Equation 3.3.
In summary, 10 fault injections are sufficient to break Bel-T-256.

3.3.4 Experimental Results

We performed 5, 000 runs for each of the above attacks and recorded the sizes of the
respective (sub)key candidate sets. Table 13 gives an overview on the results of our
simulations for Bel-T-128, Bel-T-192 and Bel-T-256. We listed only the results for the
actual (sub)keys and omitted the information on those that are generated during the
Bel-T “key-schedule”, like θ7 and θ8 in case of Bel-T-192, since they do not provide
any additional insights. Moreover, Figure 31 shows the corresponding distributions for
the sizes of the θ-candidate sets. The results clearly show that the fault injections as
detailed in Section 3.3 are sufficient to reduce the key space of each Bel-T variant such
that a subsequent brute-force on the remaining θ-candidates becomes feasible. The
implementation of our attack was written in C/C++, but did not exploit parallelisation.
All experiments were performed on a workstation with an AMD Opteron 6172 Processor
operating at 2.1GHz. Under these circumstances we measured, for the analysis of one

90

3.4 Practical Issues and Countermeasures

instance (i.e. reconstruction of one key) without the subsequent brute-force, average
running times of 148.0 (Bel-T-128), 287.0 (Bel-T-192), and 687.0 (Bel-T-256) seconds,
respectively.

Table 13: Statistics on the binary logarithms for the number of key candidates.

Θ Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

Bel-T-128

min 0.00 0.00 0.00 0.00 0.00 - - - -
max 22.00 10.00 10.58 17.00 10.58 - - - -
avg 5.11 3.32 3.17 5.64 3.00 - - - -
med 4.58 1.00 1.00 1.00 1.00 - - - -

Bel-T-192

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - -
max 40.00 10.32 10.00 17.58 0.00 19.17 9.58 - -
avg 10.06 3.32 3.00 7.71 0.00 11.26 2.81 - -
med 9.17 1.00 1.00 3.58 0.00 2.00 1.00 - -

Bel-T-256

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
max 39.00 10.00 10.00 10.00 0.00 0.00 10.58 16.00 10.58
avg 7.63 3.17 3.17 3.17 0.00 0.00 3.32 4.46 3.32
med 7.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00

3.4 Practical Issues and Countermeasures

The described attacks require the capability of the attacker to selectively target individual
32-bit words of the cipher state, or pairs of 32-bit words in the case of Bel-T-192 and Bel-
T-256 without inducing faults elsewhere in the cipher. This rules out low-precision fault-
injection techniques like clock manipulation, underpowering, overheating or illumination
by X-rays. In contrast, high-precision attacks using lasers [103] or electromagnetic EM
pulses [101] may require deprocessing and preparation of the device under attack as well as
adequate instrumentation. The need to inject CFM faults translates to spatial resolution
below gate level, i.e. the ability to target individual transistors within a logic gate or a
memory cell.

If Bel-T is implemented in hardware, the attacks may either target the cells of the
register in which the respective subkey is stored, or the combinational logic which drives
this register. If Bel-T is implemented in software and runs on a microprocessor, the
attacks may target the architectural register in which the corresponding variable is stored
or the arithmetic-logic unit which calculates it. In both cases, the attacker must determine
which register in the circuit or microprocessor stores the value to be manipulated and
which point of time corresponds to round eight of encryption or decryption. If the attacker
has control over the clock signal of the circuit or microprocessor, the timing of fault
injection is simplified; otherwise the attacker must deduce the right point in time from
side-channel analysis, e.g. by observing variations in power consumption at the beginning
of each round.

91

Chapter 3 Fault-based Attacks on the Bel-T Block Cipher Family

0

200

400

600

800

1000

1200

Fr
e
q
u
e
n
cy

Bel-T-128

0

200

400

600

800

1000

1200

Fr
e
q
u
e
n
cy

Bel-T-192

0 5 10 15 20 25 30 35 40

Binary logarithm of number of key candidates

0

200

400

600

800

1000

1200

Fr
e
q
u
e
n
cy

Bel-T-256

Figure 31: Experimental results for the fault analysis of Bel-T.

Some of the known countermeasures are effective against the above attack. Design
obfuscation will at least complicate the task to identify the location and the time of fault
injection. Light sensors aiming at detection of attempts to open the package will be
effective against laser attacks which require deprocessing but not against EM pulses which
act through the package. Voltage drop or current sensors will detect the attacks if they
are placed close enough to the vulnerable structures. Concurrent error-detection schemes
with a sufficient fault coverage will report the injected faults. Frequent regeneration of
the secret key will provide protection only if the complete attack (1 fault-free run and
4, 7, or 10 runs with injected faults) cannot be finished with the same key. All these
countermeasures are associated with some cost and techniques to circumvent them are
known.

3.5 Conclusion

We presented a detailed fault analysis of the Bel-T block cipher family by showing for each
of its three variants, differing by key sizes of 128-, 192-, and 256-bit, how to successfully
mount attacks requiring only 4, 7 and 10 faults, respectively. The attack against Bel-T-128
can be performed completely under a very weak fault model (RFM). The attacks on
Bel-T-192 and Bel-T-256 using RFM faults recover only 96 and 128 bits of the 192- and

92

3.5 Conclusion

256-bit master key. Under a slightly stronger fault model (CFM) the security of the
latter two variants collapses nevertheless and the entire secret key can be reconstructed.
Our experiments show that all attacks yield compact sets of key candidates for which
brute-force search is practical.

93

Chapter 4

NORX: Parallel and Scalable

Authenticated Encryption

4.1 Introduction

This chapter introduces NORX a novel authenticated encryption scheme supporting
associated data (AEAD). NORX has been submitted in early 2014 as a first round candidate
to CAESAR, a cryptographic competition which aims to find the next generation of
authenticated encryption primitives.

Cryptographic competitions [92] have a long-standing tradition in the cryptographic
community. The very first was announced in 1997 by the National Institute of Standard
and Technologies (NIST) of the United States of America, with the aim to replace the
ageing Data Encryption Standard (DES) by a new Advanced Encryption Standard (AES).
A total of 15 designs were submitted to the first round of the competition and five of
them advanced to the second, namely MARS [132], RC6 [210], Rijndael [95], Serpent [6],
and Twofish [219]. Finally, in October 2000, NIST chose the algorithm Rijndael, designed
by Daemen and Rjimen, two Belgian cryptographers, to become the AES [96] and thereby
ending the contest.

Beyond the selection of the AES, this first cryptographic competition is generally
viewed as a huge success for the entire field of cryptology and in particular for secret-key
cryptography. Especially its openness was a completely new approach and turned out
to be very appropriate for the task of finding new cryptographic algorithms suitable for
widespread adoption. The openness had major advantages over the common approach
used until that time: prior to that, most cryptographic algorithms were created in secret,
i.e. the design process was completely non-transparent, and afterwards specifications were
kept proprietary. For example, after the Second World War, cryptographic algorithms
were considered military equipment in the United States and it was illegal to sell or
distribute encryption technology to foreign countries. All these points made it very hard
to analyse cryptographic algorithms and assess their security. As a consequence, many
of those designs experienced little or even no 3rd-party cryptanalysis at all, but still
found their way into production environment, which in turn led to countless security

95

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

disasters. In comparison, algorithms submitted to the AES competition were designed by
leading and well-known experts of the field and surveyed by the cryptographic community
over many years. The transparency of the design process and the continuous analysis
of the algorithms obviously led to a much better understanding of their strengths and
weaknesses. It also generated a very high level of trust in the security of the five finalists,
which remain (practically) unbroken to the present day.

Due to the success of the format, it is not very surprising that new competitions
emerged shortly thereafter: in 2004, the ECRYPT Stream Cipher Project (eSTREAM)
[107] searched for new and innovative stream cipher designs for hard- and software
architectures. After its announcement, 34 designs were submitted to the first round and
eight made it to the final selection, which were divided in two portfolios: HC-128 [245],
Rabbit [69], Salsa20 [41], and SOSEMANUK [34] for software and F-FCSR [10], Grain [2],
MICKEY [22], and Trivium [86] for hardware. However, F-FCSR was broken shortly
after the announcement of the final selection and was therefore removed from the latter.

The next contest, the SHA-3 Competition [222], was announced by NIST in 2007 and
ended in 2013. The main motivation was a series of attacks in 2004 and 2005 on the
hash functions MD5 and SHA-0 that found practical collisions [57, 239, 241]. Yet another
result even showed how to construct collisions in SHA-1 [240] requiring approximately 269

operations. Although the above attack was only a theoretical break, it became clear that
it would be only a matter of time until a first practical collision would have been found
for SHA-1, too. Another concern was the proximity of the SHA-2 design to MD5, SHA-0,
and SHA-1, which posed the threat that attacks on the latter three algorithms are also
expandable to SHA-2. Thus, a demand for action was obviously necessary, in order to
have a good fall-back algorithm in case of another unexpected cryptanalytic advancement
on the SHA hash function family, which then might even threaten the security of SHA-2.
A total of 51 designs were accepted to the first round and five made it to the finals:
BLAKE [16], Grøstl [118], JH [246], Keccak [47], and Skein [112]. Finally, in 2013, NIST
selected Keccak as the winner of the contest, due to its very high speed in hardware
and its structural differences from SHA-2. At the time of writing this thesis, Keccak is
under standardisation to become the new SHA-3 standard.

The latest two iterations of contests, announced in 2013, feature the Competition for
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) [84] and
the Password Hashing Competition (PHC) [206]. Both of them officially started in 2014.

The motivation behind the PHC is the poor state-of-the-art of password hashing
schemes and the low variety of available methods. Just a single scheme was standardised
by NIST, namely PBKDF2 [147], and beyond that only two more alternatives exist:
bcrypt [209] and scrypt [204]. Normal cryptographic hash functions, like the (still) widely
used MD-5 and SHA-1, are completely unsuitable for the task of password hashing,
since they have no protection against dedicated brute-force cracking methods running on
graphics processing units (GPU), field-programmable gate arrays (FPGA) or application-
specific integrated circuits (ASIC). An attacker who has access to specialised hardware

96

4.1 Introduction

implementing such hash functions can enumerate exhaustively a huge search space very
efficiently by exploiting massive parallelism and thus has a large advantage over the
defender who deems the password protected through the hash. However, any good
password hashing scheme should neutralise the advantage of an attacker who is trying
to brute-force a password through the employment of specialised hardware. PBKDF2,
bcrypt and scrypt all provide this feature in one way or the other, but there is still lots
of room for improvements. We do not go into further details at this point and refer the
interested reader to the official PHC website [206] instead.

CAESAR, the second competition that started in 2014, invited cryptographers to submit
authenticated encryption schemes supporting associated data that offer advantages over
AES-GCM [96, 196], the current de-facto standard, and are suitable for widespread
adoption. An authenticated encryption (AE) scheme provides not only confidentiality
of the processed data but also ensures its integrity and authenticity. An adversary
intercepting a message protected in such a way can neither learn something about the
plaintext data nor can he modify the transmitted data without being detected. Finally, the
receiver can also verify that the data originates from a legitimate source using the shared
secret keys. An extension of AE are authenticated encryption schemes with associated
data (AEAD) [211]. Associated data (AD) is only authenticated during processing
but not encrypted, i.e. authenticity and integrity of the associated data are ensured
but it is transmitted in clear. Associated data can take many forms like meta data or
routing information in TCP/IP packets. A more detailed introduction to the topic of
authentication encryption is given in Section 1.1.5.

Over time serious mistakes were committed in many cases during design, implementation,
and application of AE(AD) schemes, which led to numerous security disasters. To name
just a few, as listed on the cryptographic competitions website [92]: in 2007, an attack
on the Wired Equivalent Privacy (WEP) standard [232], as used in many 802.11 Wi-Fi
networks, was presented. The attack exploits weaknesses in RC4, the underlying cipher,
and allows to recover the secret WEP key from a few intercepted ciphertext messages
within minutes. In 2009, an attack on the OpenSSH protocol [4] showed how to recover
32 plaintext bits with probability 2−18 at a position freely selectable by the attacker. The
problem that made this attack possible was a flaw in the interaction between encryption
and authentication mechanisms as used by OpenSSH. In 2012, a flaw was found in
EAXprime [185], an authenticated encryption block cipher mode standardised by ANSI
under the number C12.22-2008 for smart grid applications that was even subject of a
forthcoming NIST standard. EAXprime can be instantiated with an arbitrary block
cipher, like AES, and transforms the latter into an authenticated encryption mode. The
flaw can be exploited to mount a fast forgery attack on EAXprime, which allows an
adversary to create ciphertexts that seem valid even though they were not created by
the actual encryptor. Moreover, the attack works independently of the underlying block
cipher. In 2015, researchers disclosed severe vulnerabilities [142, 174] in the cryptographic
infrastructure of the Open Smart Grid Protocol (OSGP) which uses an AE scheme based

97

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

on RC4 and a self-made MAC. The differential attacks discussed in [142] focus on the
MAC and are particularly critical. Some of them fall into the ciphertext-only attack
category and allow to reconstruct the secret key used in OSGP’s smart-meters in a
practical scenario.

Due to the many problems with authenticated encryption schemes, the cryptographic
community decided that new solutions need to be found, which are safer, faster, and easier
to use than the existing options and especially AES-GCM. These ambitions culminated
in the mentioned CAESAR competition.

The first round of CAESAR accepted 57 submissions and the chapter at hand presents
NORX1, our candidate for the competition. NORX is a state-of-the-art authenticated
encryption scheme supporting associated data. It relies on well-known building blocks
proven successful through years of cryptanalysis and which have been improved further
during the design phase to meet our objectives. The layout of NORX is based on the
monkeyDuplex construction [44, 48], extended by the capability to process data in parallel
and an (almost) freely tunable parallelism degree. The monkeyDuplex construction
belongs to the family of so-called Sponge functions, developed alongside of Keccak [47],
the winner of the SHA-3 competition. Thanks to the duplex construction, the size of the
authentication tag can be adapted very easily to meet the requirements of the application
at hand. An original domain separation scheme allows simple processing of header,
payload and trailer data. NORX was optimized for efficiency in both soft- and hardware,
with a SIMD-friendly core, almost byte-aligned rotations and no secret-dependent memory
lookups.

The NORX core traces its legacy back to the ARX primitives Salsa20 [41], ChaCha [40],
and BLAKE(2) [16, 21]. Salsa20 is a stream cipher designed by Bernstein in 2005 and
is a member of the final portfolio of the eSTREAM contest mentioned above. ChaCha,
the successor of Salsa20, is another step forward in terms of security and speed and is
capable to even exceed the performance of AES implementations using the Advanced
Encryption Standard New Instructions (AES-NI) by Intel [122]. BLAKE and BLAKE2
are ChaCha-based hash functions, designed by Aumasson et al. BLAKE is one of the five
finalists of the SHA-3 contest and known for its high security margin and very good speed
in software. BLAKE2 improves even more on the software performance, aiming to provide
a secure and faster alternative to MD5, which is still widely used due to its high software
speed despite beeing insecure. The NORX core function is very close to that of ChaCha
et al. but replaces integer addition with an approximation of the latter exclusively based
on bitwise logical operations. The intention behind this design decision was to simplify
security analysis, improve hardware efficiency and provide resistance to timing attacks.
Furthermore, NORX specifies a dedicated datagram to facilitate interoperability, protect
the users from the trouble of defining custom encoding and signalling, and to simplify
integration into existing protocol stacks. Measurements show that the performance of

1The name stems from “NO(T A)RX” and is pronounced like “norcks”.

98

4.2 Specification

NORX is very good in both soft- and hardware. For example, the results from the
SUPERCOP [230] software benchmarking suite for cryptographic primitives show that
NORX is very fast on a broad range of platforms. In fact, it is among the top algorithms
of all the CAESAR submissions and it seems to be the fastest Sponge-based scheme on
most of the examined platforms.

The NORX family of authenticated encryption schemes was presented at ESORICS
2014 [20]. Additionally, we gave a talk on CAESAR and NORX at the 31st Chaos
Communication Congress [17].

Outline. Section 4.2 gives a complete specification of the NORX family of AEAD sche-
mes. Section 4.3 presents security goals and discusses results on the security bounds
of the NORX mode of operation. In Section 4.4, we first discuss the features of NORX,
then we justify the choice of the cipher’s parameters and finally report on performance
measurements: we show results of our software evaluation on 32- and 64-bit processors
and describe the results of an evaluation of the scheme on an ASIC performed by an
external party. Section 4.5 motivates design decisions. Finally, in Section 4.6, we conclude
the chapter and give an outlook on possible future developments.

4.2 Specification

4.2.1 Preliminaries

In the following, we introduce techniques to convert bit strings to integer vectors and vice
versa which are used in the specification of NORX.

Let m,n ∈ N and let v = (v0, . . . , vm−1) ∈ Zm
2l

and w = (w0, . . . , wn−1) ∈ Zn
2l

be l-bit
integer vectors of length m and n, respectively. We denote the concatenation of v and w
by v ‖ w = (v0, . . . , vm−1, w0, . . . , wn−1) ∈ Zm+n

2l
. Now let l,m, n ∈ N such that n = lm.

Then we define the function

to_int l : F
n
2 → Zm

2l , x0 ‖ · · · ‖ xn−1 7→ (v0, . . . , vm−1)

with

vi =

l−1
∑

j=0

2jxil+j

for all i ∈ {0, . . . ,m − 1} which converts an n-bit string to a vector of l-bit integers of
length m. For the other direction, we define

to_strl : Z
m
2l → Fn

2 , (v0, . . . , vm−1) 7→ x0 ‖ · · · ‖ xm−1

with
xi =

vi
20

mod 2 ‖ · · · ‖ vi
2l−1

mod 2

99

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

for all i ∈ {0, . . . ,m − 1} which converts a vector of l-bit integers of length m to a bit
string of length n. It obviously holds that to_strl(to_int l(X)) = X for an arbitrary n-bit
string X with n = lm.

4.2.2 Parameters and Interface

The NORX family of authenticated encryption schemes is parametrised by a wordsize w

of 32 or 64 bits, a number of rounds 1 ≤ r ≤ 63, a parallelism degree 0 ≤ d ≤ 255, and a
tag size of t ≤ 10w bits, with a default of t = 4w bits.

Encryption Mode

A NORX instance in encryption mode takes as input, a secret key K ∈ Fk
2 with k = 4w, a

nonce N ∈ Fn
2 with n = 2w, and a message M = A ‖ P ‖ B, where A ∈ F∗2 is a header,

P ∈ F∗2 is a payload, and B ∈ F∗2 is a trailer. A and B are both considered as associated
data. NORX encryption produces a ciphertext (or encrypted payload) C ∈ F∗2 of the same
size as P and an authentication tag T ∈ Ft

2. In summary, NORX encryption E is specified
as

E : Fk
2 × Fn

2 × F∗2 × F∗2 × F∗2 → F∗2 × Ft
2

with
EK(N,A, P,B) = (C, T)

where |P | = |C|.

Decryption Mode

A NORX instance in decryption mode takes as input a secret key K ∈ Fk
2 with k = 4w

bits, a nonce N ∈ Fn
2 with n = 2w bits, a message M = A ‖ C ‖ B, where A ∈ F∗2 is a

header, C ∈ F∗2 is an encrypted payload, and B ∈ F∗2 is a trailer, and an authentication
tag T ∈ Ft

2. NORX decryption either returns an error ⊥, upon failed verification of the
authentication tag, or produces a plaintext P of the same size as C if tag verification
succeeds. In summary, NORX decryption D is specified by

D : Fk
2 × Fn

2 × F∗2 × F∗2 × F∗2 × Ft
2 → F∗2 ∪ {⊥}

with

DK(N,A,C,B, T) =

{

P if T = T ′

⊥ if T 6= T ′

where T denotes the received authentication tag, T ′ the one computed on the recipient’s
side and |P | = |C|.

100

4.2 Specification

Naming Conventions

A NORX instance is denoted by NORXw-r-d-t , where w, r, d, and t are the parameters
of the instance as introduced above. If the default tag size is used, i.e. t = 4w, the
notation for an instance is shortened to NORXw-r-d . So for example, NORX64-6-1 has
(w, r, d, t) = (64, 6, 1, 256).

Instances

We propose five concrete instances of NORX, which are specified in Table 14.

Table 14: NORX instances.

w r d t k n

64 4 1 256 256 128
32 4 1 128 128 64
64 6 1 256 256 128
32 6 1 128 128 64
64 4 4 256 256 128

All instances use the default tag size of 4w bits, i.e. 128 bit for NORX32 and 256 bit
for NORX64. Table 14 also reflects the priority order of the recommended parameter sets
from highest on the top (NORX64-4-1) to lowest at the bottom (NORX64-4-4). A more
detailed discussion on those parameter combinations can be found in Section 4.4.2.

4.2.3 Layout Overview

NORX relies on the monkeyDuplex construction [44, 48], enhanced with the capability
of parallel payload processing. The number l of parallel encryption lanes Li, with
0 ≤ i ≤ l− 1, is controlled by the parameter 0 ≤ d ≤ 255. For the value d = 1, the layout
of NORX corresponds to a standard (sequential) duplex construction, see Figure 32.

init(K,N,w, r, d, t)

0

0

r

c

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

01 01 02 02 04 04 08

A0 Aa−1 P0 Pp−1C0 Cp−1 B0 Bb−1

T

Figure 32: Layout of NORX for d = 1.

For d > 1, the number of lanes l is bounded by the latter value, e.g. for d = 2 see

101

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Figure 33. If d = 0, the number of lanes l is bounded by the size of the payload. In that
case, the layout of NORX is similar to the PPAE construction [63].

init(K,N,w, r, d, t)

0

0

r

c

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

F
r

01 01 10

id0

id1

02 02

02 02

20

20

04 04 08

A0 Aa−1

P0 Pp−2

P1 Pp−1

C0 Cp−2

C1 Cp−1

B0 Bb−1

T

Figure 33: Layout of NORX for d = 2.

The core algorithm F of NORX is a permutation of b = r + c bits, where b is called the
width, r the rate (or block length), and c the capacity. We call F the round function and
Fr denotes its r-fold iteration. The internal state s of NORX64 has b = 640 + 384 = 1024
bits and that of NORX32 has b = 320 + 192 = 512 bits. The state is viewed as vector
of 16 w-bit sized words, i.e. s = (s0, . . . , s15) ∈ Z16

2w , and is conceptually arranged in a
4× 4 matrix as shown below

s =















s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15















where s0, . . . , s9 are called rate words, used for absorbing and extracting of data, and
s10, . . . , s15 are called capacity words, which remain untouched during data absorption or
extraction.

4.2.4 The Round Function

The NORX round F, see Algorithm 6, processes a state s ∈ Z16
2w by first transforming

its columns and then transforming its diagonals with a permutation G, see Algorithm 7.
Those two operations are called column step and diagonal step, as in BLAKE2 [21], and
we denote them by col and diag, respectively. An illustration of the function F is shown
in Figure 34.

The rotation offsets (r0, r1, r2, r3) as used in the 32- and 64-bit G function of NORX
are specified in Table 15 and were chosen as discussed in Section 4.5.3. A visualisation
of the G circuit is given in Figure 35. An important component of G is the non-linear

102

4.2 Specification

Algorithm 6: F(s)

Inputs:

s ∈ Z16
2w

Outputs:

s ∈ Z16
2w

Algorithm:

1. s0, s4, s8, s12 ← G(s0, s4, s8, s12)

2. s1, s5, s9, s13 ← G(s1, s5, s9, s13)

3. s2, s6, s10, s14 ← G(s2, s6, s10, s14)

4. s3, s7, s11, s15 ← G(s3, s7, s11, s15)

5. s0, s5, s10, s15 ← G(s0, s5, s10, s15)

6. s1, s6, s11, s12 ← G(s1, s6, s11, s12)

7. s2, s7, s8, s13 ← G(s2, s7, s8, s13)

8. s3, s4, s9, s14 ← G(s3, s4, s9, s14)

9. return s

Algorithm 7: G(a, b, c, d)

Inputs:

a, b, c, d ∈ Z2w

Outputs:

a, b, c, d ∈ Z2w

Algorithm:

1. a← (a⊕ b)⊕ ((a ∧ b)≪ 1)

2. d← (a⊕ d) ≫ r0
3. c← (c⊕ d)⊕ ((c ∧ d)≪ 1)

4. b← (b⊕ c) ≫ r1
5. a← (a⊕ b)⊕ ((a ∧ b)≪ 1)

6. d← (a⊕ d) ≫ r2
7. c← (c⊕ d)⊕ ((c ∧ d)≪ 1)

8. b← (b⊕ c) ≫ r3
9. return a, b, c, d

operation H (see Algorithm 7), which is specified as follows:

H : F2w
2 → Fw

2 , (x, y) 7→ (x⊕ y)⊕ ((x ∧ y)≪ 1) .

A thorough discussion on the design of the functions F, G, and H is given in Section 4.5.2.

Table 15: Rotation offsets for 32- and 64-bit NORX.

w r0 r1 r2 r3

32 8 11 16 31
64 8 19 40 63

4.2.5 Encryption Mode

NORX encryption can process messages M of the form M = A ‖ P ‖ B, where A denotes
a header, P a payload and B a trailer. A and B are also called associated data. Each of
A, P and B are allowed to be empty strings of bits.

Structure

NORX encryption and authentication is depicted in Algorithm 8 and consists of multiple
processing phases. For a more visual representation see Figures 32 and 33. After
initialisation, where basically the state is loaded with the key and the nonce, processing
of a message M = A ‖ P ‖ B is done in up to five steps, namely header processing,
branching, payload encryption, merging, and trailer processing. The number of steps
depends on whether A, B, or P are empty or not and whether d = 1 or not. NORX skips

103

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

G

G

G

G

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15 s12

s8

s13

s4

s9

s14

s0

s5

s10

s15

s1

s6

s11

s2

s7

s3
G

G

G

G

Figure 34: Column step and diagonal step of F.

a

b

c

d

a

b

c

d

∧ ≪ 1

≫ r0

∧ ≪ 1

≫ r1

∧ ≪ 1

≫ r2

∧ ≪ 1

≫ r3

Figure 35: The G circuit.

processing phases of empty message parts and, if the cipher is parametrised with d = 1,
also branching and merging phases. For example, in the simple case when |A| = |B| = 0,
|P | > 0, and d = 1, message processing is done in one step since only the payload P
needs to be encrypted and authenticated. Finally, after M has been processed, the tag
generation phase produces the authentication tag which ensures integrity of the ciphertext
C and of associated data A and B, and also allows to check authenticity of the data on
the receiver’s side.

Below, we first describe the padding and domain separation rules and afterwards each
of the aforementioned phases.

Padding

NORX adopts the so-called multi-rate padding, which is a sponge compliant padding as
introduced in [45, 48]. This padding rule is defined by the map

padr : F
n
2 → F

n+q+2
2 , X 7−→ X ‖ 10q12

104

4.2 Specification

Algorithm 8: norx_encrypt(K,N,A, P,B)

Inputs:

K ∈ F4w
2 , N ∈ F2w

2 , A ∈ F∗
2, P ∈ F∗

2, B ∈ F∗
2

Outputs:

C ∈ F∗
2, with |P | = |C|, T ∈ Ft

2

Algorithm:

1. s← initialise(K,N)

2. s← absorb_data(s,A, 01)

3. s← branch(s, |padr(P)|)

4. s, C ← encrypt_data(s, P, 02)

5. s← merge(s)

6. s← absorb_data(s,B, 04)

7. s, T ← generate_tag(s)

8. return C, T

with bit strings X and 10q12, and q = −(|X|+2) mod r. The multi-rate padding extends
X to a multiple of the rate r, never results in the empty string, and guarantees that the
last block of padr(X) differs from the all-zero block 0r. There are three special cases:

q =











r − 2, if 0 ≡ |X| mod r

0, if r − 2 ≡ |X| mod r

r − 1, if r − 1 ≡ |X| mod r .

In the first case, |X| is a multiple of the rate r and thus a full r-bit sized block 10(r−2)12
is appended to X. This includes the case where X is the empty bit string ε, i.e. if |X| = 0.
The second and third cases describe the situations where the smallest and largest numbers
of bits are appended to X, respectively. This corresponds to the padding block 112 of
size 2 in the former and the padding block 10(r−1)12 of size r + 1 in the latter case.

Domain Separation

NORX has a very simple and lightweight domain separation mechanism: it is performed
by XORing a domain separation constant to the least significant byte of s15 each time
before the state s is transformed by the permutation Fr. Distinct constants are used for
the different algorithm phases, i.e. for the three different message processing stages, for
tag generation, and in case of d 6= 1, for branching and merging steps. Table 16 gives the
specification of those constants and Figures 32 and 33 illustrate their integration into the
state of NORX.

The type of the domain separation constant used at a particular step is determined by
the type of the next processed data block. The constants are switched together with the
phases. For example, as long as the next block is from the header, the domain separation
constant 01 is applied. Once all header blocks are processed, the constant is switched. If

105

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Table 16: Domain separation constants.

header payload trailer tag branching merging
01 02 04 08 10 20

d = 1 and the next data block belongs to the payload, the new constant is 02. Then, as
long as the next block is from the payload, 02 is used and so on.

This technique also allows NORX to skip unneeded processing phases. For example, if
d = 1, |A| > 0, |P | > 0, and |B| = 0, the constant 08 is integrated during processing of
the last payload block, which means that the trailer phase is skipped and NORX advances
directly to the generation of the authentication tag. For the extra initial and final
permutations no domain separation constants are used, which is equivalent to XORing
00 to s15. For the special case d 6= 1 and |P | = 0 not only payload processing is skipped
but also branching and merging phases.

Initialisation

NORX initialisation processes a 4w-bit key K, a 2w-bit nonce N , and the instance
parameters d, r, w, and t. First, the state s = (s0, . . . , s15) ∈ Z16

2w is initialised, followed
by loading key k = (k0, k1, k2, k3) = to_intw(K), nonce n = (n0, n1) = to_intw(N), and
constants u = (u0, . . . , u9) into s. The values of u0, . . . , u3 for NORX32 (left) and NORX64
(right) are specified as

u0 = 243f6a88 u0 = 243f6a8885a308d3

u1 = 85a308d3 u1 = 13198a2e03707344

u2 = 13198a2e u2 = a4093822299f31d0

u3 = 03707344 u3 = 082efa98ec4e6c89

and the remaining values are computed by

(u4j+4, u4j+5, u4j+6, u4j+7) = G(u4j , u4j+1, u4j+2, u4j+3)

for j ∈ {0, 1}. A complete list of the constants is given in Table 23. Afterwards, the
parameters d, r, w, and t are integrated into s by XORing them to the words s12, s13,
s14, and s15, respectively. Finally, the state s is updated with r iterations of the round
function F. Algorithm 9 shows the steps executed during the initialisation phase of NORX.

Message Processing

Message processing is the main phase of NORX encryption or decryption. Unless noted
otherwise, the value of the domain separation constant is always determined as described
above.

106

4.2 Specification

Algorithm 9: initialise(K,N)

Inputs:

K ∈ F4w
2 , N ∈ F2w

2

Outputs:

s ∈ Z16
2w

Algorithm:

1. s← to_intw(0
16w)

2. k ← to_intw(K)

3. n← to_intw(N)

4. s0, s1, s2, s3 ← u0, n0, n1, u1

5. s4, s5, s6, s7 ← k0, k1, k2, k3
6. s8, s9, s10, s11 ← u2, u3, u4, u5

7. s12, s13, s14, s15 ← u6, u7, u8, u9

8. s12 ← s12 ⊕ w

9. s13 ← s13 ⊕ r

10. s14 ← s14 ⊕ d

11. s15 ← s15 ⊕ t

12. s← Fr(s)

13. return s

Header Processing. If |A| = 0, this stage is skipped, otherwise A is padded to a multiple
of r bits using the multi-rate padding, i.e. A′ = padr(A). Let A′i denote the ith r-bit sized
header block of A′ with 0 ≤ i ≤ |A′|r − 1. Before A′i is processed, the domain separation
constant 01 is added to s15 using bitwise XOR followed by an update of s by Fr. Then, A′i
is converted to a vector of integers using to_intw and XOR’ed to the rate words of s. The
two functions absorb_block and absorb_data required for header processing are described
in detail in Algorithms 10 and 11.

Algorithm 10: absorb_data(s,X, v)

Inputs:

s ∈ Z16
2w , X ∈ F∗

2, v ∈ Z28

Outputs:

s ∈ Z16
2w

Algorithm:

1. if |X| > 0 then

2. X′ ← padr(X)

3. for i ∈ {0, . . . , |X′|r − 1} do

4. s← absorb_block(s,X′
i, v)

5. end

6. end

7. return s

Algorithm 11: absorb_block(s,X, v)

Inputs:

s ∈ Z16
2w , X ∈ Fr

2, v ∈ Z28

Outputs:

s ∈ Z16
2w

Algorithm:

1. x← to_intw(X)

2. s15 ← s15 ⊕ v

3. s← Fr(s)

4. for i ∈ {0, . . . , r/w − 1} do

5. si ← si ⊕ xi

6. end

7. return s

Branching. This phase is omitted if NORX is parametrised with d = 1. Otherwise, if
d 6= 1, the state s is prepared for parallel payload encryption. First, the domain separation

107

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

constant 10 is included in s15, followed by an update of s with Fr. Then, either l = d

if d > 1 or l = |padr(P)|r if d = 0, copies of s are created and copied to a sufficiently
large vector s′. Finally, the lane id i ∈ {0, . . . , l− 1} is integrated into words s′16i+13 (and
possibly s′16i+14 for very large l) of each copy and s′ is returned. Algorithm 12 summarises
the steps executed during the branch operation.

Algorithm 12: branch(s,m)

Inputs:

s ∈ Z16
2w , m ∈ N, with m ≥ r

Outputs:

s′ ∈ Z16l
2w , with l ≥ 1

Algorithm:

1. l← d

2. if d = 0 then

3. l← m/r

4. end

5. s′ ← to_intw(0
16 lw)

6. if d 6= 1 then

7. s15 ← s15 ⊕ 10

8. s← Fr(s)

9. for i ∈ {0, . . . , l− 1} do

10. (s′16i, . . . , s
′
16i+15)← s

11. s′16i+13 ← s′16i+13 ⊕ i mod 2w

12. s′16i+14 ← s′16i+14 ⊕ ⌊i/2
w⌋

13. end

14. else

15. s′ ← s

16. end

17. return s′

Payload Encryption. If |P | = 0, this stage is skipped. Otherwise, payload data is
padded using the multi-rate padding and then encrypted. Let padr(P) = P ′ and let P ′i
be the ith r-bit sized block of P ′ for 0 ≤ i ≤ |P ′|r − 1. We distinguish three cases how
the blocks P ′i are processed depending on the value of d:

• d = 1: This is the standard case, which requires no special handling.

• d > 1: In this case, a fixed number of lanes Lj is available for payload encryption,
with 0 ≤ j ≤ d− 1. An r-bit sized block P ′i is processed by lane Lj if j ≡ i mod d.
In other words, the padded payload blocks are distributed through the lanes in a
round-robin fashion.

• d = 0: Here, the number of lanes Li is determined by the number |P ′|r of padded
payload blocks. Each r-bit sized block is processed on its own lane, i.e. block P ′i is
encrypted on Li, with 0 ≤ i ≤ |P ′|r − 1.

108

4.2 Specification

The data encryption of a single block works equivalently for each value of d, hence we
describe it only in a generic way. As above, let P ′ = padr(P) be the padded payload.
Before a block P ′i is processed, the domain separation constant 02 is integrated into s15
followed by an update of the state s with Fr. Afterwards, P ′i is converted to a vector of
integers using to_intw and the resulting words are added to the rate words of s using
bitwise XOR. The result of the latter operations then forms a new ciphertext block Ci after
being converted back to a bit string using to_strw. Note that for the last block of index
i = |P ′|r − 1 only a truncated ciphertext block is created such that the final encrypted
payload C has the same length as unpadded P . In other words, padding bits are never
written to C.

The two operations encrypt_data and encrypt_block used for payload encryption are
shown in Algorithms 13 and 14. Note that in encrypt_data the vector s has a length of
16 l elements, with l ≥ 1. The value of l is determined through the parameter d. This
enlarged vector is used to model the parallel lanes in NORX encryption. In other words,
lane Li operates for data encryption on the subvector (s16i, . . . , s16i+15) of length 16, with
0 ≤ i ≤ l − 1.

Algorithm 13: encrypt_data(s,X, v)

Inputs:

s ∈ Z16l
2w , with l ≥ 1, X ∈ F∗

2, v ∈ Z28

Outputs:

s ∈ Z16l
2w , C ∈ F∗

2, with |X| = |C|

Algorithm:

1. C ← ε

2. if |X| > 0 then

3. X′ ← padr(X)

4. m← d

5. if d = 0 then

6. m← |X′|r

7. end

8. for i ∈ {0, . . . , |X′|r − 1} do

9. j = i mod m

10. s′ ← (s16j , . . . , s16j+15)

11. s′, Y ← encrypt_block(s′, X′
i, v)

12. (s16j , . . . , s16j+15)← s′

13. C ← C ‖ Y

14. end

15. C ← ⌊C⌋|X|

16. end

17. return s, C

Algorithm 14: encrypt_block(s,X, v)

Inputs:

s ∈ Z16
2w , X ∈ Fr

2, v ∈ Z28

Outputs:

s ∈ Z16
2w , Y ∈ Fr

2

Algorithm:

1. x← to_intw(X)

2. y ← to_intw(0
r)

3. s15 ← s15 ⊕ v

4. s← Fr(s)

5. for i ∈ {0, . . . , r/w − 1} do

6. si ← si ⊕ xi

7. yi ← si

8. end

9. Y ← to_strw(y)

10. return s, Y

109

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Merging. In the case d 6= 1, this phase folds back an enlarged state vector s ∈ Z16l
2w ,

with l ≥ 1, to a vector s′ ∈ Z16
2w .2 For d = 1 this stage is skipped altogether.

Recall that in the parallel case each subvector (s16i, . . . , s16i+15) of length 16, with
0 ≤ i ≤ l − 1, corresponds to the state used by lane Li for encryption. First, the domain
separation constant 20 is included into the elements s16i+15 for all 0 ≤ i ≤ l − 1, followed
by an update of the ith subvector with Fr. Finally, all the subvectors (s16i, . . . , s16i+15)
are summed up using bitwise XOR to form the final state vector s′. Algorithm 15 shows
the steps executed during the merge operation.

Algorithm 15: merge(s)

Inputs:

s ∈ Z16l
2w , with l ≥ 1

Outputs:

s′ ∈ Z16
2w

Algorithm:

1. s′ ← to_intw(0
16w)

2. if d 6= 1 then

3. for i ∈ {0, . . . , l − 1} do

4. x← (s16i, . . . , s16i+15)

5. x15 ← x15 ⊕ 20

6. x← Fr(x)

7. for j ∈ {0, . . . , |x| − 1} do

8. s′j ← s′j ⊕ xj

9. end

10. end

11. else

12. s′ ← s

13. end

14. return s′

Trailer Processing. Absorption of trailer data is done analogously to the processing of
header data as already described above. Hence, if |B| = 0, trailer processing is skipped.
If B is non-empty, let B′ = padr(B) and let B′i be the ith r-bit sized substring of B′,
with 0 ≤ i ≤ |B′|r − 1. Before a block is processed, the domain separation constant
04 is added to s15 using bitwise XOR, followed by an update of s with Fr. Afterwards
B′i is converted to a vector of integers using to_intw and absorbed into the rate part of
s. The two required functions absorb_data and absorb_block are described in detail in
Algorithms 10 and 11. After the trailer has been absorbed, the message processing part
is also finished.

2Note that we need to include the case l = 1 here too, if, in case of d = 0, only one payload block has
been encrypted during parallel processing.

110

4.2 Specification

Tag Generation

In NORX, the generation of an authentication tag T works as follows: first, the domain
separation constant 08 is included into s15. Then s is updated twice with Fr. Finally,
the rate words s0, . . . , sr/w−1 are converted back to a bit string using to_strw and the t

least significant bits are extracted from the result and set as T . Algorithm 16 shows the
pseudo code of the tag generation operation.

Algorithm 16: generate_tag(s)

Inputs:

s ∈ Z16
2w

Outputs:

s ∈ Z16
2w , T ∈ Ft

2

Algorithm:

1. s15 ← s15 ⊕ 08

2. s← Fr(Fr(s))

3. T ← ⌊to_strw((s0, . . . , sr/w−1))⌋t

4. return s, T

4.2.6 Decryption Mode

NORX decryption can process messages M of the form M = A ‖ C ‖ B, where A denotes
a header, C an encrypted payload, and B a trailer. Like in encryption, associated data A
and B as well as the payload C can be potentially empty. Decryption additionally takes
an authentication tag T as input.

Structure

NORX decryption has a very similar structure to encryption, see Section 4.2.5. Refer to
Algorithm 17 for a summary of the steps executed during decryption.

Padding

Padding is identical to that of encryption, i.e. the multi-rate padding is used.

Domain Separation

The domain separation constants and their application are the same as in encryption.

Initialisation

Initialisation is identical to that of encryption.

111

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Algorithm 17: norx_decrypt(K,N,A,C,B, T)

Inputs:

K ∈ F4w
2 , N ∈ F2w

2 , A ∈ F∗
2, C ∈ F∗

2, B ∈ F∗
2, T ∈ Ft

2

Outputs:

P ∈ F∗
2, with |P | = |C|, or ⊥

Algorithm:

1. s← initialise(K,N)

2. s← absorb_data(s,A, 01)

3. s← branch(s, |padr(P)|)

4. s, P ← decrypt_data(s, C, 02)

5. s← merge(s)

6. s← absorb_data(s,B, 04)

7. s, T ′ ← generate_tag(s)

8. if T 6= T ′ then

9. return ⊥

10. end

11. return P

Message Processing

Message processing in decryption is similar to that in encryption: header and trailer
processing are identical, but payload processing is different. The latter is done using
the functions decrypt_data and decrypt_block as shown in Algorithms 18 and 19. Like in
encryption as many bits are extracted and written to P as unpadded encrypted payload
bits.

Tag Generation

Tag generation is identical to that in encryption.

Tag Verification

Tag verification consists of comparing the received tag T to the generated tag T ′. If
T = T ′, tag verification succeeds and the decrypted payload is returned; otherwise tag
verification fails, the decrypted payload is discarded and an error ⊥ is returned. See
Algorithm 17 for more information. Implementations of tag verification should satisfy the
following requirements:

• Tag verification should not leak information on the (relative) values of the compared
bit strings. In particular, tag verification should be implemented in constant time,
so that a comparison of identical strings and distinct strings takes the same time.

• Decrypted data should not be returned to the user if tag verification fails and ideally
should be erased securely from any temporary memory.

112

4.2 Specification

Algorithm 18: decrypt_data(s,X, v)

Inputs:

s ∈ Z16l
2w , with l ≥ 1, X ∈ F∗

2, v ∈ Z28

Outputs:

s ∈ Z16l
2w , P ∈ F∗

2, with |X| = |P |

Algorithm:

1. P ← ε

2. if |X| > 0 then

3. X′ ← padr(X)

4. m← d

5. if d = 0 then

6. m← |X′|r

7. end

8. for i ∈ {0, . . . , |X′|r − 1} do

9. j = i mod m

10. s′ ← (s16j , . . . , s16j+15)

11. s′, Y ← decrypt_block(s′, X′
i, v)

12. (s16j , . . . , s16j+15)← s′

13. P ← P ‖ Y

14. end

15. P ← ⌊P ⌋|X|

16. end

17. return s, P

Algorithm 19: decrypt_block(s,X, v)

Inputs:

s ∈ Z16
2w , X ∈ Fr

2, v ∈ Z28

Outputs:

s ∈ Z16
2w , Y ∈ Fr

2

Algorithm:

1. x← to_intw(X)

2. y ← to_intw(0
r)

3. s15 ← s15 ⊕ v

4. s← Fr(s)

5. for i ∈ {0, . . . , r/w − 1} do

6. yi ← si ⊕ xi

7. si ← xi

8. end

9. Y ← to_strw(y)

10. return s, Y

4.2.7 Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent and
transport cryptograms and the associated data. For example, nonces or initialisation
vectors (IVs) are sometimes prepended to the ciphertext, sometimes appended, or sent
separately. We thus specify datagrams that can be integrated in a protocol stack,
encapsulating the ciphertext as a payload. Using a standardized encoding simplifies the
transmission of NORX cryptograms across different APIs and reduces the risk of insecure
or suboptimal encodings. We specify two distinct types of datagrams, depending on
whether the NORX parameters are fixed or need to be signalled in the datagram header.

Fixed Parameters

With fixed parameters shared by the parties (for example through the application using
NORX), there is no need to include the parameters in the header of the datagram3. The
datagram for fixed parameters thus only needs to contain N , A, C, B, and T , as well as
information to parse those elements.

We encode the byte length of A and B by 16 bits, allowing for headers and trailers of

3The header referred to is that of the datagram specified, not that of the data processed by the NORX

instance.

113

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

up to 64 KiB, a large enough value for most real applications. The byte length of the
encrypted payload is encoded on 32 bits for NORX32 and on 64 bits for NORX64 which
translates to a maximum payload size of 4GiB and 16EiB, respectively4. Similarly to
frame check sequences in data link protocols, the tag is added as a trailer of the datagram
specified. The header, encrypted payload, and trailer of the underlying protocol are
viewed as the payload of the datagram. The default tag length being a constant value of
the NORX instance, it needs not be signalled.

Table 17 shows the fixed-parameters datagrams for NORX32 and NORX64. The length
of the datagram header is 28 bytes for NORX64 and 16 bytes for NORX32.

Note that the CAESAR API (according to the final call, see [84]) receives the nonce
and the associated data in two separate buffers, but the tag is included in the ciphertext
buffer.

Variable Parameters

With variable parameters, the datagram needs to signal the values of w, r, and d. The
header is thus extended to encode those values, as specified in Table 18. To minimize
bandwidth, w is encoded on one bit, supporting the two choices 32-bit (w = 0) and 64-bit
(w = 1), r on 7 bits (with the MSB fixed at 0, i.e. supporting up to 63 rounds), and d on
8 bits (supporting parallelization degree up to 255). The datagram header is thus only 2
bytes longer than the header for fixed parameters.

4.3 Security Goals

We expect NORX with r ≥ 4 to provide the maximum security for any AEAD scheme
with the same interface (input and output types and lengths). The following requirements
should be satisfied in order to use NORX securely:

1. Unique Nonces. Each key and nonce pair should not be used to process more
than one message.

2. Abort on Verification Failure. If the tag verification fails, only an error is
returned. In particular, the decrypted plaintext and the wrong authentication tag
must not be given as an output and should be erased from memory in a safe way.

In the simplest case, the first requirement can be realised by implementing the nonce
as a counter, which is increased for each new message processed under a given, fixed key.
If the key is changed, the counter can be reset to start all over again.

4Note that NORX is capable of (safely) processing much larger data sizes, those are just the maximum
values when our proposed datagrams are used.

114

4.3 Security Goals

Table 17: NORX datagrams for fixed parameters, all offsets are in bytes.

NORX32

Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |A| Trailer byte length |B|

12 Encrypted payload byte length |C|

16

. . . Header A

??

??

. . . Encrypted payload C

??

??

. . . Trailer B

??

??

. . . Tag T

??

NORX64

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |B|

20
Encrypted payload byte length |C|

24

28

. . . Header A

??

??

. . . Encrypted payload C

??

??

. . . Trailer B

??

??

. . . Tag T

??

115

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Table 18: NORX datagrams for variable parameters, all offsets are in bytes.

NORX32

Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |A| Trailer byte length |B|

12 Encrypted payload byte length |C|

16 w(1) ‖ r(7) d

20

. . . Header A

??

??

. . . Encrypted payload C

??

??

. . . Trailer B

??

??

. . . Tag T

??

NORX64

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |B|

20
Encrypted payload byte length |C|

24

28 w(1) ‖ r(7) d

32

. . . Header A

??

??

. . . Encrypted payload C

??

??

. . . Trailer B

??

??

. . . Tag T

??

116

4.3 Security Goals

We do not make any claim regarding attackers using “related keys”, “known keys”,
“chosen keys”, etc. We also exclude from the claims below models where information is
“leaked” on the internal state or key.

The security of NORX is limited by the key length (128 or 256 bits) and by the tag
length (128 or 256 bits). Plaintext confidentiality should thus have the order of 128 or
256 bits of security. The same level of security should hold for integrity of the plaintext
or of associated data based on the fact that an attacker trying 2n tags will succeed with
probability 2n−256 and n < 256 to forge a tag. In particular, recovery of a k-bit NORX
key should require resources (“computations”, energy, etc.) comparable to those required
to recover the key of an ideal k-bit key cipher. Table 19 summarizes the security goals of
NORX.

Table 19: Overview on the expected security levels (in bits).

Security goal NORX32 NORX64

Plaintext confidentiality 128 256

Plaintext integrity 128 256

Associated data integrity 128 256

Public message number integrity 128 256

Usage Exponent

NORX restricts the number of messages processed with a given key: in [43] the usage
exponent e is defined as the value such that the implementation imposes an upper limit
of 2e uses to a given key. In NORX we set it to e64 = 128 for 64-bit and e32 = 64 for
32-bit, which corresponds in both cases to the size of the nonce. NORX has capacities of
c64 = 384 (64-bit) and c32 = 192 (32-bit). As a consequence, security levels of at least
c64−e64−1 = 384−128−1 = 255 bits for NORX64 and c32−e32−1 = 192−64−1 = 127
bit for NORX32 are expected, see [43].

Security Bounds for the Mode of Operation

In [141] the generic security bounds in the ideal permutation model for the NORX mode of
operation are analysed, together with some of the other sponge-based CAESAR candidates.
We give at this point only a brief overview on the main results and refer to the above
work for more details. Moreover, see Section 1.3 for the basic notions of provable security.

Let Π = (E ,D) denote NORX, with encryption function E , decryption function D,
which are both assumed to be based on an ideal underlying permutation p. Further, let r,
c, b, k, and t denote sizes for rate, capacity, state, key, and tag of NORX, let d be the

117

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

parallelism degree of the scheme, let e be Euler’s number, qp the number of permutation
queries, qE the number of encryption queries of total length λE , and let σE be specified as
follows:

σE :=

qE
∑

j=1

σE,j ≤











2λE + 4qE , if d = 0

λE + 3qE , if d = 1

λE + (d+ 4)qE , if d > 1 .

The values qD, λD and σD for decryption D are specified analogously. Furthermore, it is
assumed that adversaries are nonce-respecting for encryption, i.e. encrypting different
messages with the same nonce-key pair is not permitted. This constraint is not necessary
for decryption though. Then the following two propositions hold for the confidentiality
and authenticity security bounds of NORX.

Proposition 1. An adversary who aims to break the confidentiality of the NORX mode
of operation based on an ideal permutation p is able to achieve the following maximal
advantage:

Adv
priv
Π (qp, qE , λE) ≤

3(qp + σE)
2

2b+1
+

(

8eqpσE
2b

)1/2

+
rqp
2c

+
qp + σE

2k
.

Proof. See [141, proof of Theorem 1].

Proposition 2. An adversary who aims to break the integrity of the NORX mode of
operation based on an ideal permutation p is able to achieve the following maximal
advantage:

Adv
auth
Π (qp, qE , λE , qD, λD) ≤

(qp + σE + σD)
2

2b
+

(

8eqpσE
2b

)1/2

+
qD
2t

+

+
qp + σE + σD

2k
+

rqp + (qp + σE + σD)σD
2c

.

Proof. See [141, proof of Theorem 2].

In summary, the above two results show that the NORX mode of operation roughly
achieves security levels for authenticity and confidentiality of

min{2b/2, 2c, 2k}

(recall that k = t), for all 0 ≤ d ≤ 255, assuming an ideal underlying permutation p and
a nonce-respecting adversary. Intuitively spoken, NORX offers authenticity as long as
it offers privacy. In particular, since b/2 > c > k, the generic security level of NORX is
determined by the size of the secret key, as one would expect.

118

4.4 Features

In [7] another approach to the security of keyed sponge constructions is presented which
generalises the results of [141]. However, for the concrete case of NORX, the two results
on the security bounds basically concur. Additionally, this work also evaluates security
bounds for the multi-key setting, i.e. the scenario where an adversary simultaneously
attacks instances of an authenticated encryption scheme that use different keys. It is
proven that an adversary in the multi-key setting basically has no advantage over an
adversary that is restricted to the single-key setting. These results also apply to NORX.

4.4 Features

NORX provides several features desirable for practical applications and offers a couple
of important advantages over AES-GCM [196]. First, we list these characteristics in
detail, then give a justification of our recommended parameter sets, and finally present
our performance results.

4.4.1 List of Characteristics

High Security. NORX supports 128- and 256-bit keys and authentication tags of arbitrary
size, thanks to its duplex construction. The core permutation of NORX was designed
and evaluated to be cryptographically strong. The minimal number of R = 8 rounds for
initialisation / finalisation, i.e. eight interleaved applications of col and diag operations
each (16 steps in total), and of R = 4 rounds for the data processing part, i.e. 4 interleaved
applications of col and diag operations each (8 steps in total), should ensure a high security
margin against cryptanalytic attacks. Furthermore, large internal states of 512 and 1024
bits and the duplex construction offer protection against generic attacks.

Efficiency. NORX was designed with 64-bit processors in mind, but is also compatible
with smaller architectures like 8- to 32-bit platforms. Software implementations of NORX
are able to take advantage of multi-core processors, due to the parallel duplex construction,
and specialised instruction sets like the Intel advanced vector instructions (AVX, AVX2,
AVX-512) [135] or the ARM advanced SIMD extensions (NEON) [9]. Optimising an
algorithm towards those vector instructions is especially important in order to keep-
up performance-wise with AES-based ciphers, like AES-GCM, which have huge speed
advantages when special AES instructions such as AES-NI [122] are available. Moreover,
state sizes of 512 and 1024 bits make NORX very cache-friendly. Hardware implementations
benefit from hardware-friendly operations, next to the arbitrary parallelism degree for
payload processing which results in highly competitive hardware performance of NORX.

Simplicity. The core algorithm iterates a simple round function and can be implemented
by translating our pseudocode into the programming language used: NORX requires no

119

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

S-boxes, no Galois field operations, and no integer arithmetic; AND, XOR, and shifts are the
only instructions required. This simplifies security analysis and the task of implementing
the cipher.

High Key Agility. NORX requires no key expansion when setting up a new key, in
contrast to many block-cipher based schemes, like AES-GCM. Switching the secret key is
therefore very cheap. As an additional benefit, there are also no hidden costs of loading
precomputed expanded keys from DRAM into L1 cache.

Adjustable Tag Sizes. The NORX family allows tag sizes of up to 10w bits, with a
default of 4w bits for our proposed instances. Thanks to the duplex construction, tag
sizes can be easily adapted to the demands of any given application.

Simple Integration. NORX can be easily integrated into a protocol stack, as it supports
flexible processing of arbitrary datagrams: any header and trailer are authenticated (and
left unencrypted) and the payload is both encrypted and authenticated.

Interoperability. Dedicated datagrams encode parameters of the cipher and encapsulate
the protected data. This aims to increase interoperability across implementations.

Single Pass. Encryption and authentication as well as decryption and tag verification
are done in a single pass of the algorithm.

Online. NORX supports encryption and decryption of data streams, i.e. the size of
processed data needs not to be known in advance.

High Data Processing Volume. NORX allows to process very large data sizes from
a single key-nonce pair. The usage exponent, see Section 4.3, theoretically limits the
number of calls to the core permutation to values of 264 (NORX32) and 2128 (NORX64),
respectively. This translates to data sizes which are orders of magnitude beyond everything
relevant for current and future real-world applications. In particular, these values are a
lot higher than the maximum of 232 calls to the authenticated encryption function of
AES-GCM which could be easily reached nowadays in real-world systems.

Minimal Overhead. Payload encryption is non-expanding, i.e. the ciphertext has the
same length as the plaintext. The authentication tag has a length of 16 or 32 bytes
depending on the concrete instance of NORX.

120

4.4 Features

Robustness Against Timing Attacks. By avoiding data-dependent table look-ups, like
S-boxes, the goal to harden implementations of NORX against timing-attacks [35] should
be comparably easy to achieve, since no special implementations, like bit-sliced S-boxes [3,
90] for constant-time table-lookups, are required.

Moderate Misuse Resistance. NORX retains its security even if nonces are reused as
long as it can be guaranteed that header data is unique5. For comparison, nonce reuse in
AES-GCM is a major security issue, allowing an attacker to recover the secret key [136].

Autonomy. NORX requires no external primitive.

Diversity. The cipher does not depend on AES instructions, thereby adding to the
diversity among cryptographic algorithms.

Extensibility. NORX can be easily extended to support additional features, such as secret
message numbers, sessions, or forward-secrecy without losing its security guarantees,
thanks to the flexibility of the duplex construction and a simple, yet powerful domain
separation scheme.

4.4.2 Recommended Parameter Sets

The recommended parameter sets are listed in Table 14. We consider NORX32-4-1 and
NORX64-4-1 as the standard instances for the respective word sizes of 32 and 64 bit. These
configurations offer a good balance between performance and security. We recommend
NORX32-4-1 for low resource applications on 8- to 32-bit platforms and NORX64-4-1 for
software implementations on modern 64-bit CPUs or standard hardware implementations.
Applications that require a higher security margin and where performance has less priority
are advised to use the instances NORX32-6-1 and NORX64-6-1. For use cases where very
high data throughput is necessary, we recommend NORX64-4-4, which allows payload
encryption on four parallel lanes, thus enabling very high data processing speeds.

4.4.3 Performance

NORX was designed to perform well across both software and hardware. This section
details our implementations and performance results.

5Nevertheless, the designers discourage this approach, and recommend that nonce freshness should be
ensured by all means.

121

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Generalities

In this part, we analyse some general performance-relevant properties of NORX, like
number of operations in G and Fr, parallelism degree, and upper bounds for the speed of
NORX on different platforms.

Number of Operations. Table 20 shows the number of operations required for the
NORX core functions. We omit the overhead of initialisation, integration of parameters,
domain separation constants, padding messages, and so on, as those costs are negligible
compared to that of the core permutation Fr.

Table 20: Overview on the number of operations of the NORX functions.

Function #XOR #AND #Shifts #Rotations Total

G 12 4 4 4 24
F 96 32 32 32 192
F4 384 128 128 128 768
F6 576 192 192 192 1152
F8 768 256 256 256 1536
F12 1152 384 384 384 2304

Memory. NORX32 and NORX64 require at least 16 and 32 bytes to be stored in ROM
for the initialisation constants6. To store all initialisation constants 40 and 80 bytes of
ROM are necessary.

Processing a message in NORX requires enough RAM to store the internal state, i.e.,
64 bytes in NORX32 and 128 bytes in NORX64. The data being processed need not be in
memory for more than 1 byte at a time. In practice, however, it is preferable to process
blocks of 40 respectively 80 bytes at a time.

Parallelism. The core permutation F of NORX has a natural parallelism of 4 independent
G applications. Additionally, NORX allows for greater parallelism levels using multiple
lanes. Using the d = 0 mode (see part on message processing in Section 4.2.5), the internal
parallelism level of NORX is effectively unbounded for long enough messages.

Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on 32- and
64-bit words and uses only word-based operations (XOR, AND, shifts and rotations). The

6The ten constants can be generated on the fly from the four basic constants u0, . . . , u3, see initialisation
in Section 4.2.5.

122

4.4 Features

specification can be translated directly to code and requires no specific technique such as
look-up tables or bitslicing. The core of NORX essentially consists of repeated usage of
the G function, which allows simple and compact implementations (e.g., by having only
one copy of the G code).

Furthermore, constant-time implementations of NORX are straightforward to write,
due to the absence of secret-dependent instructions or branchings.

Bit Interleaving. While NORX’s lack of integer addition avoids dealing with carry chains,
the implementer may still have to perform full-word rotations and shifts in words wider
than the natural CPU word size. In 8-bit processors, some of this burden is alleviated by
2 out of 4 rotations being multiples of 8. However, this is only a half-measure.

Instead, the implementer can employ the bit interleaving technique presented in [50].
This technique consists of splitting an n-bit word w into s = n/m m-bit words bi, with
bij = wi+jn/m. A rotation by r in this representation can be performed by rotating each bi
by ⌊r/w⌋+1 if i+r mod m < r, ⌊r/w⌋ otherwise, and moving bi to bi+r mod m. Rotations
by 1 or n− 1 are particularly attractive, since they result in a single m-bit rotation. For
example, consider implementing NORX64 on a 32-bit CPU. Each state word w will be
split into the two words b0 and b1. To rotate by r:

• If r mod 2 = 0, rotate both b0 and b1 by ⌊r/2⌋;

• If r mod 2 = 1, rotate b1 by ⌊r/2⌋+ 1, b0 by ⌊r/2⌋, and swap them.

Conversion between representations can be performed in logarithmic time using bit
“zip” and “unzip” operations [11].

Avoiding Latency. One drawback of G is that it has little instruction parallelism. In
architectures where one is limited by the latency of the G function, an implementer can
trade a few extra instructions by reduced latency:

t0 ←− a⊕ b

t1 ←− a ∧ b

t1 ←− t1 ≪ 1

a ←− t0 ⊕ t1

d ←− d⊕ t0

d ←− d⊕ t1

d ←− d ≫ r0 .

This tweak saves up to 1 cycle per instruction sequence, of which there are 4 per G, at the
cost of 1 extra instruction (cf. Figure 36). In a sufficiently parallel architecture, this can

123

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

save at least 4 · 2 · r cycles, which translates to 6.4r/w cycles per byte saved overall. In our
measurements, this translated to a performance improvement of NORX from 0.4 to 0.7
cycles per byte, depending on the target architecture, word size, and number of rounds.

a

b

d

∧ ≪ 1

≫ 8

a

d

(a) Naïve implementation of the G instruction sequence.

a

b

d

∧ ≪ 1

≫ 8

a

d

(b) Latency-oriented version of the G instruction sequence.

Figure 36: Improving the latency of G.

Vectorization. NORX lends itself quite well to implementations taking advantage of
SIMD extensions present in modern processors, such as AVX or NEON. The typical
vectorized implementation of NORX, when d = 1, works in full rows of the 4× 4 state
and computes whole column and diagonal steps of F in parallel.

Results. We wrote portable C reference implementations for both the 32- and 64-
bit versions of NORX, as well as optimized versions for CPUs supporting AVX and
AVX2 and for NEON-enabled ARMs. Table 21 shows speed measurements on various
platforms for messages with varying lengths. The listed CPU frequencies are nominal
ones, i.e. without dynamic overclocking features like Turbo Boost which improves
the accuracy of measurements. Furthermore, we listed only those platform-compiler
combinations that achieved the highest speeds. Common compiler flags used on all
platforms were -O3 -std=c89 -Wall -pedantic -Wno-long-long. Additionally, some
platform and/or implementation dependent compiler flags were set for each benchmark,
like -march=armv7-a -mcpu=cortex-a8 -mpfu=neon for measurements of the NEON

124

4.4 Features

implementations on the BeagleBone Black. All software benchmarks are measured in
cycles per byte (cpb).

On the Intel platforms the top speed of NORX (for d = 1), in terms of bytes per second,
was achieved by an AVX2 implementation of NORX64-4-1 on a Haswell CPU as listed in
Table 21. It achieves a throughput of about 1.39GiBps (2.51 cycles per byte at 3.5GHz).
The top speeds on the Sandy Bridge and Ivy Bridge architectures are reached by an AVX
implementation of NORX64-4-1. They run at speeds of 3.28 and 3.37 cycles per byte
which correspond to throughputs of 609MiBps and 593MiBps, respectively, both for a
CPU frequency of 2.0GHz.

On the ARM platforms the highest speed was achieved by the reference implementation
of NORX64-4-1 on the Apple A7. It runs at 4.07 cycles per byte, which translates to
a throughput of 343MiBps for a frequency of 1.4GHz. At a first glance, it might be
surprising that the reference implementation outperforms the NEON-optimised variant,
however, at a closer look, this “anomaly” can be traced back to the special design of the
Apple chip. The A7 has been the first 64-bit ARM processor available to consumers. It has
4 integer ALUs, is capable of executing 4 integer and 2 floating point additions per cycle,
i.e. up to 6 operations per cycle, and has a reorder buffer of 192 micro-operations which
are quite impressive numbers when compared to the Intel architectures since older ARM
chips usually had smaller reorder buffers and fewer ALUs. For example, the Ivy Bridge
and Haswell chips are capable to execute up to 6 and 8 operations per cycle and have
reorder buffers of 168 and 192 micro-operations, respectively. We presume that the high
number of integer ALUs and free 1-bit shift operations on the ARM architecture are the
main reason why the NORX reference implementation outperforms its NEON-optimised
counterpart on the Apple A7. On the Cortex-A8 and -A9, the top speeds are achieved
by our NEON implementation of NORX64-4-1, running at 8.96 and 8.94 cycles per byte.
Hence, throughputs of 111MiBps and 190MiBps are reached for frequencies of 1.0GHz
(Cortex-A8) and 1.7GHz (Cortex-A9).

For comparison, state-of-the-art NEON implementations of Salsa20 and Poly1305 [37]
achieve 5.60 cycles per byte for encryption and 2.30 cycles per byte for authentication of
a message, as reported in [42]. Hence, encrypting and authenticating a message requires
about 7.90 cycles per byte in total. The benchmarks there were done on a Cortex-A8
having a frequency of 800MHz. With a difference of about 1 cycle per byte, the speeds of
NORX on our Cortex-A8 is a little worse but still comparable to those of [42]. However,
we only need one pass over the data whereas the above implementation requires two, one
for encryption (using Salsa20) and one for authentication (using Poly1305). Moreover, it
is important to note that the code in [42] was written directly in assembly language using
the qhasm framework [39], whereas our NORX code was written only partially in assembly
language. An assembly implementation has the advantage that no C compiler is required,
which eliminates problems like bad code scheduling of the latter. A complete assembly
language implementation of NORX64-4-1 would probably bring its speed closer to the
above 7.90 cycles per byte of Salsa20-Poly1305, due to the circumvention of possible bad

125

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

C compiler behaviour.
The overhead for short messages (≤ 64 bytes), as depicted in Table 21, is mainly due

to the additional initialisation and finalisation rounds (see Figure 32). However, the cost
per byte quickly decreases and stabilizes for messages larger than about 1KiB. Figure 37
presents a visualisation of the performance measurements on the different platforms.

Note that the speed between reference and optimized implementations differs by a
factor of less than two, suggesting that straightforward and portable implementations
will provide sufficient performance for most applications. Such consistent performance
reduces development costs and improves interoperability and predictability.

Hardware

Hardware architectures of NORX are efficient and easy to design from the specification:
vertical and parallel folding are naturally derived from the iterated and parallel structure
of NORX. The cipher benefits from the hardware-friendliness of the function G, which
requires only bitwise logical AND, XOR, and bit shifts, and the iterated usage of G inside
the core permutation of NORX.

A team around Gürkaynak at ETH Zürich designed and taped out an ASIC, called
CronorX [152], supporting parameters w ∈ {32, 64}, r ∈ {2, . . . , 16}, and d = 1. It was
synthesized with the Synopsys Design Compiler using 180nm UMC technology. The
implementation was targeted at high data throughput. The requirements in area amounted
to about 59 kGE. Simulations for NORX64-4-1 report a throughput of about 10Gbps
(1.2GiBps), at a frequency of 125MHz. A picture of the chip is shown in Figure 38.

A more thorough evaluation of all hardware aspects of NORX is planned for the future.
Due to the similarity of NORX to ChaCha and the fact that NORX has only little overhead
compared to a blank stream cipher, we expect similar results to those of ChaCha as
presented in [129].

NORX versus AES-GCM

Since AES-GCM is basically the current de-facto standard for authenticated encryption
and the CAESAR candidates are meant to replace AES-GCM in the long run, we present
in the following a short performance comparison of NORX to AES-GCM. More precisely,
we compare 128- and 256-bit variants of the two AEAD schemes and use our standard
instances NORX32-4-1 and NORX64-4-1 during our investigations.

Software. AES-GCM achieves very high speeds on modern x86 processors when the
AES New Instructions (AES-NI) extensions are available. Gueron [121] reports, for the
128-, 192-, and 256-bit key variants, running times of 1.03 cpb, 1.17 cpb, and 1.31 cpb on
a Haswell processor. The situation is different when AES-NI is not available which is the
case for the majority of platforms. For example, in [149] two different implementations

126

4.4 Features

Table 21: Software performance of NORX in cycles per byte.

data length [byte] long 4096 1536 576 64 8

Samsung Exynos 4412 Prime (Cortex-A9) at 1.7GHz

NORX32-4-1
Ref 21.57 22.86 24.94 30.50 97.94 663.75

NEON 10.57 11.41 12.77 16.40 61.73 434.88

NORX64-4-1
Ref 26.68 28.49 32.20 42.62 152.16 1218.75

NEON 8.94 9.94 11.79 16.79 73.70 584.50

BeagleBone Black Rev B (Cortex-A8) at 1.0GHz

NORX32-4-1
Ref 19.76 21.21 23.53 29.74 106.02 744.00

NEON 10.50 11.57 13.30 17.92 75.62 550.12

NORX64-4-1
Ref 25.82 27.82 31.83 42.79 161.61 1286.12

NEON 8.96 10.15 12.32 18.15 84.80 673.88

Apple A7 (64-bit ARMv8) at 1.4GHz

NORX32-4-1
Ref 7.98 8.32 8.82 10.20 60.55 395.75

NEON 11.90 12.33 13.02 14.90 87.23 562.50

NORX64-4-1
Ref 4.07 4.34 4.91 6.29 50.78 401.00

NEON 7.34 7.80 8.76 11.21 86.58 703.12

Intel Core i7-2630QM at 2.0 GHz

NORX64-6-1
Ref 7.69 8.14 9.08 11.54 37.75 304.00

AVX 4.94 5.24 5.90 7.52 24.81 198.00

NORX64-4-1
Ref 5.28 5.59 6.24 7.94 26.00 208.00

AVX 3.28 3.49 3.91 5.03 16.69 133.50

Intel Core i7-3667U at 2.0 GHz

NORX64-6-1
Ref 7.04 7.46 8.32 10.59 34.87 371.50

AVX 5.04 5.37 6.03 7.71 25.44 276.00

NORX64-4-1
Ref 4.92 5, 24 5.86 7.43 24.93 310.00

AVX 3.37 3.59 4.01 5.16 17.18 218.00

Intel Core i7-4770K at 3.5 GHz

NORX64-6-1
Ref 6.63 7.00 7.77 9.85 32.12 256.50

AVX2 3.73 3.98 4.47 5.71 19.19 153.00

NORX64-4-1
Ref 4.50 4.76 5.27 6.71 22.06 176.00

AVX2 2.51 2.66 3.01 3.83 13.06 104.00

127

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: Samsung Exynos 4412 Prime (Cortex-A9) at 1.7 GHz

NORX3241 Ref

NORX3241 NEON

NORX6441 Ref

NORX6441 NEON

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: BeagleBone Black Rev B (Cortex-A8) at 1.0 GHz

NORX3241 Ref

NORX3241 NEON

NORX6441 Ref

NORX6441 NEON

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: iPad Air (Apple A7, 64-bit ARMv8) at 1.4 GHz

NORX3241 Ref

NORX3241 NEON

NORX6441 Ref

NORX6441 NEON

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: Intel Core i7-2630QM at 2.0 GHz

NORX6441 Ref

NORX6441 AVX

NORX6461 Ref

NORX6461 AVX

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: Intel Core i7-3667U at 2.0 GHz

NORX6441 Ref

NORX6441 AVX

NORX6461 Ref

NORX6461 AVX

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Message length in bytes

0

10

20

30

40

50

C
y
cl

e
s

p
e
r

b
y
te

Platform: Intel Core i7-4770K at 3.5 GHz

NORX6441 Ref

NORX6441 AVX2

NORX6461 Ref

NORX6461 AVX2

Figure 37: Visualisations for the software performance measurements of NORX.

128

4.4 Features

Figure 38: The CronorX chip.

of AES128-GCM are analysed on a Nehalem processor, one constant-time version that
runs at 20.29 cpb and one tuned towards performance but vulnerable to timing-attacks
that runs at 10.12 cpb. On ARM processors, where AES-NI is not available as well,
the picture is also a very different one. On the Cortex-A8 chip for example, speeds of
50.8 cpb (standard) and 38.6 cpb (NEON) are reported for AES128-GCM in [171] and [93],
respectively.

For better comparisons, we ran our own benchmarks of AES128-GCM and AES256-
GCM using the implementations of the OpenSSL library (version 1.0.1j) on the Ivy Bridge
and Cortex-A8 chips as listed in Table 21. A summary of our results is given in Figure 39.

AES-128-GCM AES-256-GCM NORX32-4-1 NORX64-4-1
0

20

40

60

80

100

120

140

C
y
cl

e
s

p
e
r

B
y
te

49.30

3.24

56.30

3.58

15.92

5.79 4.92 3.37

Intel Core i7-3667U at 2.0 GHz

reference
optimised

AES-128-GCM AES-256-GCM NORX32-4-1 NORX64-4-1
0

20

40

60

80

100

120

140

C
y
cl

e
s

p
e
r

B
y
te

103.00

38.05

114.24

45.42

19.76

10.50

25.82

8.96

BeagleBone Black Rev B (Cortex-A8) at 1.0 GHz

reference
optimised

Figure 39: NORX versus AES-GCM (OpenSSL 1.0.1j).

On the Ivy Bridge and with activated hardware support we measured speeds of about
3.24 and 3.58 cpb for AES128-GCM and AES256-GCM, respectively. In comparison, AVX
versions of NORX32-4-1 and NORX64-4-1 run at 5.79 and 3.37 cpb which corresponds
to speed differences by factors of 0.55 and 1.06. Note that the speed of NORX64-4-1

129

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

is already on par with AES256-GCM and AES128-GCM is only slightly faster. The
advantage shifts entirely towards NORX when no hardware support is available: here the
AES-GCM versions only reach speeds of 49.30 and 56.30 cpb whereas NORX runs at 15.92
and 4.92 cpb, which corresponds to differences of factors 3.1 and 11.44, respectively.

On the Cortex-A8 chip from Table 21, we obtained speeds of 38.01 and 45.28 cpb for
the optimised versions of AES-GCM and speeds of 10.50 and 8.96 cpb for the optimised
versions of NORX which corresponds to speed-up-factors of 3.62 and 5.05. For the
unoptimised variants we get 103.00 and 114.24 cpb for AES-GCM and 19.76 and 25.82
for NORX which are improvements by factors of 5.21 and 4.42.

In summary, it is very obvious that NORX is performance-wise more than on par with
AES-GCM on the investigated platforms. The latter has only a slight advantage on
platforms where the AES-NI extensions are available. In all other cases our cipher easily
outperforms AES-GCM.

Hardware. A comprehensive evaluation of AES-GCM synthesized on an 65nm CMOS
ASIC is presented in [189]. For an 8-way parallel version of AES-GCM running at a
frequency of 641MHz, the authors report throughputs of around 82Gbps. Unfortunately,
we do not have any data points for NORX on the above architecture. Recall that the purely
sequential version NORX64-4-1 achieves about 10Gbps, when synthesized on a 180nm
UMC ASIC and being operated at a frequency of 125MHz. We expect, however, that
NORX achieves similar if not even better results compared to the above state-of-the-art
AES-GCM implementation when realised on an equally modern architecture as the above
65 nm CMOS ASIC and exploiting higher frequencies and parallelization.

4.5 Design Rationale

In this chapter, we motivate the design choices made in NORX. We pursue a top-down
approach, starting with the general layout and going into the details of the cipher’s
components in the later sections.

4.5.1 The Parallel MonkeyDuplex Construction

The layout of NORX is based on the monkeyDuplex construction [44, 48], but enhanced
by the capability of parallel payload processing on multiple lanes (see Figures 32 and 33).
The parallel monkeyDuplex construction is similar to the tree-hashing mode for sponge
functions [45]. It allows NORX to take advantage of multi-core processors and enables
high-throughput hardware implementations. Associated data can be authenticated as
header and/or trailer data but only on a single lane. We considered it not worth the
effort to enable processing of A and B in parallel, as they are usually rather short. The
number of encryption lanes is controlled by the parallelism degree 0 ≤ d ≤ 255 which is

130

4.5 Design Rationale

a fixed instance parameter. Hence, two instances with distinct d values cannot decrypt
data from each other. Obviously, the same holds for differing w and r values.

To ensure that the payload blocks on parallel lanes are encrypted with distinct key
streams, we use the branching phase to include an id into each of the parallel lanes. For
NORX the id is a simple counter. Once the parallel payload processing is finished, the
states are re-combined in the merging phase and NORX advances to the processing of the
trailer (if present) or generation of the authentication tag.

There exists a formal proof of security for the parallel duplex construction, i.e. for
all 0 ≤ d ≤ 255, as already mentioned in Section 4.3. In [141] it is shown that NORX
achieves security levels of

min{2b/2, 2c, 2k}

for authenticity and confidentiality, where b, c, and k are state, capacity, and key sizes,
assuming an ideal underlying permutation and a nonce-respecting adversary. This security
bound would allow to increase the rate for each NORX variant by two words, i.e. by 64
bits in case of NORX32 and by 128 bits for NORX64. As a consequence, the performance
would increase by approximately 16%. However, NORX is already very fast in soft- and
hardware, see Section 4.4.3, and we therefore see no necessity in increasing the rate.
Instead we consider the additional capacity as an enhanced security buffer.

4.5.2 The Functions F, G, and H

One of the main design goals for NORX was to create an ARX-related cipher which
relies neither on S-boxes nor on integer additions to introduce non-linearity. For example,
relinquishing S-boxes helps to avoid side-channel attacks based on timing leaks. Instead,
we aimed to use exclusively more hardware-friendly bitwise logical operations like NOT,
AND, OR, or XOR and bit-shifts, where combinations like OR or AND with XOR provide the
required non-linearity. Instead of ARX which stands for integer addition, rotation, and
XOR, we therefore use the term LRX to classify those types of primitives where integer
addition is replaced by a combination of bitwise logical operations.

The Function H

Addition of two integers x and y can be written as

x+ y = (x⊕ y) + ((x ∧ y)≪ 1)

according to [28, 164]. In NORX we started from the above representation but replaced
integer addition with bitwise logical XOR which results in the non-linear operation H of
the following form

H : F2n
2 → Fn

2 , (x, y) 7→ (x⊕ y)⊕ ((x ∧ y)≪ 1) .

131

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

The function H mimics integer addition of two bit strings x and y with a 1-bit carry
propagation which provides a slight diffusion of bits.

Since NORX is designed to be a permutation-based cipher, the core function has to be
bijective and therefore H has to be bijective, too. For the proof, we assume that one of
the input arguments of H is fixed, a requirement which is given by default in the round
function of NORX. To show the bijectivity of H, we show how to invert it. Therefore, let

z = (x⊕ y)⊕ ((x ∧ y)≪ 1)

with n-bit words x, y and z. We assume that y is fixed and write x =
∑n−1

i=0 xi · 2i,
y =

∑n−1
i=0 yi · 2i, and z =

∑n−1
i=0 zi · 2i with xi, yi, and zi ∈ F2. Writing down the inverse

non-linear operation at bit level is then straightforward:

x0 = (z0 ⊕ y0)

x1 = (z1 ⊕ y1)⊕ (x0 ∧ y0)

...

xi = (zi ⊕ yi)⊕ (xi−1 ∧ yi−1)

...

xn−1 = (zn−1 ⊕ yn−1)⊕ (xn−2 ∧ yn−2) .

This shows that H is indeed bijective under the above assumptions.

The Function G

The G function of NORX is inspired by the quarter-round function of the stream cipher
ChaCha [40] which itself is an advancement of the quarter-round function of Salsa20 [107,
41] one of the eSTREAM finalists. Variants of ChaCha’s quarter-round function can be
found for example in the SHA-3 finalist BLAKE [222, 16] and its successor BLAKE2 [21].

Figure 40 shows how the G function of NORX transforms an input (a, b, c, d) compared
to the quarter-round function of ChaCha. The rotation offsets for NORX are specified
in Table 15. The offsets of ChaCha are (s0, s1, s2, s3) = (16, 12, 8, 7) for 32-bit and
(s0, s1, s2, s3) = (32, 24, 16, 63) for 64-bit.7

The cyclic rotations are obviously bijective, H has been shown to be bijective too, and
thus G is a permutation on the tuple (a, b, c, d). Further, it is a permutation when either
of its input arguments is fixed, making it also a latin square.

7The original ChaCha stream cipher is defined for 32-bit words. For the 64-bit version we used the
rotation offsets (32, 24, 16, 63) from the BLAKE2 specification [21].

132

4.5 Design Rationale

NORX ChaCha

a ←− (a⊕ b)⊕
(

(a∧ b)≪ 1
)

a ←− a+ b

d ←− (a⊕ d) ≫ r0 d ←− (a⊕ d) ≫ s0
c ←− (c⊕ d)⊕

(

(c∧ d)≪ 1
)

c ←− c+ d

b ←− (b⊕ c) ≫ r1 b ←− (b⊕ c) ≫ s1
a ←− (a⊕ b)⊕

(

(a∧ b)≪ 1
)

a ←− a+ b

d ←− (a⊕ d) ≫ r2 d ←− (a⊕ d) ≫ s2
c ←− (c⊕ d)⊕

(

(c∧ d)≪ 1
)

c ←− c+ d

b ←− (b⊕ c) ≫ r3 b ←− (b⊕ c) ≫ s3

Figure 40: Comparison of NORX and ChaCha core functions.

The Function F

The layout of the round function F of NORX is the same as used in ChaCha [40]. Recall
that F transforms a state s = (s0, . . . , s15) in two phases. First, F applies a column step
col of the form

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then a diagonal step diag of the shape

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

see Algorithm 6 and Figure 34. Since G is a permutation, F is obviously a permutation,
too. This means that there exist no states s and s′, with s 6= s′, which produce the
same result, i.e. Fr(s) = Fr(s′), after any number of rounds r. This characteristic of F is
important for the duplex construction [44, 48] in order to retain some desirable security
properties.

One great advantage of the ChaCha-related layout of F is that the modification of
a single bit in the input has the chance of affecting all 16 output words after only one
application of F which greatly enhances diffusion. Another benefit of the layout is the
ability to execute the four applications of G during the steps col and diag completely in
parallel which improves performance.

4.5.3 Selection of Constants

Rotation Offsets

The rotation offsets (r0, r1, r2, r3), see Table 15, used by NORX provide a good balance
between security and efficiency. The concrete values ri, with 0 ≤ i ≤ 3, were selected
according to the following conditions:

133

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

• At least two out of four offsets are multiples of 8.

• The remaining offsets are odd and have the form 8m±1 or 8m±3, with a preference
for the first shape.

The motivation behind those criteria is the following: an offset which is a multiple of 8
preserves byte alignment and thus is much faster than an unaligned rotation on many
non-64-bit architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so
for example rotations by 5 bits are particularly expensive. Using aligned rotations, i.e.
permutations of bytes, greatly increases the performance of the entire algorithm. Even
64-bit architectures benefit from such aligned rotations, for example when an instruction
sequence of two shifts followed by XOR can be replaced by SSSE3’s byte shuffling instruction
pshufb. Odd offsets break up the byte structure and therefore increase diffusion.

In order to find good rotation offsets satisfying the above properties and assess their
diffusion properties, we used an automated search combined with a diffusion test. The
test analyses the diffusion behaviour of Fr, with r ≥ 1, parametrised with a given rotation
tuple r = (r0, r1, r2, r3), with ri ∈ {1, . . . ,w − 1}, on 1-bit input differences. We denote
this parametrisation by F r[r]. By diffusion behaviour we mean here statistical values
of the Hamming weight of the output difference of Fr. To be more precise, we looked
for rotation offsets where the median of the Hamming weight of the output difference
converges against b/2 for r as low as possible. In other words, the 0 and 1 entries in the
output difference are equally distributed and exhibit no obvious structure. The test is
described in detail in Algorithm 20.

Finally, we chose the offsets (8, 19, 40, 63) for NORX64 and (8, 11, 16, 31) for NORX32
which belonged to those offsets having very high values for average and median Hamming
weight for r = 1 and achieve full diffusion after r = 2. Additionally, both offset tuples
satisfy the initially specified conditions and offer good performance.

Table 22 lists the results of the test for 32- and 64-bit core functions with 1 ≤ r ≤ 4
and rotation offsets as specified above. The test results show that the diffusion speed
of NORX’s round function F is almost as high as ChaCha’s and that full diffusion is
reached after only two rounds. Figure 41 shows how single bit changes in the word s0
propagate through the NORX state over the course of 5 steps (= F2.5). Unfortunately,
there seems to be no combination of rotation values with three offsets being a multiple of
8 and one being w − 1, like BLAKE2’s (32, 24, 16, 63), where F achieves a comparably
strong diffusion as illustrated in Table 22. The reason for this can be traced back to the
replacement of integer addition by the non-linear operation H of NORX.

Initialisation Constants

The four basic constants u0, . . . , u3 of 32-bit and 64-bit NORX correspond to the first
digits of π. The other six constants are derived iteratively from u0, . . . , u3 by

(u4j+4, u4j+5, u4j+6, u4j+7) = G(u4j , u4j+1, u4j+2, u4j+3)

134

4.5 Design Rationale

Algorithm 20: diffusion_test(r, R)

Inputs:

r ∈ N, R ∈ Z4n
w

Output:

L ∈ (Z4
w × N× N× Q× Q)m

Algorithm:

1. L← ∅

2. for r ∈ R do

3. Lr ← ∅

4. for 1 to 106 do

5. X
$
←− {0, 1, 2, 3, 4, . . . , 2b−1}

6. Y
$
←− {1, 2, 4, 8, 16, . . . , 2b−1}

7. s← to_intw(X)

8. s′ ← to_intw(X ⊕ Y)

9. x← Fr[r](s)⊕ Fr[r](s′)

10. Lr ← Lr ‖ hw(x)

11. end

12. L← L ‖ (r,min(Lr),max(Lr), avg(Lr),median(Lr))

13. end

14. return L

for j ∈ {0, 1}. The complete list of constants is depicted in Table 23. The main purpose
of the constants is to bring asymmetry during initialisation and to limit the freedom of
an attacker where he might inject differences.

Domain Separation Constants

The NORX algorithm is separated into different data processing phases. Each phase uses
its own domain separation constant to mark certain events like the absorbing of data
blocks or merging and branching steps in case of an instance with parallelism degree
d 6= 1. A domain separation constant is always added to the least significant byte of the
capacity word s15. The constants are given in Table 16. The separation of the processing
phase is important for the security proofs of the indifferentiability of the (parallel) duplex
construction [46, 48, 141]. In addition, they help to break the self-similarity of the round
function and thus increase the complexity of certain kind of attacks on NORX, for example,
like slide attacks, see Section 5.2.4.

4.5.4 Number of Rounds

For a higher protection of the key and authentication tag, e.g. against differential
or algebraic cryptanalysis, we chose twice the number of rounds for initialisation and
finalisation, i.e. F2r, compared to the data processing phases which use Fr. This method
was already proposed in [44] and has only minor effects on the overall performance, but

135

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

Table 22: Diffusion statistics for (inverse) round functions of NORX and ChaCha.

NORX32 ChaCha (32-bit) Inverse NORX32 Inverse ChaCha (32-bit)

r min max avg median min max avg median min max avg median min max avg median

1 83 280 179.222 181 73 294 182.195 185 17 162 49.444 47 17 126 44.776 44

2 194 307 256.024 256 199 312 255.999 256 160 306 247.737 248 164 304 244.982 246

3 198 312 255.995 256 204 313 255.988 256 202 307 255.991 256 203 310 255.994 256

4 201 307 255.996 256 200 314 255.989 256 202 315 256.018 256 200 311 256.022 256

NORX64 ChaCha (64-bit) Inverse NORX64 Inverse ChaCha (64-bit)

r min max avg median min max avg median min max avg median min max avg median

1 95 429 230.136 222 73 506 248.843 246 17 203 51.346 49 17 142 46.129 45

2 440 589 511.982 512 430 591 512.013 512 262 568 433.742 435 194 543 382.667 383

3 434 589 512.008 512 439 589 511.971 512 440 593 511.995 512 440 591 511.964 512

4 428 589 511.986 512 435 585 512.008 512 435 585 512.011 512 433 596 511.991 512

Table 23: Initialisation constants of NORX.

NORX32 NORX64 NORX32 NORX64

u0 243F6A88 243F6A8885A308D3 u5 38531D48 670A134EE52D7FA6

u1 85A308D3 13198A2E03707344 u6 839C6E83 C4316D80CD967541

u2 13198A2E A4093822299F31D0 u7 F97A3AE5 D21DFBF8B630B762

u3 03707344 082EFA98EC4E6C89 u8 8C91D88C 375A18D261E7F892

u4 254F537A AE8858DC339325A1 u9 11EAFB59 343D1F187D92285B

should increase the security margin of NORX against non-generic attacks. The minimal
value of r = 4 is based on the following observations:

• The diffusion experiments, as presented in Section 4.5.3, show that r = 2 is required
to get full diffusion.

• The best attacks on Salsa20 and ChaCha [14, 225, 233] theoretically break 8 and 7
rounds, respectively, which roughly corresponds to 4 and 3.5 rounds of the NORX
core permutation. However, those attacks are based on a much stronger attack
model which cannot be used for the duplex construction of NORX.

• The cryptanalysis of NORX as presented in Section 5. The best differentials we were
able to find in the permutation Fr belong to a class of high-probability truncated
differentials over 1.5 rounds, see Section 5.3.1, and a class of impossible differentials
over 3.5 rounds, see Section 5.3.2. These are not applicable to NORX though.

The number of rounds may be adjusted according to the future cryptanalytic results
on NORX.

136

4.6 Conclusion

NORX32

0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

NORX64

0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

Figure 41: Visualisation of NORX diffusion.

4.5.5 The Padding Rule

The sponge (or duplex) construction offers protection against generic attacks if the padding
rule is sponge-compliant, i.e. if it is injective and ensures that the last block is different
from the all-zero block. In [45] it has been proven that the multi-rate padding satisfies
those properties. Moreover, it is simple to describe, easy to implement, and very efficient
and was thus a natural choice to be used in NORX. Additionally, the multi-rate padding
increases the complexity to mount certain kind of attacks on NORX, like slide attacks,
see Section 5.2.4.

4.6 Conclusion

This chapter gave a comprehensive introduction to NORX, a new, state-of-the-art authen-
ticated encryption scheme with support for associated data. The cipher is a candidate
of the CAESAR competition which started in early 2014. Next to its specification, we
discussed the cipher’s most important features, presented results from our extensive
software performances measurements on multiple platforms as well as those from an
(external) hardware evaluation of an ASIC design, and gave insights into the design
process and the motivation behind our design decisions.

There are several options for future research projects targeting NORX: on the software
side, one interesting topic is the evaluation of NORX on more resource-constrained
platforms, like microcontrollers, and how the scheme compares to currently deployed

137

Chapter 4 NORX: Parallel and Scalable Authenticated Encryption

solutions and to the other CAESAR candidates. On the hardware side, a similar evaluation
of NORX implementations for FPGAs would be of very high interest as well.

Furthermore, we are currently working on versions of NORX based on 8- and 16-bit
words, which highly reduce the state sizes and could be of special interest for environments
having access to only very limited resources.

Another important topic is of course the security analysis of the scheme. We present
first results in Chapter 5. However, an extensive security analysis of any new cipher
requires a lot of effort from many researchers. We thus invite and encourage the readers
to analyse the security of NORX.

Finally, regarding intellectual property, we explicitly state that NORX is available on a
royalty-free basis, the algorithm is not covered by a patent, and the designers of NORX
do not have any plans to file a patent application in the future.

138

Chapter 5

Analysis of NORX

5.1 Introduction

This chapter is dedicated to the security analysis of NORX. We focus on differential and
rotational aspects of the round permutation Fr and use our results to draw conclusions
on the security of the complete scheme.

The analysis of NORX was presented at Latincrypt 2014 [19].

Outline. Section 5.2 discusses general observations on the core functions G and F, and
the implications that follow for the security of NORX. Section 5.3 is dedicated to the
differential cryptanalysis of NORX. First, we introduce the required notation, then we
describe how to construct simple differentials by analysing 1-bit input differences to the
G permutation. Finally, we introduce NODE, the NORX Differential Search Engine which
allows to search for differential trails in Fr, and present the results from our extensive
experiments. In Section 5.4, we analyse rotational aspects of Fr, and Section 5.5 concludes
the chapter.

5.2 General Observations on G and F

5.2.1 Fix Points

A fix point x of a permutation P is an input that satisfies

P (x) = x .

This property also extends to the n-fold iteration of P , i.e. a fix point x of P is also a fix
point of Pn.

In our first step of the analysis of NORX, we are interested in whether there exist
any fix points in the 32- and/or 64-bit permutation Fr. To this end we start with the
examination of G, the basic building block of F and Fr. Recalling the layout of G (see
Figure 6), we almost immediately see that

G(0, 0, 0, 0) = (0, 0, 0, 0)

139

Chapter 5 Analysis of NORX

holds. In other words, the all-zero input is a fix point of G. Moreover, since col and diag

are just four-fold parallel applications of G (see Figure 34), it follows trivially that the
all-zero input also results in a fix point for those two functions and obviously for F and Fr

as well.
An attacker could use the zero-to-zero point as a trivial distinguisher to attack NORX.

However, it seems hard to exploit this property for an actual attack, as hitting the all-zero
state is as hard as hitting any other arbitrary state. Thus, the ability to hit a predefined
state implies the ability to recover the key which is equivalent to completely breaking
NORX. Therefore, the zero-to-zero point is not a significant threat to the security of
NORX.

The more interesting question is, whether there are any other fix points in the NORX
permutations besides the trivial one, and if so, how many. To investigate this question,
we formulated the problem for the 32- and 64-bit variants of G in CVC which is the
input language of the SMT solver STP [116]. For the 32-bit version, the solver was
indeed able to verify that there are no further fix points which implies that the same
holds for the 32-bit round function F. However, for the 64-bit version of G, the problem
has a much higher complexity: even after over 1000 hours, STP was unable to finish its
computation with a positive or negative result. Although we were not able to answer
the fix point question for this case using the above approach, we consider it to be very
unlikely that there are further fix points besides the trivial one. Note that even if there are
further fix points, NORX implements a couple of countermeasures to prevent an attacker
from exploiting them: first, the initial state is loaded with asymmetric constants, which
should make it very hard for an attacker to construct a fix point, even in the worst-case
scenario where he can control nonce and key words. Second, as soon as initialisation is
finished, an attacker can influence only the ten rate words, while the six capacity words
are uncontrollable and unknown to him, which likely makes it infeasible to attack NORX
through fix points in this scenario either. The third countermeasure are the domain
separation constants which are integrated into the state before each application of Fr and
provide another source of asymmetry.

5.2.2 Weak States

The category of states which exhibit a non-pseudo-random behaviour when transformed
with Fr, are called weak states. With fix points we already saw one type of states that
belongs to this category. However, the more general form of weak states for NORX are of
the following shape









w w w w
x x x x
y y y y
z z z z









140

5.2 General Observations on G and F

with w, x, y, and z being arbitrary w-bit sized words. The column-pattern is preserved
by Fr for any value of r > 0. These weak states hold obviously for both col and diag,
i.e. it does not matter if the state is transformed first by col and then by diag or the
other way around. The ability to hit such a state purposely, is equivalent to the ability of
reconstructing the key and therefore breaking the entire scheme. Although there are quite
many of these states, namely 24w, their number is still negligible compared to the total
number of 216w states. Thus, the probability to hit such a state is 2−12w which translates
to probabilities of 2−384 (w = 32) and 2−768 (w = 64). In other words, an attacker is
better off brute-forcing the key, which has success probabilities of 2−128 (w = 32) and
2−256 (w = 64), respectively, than attacking NORX through weak states. Additionally,
as for the fix point scenario, duplex construction, asymmetric initialisation, and domain
separation constants provide an extra level of protection against weak state attacks. In
conclusion, weak states should pose a very small threat to the security of NORX.

5.2.3 Algebraic Properties

Algebraic attacks on cryptographic algorithms, as discussed in the literature [8, 13, 89,
105], target ciphers whose internal state is mainly updated in a linear way and thus exploit
a low algebraic degree of the attacked primitive. However, this is not the case for NORX,
where the b ∈ {512, 1024} inner state bits are updated in a strongly non-linear fashion.
In the following, we briefly discuss the algebraic properties of NORX and demonstrate
why it is unlikely that algebraic attacks can be successfully mounted against the cipher.

A convenient way to represent a Boolean function is through its Algebraic Normal
Form (ANF). Given a Boolean function f : Fn

2 −→ F2, the ANF of f can be modelled as
a multivariate polynomial, i.e. a sum of monomials in n input variables. Both a large
number of monomials in the ANF and a good distribution of their degrees are important
properties of non-linear building blocks in ciphers [24].

We constructed the ANF of G and measured the degree of every of the 4w polynomials
and the distribution of the monomials. Table 24 reports the number of polynomials per
degree as well as information on the distribution of monomials for both versions of G.

Table 24: Algebraic properties of G.

#polynomials by degree #monomials

w 3 4 5 6 7 8 w min max avg median

32 2 6 58 2 8 52 32 12 489 242 49.5
64 2 6 122 2 8 116 64 12 489 253 49.5

In both cases most polynomials have degree 5 or 8 and merely 2 have degree 3.
Multiplying each of the above values by 4 gives the distribution of degrees for the whole

141

Chapter 5 Analysis of NORX

state after a single col or diag step. Due to memory constraints, we were unable to
construct1 the ANF for a single full round F, neither for the 64-bit nor for the 32-bit
version. In summary, we see that the state of NORX is updated in a strongly non-linear
fashion. Due to the rapid growth of the degree, a large number of monomials and state
size of 512 and 1024 bits, we believe that it is unlikely that algebraic cryptanalysis can
be used to successfully mount an attack on the AEAD scheme.

5.2.4 Slide Attacks

Slide attacks try to exploit the symmetry in a primitive that consists of the iteration of
a number of identical rounds. They were introduced by Biryukov et al. [65, 66] for the
cryptanalysis of block ciphers. Later, they were also extended to stream ciphers [208] and
hash functions [119]. To protect sponge constructions against slide attacks two simple
countermeasures can be found in the literature:

1. The first protection, as introduced in [119], can be implemented by adding a non-zero
constant to the state just before the permutation is applied.

2. The second, as proposed in [205], recommends to use a message padding, which
ensures that the last processed data block is different from the all-zero message.

These countermeasures should also hold for the duplex construction, since it also
belongs to the sponge function family and thus for NORX. Both defensive mechanisms
are already integrated into the cipher: the domain separation constants are added to the
state just before the permutation Fr is applied and the multi-rate padding ensures that
the last processed data block is different from the all-zero block. See Section 4.2.5 for
more information on padding and domain separation. All in all, slide attacks should pose
little to no threat to NORX.

5.3 Differential Cryptanalysis

It is crucial to analyse the resistance of any new designs against differential attacks. In
this section we therefore present our results on the differential cryptanalysis of NORX.

The basic notions of differential cryptanalysis have been introduced in Section 1.2.2.
First, we analyse the propagation of differences with 1 active bit through the G function,
and derive from that a few high-probability truncated differentials of low weight for a
few steps of the core permutation Fr. Afterwards, we also study impossible differential
cryptanalysis.

The search for differentials by hand becomes infeasible very quickly and especially for
a larger number of rounds. The second part of this section is dedicated therefore to more

1Using SAGE [229] on a workstation with 64 GiB RAM.

142

5.3 Differential Cryptanalysis

advanced differential search methods in Fr. We discuss an approach how to embed the
differential search in a more general framework which allows to automate the task by
exploiting the power of SAT- and SMT-solvers.

5.3.1 Simple Differentials

In this section, we analyse differential propagation in the permutations G and F of
NORX, show how to compute some simple differentials together with their corresponding
weights. To be more precise, if we speak in the following of differentials or (differential)
characteristics, we always mean XOR-differentials or XOR-characteristics.

Simple Differentials in G

First, we start with the simplest case, where an input difference of G has only one
active bit. Since the direct analysis of G is already rather complex we decompose G into
two functions G1 and G2 and analyse initially only the behaviour of G1. Therefore, let
G1 : F

4w
2 −→ F4w

2 be a vector Boolean function defined as

a ←− (a⊕ b)⊕ ((a ∧ b)≪ 1)

d ←− (a⊕ d) ≫ r0

c ←− (c⊕ d)⊕ ((c ∧ d)≪ 1)

b ←− (b⊕ c) ≫ r1

and let G2 be specified analogously but with rotation offsets r2 and r3 instead of r0 and
r1. Thus, it obviously holds that

G(a, b, c, d) = G2(G1(a, b, c, d))

for all (a, b, c, d) ∈ F4w
2 . Now let α, β ∈ F4w

2 be input and output differences of a differential
in G1 with α = (α0, α1, α2, α3) and β = (β0, β1, β2, β3), i.e. we have

α
G1−→ β .

Further, let v ∈ {0, . . . , 3} and assume that hw(αv) = 1 with an active bit at position
i ∈ {0, . . . ,w − 1}. Moreover, assume that hw(αu) = 0 for all u ∈ {0, . . . , 3} \ {v}. For
the computation of the active-bit indices, we denote by s(i) and r(i) the index-level
equivalent operations to the shift ≪ 1 and cyclic rotation ≫ r of the ith bit. These
operations translate to s(i) = i+ 1 and r(i) = (i− r) mod w. Moreover, each application
of s increases the weight w of the active bit by 1, since it is only applied in the non-linear
operation H of NORX. The active bits in the output difference β and associated differential
weights w after G1 are depicted in Table 25.

143

Chapter 5 Analysis of NORX

Table 25: Active bits in β = G1(x)⊕ G1(x⊕ α) starting from an active bit index i in α.

α0 w α1 w α2 w α3 w

β0
j0,0 = i 0 j0,2 = i 0

– –
j0,1 = s(i) 1 j0,3 = s(i) 1

β1

j1,0 = r1 ◦ r0(i) 0 j1,4 = r1 ◦ r0(i) 0 j1,9 = r1(i) 0 j1,11 = r1 ◦ r0(i) 0
j1,1 = r1 ◦ s ◦ r0(i) 1 j1,5 = r1 ◦ s ◦ r0(i) 1 j1,10 = r1 ◦ s(i) 1 j1,12 = r1 ◦ r0 ◦ s(i) 1
j1,2 = r1 ◦ r0 ◦ s(i) 1 j1,6 = r1(i) 0
j1,3 = r1 ◦ s ◦ r0 ◦ s(i) 2 j1,7 = r1 ◦ r0 ◦ s(i) 1

j1,8 = r1 ◦ s ◦ r0 ◦ s(i) 2

β2

j2,0 = r0(i) 0 j2,4 = r0(i) 0 j2,8 = i 0 j2,10 = r0(i) 0
j2,1 = s ◦ r0(i) 1 j2,5 = s ◦ r0(i) 1 j2,9 = s(i) 1 j2,11 = r0 ◦ s(i) 1
j2,2 = r0 ◦ s(i) 1 j2,6 = r0 ◦ s(i) 1
j2,3 = s ◦ r0 ◦ s(i) 2 j2,7 = s ◦ r0 ◦ s(i) 2

β3
j3,0 = r0(i) 0 j3,2 = r0(i) 0

–
j3,4 = r0(i) 0

j3,1 = r0 ◦ s(i) 1 j3,3 = r0 ◦ s(i) 1

The first insight is that in some cases different “paths” lead to the same bit index, i.e.
active bits could overlap and cancel each other out as a consequence. This occurs for j1,1
and j1,2, j2,1 and j2,2, j1,5 and j1,7, and j2,5 and j2,6. In these cases, the total probability
that the bit is active is

2−w + 2−w − 2−w · 2−w =
2w+1 − 1

22w

resulting in a probability of 3
4 for w = 1. Considering these overlaps, the total number of

active bits in words α0, α1, α2, and α3, respectively, is at most 10, 11, 4, and 5.
Another event that could neutralise active bits is the shift operation in H. This happens

if the active bit is at index w − 1 before the application of H. The shift then “moves”
the active bit beyond the word boundary thereby erasing it. As a consequence, all bits
depending on the erased index can not become active. For example, if bit i = w − 1 is
active in α0, then the difference j0,1 = s(i) is erased by the shift operation, which has the
effect that bits j3,1, j2,2, j1,2, j2,3, and j1,3 remain inactive. These bits can become active
through the propagation of other active bits though. Figure 42 visualises the dependencies
between the active bits from Table 25. The nodes of the tree are the active bit indices at
the output of G1. The labels (f, v) on the edges show the operation f ∈ {id, s, r0, r1} that
leads from one active bit to the next and the corresponding weight increase v ∈ {0, 1}.
The differential weight w of an active bit at the output of G1 can be computed by summing
over all the values v on the edges of a path leading from the root of the tree to a particular
node. This results in the same weights as already shown in Table 25.

The differentials in Table 25 only hold for input differences having exactly one active
bit. If we consider input differences with more than one active bit, the situation gets
immediately a lot more complex, because active bits interact with each other more often
and the effects become hard to predict in general. For example, an input difference
having active bits w − 1 in both α0 and α1 leads to a cancellation of the active bit j0,0

144

5.3 Differential Cryptanalysis

α0

j0,0

j3,0

j2,0

j1,0

(r1, 0)

(id, 0)

j2,1

j1,1

(r1, 0)

(s, 1)

(r0, 0)

(id, 0)

j0,1

j3,1

j2,2

j1,2

(r1, 0)

(id, 0)

j2,3

j1,3

(r1, 0)

(s, 1)

(r0, 0)

(s, 1)

α1

j0,2

j3,2

j2,4

j1,4

(r1, 0)

(id, 0)

j2,5

j1,5

(r1, 0)

(s, 1)

(r0, 0)

(id, 0)

j1,6

(r1, 0)

j0,3

j3,3

j2,6

j1,7

(r1, 0)

(id, 0)

j2,7

j1,8

(r1, 0)

(s, 1)

(r0, 0)

(s, 1)

α2

j2,8

j1,9

(r1, 0)

(id, 0)

j2,9

j1,10

(r1, 0)

(s, 1)

α3

j3,4

j2,10

j1,11

(r1, 0)

(id, 0)

j2,11

j1,11

(r1, 0)

(s, 1)

(r0, 0)

Figure 42: Relations between active bits in G1.

of probability 1 during the update of word a in G1. We show below how this property
can be exploited to build some simple differentials for G having high probability and low
weight output differences.

Now that we know how active bits propagate in G1, we want to use that knowledge to
describe active bits at the output of G. Differential trails in G can obviously be described
as follows:

α
G1−→ β

G2−→ γ .

Hence, the active output bits in β of G1 are the new active input bits of G2. These then
propagate to the output γ of the function G2 which are equivalent to the output bits of G.
Under the assumption that no cancellation of active bits occurs and using our previous
computations on the number of active bits at the output of G1, we can compute upper
bounds on the active bits after one application of G quite easily. Recall that for a single
active bit in α0 at the input of G1 we get at most 10 active bits at the output. To be
more precise, we get 2 active bits in β0, 3 in β1, 3 in β2, and 2 in β3, see the first column
in Table 25. To compute the active output bits in G2, we can obviously re-use the results
from G1, since both functions only differ in the rotation offsets. Thus, using Table 25 on
the above active bits in β, we see that we get at most

2 · 10 + 3 · 11 + 3 · 4 + 2 · 5 = 75

active bits at the output γ of G2 or equivalently of G. Repeating the above calculations
for single active bits in the remaining three input words α1, α2, and α3, we get upper
bounds of 86, 30, and 35 for the number of active bits. These bounds are not tight,
though. Analysing the formulas from G2(G1(a, b, c, d)) in detail, one realises that quite

145

Chapter 5 Analysis of NORX

a few active bits overlap, and that there are often multiple paths that lead to the same
active bit. The tight upper bounds of active bits are listed in the Table 26.

Table 26: Maximum number of active output bits in G on a single active input bit.

single active bit in α0 α1 α2 α3

max. active bits in γ 51 62 22 27

We also verified these numbers experimentally for both the 32- and 64-bit version of G,
i.e. we found differential trails that have the predicted number of active output bits on a
single active input bit.

Simple Differentials in Fr

Now that we have analysed how a single active bit propagates through G we want to use
this knowledge to find some simple differentials in F of NORX. We analyse again both
variants of G.

We first consider a simple attack model where the initial state is assumed to be chosen
uniformly at random and where one seeks differences in the initial state that give biased
differences in the state obtained after a small number of iterations of F. High-probability
truncated differentials wherein the output difference concerns only a small subset of bits
(e.g., a single bit) are sufficient to distinguish a (reduced-round) permutation from a
random one and are easier to find for an adversary than differentials on all b bits of the
state. To find such differentials we start from our previous analysis of G and extend it
to Fr. We observe that it is easy to track differences during the first few steps and in
particular to find probability-1 (truncated) differential characteristics for a small number
of iterations of F. We found three notable differentials in G, see Table 27, that have high
probability and an output difference of low Hamming weight.

Table 27: High-probability differentials of low weight for 32- and 64-bit G.

Differences w Differences w

α 80000000 80000000 80000000 00000000
0

α 8000000000000000 8000000000000000 8000000000000000 0000000000000000
0

β 00000000 00000001 80000000 00000000 β 0000000000000000 0000000000000001 8000000000000000 0000000000000000

α 00000000 80000000 80000000 80000000
1

α 0000000000000000 8000000000000000 8000000000000000 8000000000000000
1

β 80000000 00010001 80008000 00008000 β 8000000000000000 0000000001000001 8000000000800000 0000000000800000

α 00000000 80000000 80000000 80000000
1

α 0000000000000000 8000000000000000 8000000000000000 8000000000000000
1

β 80000000 00030001 80018000 00008000 β 8000000000000000 0000000003000001 8000000001800000 0000000000800000

To prove that the first differentials of their respective word sizes in Table 27, indeed have
probability 1 or equvialently weight 0, we look again at the decomposition G = G2 ◦ G1

146

5.3 Differential Cryptanalysis

and construct the differential
α

G1−→ β
G2−→ γ

in two steps. First, consider an active bit at index i = w− 1, in α0. By looking at the first
tree in Figure 42, we see that at most 6 out of 10 bits can become active, namely bits j0,0,
j3,0, j2,0, j2,1, j1,0, and j1,1 which are located in the left subtree. The bits in the right
subtree remain inactive, since s(i) is erased due to the shift ≪ 1. Similar considerations
hold for α1, where at most 7 out of 11 bits can become active. For α2 and α3 there will
be exactly 2 and 3 active bits at the output of G1. The probability-1 differential has
active bits at indices i0 = i1 = i2 = w− 1 in input differences α0, α1, and α3, respectively.
The output difference β0 of G1 has no active bit since s(i0) and s(i1) are erased, and i0
and i1 cancel each other out during the update of word a. As a consequence, also β3 has
no active output bit. In β2 only bit i2 is active since it propagates directly from the input.
Finally, β1 has no active output bits since i1 and i2 cancel each other out during the
update of word b. In summary, only bit i2 = w − 1 is active in the word β2 at the output
G1. Referring again to Table 25, we easily see that bits w− 1 and r3(w− 1) = 0 are active
with probability 1 in the words γ2 and γ3 at the output of G2 and G, respectively.

Similar considerations show that the 2nd and 3rd differential from Table 27 have weight
1 or equivalently probability 1/2. We do not go into the details at this point, though.

Applying those differentials to F has the effect that the diffusion of the state is delayed by
one step. We also examined differentials with input differences having other combinations
of active MSBs, which lead to similar output differences, but none having a lower or
equal Hamming weight compared to those from Table 27. Using the first of the above
differentials, we were able to easily derive a truncated differential over 3 steps (i.e. F1.5)
which has probability 1. This truncated differential can be used to construct an impossible
differential over 3.5 rounds for the 64-bit version of F which is shown in Section 5.3.2
below.

We expect that advanced search techniques should be able to find better differential
distinguishers for a higher number of iterations of F, such that the sparse difference
occurs at a later step than the first. Nevertheless, we expect that it is not possible
to find differential distinguishers for as many rounds as specified for our instances, see
Table 14, taking into account the reduced freedom an adversary has when attacking the
initialisation or round permutation.

5.3.2 Impossible Differentials

Cryptanalysis using impossible differentials was introduced in 1998 by L. Knudsen to
attack the block cipher DEAL [160]. Later it was extended by E. Biham et al. in order to
attack the block ciphers Skipjack [54] and IDEA [55]. The latter introduces the so-called
miss-in-the-middle technique. This approach combines two probability-1 differentials, one
in forward and one in backward direction which exhibit a conflict when both directions

147

Chapter 5 Analysis of NORX

are joined. This strategy leads to an impossible event, i.e. an incident having probability
0, and can be used to construct distinguishers or even mount key recovery attacks.

In our case, we construct an impossible differential over 3.5 rounds of the 64-bit
version of F, namely 3 steps in forward and 4 steps in backward direction, using the
miss-in-the-middle approach from above. The impossible differential is thus of the form

α
F1.5

−→ β 6= β′
F−1.5 ◦ col−1

←− α′

with differences α, β, α′, and β′ as given in Table 28. The symbols * and ? denote partially
known and unknown entries, respectively. The conflict occurs in the 2nd bit of the 14th
word of the differences β and β’. In forward direction, this bit has always value 1 whereas
in backward direction it has always value 0. The conflicting nibbles are marked in red in
Table 28 and are of the form *1002 and 00002 for β and β’, respectively. We validated
the impossible differential empirically in about 232 runs.

Note that there are many more impossible differentials of the above type starting from
comparable input differences in forward and backward direction. Nevertheless, using such
a simple approach, we were not able to construct impossible differentials stretching over
more than 3.5 rounds.

Table 28: Impossible differential over 3.5 rounds of 64-bit F.

α β

8000000000000000 0000000000000000 0000000000000000 0000000000000000 ???*?*???***?**? *0**??*000000*** ***0?*?*00**000* 00**??*00***?***

8000000000000000 0000000000000000 0000000000000000 0000000000000000 ???*????*??????? ?***??*????*?*?? ??*0???*0?*?*??* ??**?*?????*?*??

8000000000000000 0000000000000000 0000000000000000 0000000000000000 ????*????*?????? ?*00000????*?*?? ??*0*?**0**?*??* ??**?*????****??

0000000000000000 0000000000000000 0000000000000000 0000000000000000 ???***??*????*?* *000000****0**?? ?*00**0*0****0** ******?**?****??

α’ β’

0000000000000000 0000000000000000 8000000000000000 0000000000000000 ???????????????? ???????????????? ???????????????? ????????????????

0000000000000000 0000000000000000 0000000000000000 0000000000000000 ???????????????? ???????????????? ???????????????? ????????????????

0000000000000000 0000000000000000 0000000000000000 0000000000000000 ???????????????? ??????????????80 ???????????????? ????????????????

0000000000000000 0000000000000000 0000000000000000 0000000000000000 ???????????????? ???????????????? ??????????????80 ????????????????

While it was relatively easy to construct the above impossible differential, it cannot be
used to attack (round-reduced) NORX, due to the following reasons:

• The state setup used during initialisation prevents an attacker from setting the
required input difference in forward direction. It would be necessary to set differences
in the first three consecutive MSBs of a column, which is impossible, as every column
is initialised with at least two constant values (see Figure 9). Thus, even in a scenario
where an attacker can influence key and nonce during initialisation, it is not possible
to exploit this class of impossible differentials.

• During data processing, where the proper differences could be set theoretically in
the rate words of the state, it is not possible to use that impossible differential

148

5.3 Differential Cryptanalysis

either: Under the assumption that an attacker is nonce-respecting [213], which is
a basic requirement for the operation of NORX, and that Fr provides maximum
security for r ≥ 4, two states being set up with two different nonces lead to two
distinct internal states after the initialisation phase. Therefore, an attacker does
not know how to set header blocks to construct the required input difference in
forward direction, since he is not capable of influencing the (unknown) capacity
words of the state. The same holds for the payload phase. Thus, the impossible
differential cannot be exploited in a later phase of the algorithm either.

5.3.3 NODE – NORX Differential Search Engine

This section is dedicated to the automation of differential cryptanalysis of NORX. First,
we introduce the mathematical models required to describe differential propagation in
Fr of NORX. Then we describe NODE, a differential search framework for the NORX
permutation and finally present our results.

Mathematical Models

Let n ∈ N\{0} denote the word size. For the analysis of NORX, we have n = w ∈ {32, 64}.
Let x and y denote bit strings of size n and let α, β, and γ denote differences of size n.
In the following, we identify with αi, βi, γi, xi, and yi the individual bits of α, β, γ, x,
and y, where 0 ≤ i ≤ n− 1. Recall that the non-linear operation H of NORX is a vector
Boolean function of the form

H : F2n
2 −→ Fn

2 , (x, y) 7→ (x⊕ y)⊕ ((x ∧ y)≪ 1) .

Referring to the notions introduced in Section 1.2.2, we see that an XOR-differential
(α, β) −→ γ of H fulfils

α⊕ β ⊕ γ = ((x ∧ β)⊕ (y ∧ α)⊕ (α ∧ β))≪ 1 (5.1)

for n-bit strings x and y and n-bit differences α, β, and γ. Rewriting Equation 5.1 on bit
level we get

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi)⊕ (αi−1 ∧ βi−1)⊕ (xi−1 ∧ βi−1)⊕ (yi−1 ∧ αi−1), i > 0 .

Proposition 3 is an important step towards expressing differential propagation in NORX
and is the analogue to Theorem 1 for integer addition from [178]. The proposition
eliminates the dependence of Equation 5.1 on the bit strings x and y and therefore
allows to check in a constant amount of word operations if a given tuple (α, β, γ) is an
(impossible) XOR-differential of H. This is a very valuable result and, as we will see later,
paves the way for automated differential cryptanalysis.

149

Chapter 5 Analysis of NORX

Proposition 3. An XOR-differential (α, β) −→ γ of the non-linear operation H of NORX

satisfies the following equation:

(α⊕ β ⊕ γ) ∧ (¬((α ∨ β)≪ 1)) = 0 . (5.2)

Proof. On bit level Equation 5.2 has the form

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ 1) ∧ (βi−1 ⊕ 1), i > 0 .

Obviously, the least significant bits (i.e. i = 0) are identical for Equations 5.1 and 5.2.
For i > 0, let t = (αi⊕βi⊕γi)⊕ (αi−1∧βi−1). If t = 0, then Equation 5.1 has always the
solution xi−1 = yi−1 = 0. Otherwise, if t = 1, Equation 5.1 is only solvable if αi−1 = 1 or
βi−1 = 1. But these are exactly the cases captured in Equation 5.2.

Obviously, a tuple (α, β, γ) not satisfying Proposition 3 is an impossible XOR-differential
of H. Besides checking whether an XOR-differential is impossible or not, we are also
interested in the probability of XOR-differentials. To compute the probability of an XOR-
differential with respect to the non-linear operation H of NORX, we can use the following
proposition.

Proposition 4. Let δ = (α, β, γ) be an XOR-differential of the non-linear operation H of
NORX. Its differential probability is then given by

xdpH(δ) = 2−hw((α∨β)≪1) .

Proof. Without loss of generality we assume that α 6= 0 or β 6= 0. Looking at Equation 5.1
we see that the term (α ⊕ β ⊕ γ) has no effect on the probability of the differential δ,
since it does not depend on either x or y. It has therefore probability 1.

Analysing the bit level representation of Equation 5.1, we observe that the term

(xi−1 ∧ αi−1)⊕ (yi−1 ∧ βi−1)⊕ (αi−1 ∧ βi−1)

is balanced, i.e., is 1 with probability 1/2, if αi−1 = 1 or βi−1 = 1. Under the assumption
of independence of αi and βi, the overall probability of δ can thus be computed by
counting the number of 1s in the first n− 1 bits of α ∨ β or, equivalently, of (α ∨ β)≪ 1
which proves the proposition.

The above theory can be also expanded to f -differentials as introduced in Section 1.2.2,
where f = H. From that we see that a H-differential (α, β) −→ γ satisfies the following

equation
α⊕ β ⊕ γ = ((x ∧ (α⊕ γ))⊕ (y ∧ (β ⊕ γ)))≪ 1 (5.3)

150

5.3 Differential Cryptanalysis

for n-bit strings x and y. This formula can be expressed equivalently on bit level as

0 = α0 ⊕ β0 ⊕ γ0

0 = (αi ⊕ βi ⊕ γi)⊕ (xi−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1)), i > 0 .

Proposition 5 provides a simple check if a given tuple (α, β, γ) is an (impossible) H-
differential, exactly like Proposition 3 for XOR-differentials.

Proposition 5. Let H denote the non-linear operation of NORX. A H-differential of the
form (α, β) −→ γ satisfies the following equation:

(α⊕ β ⊕ γ) ∧ (¬(γ ≪ 1)⊕ (α≪ 1)) ∧ (¬(β ≪ 1)⊕ (γ ≪ 1)) = 0 . (5.4)

Proof. It is easy to see that the least significant bits (i.e. i = 0) of Equations 5.3 and 5.4
are the same. Therefore, we will consider them no longer. Looking at the bit level
representation of Equation 5.3 for i > 0, we consider two cases:

• If αi ⊕ βi ⊕ γi = 0, then Equation 5.3 has always the solution xi−1 = yi−1 = 0.

• If αi ⊕ βi ⊕ γi = 1, then Equation 5.3 is only solvable if either αi−1 6= γi−1 or
βi−1 6= γi−1. Furthermore, the bit level representation of Equation 5.4 is given by

(αi ⊕ βi ⊕ γi) ∧ (αi−1 ⊕ γi−1 ⊕ 1) ∧ (βi−1 ⊕ γi−1 ⊕ 1) = 0, i > 0 .

It is evident that the latter equation only holds if (αi ⊕ βi ⊕ γi) = 0, αi−1 6= γi−1,
or βi−1 6= γi−1. As seen above, these are the very same conditions that define a
H-differential.

Proposition 6. Let H denote the non-linear operation of NORX and let δ = (α, β, γ) be
a H-differential. Its probability is then given by

Hdp⊕(δ) = 2−hw(((α⊕γ)∨(β⊕γ))≪1) .

Proof. The claim can be proven analogously to Proposition 4. It follows from the fact
that the expression

(xi−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1))

in the bit level representation of Equation 5.3 is balanced if either αi−1 ⊕ γi−1 = 1 or
βi−1 ⊕ γi−1 = 1.

While we exclusively consider XOR-differentials and -characteristics in the rest of this
work, f -differentials might be of interest for future investigations.

151

Chapter 5 Analysis of NORX

Description of NODE

Now that we have introduced the mathematical model, we describe in this part the
framework for the search of differential characteristics of a predefined weight. Our tool is
freely available at [199] under a public domain-like license. Below, we show the general
approach, and refer to Table 29 for the most important CVC code snippets required to
describe the search problem.

For modelling the differential propagation through a sequence of operations, we use a
technique well known from algebraic cryptanalysis: for every output of an operation a new
set of variables is introduced. These output variables are then modelled as a function of
their input variables. Moreover, the former are used as input to the next operation. This
is repeated until all required operations have been integrated into the problem description.
Before we show how the differential propagation in Fr is modelled concretely, we introduce
the required variables.

Let s denote the number of (column and diagonal) steps to be analysed and let
0 ≤ i ≤ 15 and 0 ≤ j ≤ 2(s − 1). For example, if we analyse F2, we have s = 4. Let
xi, yi,j and zi be w-bit sized variables, which model the input, internal and output XOR

differences of a differential characteristic. Recall that w ∈ {32, 64} denotes the word size
of NORX. Moreover, let wi,k, with 0 ≤ k ≤ s− 1, be w-bit sized helper variables which are
used for differential weight computations or equivalently to determine the probability of a
differential characteristic. We assume that the probability of a differential characteristic
is the sum of weights of each non-linear operation H. Furthermore, let d denote a w-bit
sized variable which fixes the total weight of the characteristics we plan to search for.
The description of the search problem is generated through the following steps:

1. Every time the function G applies the non-linear operation H we add two expressions
to our description:

a) The equation

α⊕ β ⊕ γ = (α⊕ β ⊕ γ) ∧ ((α ∨ β)≪ 1)

from Proposition 3, ensures that only non-impossible characteristics are con-
sidered. The variables α, β and γ are each substituted by one of the variables
xi, yi,j or zi.

b) The equation

wi,k = (α ∨ β)≪ 1

from Proposition 4 keeps track of the probability of the characteristic. The
variables α and β are substituted by the same variables xi, yi,j or zi as in the
step above.

152

5.3 Differential Cryptanalysis

2. Every time the G function applies a rotation operation we apply the same rotation
to the XOR differences, i.e. we add

γ = (α⊕ β) ≫ r

to the problem description, with α, β and γ substituted appropriately. Note that the
rotation is a linear operation and thus does not change the differential probability.
Hence, we do not need to add anything else. Table 29 shows the corresponding
CVC code.

3. Add an expression to the description corresponding to the following equation:

d =

s−1
∑

k=0

15
∑

i=0

hw(wi,k) . (5.5)

This equation ensures that indeed a characteristic of weight d is found. Depending
on the technique how Hamming weights are computed, additional variables might be
necessary. Refer to Table 29 for one possible implementation to compute Hamming
weights in the CVC language.

4. Set the variable d to the target differential weight and append it to the problem
description.

5. Exclude the trivial characteristic mapping an all-zero input difference to an all-zero
output difference. To do so, it is sufficient to exclude the all-zero input difference,
i.e. to append to the description an expression in CVC language which is equivalent
to ¬

(

(x0 = 0) ∧ ... ∧ (x15 = 0)
)

.

After the generation of the problem description is finished, it can be used to search for
differential characteristics using the SMT-solver STP [116]. Alternatively, STP allows to
convert the representation of the problem to SMT-LIB2 or CNF, which enables searches
with other SMT or SAT solvers, like Boolector [82], Treengeling [52] or CryptoMin-
iSat [181].

Applications of NODE

In this part, we describe the application of the search framework to the permutation Fr of
NORX. Depending on the concrete attack model, there are different ways an attacker could
inject differences into the NORX state. During initialisation an adversary is allowed to
modify either the nonce words s1 and s2 (initN) or nonce and key words s1, s2, s4, . . . , s7
(initN,K). During data processing an attacker can inject differences into the words of the
rate s0, . . . , s9 (rate). Last but not least, we also investigate the case where an attacker

153

Chapter 5 Analysis of NORX

Table 29: CVC code modelling 64-bit operations for differential propagation.

Differential Validity Check

OP α⊕ β ⊕ γ = (α⊕ β ⊕ γ) ∧ ((α ∨ β)≪ 1)
CVC ASSERT((BVXOR(BVXOR(α,β),γ)) = (BVXOR(BVXOR(α,β),γ) & (((α | β) ≪ 1)[63:0])));

Differential Probability

OP w = (α ∨ β)≪ 1
CVC ASSERT(w = (((α | β) ≪ 1)[63:0]));

Cyclic Rotation

OP γ = (α⊕ β) ≫ 8
CVC ASSERT(γ = (BVXOR(α,β) ≫ 8) | ((BVXOR(α,β) ≪ 56)[63:0]));

Hamming Weight

OP hw(w), with helper variables h0, . . . , h5 and h5 = hw(w)

CVC

ASSERT(m1 = 0x5555555555555555);

ASSERT(m2 = 0x3333333333333333);

ASSERT(m4 = 0x0f0f0f0f0f0f0f0f);

ASSERT(m8 = 0x00ff00ff00ff00ff);

ASSERT(m16 = 0x0000ffff0000ffff);

ASSERT(m32 = 0x00000000ffffffff);

ASSERT(h0 = BVPLUS(64,(w & m1), (((w ≫ 1)[63:0]) & m1)));

ASSERT(h1 = BVPLUS(64,(h0 & m2), (((h0 ≫ 2)[63:0]) & m2)));

ASSERT(h2 = BVPLUS(64,(h1 & m4), (((h1 ≫ 4)[63:0]) & m4)));

ASSERT(h3 = BVPLUS(64,(h2 & m8), (((h2 ≫ 8)[63:0]) & m8)));

ASSERT(h4 = BVPLUS(64,(h3 & m16), (((h3 ≫ 16)[63:0]) & m16)));

ASSERT(h5 = BVPLUS(64,(h4 & m32), (((h4 ≫ 32)[63:0]) & m32)));

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15

initN

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15

initN,K

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15

rate

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15

full

Figure 43: Attacker controllable words (blue) during differential cryptanalysis.

154

5.3 Differential Cryptanalysis

can manipulate the whole state s0, . . . , s15 (full). Figure 43 gives visual representations of
the four settings.

While an attacker is not able to influence the entire state at any point directly due to
the duplex construction, the full scenario is nevertheless useful to estimate the general
strength of Fr, because all of the other settings described above are special cases of
the latter. Additionally, it could be useful for chaining characteristics: for example, an
attacker could start with a search in the data processing part (i.e. under the rate setting)
over a couple of steps, say Fr1 , and continue afterwards with a second search starting from
the full state for another couple of steps, say Fr2 , so that differentials from the second
search connect to those from the first. We explore this Divide&Conquer-like strategy in
more detail below.

Adapted to r rounds of the permutation F of NORX, we denote a characteristic by

α0
Fr

−→
w

αn =̂ α0
Fr0−→
w0

. . . αi
Fri−→
wi

αi+1 . . .
Frn−1−→
wn−1

αn

where α0 is the input, α1, . . . , αn−1 are internal and αn is the output difference. The
value ri denotes the number of steps the ith characteristic spans, with r =

∑n−1
i=0 ri, and

wi denotes its weight. We assume that the probability of the entire characteristic is equal
to the multiplication of probabilities of the partial characteristics. For the total weight of
the characteristic it thus holds that w =

∑n−1
i=0 wi. The notation Fr+0.5 describes that

we do r full rounds followed by one more column step, e.g. F1.5 corresponds to one full
round plus one additional column step.

Experimental Verification of NODE. The goal of the experimental verification is to
show that the framework indeed finds valid differentials of a predetermined weight w in
Fr. Therefore, we used the framework and searched, in the setting full, for differentials

α
F1.5

−→
w

β

with input difference α and output difference β and verified them against a reference
implementation of F1.5 written in C. Under these prerequisites our framework found the
first differentials at a weight of 12, for both w = 32 and w = 64 which thus should have
a probability of about 2−12. To get a better coverage of our verification test, we did
not use only differentials of that particular weight, but generated random differentials of
weights w ∈ {12, . . . , 18}. These are listed in Table 31. Then we applied them to the C
implementation of F1.5 for 2w+16 pairs of randomly chosen input states having the input
difference of the characteristic. In each case, we checked if the output difference had the
predicted pattern. The number of pairs adhering the characteristic should be around 216.
The results are illustrated in Table 30.

In summary, our experiments show that the search framework indeed finds differential
paths having the expected properties.

155

Chapter 5 Analysis of NORX

Table 30: Results of the experimental verification of NODE. Notation: we expected weight,
#S number of samples, ve (vm) expected (measured) value of input/output
pairs adhering the differential, wm measured weight.

NORX32 NORX64

we #S ve vm vm − ve wm vm vm − ve wm

12 228 65536 65652 +116 11.997 65627 +91 11.997
13 229 65536 65788 +252 12.994 65584 +48 12.998
14 230 65536 65170 −366 14.008 65476 −60 14.001
15 231 65536 65441 −95 15.002 65515 −21 15.000
16 232 65536 65683 +147 15.996 65563 +27 15.999
17 233 65536 65296 −240 17.005 65608 +72 16.998
18 234 65536 65389 −147 18.003 65565 +29 17.999

Differentials of Weight 0 in G In Section 5.3.1, we derived and verified differentials in
G having probability 1 or equivalently weight 0 which was a quite tedious exercise. Now
with the help of NODE, we can automatise the task. Additionally, we can even perform a
fully automated search to find all differentials of weight 0 in G. It turns out that there
are exactly 3 for both the 32- and the 64-bit variant of G. These are listed in Table 32.

Lower Bounds for Weights of Differentials in Fr. We performed an extensive analysis
on the weight bounds of differential paths in Fr, where we investigated 1 ≤ s ≤ 4 steps
for the four different scenarios initN , initN,K , rate and full. We tried to find the lowest
weights where differentials appear for the first time. These cases are listed in Table 33 as
entries without brackets. For example, in case of NORX32 under the setting full, there are
no differentials in F1.5 with a weight smaller than 12. Entries in brackets are the maximal
weights we were capable of examining without finding any differentials.

Due to memory constraints, our methods failed for differential weights higher than
those presented in Table 33.

The security of NORX depends heavily on the security of the initialisation which
basically transforms the initial state by F2r. As initN is the most realistic attack scenario,
we conducted a search over all possible 1- and 2-bit differences in the nonce words. This
search revealed that the best characteristics have weights of 67 (32-bit) and 77 (64-bit)
after only one round F1.0, see Table 34. The proofs that there are no differentials of a
lower weight were, in some cases, computationally quite expensive. For example, to verify
that there are no differentials of weight 66 for NORX32, initN and F, the SAT-solver
Treengeling [52] required about 3 1/2 days of continuous computation on 40 cores and
consumed about 15 GiB of memory. Also note that for NORX64, initN , F, the difference
between the verified bound of weight 62 and the best differential characteristic of weight
77 is not too large. Actually, we expect that the bound coincides with the value 77,

156

5.3 Differential Cryptanalysis

Table 31: Characteristics in F1.5 used for experimental verification of NODE.

α β w

00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000

12
00000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100

00000000 80000000 80808080 80000000 00000000 00000000 00000000 10808080

00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080

80000000 00000000 00000400 80000180 80001000 00000000 00000000 00000000

13
00000000 00000000 80000400 80000080 21012100 00000000 00000000 00000000

80000000 00000000 80000000 80808080 10808080 00000000 00000000 00000000

80000080 00000000 80000000 80800000 10008080 00000000 00000000 00000000

80000080 80000000 00000000 00000400 00000000 80001000 00000000 00000000

14
80000180 00000000 00000000 80000400 00000000 21012100 00000000 00000000

80808080 80000000 00000000 80000000 00000000 10808080 00000000 00000000

80800000 80000080 00000000 80000000 00000000 10008080 00000000 00000000

00000400 80000000 00000400 40100000 00100000 00000000 00000000 00000000

15
80000400 80000000 00000000 00100200 00200021 00000000 00000000 00000000

80000000 80018000 00000400 00000000 80000010 00000000 00000000 00000000

80000000 00800000 00040400 40000600 00000010 00000000 00000000 00000000

00000400 80000080 80000000 00000000 00000000 00000000 80003000 00000000

16
80000400 80000080 00000000 00000000 00000000 00000000 63016100 00000000

80000000 81808080 80000000 00000000 00000000 00000000 31808080 00000000

80000000 80800000 80000080 00000000 00000000 00000000 30008080 00000000

00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000

17
00000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100

00000000 80000000 80838780 80000000 00000000 00000000 00000000 10808080

00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080

00000400 00000000 80000000 C0000200 00100000 00000000 00000000 00606001

18
80000400 00000000 00000000 00000200 00200021 00000000 00000000 C24242C0

80000000 00000000 80000000 00000000 80000010 00000000 00000000 61010160

80000000 00000000 80000080 C0000000 00000010 00000000 00000000 60010160

α β w

8000000000000000 0000000000000000 0000000000040000 8000000000000080 8000001000000000 0000000000000000 0000000000000000 0000000000000000

12
0000000000000000 0000000000000000 8000000000040000 8000000000000080 2100002001010000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 8000000000000000 8000808000000080 1080000000808000 0000000000000000 0000000000000000 0000000000000000

8000000000000080 0000000000000000 8000000000000000 0080800000000000 1000000000808000 0000000000000000 0000000000000000 0000000000000000

4000001000000000 0000000000040000 8000000000000000 0000000000040000 0000000000000000 0000100000000000 0000000000000000 0000000000000000

13
0000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000 0000000000000000

0000000000000000 8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000

4000000000020000 8000000000000000 0000800000000000 0000000004040000 0000000000000000 0000000000000010 0000000000000000 0000000000000000

0000000000040000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000 0000000000000000

14
8000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2100002001010000 0000000000000000

8000000000000000 8003808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1080000000808000 0000000000000000

8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000 0000000000000000

0000000000000000 00000000000C0000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000

15
0000000000000000 8000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2300006001010000

0000000000000000 8000000000000000 8000808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1180000000808000

0000000000000000 8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000

0000000000040000 4000001000080000 0000000000040000 8000000000000000 0000000000000000 0000000000000000 0000100000000000 0000000000000000

16
0000000000000000 0000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000

0000000000040000 0000000000000000 8000000000000000 8000008000000000 0000000000000000 0000000000000000 8000000000000010 0000000000000000

0000000004040000 C0000000000E0000 8000000000000000 0000800000000000 0000000000000000 0000000000000000 0000000000000010 0000000000000000

8000000000000080 8000000000000000 0000000000000000 0000000000040000 0000000000000000 8000007000000000 0000000000000000 0000000000000000

17
8000000000000080 0000000000000000 0000000000000000 8000000000040000 0000000000000000 E300006001010000 0000000000000000 0000000000000000

8000808000000180 8000000000000000 0000000000000000 8000000000000000 0000000000000000 7180000000808000 0000000000000000 0000000000000000

0080800000000000 8000000000000080 0000000000000000 8000000000000000 0000000000000000 7000000000808000 0000000000000000 0000000000000000

0000000000040000 8000000000000000 0000000000040000 400000F000000000 0000100000000000 0000000000000000 0000000000000000 0000000000000000

18
8000000000040000 8000000000000000 0000000000000000 0000001000020000 0000200000000021 0000000000000000 0000000000000000 0000000000000000

8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000800000000000 000000000C040000 4000000000020000 0000000000000010 0000000000000000 0000000000000000 0000000000000000

157

Chapter 5 Analysis of NORX

Table 32: Characteristics of weight 0 in G.

Characteristics (32-bit) Characteristics (64-bit)

α 80000000 80000000 80000000 00000000 α 8000000000000000 8000000000000000 8000000000000000 0000000000000000

β 00000000 00000001 80000000 00000000 β 0000000000000000 0000000000000001 8000000000000000 0000000000000000

α 80000000 00000000 80000000 80000080 α 8000000000000000 0000000000000000 8000000000000000 8000000000000080

β 80000000 00000000 00000000 00000000 β 8000000000000000 0000000000000000 0000000000000000 0000000000000000

α 00000000 80000000 00000000 80000080 α 0000000000000000 8000000000000000 0000000000000000 8000000000000080

β 80000000 00000001 80000000 00000000 β 8000000000000000 0000000000000001 8000000000000000 0000000000000000

Table 33: Lower bounds for differential trail weights.

NORX32 NORX64

initN initN,K rate full initN initN,K rate full

F0.5 6 2 2 0 6 2 2 0
F1.0 67 22 10 2 (62) 22 12 2
F1.5 (60) (40) (31) 12 (53) (35) (27) 12
F2.0 (61) (45) (34) (28) (51) (37) (30) (23)

similarly as in the case of NORX32.
Extrapolating the above results to F8 (i.e. r = 4), we get lower weights of 61+3·28 = 145

(initN) or 45 + 3 · 28 = 129 (initN,K) for NORX32 and 51 + 3 · 23 = 132 (initN) or
37 + 3 · 23 = 106 (initN,K) for NORX64. However, these are obviously rather loose bounds
and we expect the real ones to be considerably higher.

Table 34: Characteristics in NORX initialisation (initN) after F.

Characteristic of weight 67 (32-bit) Characteristic of weight 76 (64-bit)

α

00000000 80008000 00000000 00000000

α

0000000000000000 8000800000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

β

00000000 12001200 02300210 00020002

β

0000000000000000 1200120000000000 0230021000000000 0002000200000000

20002000 00000000 20402840 084203c2 2000200000000000 0000000000000000 2040284000000000 084203c200000000

063103f1 10021002 00000000 12201620 063103f100000000 1002100200000000 0000000000000000 1220162000000000

12101210 820082c1 00020002 00000000 1210121000000000 820082c100000000 0002000200000000 0000000000000000

Differential Characteristics in F4. This part shows how we constructed differential
characteristics in F4 under setting full for both versions of the permutation, i.e. 32- and

158

5.3 Differential Cryptanalysis

64-bit. To be more precise, the trails are of the form

α0
F−→
w0

α1
F−→
w1

α2
F−→
w2

α3
F−→
w3

α4 .

Unsurprisingly, a direct approach to find such characteristics turned out to be infeasible.
Hence, we decomposed the search into multiple parts and constructed the entire path
step by step.

Initially, we conducted searches that only stretched over r ≤ 2 rounds. After tens of
thousands of iterations using many different search parameter combinations we found
differentials having internal differences of Hamming weight 1 and 2 after one application
of F. We identify these characteristics by δ0 and δ1 below. We also used a probability-1
differential in G, which are listed as the first entry in the Table 32, as a starting point.
The latter is denoted by δ2. We expanded each partial characteristic, for both word sizes,
in forward and backward direction one column or diagonal step at a time, until their paths
stretched the entire 4 rounds. The concrete representations of the characteristics and their
respective weights are depicted in Tables 35 (32-bit) and 36 (64-bit), respectively. The
best characteristics we found this way for 32- and 64-bit F4 have weights of 584 and 836,
respectively. These weights translate to probabilities of 2−584 and 2−836, which are orders
of magnitude beyond any feasible attack, besides the fact that they are not applicable to
the NORX scheme anyway. However, those results give a first impression on the resistance
of Fr against differential attacks. Recall that the NORX initialisation uses at least twice
the amount of rounds, i.e. F8 compared to the presented characteristics in this part.
The search for these differentials brought our methods to the limits of computational
practicability, especially for the 64-bit case. It was not possible to stretch the paths any
further.

Iterative Differential Characteristics in F. We also performed extensive searches for
iterative differential characteristics in F, i.e. trails of the form

α
F−→
w

β

with α = β. Using NODE, we could show that there are no such differentials up to a
weight w of 29 (32-bit) and 27 (64-bit), before our methods failed due to computational
constraints. Extrapolating these results to F8 and F12, i.e. the number of initialisation
rounds for r = 4 and r = 6, we get lower weight bounds of 232 and 348, for 32-bit, or of
216 and 324 for 64-bit. The best iterative differentials we could find for F have weights of
512 (32-bit) and 843 (64-bit) and are depicted in Table 37. These weights are obviously
much higher than our guaranteed lower bounds, and we therefore expect that the latter
are also much better compared to the values we were able to verify computationally.

159

Chapter 5 Analysis of NORX

Table 35: Differential characteristics in F4 (32-bit).

Characteristic δ0

α0 w0 α1 w1

80140100 90024294 84246020 92800154

172

40100000 00000400 80000000 00000400

11
e4548300 52240214 e0202424 d0004054 00100200 80000400 80000000 00000000

c4464046 00a08480 c1008108 90d43134 00000000 80000000 80008000 00000400

e200c684 e2eac480 a4848881 06915342 40000200 80000000 00800000 00040400

α2 w2 α3 w3

00000000 00000000 00000000 00000000

44

04042425 00100002 00020000 02100000

357
00000000 00000000 00000000 00000000 04200401 42024200 20042024 20042004

00000000 80000000 00000000 00000000 10001002 80000200 25250504 10021010

00000000 00000000 00000000 00000000 10020010 00001002 00000210 04252504

α4

c4001963 804da817 0c05b60e 12220503

total weight: 584
9072b909 185b792a cc0d56cd 7e0ac646

80116300 100c2800 8f003320 3b270222

01056104 88000041 92002824 04210001

Characteristic δ1

α0 w0 α1 w1

5828126e 12523a05 84960644 c66a0440

206

84000480 80800000 80000000 40000600

19
dca2126c 12501886 04168404 666a4440 04008480 00800000 00000000 80000600

41528094 00848446 00800400 430ac506 00800080 80800080 80000000 80000000

d648d4cb c4868483 000482c0 f8818643 00808000 80008080 80000080 c0000000

α2 w2 α3 w3

00000000 80000000 00000000 00000000

26

20010020 80001000 10000000 00000010

344
00000000 00000000 00000000 00000000 00210020 42404242 21012100 21002100

00000000 00000000 00000000 00000000 00801080 00108000 01202101 10808080

00000000 80000000 00000000 00000000 10008080 00801000 00100000 01202001

α4

8150c742 2c36b006 33202401 260ea0a5

total weight: 595
02cf014b d93018b9 860ecacd 64464804

01802004 e6164858 23020245 06866087

50802042 94122c04 20110121 00a10002

Characteristic δ2

α0 w0 α1 w1

482304cd c4bc4096 1000012b 7012c114

266

80080500 80000000 40000000 80100280

27
c8a7008d c69c8216 9752612b f2538210 80080400 80000000 c0000400 80100280

a915cc80 8480c200 0014a080 0e84500c 00000000 80008000 c0004400 c0808280

04448561 0286c2c4 b5f7e220 46164d22 00000180 00800000 80440400 80820040

α2 w2 α3 w3

80000000 00000000 00000000 00000000

12

00000000 00000000 00100000 00202001

286
80000000 00000000 00000000 00000000 42424240 00000000 00000000 00200021

80000000 00000000 00000000 00000000 80000010 21010120 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000010 20010120 00000000

α4

06060a24 26426628 14160221 882c28a0

total weight: 591
51ddd93d 631c46c9 7cda4426 09131b01

6eeae416 91000b60 380d0212 04898008

0a262202 8a060060 1303200d 0ca48400

160

5.3 Differential Cryptanalysis

Table 36: Differential characteristics in F4 (64-bit).

Characteristic δ0

α0 w0 α1 w1

4400445880011086 0080303002202404 6280500400041142 0440803004010000

202

8000000000000000 0000000000040000 4000001000000000 0000000000040000

11
c600841880821086 0480302000242400 c0a0505000041142 c44080b804020000 8000000000000000 0000000000000000 0000001000020000 8000000000040000

840080c080828000 0404042004040404 c140128800500842 0200805004860004 8000008000000000 0000000000040000 0000000000000000 8000000000000000

820000c006038044 0004201402040404 e262c05453080001 c000d088840704c2 0000800000000000 0000000004040000 4000000000020000 8000000000000000

α2 w2 α3 w3

0000000000000000 0000000000000000 0000000000000000 0000000000000000

45

0000020000000000 0002100000000000 0004042004040021 0000100000020000

615
0000000000000000 0000000000000000 0000000000000000 0000000000000000 2000042000040020 2000040000200004 0004200000000401 420040004a4a0808

0000000000000000 0000000000000000 0000000000000000 8000000000000000 2104042021210404 1000021000000010 1000000000100002 8000000000000200

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000210 0004040021210404 1000020000000010 0000000000100002

α4

123ca460842bb1bd 145c6e810d01c220 21e5a1c48ea44418 430242b2434603b2

total weight: 873
87b140498a09f28c 90d451e2c61e4651 c065d8f8994bd83f 900929019a033431

08c14804c0011002 8c0a6270676c6304 c0b08c5644098836 c146de088200c830

20c0a42201018000 900e012022040002 8060013428002420 8100100001408000

Characteristic δ1

α0 w0 α1 w1

44846c6c4294a646 12064410c24d80b7 0480801006060044 a26040440a040040

293

8400000000040080 8006800000000000 8000000000000000 40000000000a0000

30
80c46c6c42102e44 92064690820c80b6 8480009006040004 026040080a040040 0400008000040380 0001800000000000 0000000000000000 8000000000060000

008344120a00d005 0282048202c48002 8080808080840080 470000b80a40004a 0000800000000280 8000800000800000 8000000000000000 8000000000000000

c704d2128654c900 0244840284c282c1 80808000840280c0 a040984c41080a47 8080818000000000 8000000080000080 8000000000000080 4000000000000000

α2 w2 α3 w3

0000000000000000 8000000000000000 0000000000000000 0000000000000000

26

2000000001000020 8000001000000000 1000000000000000 0000000000000010

531
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000021000020 4002020040420040 2100002001010000 2000010000210000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000008000108000 0000000010800000 0001010020210000 1080000000808000

0000000000000000 8000000000000000 0000000000000000 0000000000000000 1000000000808000 0000008000100000 0000000010000000 0001010020200000

α4

a2ac9480a1922800 5a1247c080d3304b a21f36c081672c51 040c408687216204

total weight: 880
257c5952c9292742 3dd0a895b72a540c fe5689044edc891f 5bd80b07079ac635

5006982c2016bf03 dee01500dbd4020f 3220700261644022 8988400307cc4326

b020941801008280 c0801308091a0249 d240021440004815 8484200206242020

Characteristic δ2

α0 w0 α1 w1

00900824010288c5 4000443880011086 224012044220ac43 e004044484049520

349

8000000800050000 8000000000000000 4000000000000000 0000001000020080

27
4080882001010885 4600841880821086 a3c0721444632c43 c224440007849504 8000000800040000 8000000000000000 c000000000040000 8000001000020080

81600850830b0484 840080c080868000 8004449040c14400 8102101840908a80 0000000000000000 8000008000000000 c000004000040000 4000808000020080

6191548c08000581 0200004006038044 8104f01c8702c0e0 60605084938886e3 0000000000010080 0000800000000000 8000400004040000 80808000020000c0

α2 w2 α3 w3

8000000000000000 0000000000000000 0000000000000000 0000000000000000

12

0000000000000000 0000000000000000 0000100000000000 0000202000000001

448
8000000000000000 0000000000000000 0000000000000000 0000000000000000 4200404002020040 0000000000000000 0000000000000000 0000200000000021

8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000000000000010 2100000001010020 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000010 2000000001010020 0000000000000000

α4

321a4500060e4e2e 27404405026e500e 3806422387200a08 8c40f4a0884c0820

total weight: 836
71540fb858cb9902 ee018cc282747980 c714164174ce3eb9 1a49a091101191e1

786680d0e46406cb 14440844013274e6 03a843203f071b7c 09a840c00c0ccc78

4000404a22120005 07220c4202016240 2aa4200a0a041a62 84a468682000601c

161

Chapter 5 Analysis of NORX

Table 37: Iterative differential characteristics F.

Characteristic, 32-bit, weight 512 Characteristic, 64-bit, weight 843

α
=

β

818c959b 00186049 eb5b7984 791c6da1

α
=

β

0000000100000000 0000000000000000 f77c78b200000d04 0000000000000000

677b513d 80000400 00000227 5293655f be7fffeffe0f349f 0000000000000000 6c07fbd200000001 ff1ab5be4e7500be

00809a2b bfa98bff c08b8e89 0000711c 0060c54927018000 0000000000000000 0000000000000000 b603fde900000000

800027c3 f984eb5b 6d81f915 b5aaa99d b6035caf00000000 0000000000000000 0000000000000000 0000000000000000

Differential Characteristics with Equal Columns in F. The class of weak states from
Section 5.2.2 can be transformed into differential trails having four equal columns. The
best characteristics we found for one round have a weight of 44 for both 32-bit and
64-bit. To find them, we used the already well known probability-1 (w = 0) differential
in G that is shown in Table 27. Recall, that this particular differential was also used
in the construction of the differential path v3 for F4 as was shown above. Concrete
representations of these differentials are given in Table 38.

Table 38: Differential characteristics with equal columns F.

Characteristic, 32-bit, weight 44 Characteristic, 64-bit, weight 44

α

80000000 80000000 80000000 80000000

α

8000000000000000 8000000000000000 8000000000000000 8000000000000000

80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000

80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

β

00102001 00102001 00102001 00102001

β

0000102000000001 0000102000000001 0000102000000001 0000102000000001

42624221 42624221 42624221 42624221 4200604002020021 4200604002020021 4200604002020021 4200604002020021

a1010110 a1010110 a1010110 a1010110 a100000001010010 a100000001010010 a100000001010010 a100000001010010

20010110 20010110 20010110 20010110 2000000001010010 2000000001010010 2000000001010010 2000000001010010

Applications to Other Ciphers

The techniques presented in this section are obviously not restricted to NORX only. In
principle, every function based on integer addition, as shown for Salsa20 in [187], and/or
bitwise logical operations, like OR, NAND, NOR and so on, can be analysed just as easily.
For LRX ciphers, all one has to do is to rewrite their non-linear operations in terms of
bitwise logical AND which then allows to reuse the results from above.

We used a modified version of this framework to attack McMambo [175] (LRX) and
Wheesht [184] (ARX), two other CAESAR candidates. As reported to the competition’s
mailing list, we found iterative differentials of low-probability which enable practical
forgery attacks on these ciphers.

162

5.4 Rotational Cryptanalysis

5.4 Rotational Cryptanalysis

In the following, we present some rotational properties of the NORX permutation Fr and
we derive bounds against a few simple rotational attacks. For more general information
on rotational cryptanalysis, see Section 1.2.5.

Let f be a vector Boolean function f : F2n −→ Fn and let x, y be n-bit strings. We
call (x, y) ∈ F2n a rotational pair with respect to f if the equation

f(x, y) ≫ r = f(x ≫ r, y ≫ r)

holds for a rotation offset r.

Proposition 7. Let H be the non-linear function of NORX, and let x, y be n-bit strings,
and let r be a rotation offset. The probability of (x, y) ∈ F2n being a rotational pair is:

Pr(H(x, y) ≫ r = H(x ≫ r, y ≫ r)) =
9

16
(≈ 2−0.83) .

Proof. After evaluating and simplifying the equation

H(x, y) ≫ r = H(x ≫ r, y ≫ r)

we get
((x ∧ y)≪ 1) ≫ r = ((x ≫ r) ∧ (y ≫ r))≪ 1

Translating this equation to bit vectors we obtain

(xr−1 ∧ yr−1, . . . , x0 ∧ y0, 0, xn−2 ∧ yn−2, . . . , xr ∧ yr)

= (xr−1 ∧ yr−1, . . . , x0 ∧ y0, xn−1 ∧ yn−1, xn−2 ∧ yn−2, . . . , 0) .

The probability that those two vectors match is (3/4)2 = 9/16, as a∧b = 0 with probability
3/4 for bits a and b chosen uniformly at random.

Now we can use Proposition 7 and Theorem 1 from [153], under the assumption that
the latter also holds for H, to compute the probability of Pr(Fr(S) ≫ r = Fr(S ≫ r))
for a state S, a number of rounds r and a rotation offset r. It is given by:

Pr(Fr(S) ≫ r = Fr(S ≫ r)) = (9/16)4·4·2·r .

Table 39 summarises the (rounded) weights (i.e. the negative logarithms of the probabilities
Pr) for different values of r, which are relevant for NORX.

As a consequence, the permutation Fr on a 16W state is indistinguishable from a
random permutation for r ≥ 20 if w = 32 and for r ≥ 39 if w = 64 with probabilities of
Pr ≤ 2−531 and Pr ≤ 2−1035, respectively.

Let f be a vector Boolean function f : F2n −→ Fn and let x, y be n-bit strings. We
call (x, y) a rotational fix point with respect to f and a rotation offset r if the following
equation holds:

f(x, y) ≫ r = f(x, y) .

163

Chapter 5 Analysis of NORX

Table 39: Weights for rotational distinguishers of Fr.

r 4 6 8 12
w 106 159 212 318

Proposition 8. Let f be a vector Boolean function f : F2n −→ Fn, (x, y) 7→ f(x, y),
which is a permutation on Fn, if either x or y is fixed. The probability that (x, y) ∈ F2n

is a rotational fix point with respect to f and a rotation offset r is:

Pr(f(x, y) ≫ r = f(x, y)) = 2−(n−gcd(r,n)) .

Proof. The first important observation is that the statement of this proposition is in-
dependent of the function f , as it only makes a claim on the image of f . Thus, it is
sufficient to prove the proposition for z ≫ r = z, where z = f(x, y) and x or y was fixed.

We identify the indices of an n-bit string by the elements of the group G := Zn. Let

τ : G −→ G, i mod n 7→ (i+ 1) mod n .

Then τ obviously generates the cyclic group G, i.e. ord(τ) = n. Moreover, for an arbitrary
r ∈ Z we have

ord(τ r) =
n

gcd(r, n)

see [227, Section 6.2]. In other words, the subgroup H := 〈τ r〉 of G has order n/ gcd(r, n).
By Lagrange’s theorem we have ord(G) = [G : H] · ord(H) and it follows for the group

index [G : H] = gcd(r, n) which corresponds to the number of (left) cosets of H in G.
These cosets contain the indices of a bit string which are mapped onto each other by
the cyclic rotation ≫ r. This means that there are 2gcd(r,n) n-bit strings z which satisfy
z ≫ r = z. Thus, the probability that an n-bit string z, chosen uniformly at random
among all n-bit strings, satisfies z ≫ r = z is 2−(n−gcd(r,n)). This proves the proposition.

A direct consequence of Proposition 8 is that for n even and r = n/2 the probability
that (x, y) is a rotational fix point is 2−n/2. The rotation r = n/2, which swaps the two
halves of a bit string, is especially interesting for cryptanalysis as it results in the highest
probability among all 0 < r < n.

The non-linear function H of NORX obviously satisfies the requirement of being a
permutation on Fn, if one of its inputs is fixed. Therefore, we get probabilities of 2−16

(32-bit, r = 16) and 2−32 (64-bit, r = 32), that (x, y) is a rotational fix point of H.
NORX includes several defence mechanisms to increase the difficulty of finding ex-

ploitable rotation-invariant behaviour and to prevent the transfer of potential rotational
attacks from the permutation to the full cipher:

164

5.5 Conclusion

• During initialisation 10 out of 16 words are loaded with asymmetric constants which
impedes the occurrence of rotation-invariant behaviour and limits the freedom of
an attacker. A similar approach is also used in Salsa20 [36].

• The non-linear operation H contains a non-rotational-invariant bit-shift ≪ 1.

• The duplex construction of NORX prevents an attacker from modifying the complete
internal state at a given time. He is only able to influence the rate bits, i.e. at most
10w bits of the state, and has to “guess” the other 6w bits in order to mount an
attack.

5.5 Conclusion

This section presents first results on the cryptanalysis of NORX. We started with some
general observations on fix points, weak states, algebraic properties and slide attacks, and
discussed for each case why it is unlikely that an adversary can exploit the property to
mount an attack on NORX.

In the next part, we studied differential properties of the core permutation Fr of NORX
and derived first bounds on the complete scheme. We started with the analysis of the
propagation of 1-bit differences through the G permutation and used that knowledge to
construct simple differentials on a few steps of F. This approach quickly becomes infeasible,
especially when analysing a larger number of steps of F. We therefore developed a theory
to describe differential propagation in H which can be extended to Fr and allows to search
for differentials and characteristics in the permutation Fr of NORX. All mathematical
claims are verified by rigorous proofs. Afterwards, we introduced NODE, the NORX
Differential Search Engine, an implementation of the above techniques which allows to
automate the search for differential paths using the power of SMT- and SAT-solvers like
STP, Boolector, Treengeling, and CryptoMiniSat.

We continued with a discussion of our extensive experiments using NODE, where we
analysed various differential properties of G and F. We explained the approach how we
constructed differentials in F4, how we derived lower bounds for Fr, with 0 ≤ r ≤ 2, and
how we analysed various other types, like iterative and equal-column differentials. From
that, we conclude that there is a large gap between those bounds of differential weights
that are computationally verifiable and the weights of the best differentials that we were
able to find. In particular, we showed that the probabilities of differential characteristics in
initialisation are bounded by 2−66 (NORX32) and 2−62 (NORX64) after only one round F

for an attacker who has control over the nonce words. Injecting differences over the nonce
is one of the realistic attack scenarios when targeting NORX, since the nonce is publicly
known. The first characteristic we found for NORX32 has a probability of 2−67 which
connects seamlessly to the above bound. For NORX64, though, the first characteristic
we found in the above scenario has a probability of 2−77, meaning there is still a gap to

165

Chapter 5 Analysis of NORX

the confirmed value of 2−62. However, we expect that in the case of NORX64 it works
out in the same way as for NORX32. On the other hand, the best differentials in F4

have probabilities of 2−584 (32-bit) and 2−836 (64-bit) for an attacker who has control
over the full state. These values are obviously far beyond any serious attack on NORX.
Additionally, an attacker has at no point during data processing full control over the
entire NORX state. Thus, initialisation with F8 (r = 4) and F12 (r = 6) seems to have a
high security margin against differential attacks.

For rotational cryptanalysis, we analysed some of the rotational properties of Fr and
were able to derive lower weight bounds of 212 and 318 for distinguishers on F8 and
F12 using a mix of new and already known results. We stress that these distinguishers
currently only hold for the bare permutation Fr and can not be transferred to the complete
scheme directly. This is due to the fact, that they do not take into consideration the
additional protection provided by the duplex construction of NORX or the asymmetric
constants used during state initialisation.

166

Bibliography

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-Channel(s).
Cryptographic Hardware and Embedded Systems — CHES 2002. Volume 2523,
Lecture Notes in Computer Science. Springer, 2003.

[2] M. Ågren, M. Hell, T. Johansson, and W. Meier. Grain-128a: A New Version of
Grain-128 with Optional Authentication. International Journal of Wireless and
Mobile Computing, 5(1), 2011.

[3] M. R. Albrecht, N. T. Courtois, D. Hulme, and G. Song. Bit-Slice Implementation
of PRESENT in Pure Standard C, v1.5. 2011. Opensource code available at
https://bitbucket.org/malb/research-snippets/src.

[4] M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext Recovery Attacks
Against SSH. Proceedings of the 30th IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2009.

[5] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt.
On the Security of RC4 in TLS. Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). USENIX, 2013.

[6] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced
Encryption Standard. 1998. http://www.cl.cam.ac.uk/~rja14/Papers/

serpent.pdf.

[7] E. Andreeva, J. Daemen, B. Mennink, and G. V. Assche. Security of Keyed Sponge
Constructions Using a Modular Proof Approach. Fast Software Encryption — FSE
2015. Springer, 2015. (to appear).

[8] F. Armknecht. On the Existence of Low-Degree Equations for Algebraic Attacks.
IACR Cryptology ePrint Archive, Report 2004/185. 2004. http://eprint.iacr.
org/2004/185.

[9] ARM R© NEONTM General-purpose SIMD Engine. ARM Holdings, 2014. http:
//www.arm.com/products/processors/technologies/neon.php.

[10] F. Arnault, T. Berger, and C. Lauradoux. F-FCSR Stream Ciphers. New Stream
Cipher Designs. Volume 4986, Lecture Notes in Computer Science. Springer, 2008.

[11] J. Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer, 2010.

167

https://bitbucket.org/malb/research-snippets/src
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://eprint.iacr.org/2004/185
http://eprint.iacr.org/2004/185
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php

Bibliography

[12] J.-P. Aumasson and D. J. Bernstein. SipHash: a Fast Short-input PRF. IACR
Cryptology ePrint Archive, Report 2012/351. 2012. http://eprint.iacr.org/
2012/351.

[13] J.-P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir. Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-
128. IACR Cryptology ePrint Archive, Report 2009/218. 2009. http://eprint.
iacr.org/2009/218.

[14] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba. Fast Software Encryption

— FSE 2008. Volume 5086, Lecture Notes in Computer Science. Springer, 2008.

[15] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. QUARK: A Light-
weight Hash. Journal of Cryptology, 26(2), 2013.

[16] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 Proposal
BLAKE. NIST SHA-3 Proposal, 2010. https://131002.net/blake.

[17] J.-P. Aumasson and P. Jovanovic. CAESAR and NORX — The Future of Authenti-
cated Encryption? 31st Chaos Communication Congress. 2014. http://media.ccc.
de/browse/congress/2014/31c3_-_6137_-_en_-_saal_g_-_201412291600_-

_caesar_and_norx_-_philipp_jovanovic_-_aumasson.html.

[18] J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX8 and NORX16: Authenticated
Encryption for Low-End Systems. Trustworthy Manufacturing and Utilization of
Secure Devices — TRUDEVICE 2015.

[19] J.-P. Aumasson, P. Jovanovic, and S. Neves. Analysis of NORX: Investigating
Differential and Rotational Properties. Progress in Cryptology — LATINCRYPT
2014. Volume 8895, Lecture Notes in Computer Science. Springer, 2014.

[20] J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX: Parallel and Scalable AEAD.
European Symposium on Research in Computer Security — ESORICS 2014. Volume
8713, Lecture Notes in Computer Science. Springer, 2014.

[21] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2:
Simpler, Smaller, Fast as MD5. Applied Cryptography and Network Security —
ACNS 2013. Volume 7954, Lecture Notes in Computer Science. Springer, 2013.

[22] S. Babbage and M. Dodd. The MICKEY Stream Ciphers. New Stream Cipher
Designs. Volume 4986, Lecture Notes in Computer Science. Springer, 2008.

[23] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s
Apprentice Guide to Fault Attacks. Volume 94, (2), 2006.

[24] G. V. Bard. Algebraic Cryptanalysis. Springer, 2009.

168

http://eprint.iacr.org/2012/351
http://eprint.iacr.org/2012/351
http://eprint.iacr.org/2009/218
http://eprint.iacr.org/2009/218
https://131002.net/blake
http://media.ccc.de/browse/congress/2014/31c3_-_6137_-_en_-_saal_g_-_201412291600_-_caesar_and_norx_-_philipp_jovanovic_-_aumasson.html
http://media.ccc.de/browse/congress/2014/31c3_-_6137_-_en_-_saal_g_-_201412291600_-_caesar_and_norx_-_philipp_jovanovic_-_aumasson.html
http://media.ccc.de/browse/congress/2014/31c3_-_6137_-_en_-_saal_g_-_201412291600_-_caesar_and_norx_-_philipp_jovanovic_-_aumasson.html

Bibliography

[25] G. V. Bard, N. T. Courtois, and C. Jefferson. Efficient Methods for Conversion
and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over
GF(2) via SAT-Solvers. Cryptology ePrint Archive, Report 2007/024. 2007. http:
//eprint.iacr.org/2007/024.

[26] R. J. Bayardo Jr. and R. C. Schrag. Using CSP Look-back Techniques to Solve
Real-world SAT Instances. Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial
Intelligence. AAAI’97/IAAI’97. AAAI Press, 1997.

[27] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The Simon and Speck Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive, Report 2013/404. 2013. http://eprint.iacr.org/2013/404.

[28] M. Beeler, R. W. Gosper, and R. Schroeppel. HAKMEM. Artificial Intelligence
Memo (239). Massachusetts Institute of Technology, 1972. http://dspace.mit.
edu/handle/1721.1/6086.

[29] C. Beierle, P. Jovanovic, M. M. Lauridsen, G. Leander, and C. Rechberger. Ana-
lyzing Permutations for AES-like Ciphers: Understanding ShiftRows. Topics in
Cryptology — CT-RSA 2015. Volume 9048, Lecture Notes in Computer Science.
Springer, 2015.

[30] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message
Authentication. Advances in Cryptology — CRYPTO 1996. Volume 1996, Lecture
Notes in Computer Science. Springer, 1996.

[31] M. Bellare, T. Kohno, and C. Namprempre. Breaking and Provably Repairing the
SSH Authenticated Encryption Scheme: A Case Study of the Encode-then-Encrypt-
and-MAC Paradigm. ACM Transactions on Information and System Security, 7(2),
2004.

[32] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among
Notions and Analysis of the Generic Composition Paradigm. Advances in Cryptology

— ASIACRYPT 2000. Volume 1976, Lecture Notes in Computer Science. Springer,
2000.

[33] M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of Operation. Fast
Software Encryption — FSE 2004. Volume 3017, Lecture Notes in Computer
Science. Springer, 2004.

[34] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. SOSEMANUK,
a Fast Software-Oriented Stream Cipher. New Stream Cipher Designs. Volume
4986, Lecture Notes in Computer Science. Springer, 2008.

[35] D. J. Bernstein. Cache-Timing Attacks on AES. 2005. http : / / cr . yp . to /

antiforgery/cachetiming-20050414.pdf.

169

http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2007/024
http://eprint.iacr.org/2013/404
http://dspace.mit.edu/handle/1721.1/6086
http://dspace.mit.edu/handle/1721.1/6086
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

Bibliography

[36] D. J. Bernstein. Salsa20 Security. 2005. http://cr.yp.to/snuffle/security.
pdf.

[37] D. J. Bernstein. The Poly1305-AES Message-Authentication Code. Fast Software
Encryption — FSE 2005. Volume 3557, Lecture Notes in Computer Science.
Springer, 2005.

[38] D. J. Bernstein. Understanding Brute Force. 2005. http://cr.yp.to/snuffle/
bruteforce-20050425.pdf.

[39] D. J. Bernstein. QHASM SOFTWARE PACKAGE. 2007. http://cr.yp.to/qhasm.
html.

[40] D. J. Bernstein. ChaCha, a Variant of Salsa20. Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers, 2008. http://cr.yp.to/chacha.html.

[41] D. J. Bernstein. The Salsa20 Family of Stream Ciphers. New Stream Cipher Designs.
Volume 4986, Lecture Notes in Computer Science. Springer, 2008.

[42] D. J. Bernstein and P. Schwabe. NEON Crypto. Cryptographic Hardware and
Embedded Systems — CHES 2012. Volume 7428, Lecture Notes in Computer
Science. Springer, 2012.

[43] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Security of Keyed
Sponge Constructions. Presented at SKEW 2011, 16-17 February 2011, Lyngby,
Denmark, http://sponge.noekeon.org/SpongeKeyed.pdf.

[44] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Permutation-based En-
cryption, Authentication and Authenticated Encryption. Presented at DIAC 2012,
05-06 July 2012, Stockholm, Sweden.

[45] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Cryptographic Sponge
Functions. 2008. http://sponge.noekeon.org/CSF-0.1.pdf.

[46] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the Indifferentiability of
the Sponge Construction. Advances in Cryptology — EUROCRYPT 2008. Volume
4965, Lecture Notes in Computer Science. Springer, 2008.

[47] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak Sponge
Function Family. 2008. http://keccak.noekeon.org.

[48] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. Selected Areas in
Cryptography — SAC 2011. Volume 7118, Lecture Notes in Computer Science.
Springer, 2011.

[49] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On Alignment in Keccak.
2011. http://keccak.noekeon.org/KeccakAlignment.pdf.

[50] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. v. Keer. Keccak

Implementation Overview. 2012. http://keccak.noekeon.org.

170

http://cr.yp.to/snuffle/security.pdf
http://cr.yp.to/snuffle/security.pdf
http://cr.yp.to/snuffle/bruteforce-20050425.pdf
http://cr.yp.to/snuffle/bruteforce-20050425.pdf
http://cr.yp.to/qhasm.html
http://cr.yp.to/qhasm.html
http://cr.yp.to/chacha.html
http://sponge.noekeon.org/SpongeKeyed.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org
http://keccak.noekeon.org/KeccakAlignment.pdf
http://keccak.noekeon.org

Bibliography

[51] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sponge-Based Pseudo-
Random Number Generators. Cryptographic Hardware and Embedded Systems —
CHES 2010. Volume 6225, Lecture Notes in Computer Science. Springer, 2010.

[52] A. Biere. Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/.

[53] E. Biham. New Types of Cryptanalytic Attacks using Related Keys. Journal of
Cryptology, 7(4), 1994.

[54] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. Advances in Cryptology — EUROCRYPT
1999. Volume 1592, Lecture Notes in Computer Science. Springer, 1999.

[55] E. Biham, A. Biryukov, and A. Shamir. Miss in the Middle Attacks on IDEA and
Khufu. Fast Software Encryption — FSE 1999. Volume 1636, Lecture Notes in
Computer Science. Springer, 1999.

[56] E. Biham and R. Chen. Near-Collisions of SHA-0. Advances in Cryptology —
CRYPTO 2004. Volume 3152, Lecture Notes in Computer Science. Springer, 2004.

[57] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions
of SHA-0 and Reduced SHA-1. Advances in Cryptology — EUROCRYPT 2005.
Volume 3494, Lecture Notes in Computer Science. Springer, 2005.

[58] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Advances in Cryptology — CRYPTO 1990. Volume 537, Lecture Notes in Computer
Science. Springer, 1991.

[59] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer, 1993.

[60] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. Advances in Cryptology — CRYPTO 1997. Volume 1294, Lecture Notes in
Computer Science. Springer, 1997.

[61] B. Bilgin, A. Bogdanov, M. Knežević, F. Mendel, and Q. Wang. FIDES: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware.
Cryptographic Hardware and Embedded Systems — CHES 2013. Volume 8086,
Lecture Notes in Computer Science. Springer, 2013.

[62] A. Biryukov. DES-X (or DESX). Encyclopedia of Cryptography and Security (2nd
Ed.) Springer, 2011.

[63] A. Biryukov and D. Khovratovich. PPAE: Parallelizable Permutation-based Au-
thenticated Encryption. Presented at DIAC 2013, 11-13 August 2013, Chicago,
USA, http://2013.diac.cr.yp.to/slides/khovratovich.pdf.

[64] A. Biryukov, A. Roy, and V. Velichkov. Differential Analysis of Block Ciphers
SIMON and SPECK. Cryptology ePrint Archive, Report 2014/922. 2014. http:
//eprint.iacr.org/2014/922.

171

http://fmv.jku.at/lingeling/
http://2013.diac.cr.yp.to/slides/khovratovich.pdf
http://eprint.iacr.org/2014/922
http://eprint.iacr.org/2014/922

Bibliography

[65] A. Biryukov and D. Wagner. Slide Attacks. Fast Software Encryption — FSE 1999.
Volume 1636, Lecture Notes in Computer Science. Springer, 1999.

[66] A. Biryukov and D. Wagner. Advanced Slide Attacks. Advances in Cryptology —
EUROCRYPT 2000. Volume 1807, Lecture Notes in Computer Science. Springer,
2000.

[67] J. Black. Authenticated Encryption. Encyclopedia of Cryptography and Security.
Springer, 2005.

[68] J. Blömer, M. Otto, and J.-P. Seifert. Sign Change Fault Attacks on Elliptic Curve
Cryptosystems. Fault Diagnosis and Tolerance in Cryptography — FDTC 2006.
Volume 4236, Lecture Notes in Computer Science. Springer, 2006.

[69] M. Boesgaard, M. Vesterager, and E. Zenner. The Rabbit Stream Cipher. New
Stream Cipher Designs. Volume 4986, Lecture Notes in Computer Science. Springer,
2008.

[70] A. Bogdanov, I. Kizhvatov, and A. Pyshkin. Algebraic Methods in Side-Channel
Collision Attacks and Practical Collision Detection. Progress in Cryptology —
INDOCRYPT 2008. Volume 5365, Lecture Notes in Computer Science. Springer,
2008.

[71] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
Cryptographic Hardware and Embedded Systems — CHES 2007. Volume 4727,
Lecture Notes in Computer Science. Springer, 2007.

[72] A. Bogdanov, M. Kňezević, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
SPONGENT: A Lightweight Hash Function. Cryptographic Hardware and Embed-
ded Systems — CHES 2011. Volume 6917, Lecture Notes in Computer Science.
Springer, 2011.

[73] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser. ALE:
AES-based Lightweight Authenticated Encryption. Fast Software Encryption —
FSE 2013. Volume 8424, Lecture Notes in Computer Science. Springer, 2014.

[74] A. Bogdanov and V. Rijmen. Linear Hulls with Correlation Zero and Linear
Cryptanalysis of Block Ciphers. Cryptology ePrint Archive, Report 2011/123. 2011.
http://eprint.iacr.org/2011/123.

[75] A. Bogdanov and E. Tischhauser. On the Wrong Key Randomisation and Key
Equivalence Hypotheses in Matsui’s Algorithm 2. Fast Software Encryption — FSE
2013. Volume 8424, Lecture Notes in Computer Science. Springer, 2014.

[76] A. Bogdanov and M. Wang. Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. Fast software encryption — fse 2012. Volume 7549, Lecture
Notes in Computer Science. Springer, 2012.

172

http://eprint.iacr.org/2011/123

Bibliography

[77] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults. Advances in Cryptology — EUROCRYPT
1997. Volume 1233, Lecture Notes in Computer Science. Springer, 1997.

[78] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Kňezević, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. r. S. Thomsen,
and T. Yalçin. PRINCE – A Low-Latency Block Cipher for Pervasive Computing
Applications. Advances in Cryptology — ASIACRYPT 2012. Volume 7658, Lecture
Notes in Computer Science. Springer, 2012.

[79] L. Breveglieri, I. Koren., and P. Maistri. A Fault Attack Against the FOX Cipher
Family. Fault Diagnosis and Tolerance in Cryptography — FDTC 2006. Volume
4236, Lecture Notes in Computer Science, 2006.

[80] B. B. Brumley and N. Tuveri. Remote Timing Attacks are Still Practical. European
Symposium on Research in Computer Security — ESORICS 2011. Volume 6879,
Lecture Notes in Computer Science. Springer, 2011.

[81] D. Brumley and D. Boneh. Remote Timing Attacks Are Practical. Proceedings of
the 12th Conference on USENIX Security Symposium — Volume 12. SSYM’03.
USENIX Association, 2003.

[82] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. Tools and Algorithms for the Construction and Analysis of Systems.
Volume 5505, Lecture Notes in Computer Science. Springer, 2009. http://fmv.
jku.at/boolector/.

[83] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
rings nach einem Nulldimensionalen Polynomideal. PhD thesis. 1965.

[84] CAESAR – Competition for Authenticated Encryption: Security, Applicability,
and Robustness. http://competitions.cr.yp.to/caesar.html. 2014.

[85] C. D. Cannière, O. Dunkelman, and M. Kňezević. KATAN and KTANTAN: A
Family of Small and Efficient Hardware-Oriented Block Ciphers. Cryptographic
Hardware and Embedded Systems — CHES 2009. Volume 5747, Lecture Notes in
Computer Science. Springer, 2009.

[86] C. D. Cannière and B. Preneel. Trivium. New Stream Cipher Designs. Volume
4986, Lecture Notes in Computer Science. Springer, 2008.

[87] C. Clavier, B. Gierlichs, and I. Verbauwhede. Fault Analysis Study of IDEA. Topics
in Cryptology — CT-RSA 2008. Volume 4964, Lecture Notes in Computer Science,
2008.

[88] D. Coppersmith. The Data Encryption Standard (DES) and its Strength Against
Attacks. IBM Journal of Research and Development, 38(3), 1994.

173

http://fmv.jku.at/boolector/
http://fmv.jku.at/boolector/
http://competitions.cr.yp.to/caesar.html

Bibliography

[89] N. T. Courtois. Algebraic Attacks on Combiners with Memory and Several Outputs.
International Conference on Information Security and Cryptology — ICISC 2004.
Volume 3506, Lecture Notes in Computer Science. Springer, 2004. http://eprint.
iacr.org/2003/125.

[90] N. T. Courtois, D. Hulme, and T. Mourouzis. Solving Circuit Optimisation Prob-
lems in Cryptography and Cryptanalysis. Special-purpose Hardware for Attacking
Cryptographic Systems — SHARCS 2012, 2012. http://eprint.iacr.org/2011/
475.

[91] N. T. Courtois, K. Nohl, and S. O’Neil. Algebraic Attacks on the Crypto-1 Stream
Cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive, Report
2008/166. 2008. http://eprint.iacr.org/2008/166.

[92] Cryptographic Competitions. http://competitions.cr.yp.to/.

[93] D. Câmara, C. P. Gouvêa, J. López, and R. Dahab. Fast Software Polynomial
Multiplication on ARM Processors Using the NEON Engine. Security Engineering
and Intelligence Informatics. Volume 8128, Lecture Notes in Computer Science.
Springer, 2013.

[94] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation Matrices. Fast Software
Encryption — FSE 1994. Volume 1008, Lecture Notes in Computer Science.
Springer, 1995.

[95] J. Daemen and V. Rijmen. AES Proposal: Rjindael. 1998. http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf.

[96] J. Daemen and V. Rijmen. The Advanced Encryption Standard. 2001. http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[97] J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.

[98] Data Encryption and Integrity Algorithms. Preliminary State Standard of Republic
of Belarus (STB P 34.101.31–2007), http://apmi.bsu.by/assets/files/std/
belt-spec27.pdf.

[99] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(3), 1960.

[100] L. De Moura and N. Bjørner. Satisfiability Modulo Theories: Introduction and
Applications. Communications of the ACM, 54(9), 2011.

[101] A. Dehbaoui, J.-M. Dutertre, B. Robisson, and A. Tria. Electromagnetic Transient
Faults Injection on a Hardware and a Software Implementations of AES. Fault
Diagonsis and Tolerance in Cryptography — FDTC 2012. IEEE, 2012.

[102] R. Denning and D. Elizabeth. Cryptography and Data Security. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1982.

174

http://eprint.iacr.org/2003/125
http://eprint.iacr.org/2003/125
http://eprint.iacr.org/2011/475
http://eprint.iacr.org/2011/475
http://eprint.iacr.org/2008/166
http://competitions.cr.yp.to/
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf
http://apmi.bsu.by/assets/files/std/belt-spec27.pdf

Bibliography

[103] O. Derouet. Secure Smartcard Design Against Laser Fault Injection Attacks.
Invited talk at Fault Diagnosis and Tolerance in Cryptography, 2007.

[104] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. Internet Requests for Comments 5246, http://tools.ietf.org/html/

rfc5246. 2008.

[105] I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials.
Advances in Cryptology — EUROCRYPT 2009. Volume 5479, Lecture Notes in
Computer Science. Springer, 2009.

[106] D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. International Conference on
Security and Privacy — RFIDSec 2012. Volume 7055, Lecture Notes in Computer
Science. Springer, 2012.

[107] eSTREAM - the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/
stream. 2004-2008.

[108] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1), 1999.

[109] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002. ACM, 2002.

[110] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of
Zero-dimensional Groebner Bases by Change of Ordering. Journal of Symbolic
Computation, 16(4), 1993.

[111] N. Ferguson. Collision Attacks on OCB. Tech. rep. 2002. http://web.cs.ucdavis.
edu/~rogaway/ocb/fe02.pdf.

[112] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,
and J. Walker. The Skein Hash Function Family. 2010. http://www.skein-

hash.info/sites/default/files/skein1.3.pdf.

[113] N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix –
Fast Encryption and Authentication in a Single Cryptographic Primitive. 2003.
https://www.schneier.com/paper-helix.html.

[114] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algorithm
of RC4. Selected Areas in Cryptography — SAC 2001. Volume 2259, Lecture Notes
in Computer Science. Springer, 2001.

[115] V. Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers. PhD thesis.
2007.

[116] V. Ganesh, R. Govostes, K. Y. Phang, M. Soos, and E. Schwartz. STP — A Simple
Theorem Prover, 2006-2014. http://stp.github.io/stp.

175

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://web.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
http://web.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
https://www.schneier.com/paper-helix.html
http://stp.github.io/stp

Bibliography

[117] M. Garey and D. Johnson. Computers and Intractability – A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[118] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M.
Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 Candidate. 2011. http://www.
groestl.info/.

[119] M. Gorski, S. Lucks, and T. Peyrin. Slide Attacks on a Class of Hash Functions.
Advances in Cryptology — ASIACRYPT 2008. Volume 5350, Lecture Notes in
Computer Science. Springer, 2008.

[120] L. K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing.
STOC ’96. ACM, 1996.

[121] S. Gueron. AES-GCM Software Performance on the Current High End CPUs as a
Performance Baseline for CAESAR Competition. Presented at DIAC 2013, 11-13
August 2013, Chicago, USA, http://2013.diac.cr.yp.to/slides/gueron.pdf.

[122] S. Gueron. Intel Advanced Encryption Standard (AES) Instructions Set. https:
/ / software . intel . com / en - us / articles / intel - advanced - encryption -

standard-aes-instructions-set/.

[123] S. Gueron. Intel Carry-Less Multiplication Instruction and its Usage for Computing
the GCM Mode. https://software.intel.com/en-us/articles/intel-carry-
less- multiplication- instruction- and- its- usage- for- computing- the-

gcm-mode.

[124] J. Guo, P. Karpman, I. Nikolić, L. Wang, and S. Wu. Analysis of BLAKE2. Topics
in Cryptology — CT-RSA 2014. Volume 8366, Lecture Notes in Computer Science.
Springer, 2014.

[125] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight
Hash Functions. Advances in Cryptology — CRYPTO 2011. Volume 6841, Lecture
Notes in Computer Science. Springer, 2011.

[126] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher.
Cryptographic Hardware and Embedded Systems — CHES 2011. Volume 6917,
Lecture Notes in Computer Science. Springer, 2011.

[127] P. Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). Internet Requests for Comments 7366, http:
//tools.ietf.org/html/rfc7366. 2014.

[128] M. Hellman. A Cryptanalytic Time-Memory Trade-Off. Information Theory, IEEE
Transactions on, 26(4), 1980.

176

http://www.groestl.info/
http://www.groestl.info/
http://2013.diac.cr.yp.to/slides/gueron.pdf
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://tools.ietf.org/html/rfc7366
http://tools.ietf.org/html/rfc7366

Bibliography

[129] L. Henzen, F. Carbognani, N. Felber, and W. Fichtner. VLSI Hardware Evaluation
of the Stream Ciphers Salsa20 and ChaCha, and the Compression Function Rumba.
International Conference on Signals, Circuits and Systems — SCS 2008. IEEE,
2008.

[130] M. Hojsík and B. Rudolf. Differential Fault Analysis of Trivium. Fast Software
Encryption — FSE 2008. Volume 5086, Lecture Notes in Computer Science.
Springer, 2008.

[131] M. Hojsík and B. Rudolf. Floating Fault Analysis of Trivium. Progress in Cryptology
— INDOCRYPT 2008. Volume 5365, Lecture Notes in Computer Science. Springer,
2008.

[132] IBM. MARS. 1998.

[133] IEEE. 802.1ae – Media Access Control (MAC) Securityl. 2006.

[134] E. S. Inc. CLP-15: Ultra-High Throughput AES-GCM Core-40 Gbps. 2008.

[135] Intel R© Architecture Instruction Set Extensions Programming Reference. Intel Cor-
poration, 2014. http://software.intel.com/en-us/intel-isa-extensions.

[136] A. Joux. Authentication Failures in NIST Version of GCM. 2006. http://csrc.
nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf.

[137] P. Jovanovic and M. Kreuzer. Algebraic Attacks using SAT-Solvers. Groups —
Complexity — Cryptology, 2, 2010.

[138] P. Jovanovic, M. Kreuzer, and I. Polian. An Algebraic Fault Attack on the LED
Block Cipher. Third International Conference on Symbolic Computation and
Cryptography — SCC 2012.

[139] P. Jovanovic, M. Kreuzer, and I. Polian. Multi-Stage Fault Attacks on Block
Ciphers. 14th Workshop on RTL and High Level Testing — WRTLT 2013.

[140] P. Jovanovic, M. Kreuzer, and I. Polian. A Fault Attack on the LED Block Cipher.
International Workshop on Constructive Side-Channel Analysis and Secure Design
— COSADE 2012. Volume 7275, Lecture Notes in Computer Science. Springer,
2012.

[141] P. Jovanovic, A. Luykx, and B. Mennink. Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. Advances in Cryptology — ASIACRYPT 2014.
Volume 8873, Lecture Notes in Computer Science. Springer, 2014.

[142] P. Jovanovic and S. Neves. Practical Cryptanalysis of the Open Smart Grid
Protocol. Fast Software Encryption — FSE 2015. Springer, 2015. (to appear).

[143] P. Jovanovic and I. Polian. Fault-based Attacks on the Bel-T Block Cipher Family.
Design, Automation and Test in Europe — DATE 2015. EDA Consortium, 2015.

177

http://software.intel.com/en-us/intel-isa-extensions
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf

Bibliography

[144] P. Junod and S. Vaudenay. FOX: A New Family of Block Ciphers. Selected Areas
in Cryptography — SAC 2005. Volume 3357, Lecture Notes in Computer Science.
Springer, 2005.

[145] P. Junod and S. Vaudenay. Perfect Diffusion Primitives for Block Ciphers. Selected
Areas in Cryptography — SAC 2005. Volume 3357, Lecture Notes in Computer
Science. Springer, 2005.

[146] D. Kahn. The Codebreakers: The Story of Secret Writing. Macmillan Press, 1967.

[147] B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0.
Internet Requests for Comments 2898, https://tools.ietf.org/html/rfc2898.
2000.

[148] J. Kaliski B. S. and M. Robshaw. Linear Cryptanalysis Using Multiple Approxi-
mations. Advances in Cryptology — CRYPTO 1994. Volume 839, Lecture Notes
in Computer Science. Springer, 1994.

[149] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-GCM. IACR
Cryptology ePrint Archive, Report 2009/129. 2009. http://eprint.iacr.org/
2009/129.

[150] S. Kent and K. Seo. Security Architecture for the Internet Protocol. Internet
Requests for Comments 4301, http://tools.ietf.org/html/rfc4301. 2005.

[151] A. Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Militaires, IX,
1883.

[152] T. Keresztfalvi and M. Salomon. CronorX — A NORX ASIC Implementation. 2014.
Supervised by F. K. Gürkaynak and C. Keller, http://iis-projects.ee.ethz.
ch/index.php/NORX_-_an_AEAD_algorithm_for_the_CAESAR_competition.

[153] D. Khovratovich and I. Nikolić. Rotational Cryptanalysis of ARX. Fast Software
Encryption — FSE 2010. Volume 6147, Lecture Notes in Computer Science.
Springer, 2010.

[154] D. Khovratovich, I. Nikolić, and C. Rechberger. Rotational Rebound Attacks on
Reduced Skein. Advances in Cryptology — ASIACRYPT 2010. Volume 6477,
Lecture Notes in Computer Science. Springer, 2010.

[155] J. Killian and P. Rogaway. How to Protect DES Against Exhaustive Key Search.
Advances in Cryptology — CRYPTO 1996. Volume 1109, Lecture Notes in Com-
puter Science. Springer, 1996.

[156] C. Kim and J.-J. Quisquater. Fault Attacks for CRT Based RSA: New Attacks, New
Results, and New Countermeasures. Workshop on Information Security, Theory
and Practices — WISTP 2007. Volume 4462, Lecture Notes in Computer Science.
Springer, 2007.

178

https://tools.ietf.org/html/rfc2898
http://eprint.iacr.org/2009/129
http://eprint.iacr.org/2009/129
http://tools.ietf.org/html/rfc4301
http://iis-projects.ee.ethz.ch/index.php/NORX_-_an_AEAD_algorithm_for_the_CAESAR_competition
http://iis-projects.ee.ethz.ch/index.php/NORX_-_an_AEAD_algorithm_for_the_CAESAR_competition

Bibliography

[157] A. Klein. Attacks on the RC4 Stream Cipher. Designs, Codes and Cryptography,
48(3), 2008.

[158] M. Knežević, V. Nikov, and P. Rombouts. Low-Latency Encryption – Is “Light-
weight = Light + Wait”? Cryptographic Hardware and Embedded Systems — CHES
2012. Volume 7428, Lecture Notes in Computer Science. Springer, 2012.

[159] L. R. Knudsen. Truncated and Higher Order Differentials. Fast Software Encryption
— FSE 1995. Volume 1008, Lecture Notes in Computer Science. Springer, 1995.

[160] L. R. Knudsen. DEAL – A 128-bit Block Cipher. NIST AES Proposal, 1998.

[161] L. R. Knudsen and J. E. Mathiassen. A Chosen-Plaintext Linear Attack on DES.
Fast Software Encryption — FSE 2001. Volume 1978, Lecture Notes in Computer
Science. Springer, 2001.

[162] L. R. Knudsen and M. J. B. Robshaw. The Block Cipher Companion. Springer,
2011.

[163] L. R. Knudsen and M. Robshaw. Non-Linear Approximations in Linear Cryptanal-
ysis. Advances in Cryptology — EUROCRYPT 1996. Volume 1070, Lecture Notes
in Computer Science. Springer, 1996.

[164] D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Vol. 4A. Addison-Wesley, 2011. http://www-cs-faculty.
stanford.edu/~uno/taocp.html.

[165] Ç. K. Koç. Cryptographic Engineering. Springer, 2009.

[166] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. Advances in Cryptology — CRYPTO 1996. Volume 1109, Lecture
Notes in Computer Science. Springer, 1996.

[167] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. Advances in Cryptology
— CRYPTO 1999. Volume 1666, Lecture Notes in Computer Science. Springer,
1999.

[168] I. Koren and C. M. Krishna. Fault-tolerant Systems. Morgan Kaufmann Publishers
Inc., 2007.

[169] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1. Springer,
2000.

[170] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2. Springer,
2005.

[171] T. Krovetz and P. Rogaway. The Software Performance of Authenticated-En-
cryption Modes. Fast Software Encryption — FSE 2011. Volume 6733, Springer,
2011.

179

http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://www-cs-faculty.stanford.edu/~uno/taocp.html

Bibliography

[172] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian. Parametric Trojans for Fault-
Injection Attacks on Cryptographic Hardware. Fault Diagnosis and Tolerance in
Cryptography — FDTC 2014. IEEE, 2014.

[173] R. Kumar, P. Jovanovic, and I. Polian. Precise Fault-Injections using Voltage
and Temperature Manipulation for Differential Cryptanalysis. 20th International
On-Line Testing Symposium — IOLTS 2014. IEEE, 2014.

[174] K. Kursawe and C. Peters. Structural Weaknesses in the Open Smart Grid Protocol.
Cryptology ePrint Archive, Report 2015/088. 2015. http://eprint.iacr.org/
2015/088.

[175] W. Ladd. McMambo. CAESAR Proposal. 2014. http://competitions.cr.yp.
to/round1/mcmambov1.pdf.

[176] X. Lai and J. L. Massey. A Proposal for a New Block Encryption Standard.
Advances in Cryptology — EUROCRYPT 1990. Volume 473, Lecture Notes in
Computer Science. Springer, 1991.

[177] X. Lai, J. L. Massey, and S. Murphy. Markov Ciphers and Differential Cryptanalysis.
Advances in Cryptology — EUROCRYPT 1991. Volume 547, Lecture Notes in
Computer Science. Springer, 1991.

[178] H. Lipmaa and S. Moriai. Efficient Algorithms for Computing Differential Proper-
ties of Addition. Fast Software Encryption — FSE 2001. Volume 2355, Lecture
Notes in Computer Science. Springer, 2001.

[179] A. Ltd. GCM Extension for AES G3 Core. 2007.

[180] J. Marques-Silva and K. Sakallah. GRASP: a Search Algorithm for Propositional
Satisfiability. Computers, IEEE Transactions on, 48(5), 1999.

[181] Mate Soos. CryptoMinisat. http://www.msoos.org/cryptominisat4.

[182] M. Matsui. Linear Cryptanalysis Method for DES. Advances in Cryptology —
EUROCRYPT 1993. Volume 765, Lecture Notes in Computer Science. Springer,
1994.

[183] M. Matsui and A. Yamagishi. A New Method for Known Plaintext Attack of FEAL
Cipher. Advances in Cryptology — EUROCRYPT 1992. Volume 658, Lecture
Notes in Computer Science. Springer, 1993.

[184] P. Maxwell. Wheesht. CAESAR Proposal. 2014. http://competitions.cr.yp.
to/round1/wheeshtv03.pdf.

[185] K. Minematsu, S. Lucks, H. Morita, and T. Iwata. Attacks and Security Proofs of
EAX-Prime. Cryptology ePrint Archive, Report 2012/018. 2012. http://eprint.
iacr.org/2012/018.

180

http://eprint.iacr.org/2015/088
http://eprint.iacr.org/2015/088
http://competitions.cr.yp.to/round1/mcmambov1.pdf
http://competitions.cr.yp.to/round1/mcmambov1.pdf
http://www.msoos.org/cryptominisat4
http://competitions.cr.yp.to/round1/wheeshtv03.pdf
http://competitions.cr.yp.to/round1/wheeshtv03.pdf
http://eprint.iacr.org/2012/018
http://eprint.iacr.org/2012/018

Bibliography

[186] P. Morawiecki, J. Pieprzyk, and M. Srebrny. Rotational Cryptanalysis of Round-
Reduced Keccak. IACR Cryptology ePrint Archive, Report 2012/546. 2012.
http://eprint.iacr.org/2012/546.

[187] N. Mouha and B. Preneel. Towards Finding Optimal Differential Characteristics for
ARX: Application to Salsa20. IACR Cryptology ePrint Archive, Report 2013/328.
2013. http://eprint.iacr.org/2013/328.

[188] L. d. Moura and N. Bjørner. Z3: An Efficient SMT Solver. Tools and Algorithms
for the Construction and Analysis of Systems. Volume 4963, Lecture Notes in
Computer Science. Springer, 2008.

[189] M. Mozaffari-Kermani and A. Reyhani-Masoleh. Efficient and High-Performance
Parallel Hardware Architectures for the AES-GCM. Computers, IEEE Transactions
on, 61(8), 2012.

[190] M. Muehlberghuber, C. Keller, F. K. Gürkaynak, and N. Felber. FPGA-Based High-
Speed Authenticated Encryption System. English. VLSI-SoC: From Algorithms to
Circuits and System-on-Chip Design. Volume 418, IFIP Advances in Information
and Communication Technology. Springer, 2013.

[191] D. Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption
Standard. Progress in Cryptology — AFRICACRYPT 2009. Volume 5580, Lecture
Notes in Computer Science. Springer, 2009.

[192] F. Muller. Differential Attacks against the Helix Stream Cipher. Fast Software
Encryption — FSE 2004. Volume 3017, Lecture Notes in Computer Science.
Springer, 2004.

[193] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. https:

//bitcoin.org/bitcoin.pdf.

[194] National Institute of Standards and Technology. DES Modes of Operation, FIPS
Publication 81. 1980.

[195] National Institute of Standards and Technology. Recommendation for Block Cipher
Modes of Operation: Methods and Techniques. 2001. http://csrc.nist.gov/
publications/nistpubs/800-38a/sp800-38a.pdf.

[196] National Institute of Standards and Technology. Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC. 2007. http:

//csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[197] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2011.

[198] Niklas Eén and Niklas Sörensson. MiniSat. http://minisat.se/.

[199] NODE — The NORX Differential Search Engine. 2014. https://github.com/
norx/NODE.

181

http://eprint.iacr.org/2012/546
http://eprint.iacr.org/2013/328
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://minisat.se/
https://github.com/norx/NODE
https://github.com/norx/NODE

Bibliography

[200] P. Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. Advances in
Cryptology — CRYPTO 2003. Volume 2729, Lecture Notes in Computer Science.
Springer, 2003.

[201] M.-J. O.Saarinen. Related-Key Attacks Against Full Hummingbird-2. Fast Software
Encryption — FSE 2013. Lecture Notes in Computer Science. Springer, 2014.

[202] C. Paar and J. Pelzl. Understanding Cryptography. Springer, 2010.

[203] S. Paul and B. Preneel. Solving Systems of Differential Equations of Addition.
Australasian Conference on Information Security and Privacy — ACISP 2005.
Volume 3574, Lecture Notes in Computer Science. Springer, 2005.

[204] C. Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.
https://www.tarsnap.com/scrypt/scrypt.pdf. 2009.

[205] T. Peyrin. Security Analysis of Extended Sponge Functions. Presented at the
ECRYPT Workshop Hash Functions in Cryptology: Theory and Practice, Leiden,
The Netherlands, June 4th 2008, http://www.lorentzcenter.nl/lc/web/2008/
309/presentations/Peyrin.pdf.

[206] PHC – Password Hashing Competition. https://password-hashing.net. 2014.

[207] A. Popov. Prohibiting RC4 Cipher Suites. Internet Requests for Comments 7465,
http://tools.ietf.org/html/rfc7465. 2015.

[208] D. Priemuth-Schmid and A. Biryukov. Slid Pairs in Salsa20 and Trivium. Progress
in Cryptology — INDOCRYPT 2008. Volume 5365, Lecture Notes in Computer
Science. Springer, 2008. http://eprint.iacr.org/2008/405.

[209] N. Provos and D. Mazières. A Future-adaptive Password Scheme. Proceedings
of the Annual Conference on USENIX Annual Technical Conference. ATEC ’99.
USENIX Association, 1999.

[210] R. L. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin. The RC6 Block Cipher. 1998.
http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf.

[211] P. Rogaway. Authenticated-Encryption with Associated-Data. ACM Conference
on Computer and Communications Security — CCS 2002. ACM press, 2002.

[212] P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. Advances in Cryptology — ASIACRYPT 2004. Volume
3329, Lecture Notes in Computer Science. Springer, 2004.

[213] P. Rogaway. Nonce-based Symmetric Encryption. Fast Software Encryption —
FSE 2004. Volume 3017, Lecture Notes in Computer Science. Springer, 2004.

[214] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption. ACM Conference on Computer
and Communications Security — CCS 2001. ACM, 2001.

182

https://www.tarsnap.com/scrypt/scrypt.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
https://password-hashing.net
http://tools.ietf.org/html/rfc7465
http://eprint.iacr.org/2008/405
http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf

Bibliography

[215] P. Rogaway and D. Wagner. A Critique of CCM. 2003. http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/

RW_CCM_comments.pdf.

[216] D. Saha, D. Mukhopadhyay, and D. RoyChowdhury. A Diagonal Fault Attack
on the Advanced Encryption Standard. IACR Cryptology ePrint Archive, Report
2009/581. 2009. http://eprint.iacr.org/2009/581.

[217] SAT Competitions. http://www.satcompetition.org.

[218] Satisfiability Modulo Theories Competition. http://www.smtcomp.org/.

[219] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson. Twofish:
A 128-Bit Block Cipher. 1998. https://www.schneier.com/paper-twofish-
paper.pdf.

[220] A. A. Selçuk. On Probability of Success in Linear and Differential Cryptanalysis.
Journal of Cryptology, 21(1), 2008.

[221] P. Sepehrdad, S. Vaudenay, and M. Vuagnoux. Discovery and Exploitation of
New Biases in RC4. Selected Areas in Cryptography — SAC 2011. Volume 6544,
Lecture Notes in Computer Science. Springer, 2011.

[222] SHA-3 Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/
index.html. 2007-2012.

[223] C. E. Shannon. A Mathematical Theory of Communication. Bell Systems Technical
Journal, 27, 1948.

[224] C. E. Shannon. Communication Theory of Secrecy Systems. Bell Systems Technical
Journal, 28(4), 1949.

[225] Z. Shi, B. Zhang, D. Feng, and W. Wu. Improved Key Recovery Attacks on
Reduced Round Salsa20 and ChaCha. International Conference on Information
Security and Cryptology — ICISC 2012. Volume 7839, Lecture Notes in Computer
Science. Springer, 2012.

[226] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal of Computing, 26(5), 1997.

[227] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2nd ed., 2009. http://shoup.net/ntb.

[228] L. Song and L. Hu. Differential Fault Attack on the PRINCE Block Cipher. IACR
Cryptology ePrint Archive, Report 2013/043. 2013. http://eprint.iacr.org/
2013/043.

[229] W. Stein. Sage Mathematics Software. The Sage Development Team, 2005-2015.
http://sagemath.org.

183

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/CCM/RW_CCM_comments.pdf
http://eprint.iacr.org/2009/581
http://www.satcompetition.org
http://www.smtcomp.org/
https://www.schneier.com/paper-twofish-paper.pdf
https://www.schneier.com/paper-twofish-paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://shoup.net/ntb
http://eprint.iacr.org/2013/043
http://eprint.iacr.org/2013/043
http://sagemath.org

Bibliography

[230] SUPERCOP – System for Unified Performance Evaluation Related to Crypto-
graphic Operations and Primitives. http://bench.cr.yp.to/supercop.html.

[231] H. Technology. AES-GCM Cores. 2007.

[232] E. Tews, R.-P. Weinmann, and A. Pyshkin. Breaking 104 Bit WEP in Less Than
60 Seconds. Information Security Applications. Volume 4867, Lecture Notes in
Computer Science. Springer, 2007.

[233] Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and H. Nakashima. Differential Crypt-
analysis of Salsa20/8. The State of the Art of Stream Ciphers (SASC), 2007.

[234] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Cryptanalysis
of DES Implemented on Computers with Cache. Cryptographic Hardware and
Embedded Systems — CHES 2003. Volume 2779, Lecture Notes in Computer
Science. Springer, 2003.

[235] M. Tunstall, D. Mukhopadhyay, and S. Ali. Differential Fault Analysis of the
Advanced Encryption Standard Using a Single Fault. Workshop on Information
Security, Theory and Practices — WISTP 2011. Volume 6633, Lecture Notes in
Computer Science. Springer, 2011.

[236] S. Vaudenay. On the Lai-Massey Scheme. Advances in Cryptology — ASIACRYPT
1999. Volume 1716, Lecture Notes in Computer Science. Springer, 1999.

[237] S. Vaudenay. Security Flaws Induced by CBC Padding – Applications to SSL,
IPSEC, WTLS... Advances in Cryptology — EUROCRYPT 2002. Volume 2332,
Lecture Notes in Computer Science. Springer, 2002.

[238] D. Wagner. The Boomerang Attack. Fast Software Encryption — FSE 1999.
Volume 1636, Lecture Notes in Computer Science. Springer, 1999.

[239] X. Wang, Y. L. Yin, and H. Yu. Efficient Collision Search Attacks on SHA-
0. Advances in Cryptology — CRYPTO 2005. Volume 3621, Lecture Notes in
Computer Science. Springer, 2005.

[240] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. Advances in
Cryptology — CRYPTO 2005. Volume 3621, Lecture Notes in Computer Science.
Springer, 2005.

[241] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. Advances
in Cryptology — EUROCRYPT 2005. Volume 3494, Lecture Notes in Computer
Science. Springer, 2005.

[242] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
Internet Requests for Comments 3610, http://tools.ietf.org/html/rfc3610.
2003.

184

http://bench.cr.yp.to/supercop.html
http://tools.ietf.org/html/rfc3610

Bibliography

[243] D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and F. Muller. Phelix – Fast Encryp-
tion and Authentication in a Single Cryptographic Primitive. ECRYPT Stream Ci-
pher Project Report 2005/027, https://www.schneier.com/paper-phelix.html.
2005.

[244] M. J. Wiener. The Full Cost of Cryptanalytic Attacks. Journal of Cryptology,
17(2), 2004.

[245] H. Wu. The Stream Cipher HC-128. New Stream Cipher Designs. Volume 4986,
Lecture Notes in Computer Science. Springer, 2008.

[246] H. Wu. The Hash Function JH. 2011. http://www3.ntu.edu.sg/home/wuhj/
research/jh/jh_round3.pdf.

[247] H. Wu and B. Preneel. Differential-Linear Attacks Against the Stream Cipher
Phelix. Fast Software Encryption — FSE 2007. Volume 4593, Lecture Notes in
Computer Science. Springer, 2007.

[248] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.
Internet Requests for Comments 4253, http://tools.ietf.org/html/rfc4253.
2006.

185

https://www.schneier.com/paper-phelix.html
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://tools.ietf.org/html/rfc4253

Test Vectors for NORX

All of the following test vectors and intermediate values are denoted in hexadecimal
little-endian format.

Traces for G and F

Let x = (a, b, c, d) and s = (s0, . . . , s15), where a, b, c, d, and si for 0 ≤ i ≤ 15 are w-bit
sized integers. Below we show the results after n ∈ {0, . . . , 15} iterations of 32- and 64-bit
G and F for the input at n = 0.

n Gn(x) Gn(x)

0 00000001 00000000 00000000 00000000 0000000000000001 0000000000000000 0000000000000000 0000000000000000

1 00002001 42024200 21010100 20010100 0000002000000001 4200004002020000 2100000001010000 2000000001010000

2 8E6E6E29 8783068E 0FAD8F6F 6D4A8F0C 82600C6C420A0C61 9CC80A07051612D8 0E04090FC283050C 6C22090F6183020C

3 9D6D8718 B987D564 C7474857 24F32605 CFE22B520239332F 1A1C7E83367612BF 7CD42AB6581A2C29 4D6E1FA833FA9021

4 C291D60D 19A0D5EA F0E0D424 C473BBA3 3D5E2BDE88AFF93B ECC8D95156DCEC38 0A0446A133EE8271 C0F5AC2CAED2D2BB

5 35F2578F 853DBE90 195D7490 149F61EC C3C467FE58784143 3C97782DEEAC5790 44843BC64A41A7D8 B25B09F9540B8D94

6 AF557EEA C53796FE 163271AC 4E4F5CFB AC67C4758EDABE16 C321E8CE8496C5ED 2FBCC28DAA1D48B5 A3FCA8310FEB2BC4

7 DBA043BC 6C09B0BE 4D7D55A3 4425E08E 4CE9BEBB0DD254A6 4F2485BE02121466 C67650560B60EF00 BF0EDED6FE7B2547

8 44912C86 E215F517 D0614027 A094B0F2 C2C12A34D0D5FD94 1C191DA55351ADFA 4149F615635943F5 D8772462D909E5A8

9 88980FED 27B1DE05 79A35152 3DCCE71E 377F4E2380FD20F6 3F886AF0AE6DF23C 47611212B6E0C0B6 203B070E18D179E3

10 BD333CDB C51A4ECA 6DA7579C F9F141A0 BBEA67F79ED0A639 2348E7B04B8FE61F C4A0C4BDD549E690 4002E63DD2FAACBB

11 9F85298E F2ACF75A D4CEBDA4 D5A4BA0E 5BD7374482BCD0AE E465F7287EA1095B 4F9713BAFD0E5037 ED98AE740EF44907

12 FA2D9998 3BD8B744 AFE0677A 1CBE34B0 9D12266D61EF2E4B 3F82247049FFDACF 01DA8A38AC6DB80D 6D791887DB7BC086

13 72B826FD 30355A44 D6CE9703 7CC51E11 CF409F3F352535F6 0E03BB546CA18FF7 F1FD88CBBC37921F 6D6F5580D65BB572

14 C7053F6D D35DA308 CD1616B8 170BE75B A15E9AA4D3881354 F042F1E89CECFFD3 2C3DF0918FBD9D82 E3104F8E503EEEB7

15 29F7F20E 3256FD7D 068E6667 AB330772 F487F38AFF72BCE1 99081BA0BCA194B5 2B8AA44DCF5F3898 8F7C4CF6C564757A

n Fn(s) Fn(s)

0

00000001 00000000 00000000 00000000 0000000000000001 0000000000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1

04004001 20200400 20042020 4A4A8A08 0000004000000401 2020000400000000 2000042000000020 42400888420A0840

01880885 8A424A40 4A024A02 C24A0248 1008008580981891 8240004842020800 4800020A00420200 C200084042420048

41212104 888C4C4A 41210520 05212101 4100000021210004 8844080A80440408 4120000421010000 0420010100210100

05012000 20202004 884A4A08 40210500 0400010100200000 2000000020200004 8802080A40420208 4020000401010000

2

EFDB6055 4EB0C8FD 4D66BAD5 A5716F6F 9D802FD127A732A1 BFDC94FCF7EDB4F6 50E28C54A198AD0E 09FCDB8FCCC9DDA8

3315BA06 B5E09122 44A18E71 51E36297 7ACEC81E5BAA6D25 10C9CBCF5BFEFC27 11A152F2C1A43FCA 6BA77CCFA2D9F407

F137B870 3C7265F6 00C30D5B 295A09AA 0E03AD8E4F36AD96 B405D697E680A2BB 3651B1301374F05D EC2A3CD28E701034

B42B85E7 AC007723 742077A7 4BADCF9B D793C96953AA22B3 81B56FC8F78827DD A5F18C894182A861 F95F620C599E1A7D

3

B49E8FA1 B87AED22 86152D27 BEB398AD 6D9C774FB118B930 0AD4888256442919 B2625AFA68288616 3F682524B541B12D

BD48EB80 1D4447DA B7458BA9 A9E9EF9B 09FB30C77ED1253C D276B00A56FA3BB2 D1A3ED2B432628E0 59DE47C408703466

F7599C6A 203FB309 694A1283 C4875743 730C85F6CF7CD9B4 D731F331C620402D 664456562656A61E 10F001A72ABF1CCA

F4E78B62 50BE8206 7BEF5DF7 F92F6B9C E04F26164B84BCD5 E1CE43EA4AC71790 BE0A7BDA26AB8C3E 083CB972BE746F0D

187

Test Vectors for NORX

n Fn(s) Fn(s)

4

D8936EA9 4FDFA7F9 2E23D116 ED7C3692 9AE671BAC4106A33 2532A3AF80EB8C24 8807B8748AAF89BB CCBD275D7AC0180C

3E463C40 A5AA5D55 A05A6E11 D22C7D58 9E3C9A644E2EE2B1 6EF830BF37A17BB2 A56A3F09DA96ABC9 6674A590854EA97D

3C0D461D 5D78E74F 88C9121B ECA4CA13 D58BFB1A8D2677C5 5696D8DEA26A6D6D 2E973803C96922A4 9C8EC44641A390FD

E12928CB 0167E06D 90E1494E 7CBBCCDA ABE2F120F069F77A 305FE9E02B725884 1D2A9380316FE1A6 8FA5B15C10F77415

5

DC4D4AE5 2EA22D30 0F46317D 61B76178 E7BC1BB342393A06 4497F473D8AE5B3A 238B885A51663B54 FCFD9F88948D42A7

317CF942 AA617101 B1B646B0 9FB8201C 5B6E332077A59C5D C798AA981789AC8D F916664458B5AD3F F7086A16B2407A56

31E77E87 0E87682D AB27674A 1C00EF33 8DD6CEC45AC62D09 2C217A7DC1AB282C 8AA14855B8A7A065 1BA096650A8E8F6D

49676DA0 5E36BB3F 369CB43A F6E575E8 9ECAB9E7A91D59FE A57F363A65CF10D3 F16FCED7A605DFE9 C02D0A46B23E8C31

6

472112C6 EBBA21DD 69FAF1B0 06AADA3C 2FCA68C9B1691627 59E2B79D4B2A88F8 D44A3CC624C9028F 6295CCEC81F0F5AF

958968BA FAF43AF0 8A346D6C 04DAD629 AFBA11EEC8CE43A4 A6BC58426BDAB6AC C9FA0754D15A38A6 61B7C093B862D551

28C63C70 F49BAA13 57DE5F7C 28841E18 B7A8A66A9227EE06 17BEF1A5F98B7250 CCAA13033F5ADCD3 15CBCEF3A8A993B5

EA3F594F 8D744A62 57B54FF1 753A4160 2E321403DA39690B D805E663071507B0 6D7EBAA185FF9F07 64071C2C7A0205EA

7

865ACF57 0B1CD341 44571AAD 1E351C75 BF643FF50F9B521B D6ECDEF9B9AC18B0 29C44312EB0ED72A 6AA97E4B4BF39E0A

679AB711 8D923CDC 115DC180 CF5E7435 A957D54C2B38DF1B 23E4928A7504F6B8 6CFEE0C2D418DC84 10464EB477E6D548

94D66EB3 6B643DA7 C71FD3A8 EACD114A 18A96DABB8BBC145 406A6EE1C806F1E4 A54BD0A7B7291B4A 27BC2F8593DD77BE

FE5A4582 101A0A61 DEF929CE F81307CE 3BE8FF6116D7AFB0 4D78AEB59B3A9C25 9F03C664A44601DC DDBE9B34DA020E59

8

EE830EF5 EFEDB52C D9B5DDE0 11699703 F51507DD9E95189F AB5E0B1641FAD08F 09B7BF70943B60DE E35D03636672DACD

A59F827F E7DA769E 9ACF9688 FE6B4EE6 1D013C731A134DCD 850FC95D9CA677C8 48D78D3658CBE8D0 3898A93514FBF49D

2D99EFFF C1F42728 1B33FCE4 2484C32D 8849E2B60F59D433 A1C7E702A391D4B9 C0057990DE07D3EE 6BBF9A8B0E6CB108

454DEF51 65220E90 D8B53023 10265221 7DE67998BA91A9CE 68F2B4BC4B8F6A52 4EFE2C5711E64647 27173B06EFB20807

9

5BA9F23B 4BF4491B AEF87C06 ADCB6C25 002D7BC6826E5C4E 98EAB016A3E7207F 256F87371014F66D 6D9F12AF7B51BA9A

84A8D85E 06C4583B A845E529 E9B02D7F DF7D5DFDED1E7078 E24E4E023117F906 D3BB9C3FE292CE3D A67A8CE3BE764D9E

EE6C0E9B DEC3200A 6C54629E B511AD99 45A7A7E1DBA2E0AA 5D54BBDD7E640E1D 088696EC342398E7 5542ABB8B94BB46B

3D9F13B9 B8D1EDA8 864F0FFA 12F8AF0B 35DC03910937D57B 7A726243CEE6D7DA 8562A88AA0E1FF37 7B49C51D5DF11672

10

A61FD7E0 FF35B59A F69A212D 47A15ADD 68B23861E57C9B05 F213CDD14E146238 0E2123C3E9EC08A3 9C6E6D6DAA93B9ED

55D610B0 F029E3EB 0C00141B DB2E13A3 A5702C464CC5B083 3A6519BEB2F56890 58F28DC1E45BF8DB DEF3C026B70B8321

6804E008 873E90C3 74385699 04D9596B 1E67BF80DAF92084 6CF77997E48644FE C9B7FA02D70DB5AC 3FDC30C21AEE5282

415BB241 BABB116D 9E823917 E2DE402B 3D6CBA696BA6DD93 244DBB6790CCB37D D0E6766D04FAE591 2B8B936EEC644EF5

11

9041779F 33B0A06B A3B26416 8A15CD3C 256DC2FF6DE0A8F9 C8283552487D4780 36E9CA389070DCA5 EFB083848F8A3405

690B4EF7 31FAFE50 E588204D 7F2B5954 384CDB03F49E7149 7DE9B6194F547AAF C492972CC2C2E3DE 32D560A0FFD100C7

D42B9E7B 07A1E0D7 BAD18B76 6EDAC458 66EDB88FB0A8ED53 FC22F84560B7ABAF 9A63F2BF0970DC84 123A7129FF26A569

5E73F7CA B3EC7D7C 13822907 34427635 555B49259E70FD2B A79F97997F5A58B5 1399D5D5EC0BD97A 110FC0B750934E61

12

E706F4FD F789B2AD 0B0FA1F9 46D2ADFD 79970BBA797F440D B0459551EFD2E5A0 E140D289FE653F5A C8FC4FD63D554F1A

A838E222 E5E99CE6 99AC76DD 19D0101A 37E8BBE4772E3497 2927C042216E82B4 BE2D1C1DA47865A1 5A50DCF8AE92DF6B

73F58246 C6C1CB88 05985586 FED36478 8A7CB9A29451499B 2FC455A75270E7D3 A5D94AC009584F4B 2B6A365256A121AF

0CB8A89B 560C0D0B 96B6CBFF 738DBBBE 8268A2C7ACA0B4CB FB6D0AADC42F2F25 3D853A4E3B481849 F123FE58267C3EF7

13

26A1AE25 C23C5F1A 97569C36 45630F28 1B448E8F92662327 3591F3F3E586BB58 D6886C54B54AB965 4AD24A7E75C843E0

F7A7003A 3E3F1431 5BFE2226 9C1B8620 907F731206F383F4 B7C30BE4C9CB308C 4FEC526992D7DF72 9D095158BAA00FED

96FB64B1 DA975336 FD3DC3EE EFAC8EED 15E38D27D3CBEA58 5AC80DB9250ED949 131066D58338BA8D 921424D98DFB5ED2

D0A74E35 4CCE7985 A73D02BC 7E819839 B0E50C530C665E5F 3B8D7BBCD6CFE748 0F91216102B8C6B9 DF3FBE9627CF0CB7

14

0EB1BCE0 315AFC74 DBAECA2E 7451F4BF 7DD0542A032CC09D CD428DF51AD1B8FC FFF2139B160E45B6 56CE164150489EB3

ACAB0D51 E8385576 86F03E6B 016AE48C 0264062B41CE6E01 FEA2C239875FA55F 9D8BBA9828A7F43B B1C12516C2FB1DE8

E231BB88 DB29BED0 EC2622DE 7F6F0F74 4943B0FC28BB7A36 E54B13E241E5CC89 882C0750BDA3EB7C 97028319155939DE

10A3EE22 7F5E0DA3 5AACEB4B 3B2FB855 441CD99CD0C48940 D3B65696FF5B41E9 5A0E09FA7BCCF7BC 41523B4C1E564872

15

340B3FA8 8B4EE0F6 EB62C2D7 9AF0EC8E F2DC521CEBDE2E3D C0921B301794BED5 7BCBEFD874ABE56B 35872E5C29899E44

431C83CB 79E0F0D6 D83AEA5E 18D2DA56 FDE750453067080B AEFE0DEA33D8EE2A 8E1741A7DEC189D0 897240121D56DCD3

A008685C CB836339 F6ED4128 7A9FC592 52CA19E5C5DD54BF F0589BCF1B050432 52AED8532DE4DD9E C11492B2FC68D82E

1F7B1AD6 0E1DC227 3EB20808 C12CE387 0D4EA16E832DA7F3 AE57C79E053DF9C2 CC9358DDA6A3320C D45F711CE4BDDE7C

Full AEAD Computations

Let K, N , A, P , B, C and T denote, key, nonce, header, payload, trailer, ciphertext and
authentication tag. Unless stated otherwise, intermediate values are snapshots of the
state after the final permutation of a given phase. For example, for d = 1 the end of

188

the header processing denotes the state after final permutation Fr in the header phase
or in other words, it is the state before the first payload data block is absorbed. This
corresponds to the state after the fourth application of Fr in Figure 32, assuming that
two header blocks are processed. We use the following notation for the particular phases:

[S] basic state setup
[I] end of initialisation
[A] end of header processing
[P] end of payload processing (for D = 1)
[Pi] end of payload processing on lane Li (for D 6= 1)
[M] end of merging phase (for D 6= 1)
[B] end of trailer processing

Values for NORX32

We assume that the following input data is given:

K 00112233 44556677 8899AABB CCDDEEFF

N FFFFFFFF FFFFFFFF

A 10000002 30000004

P 80000007 60000005 40000003 20000001

B null

Padding of header and payload results in:

pad320(A) 10000002 30000004 00000001 00000000

00000000 00000000 00000000 00000000

00000000 80000000

pad320(P) 80000007 60000005 40000003 20000001

00000001 00000000 00000000 00000000

00000000 80000000

[S]

243F6A88 FFFFFFFF FFFFFFFF 85A308D3

00112233 44556677 8899AABB CCDDEEFF

13198A2E 03707344 254F537A 38531D48

839C6E83 F97A3AE5 8C91D88C 11EAFB59

Note that the basic state [S] is the same for all of the following instances.

NORX32-4-1

[I]

A6859693 625D4B18 E04194D3 F5CB03FA

AF507C8F 5D030D50 7D21E730 3801A9CB

07B5E1D1 D04182D6 EBAB5473 D9D2769B

08CEF45E 3C958F7B EC346524 9F8DF11E

189

Test Vectors for NORX

[A]

4CABE77F D475C97A 144B3BC1 26DA08D5

B1346EF8 A28DF65D AC420E4C 7DD01B39

4AA9652A 0604CC4A B7B65DDE EB10AAEE

985FF6DF 76BE155F B21C0D0D E6F69429

[P]

F41C98A9 E9BEC3FE 80558E88 29A994CE

BA66A2F0 BFA93172 A76EEBF6 96D5723C

83F70E69 55004610 CDB24FF9 E9B4AFE6

C5C78FE6 F6E9419C 8874C258 47E562F0

C CCABE778 B475C97F 544B3BC2 06DA08D4

T F41C98A9 E9BEC3FE 80558E88 29A994CE

NORX32-6-1

[I]

4CEC66FF 157BAAA2 6991EFFF AADA81C1

7247E0A2 80D3A609 93DC4EFD 807F171D

6C103BC4 4EE90BAD F9B77D28 2FDBBBA4

C3727837 03558E04 965C1F7F 5199A103

[A]

FA1411D0 AB9C308F 7D955C15 312D5B92

3A2632BD E8A59A23 DD63C2CD 3C55DABC

570FF833 9334EB2C 91CEC145 07E05F31

B9F6732A 8135214C 28C91E39 345DE658

[P]

D949093E 7C630B9A 136DF6BA 4552A2D6

4C414F3B 550670A3 13ED83CA 8D401751

7ABFC5F1 8CC7C5AB 9224D2C4 F2D1079C

64686B2E 4667414D A325B4EE 18D98082

C 7A1411D7 CB9C308A 3D955C16 112D5B93

T D949093E 7C630B9A 136DF6BA 4552A2D6

Values for NORX64

We assume that the following input data is given:

K 0011223344556677 8899AABBCCDDEEFF FFEEDDCCBBAA9988 7766554433221100

N FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

A 1000000000000002 3000000000000004

P 8000000000000007 6000000000000005 4000000000000003 2000000000000001

B null

Padding of header and payload results in:

190

pad640(A) 1000000000000002 3000000000000004 0000000000000001 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 8000000000000000

pad640(P) 8000000000000007 6000000000000005 4000000000000003 2000000000000001

0000000000000001 0000000000000000 0000000000000000 0000000000000000

0000000000000000 8000000000000000

[S]

243F6A8885A308D3 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 13198A2E03707344

0011223344556677 8899AABBCCDDEEFF FFEEDDCCBBAA9988 7766554433221100

A4093822299F31D0 082EFA98EC4E6C89 AE8858DC339325A1 670A134EE52D7FA6

C4316D80CD967541 D21DFBF8B630B762 375A18D261E7F892 343D1F187D92285B

Note that the basic state [S] is the same for all of the following instances.

NORX64-4-1

[I]

F89FD073FCCF0DA6 AE43878AA7E72AF9 EF066EAD35656108 08C32CF2CF1906D0

D2559C7E3422F141 E265687406901D3F E3886E55AEF44CF5 05E29A496C6754CC

2428DFC030ECEA24 EBFD8386ED3F66CF 8AC1A7A45D8359A9 4841831786961693

6E00340067525020 D0501BCA0863DA3F 8BE6640FB8EDC928 9A3C3CEDC09CAC96

[A]

F0261529CACFB7EA CDEDDCDEF81912B0 CD5DB2E73CB9A44D 776DD64D38BE869E

B3B79BA058476D47 0EA348964F56ECB7 63978BC4A812319B F01A4F387FBDAD4B

23D339F601AFEA47 CD05C917848FB9B6 11D94C1706162801 67F3B5E71E0CF175

94D78A64E58A1802 F2D722FC3A3DB407 715C705209A81DFE A1B9C89A6C2ED8B7

[P]

97F45179DE5D5804 E47E0A8FA7B157D0 AD4E6B119FE2FEF2 939490F32AADB1B9

E3BF4D22690AAC45 0E2BFC492EC8D7BB 33674AAA404FCD28 82BE08E20723D809

ACEB91F64F0FDDF6 79CAADC699955BD6 7153D1074C4F27C5 08219F499EA851E3

99CBB4749F0C30C1 5179D3688B3568F3 63BCF31B0ACC1379 07F0BE20069786E7

C 70261529CACFB7ED ADEDDCDEF81912B5 8D5DB2E73CB9A44E 576DD64D38BE869F

T 97F45179DE5D5804 E47E0A8FA7B157D0 AD4E6B119FE2FEF2 939490F32AADB1B9

NORX64-6-1

[I]

D5CF5CD48C6868AB 0FAFBD1AA8039919 14F59C62FC9CB969 20F35D82D19578F6

D592F5909E505B5D BAD17EF8DC4DA18F 2C9F6B9D1D1DB330 B7970C4627D4C402

72FACE8E660AF7B5 04861620AD8F57F6 983826D969E8D782 8F0B3F0ADF675061

441841BEBC628A9B FA207A4618DA0433 C06234917729C5AA 026A2D8A04CA2FBC

191

Test Vectors for NORX

[A]

FF4A769F211E6B66 D985FF698E0D4527 CF8111E2A08AA8F0 A87CDFD1B311DE80

7DDCDB2A8B824A07 84E2BA34D9612809 9BA303444722A6DE 0779B80D013AC008

91B500ACA2D9F329 9DAA3C4A8BDE7EB8 E46216761A1A8521 A027691BC55EFA56

DF30ECC2F1CE4718 B0BF2B6CD13BF396 5EFCD174822FEA78 7E56B9F928AAA1EF

[P]

F1ED4CE4283D7886 845717865C1CBC57 EF140434D843AAD5 5EA1E5958DA5E0A2

03127D12277E4DAA 880F2B5ECFF1F81C CE757C680DFD6FFF FC52C828DF8F3F34

90266271C89B608C 59849772DFB714B1 9BD7F7473F786C95 518E228E15785FA4

AD1B9FB9EABD6C28 251E204596861386 3003E97AA52DCE02 B8E17372831F9161

C 7F4A769F211E6B61 B985FF698E0D4522 8F8111E2A08AA8F3 887CDFD1B311DE81

T F1ED4CE4283D7886 845717865C1CBC57 EF140434D843AAD5 5EA1E5958DA5E0A2

NORX64-4-4

Due to the small size of the payload, only lane L0 is processing actual payload data.
Lanes L1, L2 and L3 are processing only padding blocks.

[I]

338C058AE8194393 74778588AD8A0424 717B083B9CA3384A F79F58E95EFF0E2C

D987F5143B757F46 94CA10DE03307B7B 5A8C688836BE49A1 0C2615300BAB15D9

2003EC1D9FA29CD2 3E8E1C08EFE04E51 9F58E4D329027F28 AFC1091A6701261A

A87EB269C7E3B277 6F97C2B2D9E06578 B5C196FC526812EE 5215BC53F0A3704F

[A]

A20BA07081CA6E94 7FCAA889F5AD928B BF180FA878FCF254 04A2798652A27E25

425E2ABB4CB2515F 1F7ABC792FE0B467 97225637D513A823 B20441661B25249B

6CE14936B9FAB518 A7C5DFFFABEBF53F 45B9FFCD0489E536 B3FAD2BD2EF458C8

FA3498A1DB765EC7 4F2518E2F2FEFE40 0085565E3458FB72 A6177F6306FFCAF4

[P0]

640E50FFE4DFCB45 5FD63593E2C1F15C 3A436E855A9A7E33 DE58B928F710239A

8AB9C0DF7794890E 109E4CB5AC9D1EEE CCC8F51A860E24E4 D9D2414EB38D1104

36A40B1E6F829C5E EFBDD5F21DDB3F12 7BA93218BE79BCFA 6360A7651D46740A

F3F8F6948FD46921 2167B350D45F33FC E0A250275D090CAC 83486343F67D0365

[P1]

99E731AF490C669F 5E042CEF52716526 3C36EAB55D40A8EB FBB1A9C1F8800232

689A8358BB6E617D 1A0BD8AF1544CAB4 7C45D749A46C391F 069880E79310B20F

520ECC298FCB0790 2A4DED2EA7DF4A11 97FE9C35E1136F61 9062F1BA7E7238AD

945691C3E90A9860 FD2834091E07DB2F EC2F097F358B502D D7B6DB402AB3C679

[P2]

13D0B4F055264930 FA93B1110AEC6F9D 66DD4249E0392DE1 2EBEC2E83AA88E41

5EF53EE8D7C23A33 B6D38B6B66AF9861 80DFE51738BCCE72 C458876F558CB3F4

3D349B0E50444ABF E6C9596063E165FA AF02CE82D6FD48EE F7A59A2BDCD8968E

B14BE3A0E7948DCF 558DD4B85F62E190 72813332E94E7875 73A587DE8DF25971

192

[P3]

60CC5AA0870C1E17 E31CF699B76B7E4F EEF643013FEE4617 9063E2CAB510B49F

68F7F0096920DF8A AAA50B4FA5F3F8D1 49D574E292D9303A F7B17A35F1958285

D2985B123CD7369F 3CC6FC797310B62F A4CFC266FFAE0213 146EE258880C1936

C6A05A15367DE773 48FDCB711E06BC7F A2235F75C78621C7 27FCCCB105D3B6F6

[M]

365018CE729D30D7 D3FD630542509BB8 553581D9089B8641 943A4D6925C3BFD4

2AA4790764766228 9776518212852CDB 15C15E54F23CCE12 6ABFF1840275DBD7

B24AD552AD264B27 8CCEB9FC62B4F043 5273B139690DB1BB B4C210991536C42C

EDA68A52E2CA4793 CEBF29CBD161D3A5 71F32B3E343910D9 2F49A8CC450445A4

C 640E50FFE4DFCB45 5FD63593E2C1F15C 3A436E855A9A7E33 DE58B928F710239A

T D6AE9B5944D4125C 78DD05B6721D277B 97C28DB804F05910 3C99D7CFE2B15138

193

Publications

Conference Papers

C. Beierle, P. Jovanovic, M. M. Lauridsen, G. Leander, and C. Rechberger. Analyzing
Permutations for AES-like Ciphers: Understanding ShiftRows. Topics in Cryptology —
CT-RSA 2015. K. Nyberg, editor. Volume 9048, Lecture Notes in Computer Science.
Springer, 2015, pp. 37–58.

P. Jovanovic and S. Neves. Practical Cryptanalysis of the Open Smart Grid Protocol.
Fast Software Encryption — FSE 2015. Springer, 2015. (to appear)

P. Jovanovic and I. Polian. Fault-based Attacks on the Bel-T Block Cipher Family.
Design, Automation and Test in Europe — DATE 2015. EDA Consortium, 2015, pp. 601–
604.

P. Jovanovic, A. Luykx, and B. Mennink. Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. Advances in Cryptology — ASIACRYPT 2014. T.
Iwata and P. Sarkar, editors. Volume 8873, Lecture Notes in Computer Science. Springer,
2014, pp. 85–104.

R. Kumar, P. Jovanovic, W. Burleson, and I. Polian. Parametric Trojans for Fault-
Injection Attacks on Cryptographic Hardware. Fault Diagnosis and Tolerance in Cryp-
tography — FDTC 2014. IEEE, 2014.

J.-P. Aumasson, P. Jovanovic, and S. Neves. Analysis of NORX: Investigating Differential
and Rotational Properties. Progress in Cryptology — LATINCRYPT 2014. D. F. Aranha
and A. Menezes, editors. Volume 8895, Lecture Notes in Computer Science. Springer,
2014, pp. 306–324.

J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX: Parallel and Scalable AEAD. Euro-
pean Symposium on Research in Computer Security — ESORICS 2014. M. Kutylowski
and J. Vaidya, editors. Volume 8713, Lecture Notes in Computer Science. Springer,
2014, pp. 19–36.

R. Kumar, P. Jovanovic, and I. Polian. Precise Fault-Injections using Voltage and
Temperature Manipulation for Differential Cryptanalysis. 20th International On-Line
Testing Symposium — IOLTS 2014. IEEE, 2014.

195

Publications

P. Jovanovic, M. Kreuzer, and I. Polian. A Fault Attack on the LED Block Cipher.
International Workshop on Constructive Side-Channel Analysis and Secure Design —
COSADE 2012. W. Schindler and S. Huss, editors. Volume 7275, Lecture Notes in
Computer Science. Springer, 2012, pp. 120–134.

Journal Papers

P. Jovanovic and M. Kreuzer. Algebraic Attacks using SAT-Solvers. Groups — Com-
plexity — Cryptology, 2, 2010.

Preprint Papers

J.-P. Aumasson, P. Jovanovic, and S. Neves. NORX8 and NORX16: Authenticated
Encryption for Low-End Systems. Trustworthy Manufacturing and Utilization of Secure
Devices — TRUDEVICE 2015.

P. Jovanovic, M. Kreuzer, and I. Polian. Multi-Stage Fault Attacks on Block Ciphers.
14th Workshop on RTL and High Level Testing — WRTLT 2013.

P. Jovanovic, M. Kreuzer, and I. Polian. An Algebraic Fault Attack on the LED Block
Cipher. Third International Conference on Symbolic Computation and Cryptography —
SCC 2012.

196

	Acknowledgements
	Motivation
	List of Symbols
	Introduction
	Cryptography
	Block Ciphers
	Stream Ciphers
	Hash Functions
	Message Authentication Codes
	Authenticated Encryption Schemes

	Cryptanalysis
	Brute-Force Attacks
	Differential Attacks
	Linear Attacks
	Algebraic Attacks
	Rotational Attacks
	Implementation Attacks

	Security Notions

	Fault-based Attacks on the Block Ciphers LED and PRINCE
	Introduction
	The Block Cipher LED
	General Layout
	Round Function

	The Block Cipher PRINCE
	General Layout
	Round Function

	Fault Attacks on LED-64
	Fault Models
	Fault Equations
	Key Filtering Mechanisms
	Experimental Results
	Extensions of the Fault Attack

	Multi-Stage Fault Attacks on LED-128 and PRINCE
	The Multi-Stage Fault Attack Framework
	Applications to LED-128
	Experimental Results
	Applications to PRINCE
	Experimental Results
	Extensions of the Fault Attacks

	Algebraic Fault Attacks on LED-64
	Algebraic Representation of LED
	Algebraic Representation of the LED Fault Equations
	Experimental Results

	Conclusion

	Fault-based Attacks on the Bel-T Block Cipher Family
	Introduction
	The Block Cipher Bel-T
	Fault Attacks on Bel-T
	Bel-T-128
	Bel-T-192
	Bel-T-256
	Experimental Results

	Practical Issues and Countermeasures
	Conclusion

	NORX: Parallel and Scalable Authenticated Encryption
	Introduction
	Specification
	Preliminaries
	Parameters and Interface
	Layout Overview
	The Round Function
	Encryption Mode
	Decryption Mode
	Datagrams

	Security Goals
	Features
	List of Characteristics
	Recommended Parameter Sets
	Performance

	Design Rationale
	The Parallel MonkeyDuplex Construction
	The Functions F, G, and H
	Selection of Constants
	Number of Rounds
	The Padding Rule

	Conclusion

	Analysis of NORX
	Introduction
	General Observations on G and F
	Fix Points
	Weak States
	Algebraic Properties
	Slide Attacks

	Differential Cryptanalysis
	Simple Differentials
	Impossible Differentials
	NODE – NORX Differential Search Engine

	Rotational Cryptanalysis
	Conclusion

	Bibliography
	Test Vectors for NORX
	Publications

