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Analysis and Design of the Integrated Controller
for Precise Motion Systems

Syh-Shiuh Yeh and Pau-Lo Hsu, Member, IEEE

Abstract—Recently, feedforward controllers like zero phase er-
ror tracking controllers (ZPETC’s) and cross-coupled controllers
(CCC’s) have been developed to effectively reduce tracking error
and contouring error, respectively. This paper proposes an inte-
grated controller which combines ZPETC and CCC to achieve
both tracking and contouring accuracy. Furthermore, studies
indicate that ZPETC and CCC can be designed separately in the
present integrated control design. In the provided experimental
setup with a servo table, an optimal ZPETC and a robust CCC
based on the contouring error transfer function (CETF) were
designed to achieve desirable frequency responses and stability.
Experimental results show that the proposed integrated controller
renders significantly improved accuracy in both tracking and
contouring.

Index Terms— CCC, contouring error, integrated controller,
motion systems, optimal feedforward controller, robust
controllers, tracking error, ZPETC.

I. INTRODUCTION

I
N real applications, due to the inherent problems of servo

lag, friction, backlash, and other difficulties, [1] much

effort has recently focused on improving motion accuracy

by using various control strategies [2]–[9]. In multiple-axis

motion systems, feedback controllers are usually designed

independently for each axis and each axial servomechanism

tracks input commands to reduce tracking error. In addition to

the control design in a feedback loop, feedforward controllers

have been widely studied in motion systems to greatly improve

tracking accuracy. For example, the zero phase error tracking

control (ZPETC) proposed by Tomizuka [10], its modified ver-

sion [11]–[14], and the optimal ZPETC [15]–[20] effectively

reduce tracking error. However, due to physical constraints

and modeling error, such improvements in tracking accuracy

by applying feedforward controllers are inherently limited.

In addition to tracking accuracy, contouring accuracy is

also crucial for a precise motion system as shown in Fig. 1.

Since feedforward controllers, which are mainly designed for

the minimization of tracking error, reduce contouring error to

just a certain extent, contouring accuracy in advanced motion

systems should be further improved by applying a more appro-

priate controller design. The cross-coupled controller (CCC)

was proposed by Koren [21] and several modified CCC’s
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Fig. 1. Tracking and contouring error.

were later developed to further reduce contouring errors [6],

[22]–[28]. Basically, by applying the position error adjustment

to each axis, the CCC substantially improves the contouring

accuracy of multiaxis systems. Recently, theoretical analysis

by Yeh and Hsu for CCC systems has achieved guaranteed

stability and motion accuracy [29]. Note that although the

CCC has been verified to reduce contouring error, it cannot

effectively reduce tracking error.

In industrial applications, most manufacturing systems like

the conputerized numerical control (CNC) machines empha-

size contouring accuracy which determines product quality.

Recently, in many nonconventional manufacturing processes

such as laser cutting, laser welding, and electric discharge

machining (EDM), etc., contouring velocity in uniformity also

directly contributes to the quality of the machining processes.

In fact, maintaining precision in both the contouring path

and its velocity cannot be achieved by simply implement-

ing a single controller. Since both the velocity and position

commands are generated by the interpolator in a motion

control system, a good tracking system also guarantees the

accuracy of both the contouring velocity and contouring path.

Therefore, both contouring error and tracking error need to

be minimized simultaneously in precise motion control. Hsu

and Houng [30] intuitively integrated a well-tuned CCC and a

ZPETC to construct a basic integrated motion control system

that both the contouring error and the tracking error were

reduced. However, there are unknown coupling effects of the

integrated system between the ZPETC and the CCC; thus,

systematic design procedures to achieve desirable stability and

performance are required.

This paper proposes the contouring error transfer function

(CETF) for integrated motion systems. An important finding of

the integrated controller design is that the feedforward and the

1063–6536/99$10.00  1999 IEEE
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Fig. 2. Motion systems with two independent control axes in a 2-DOF
control structure.

CCC controllers can be designed independently. Furthermore,

the optimal design for the ZPETC and the robust design

for the CCC in the present integrated controller provide the

guaranteed frequency responses and stability. Experimental

results on a servo table show that both tracking and contouring

errors are significantly reduced by applying the proposed

integrated controller.

II. MOTION SYSTEM ERROR ANALYSIS

In general, the 1 degree-of-freedom (DOF) control system

structure is used in most motion systems and tracking accuracy

can be improved with a suitable position controller design.

However, control in the 2-DOF structure usually achieves

better tracking accuracy [13] and it is considered in some

advanced motion control designs, as shown in Fig. 2.

A. Tracking Error

In Fig. 2, are position controllers, usually with

proportional gains, for each axis. are controlled plants

and are feedforward controllers for each axis. Signals

and are the reference input and output

signals of the system, respectively. are the input

signals of each position-controlled loop filtered by applying

the feedforward controllers are axial errors

for each axis and are the difference between the

filtered input signals and the measured output signals.

are the driving signals to each axis.

In general, the position controllers stabilize

the control system while the feedforward controllers

achieve improved performance for each axis. To analyze the

tracking and contouring errors of the 2-DOF structured motion

control system, the axial errors are derived as

(1)

The tracking error, is thus

B. Contouring Error

On the other hand, the contouring errors can be further

obtained from the geometrical relationship as [27]

(2)

By substituting (1) into (2), the contouring error can be

obtained as

(3)

where are the cross-coupling gains changed accord-

ing to the contour path [26], [27]. For linear contours, the

gains are determined as

(4)

(5)

where is the inclination angle of a linear contour with

respect to the -axis. For circular contours, the variable gains

are determined as

(6)

(7)

where is the circular contour radius, are the -

axis and -axis error signals respectively, and is the traversal

angle of the circular contour. By defining

(8)

the axial tracking error and the contouring error can be

represented simply as

(9)

(10)

Note that are the transfer functions of the position

feedback loop with feedforward controllers for the two axes.

Theoretically, by examining (9) and (10), tracking and

contouring accuracy can be achieved by designing suitable po-

sition feedback loop controllers and feedforward

controllers However, in practice, the improvement

of tracking and contouring accuracy is limited because of

the inherent servo lag, stick friction, and backlash in real-

motion systems. To further improve the contouring accuracy

of the two-axis motion control systems, the CCC was proposed

by Koren and Lo [21], [27] and applied to the 2-DOF

structured motion control systems by Houng and Hsu [30]. The

integration of the feedforward controller and cross-coupled
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controller for the two-axis motion control system, as shown

in Fig. 3, achieves significant error reduction in both tracking

and contouring [30].

C. Error of the Integrated System

As shown in Fig. 3, are cross-coupling gains as

described by (4)–(7) where is the CCC. In addition to the

contouring error without the CCC as , is the contouring

error of the present integrated control system with CCC. The

tracking and contouring errors as shown in Fig. 3 are derived.

The axial errors of each axis are obtained as

(11)

(12)

Moreover, the contouring errors are obtained as

By substituting (8) and (13) into (11) and (12), the axial errors

are

With proper feedforward controllers and a cross-

coupled controller as in (13) and (14), shown at the bottom

of the page, improving integrated control systems with both

improved tracking and contouring accuracy is feasible [30].

III. INTEGRATED CONTROLLER DESIGN

The concerns of the controller design for the present inte-

grated system are as follows.

1) Since the nonminimum phase system always exists in

the sampling process [31]–[34], a suitable feedforward

controller which gives a desirable bandwidth cannot be

designed by simply canceling the poles and zeros.

2) The cross-coupling gains in CCC vary according to

different contours [26], [27]. Thus, a sufficient stability

margin of the parameter-varying integrated system is

required when different contour commands are executed.

3) Since the integrated control system is in a multidegree-

of-freedom and multiloop structure, its controller design

procedures are relatively complicated.

Fig. 3. The integrated control system.

A. The Independent Design for Two Controllers

Regarding (3) and (13), the important relationship for the

contouring errors (subscript “ ” is without CCC; subscript “ ”

is with CCC) is obtained as

(15)

where

designed CCC;

contouring error transfer function

(CETF) [29].

According to (15), the design procedures of the integrated

controller can be simplified as follows.

1) The CETF represents the contouring errors between

systems with and without the coupling .

2) The CETF is equivalent to the sensitivity function in an

SISO control system, as shown in Fig. 4.

Since the tracking error which dominates in (15) can

be individually improved by applying feedforward controllers,

the present integrated controller can achieve the improve-

ment of contouring accuracy. Equation (15) indicates that the

(13)

(14)
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Fig. 4. The equivalent SISO control system.

minimization of the contouring error can be found by

designing a suitable frequency response of the CETF as in

(15). Moreover, the contouring error can be directly reduced

by applying the feedforward controller design. Thus, the

feedforward and the cross-coupled controller can be designed

separately for the present integrated control systems.

B. The Optimal Feedforward Controller Design

Theoretically, to reduce axial errors and the con-

touring error , the feedforward controllers are

designed so that the transfer functions can keep the

frequency response with a unity gain and zero phase shift. The

ZPETC can be directly obtained and is a practical feedforward

controller in motion systems [10]. Basically, the design of the

ZPETC controller directly cancels the stable poles and well-

damped zeros in the position feedback loop and compensates

for the unstable and lightly damped zeros to achieve both the

zero phase error and a unity dc gain frequency response.

Suppose the feedforward controller is and the

position feedback loop transfer function is represented

as

(16)

where

polynomials with acceptable zeros

polynomials with unacceptable zeros

the ZPETC is thus obtained as [10]

(17)

The ZPETC is designed directly to achieve the zero-phase

error. However, its frequency response in magnitude is sat-

isfactory only in the low-frequency range. To increase the

bandwidth of the ZPETC controlled system, the modified

version of ZPETC [11]–[14] and the optimal ZPETC [15]–[20]

are developed to further improve tracking accuracy.

An effective optimal ZPETC design method is summarized

here [20]. Assume the optimal ZPETC is designed

with a digital prefilter (DPF) as

DPF (18)

where

DPF DPF DPF (19)

DPF (20)

DPF (21)

and

Order of DPF

Number of unacceptable zeros in the position feedback

loop.

Thus, the transfer function of the whole control

system becomes

DPF

Parameters and of the DPF

can be solved through the Lagrange optimization method.

Define the Lagrange function as

(22)

where

is the Lagrange Multiplier and

(23)

(24)

The optimal parameter vector of the digital prefilter

DPF is obtained as

(25)

where

and the matrix shown at the bottom of the following page.
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Thus, the optimal ZPETC is obtained as

(26)

To reduce the influence of parameter variation and external

load perturbation, the adaptive ZPETC [20], [35] can also

be used to compensate for the unknown inputs with simple

estimation techniques. Likewise, other feedforward controller

design algorithms [36]–[41] can also be directly applied to

obtain certain characteristics in the proposed integrated control

systems.

C. The Robust Cross-Coupled Controller Design

In the past, CCC was generally achieved in a PID form

with suitable tuning. The CCC design problem was not solved

until the CETF was developed by Yeh and Hsu [29]. Note

that in (15), the CETF is similar to the sensitivity function

in a feedback control system. Consequently, the design goals

of compensator C in CCC become 1) reducing the contouring

error and 2) stabilizing the equivalent system as shown

in Fig. 4. Thus, with the present CETF formulation, various

robust algorithms for controller design can be directly em-

ployed to achieve desirable stability margins and performance.

Moreover, the compensator design in the present CCC for

the two-axis servo system can be simplified to a single-loop

design problem.

Here, the authors adopted the quantitative feedback the-

ory (QFT) design algorithm [42] to achieve a robust CCC

design with a desirable stability margin. The QFT algorithm

moves the template of the rational function to meet design

specifications by a robust compensator at certain reference

frequencies. Thus, the present integrated controller can be

applied to different contouring commands under varying cross-

coupling gains. The template can be constructed by varying the

cross-coupling gains from 1 to one according to (4)–(7). The

gain and the phase responses of the rational function can

be represented as

(27)

(28)

The frequency response of is shifted by is shifted by

, according to the compen-

sator frequency response at the reference frequency

(rad/s), and the template of the rational function

is thus shifted according to the design of the robust

compensator Therefore, the present robust compensator

can be designed so that the frequency responses of the rational

function at certain reference frequencies can meet the

design specifications.

By considering the gain response of the CETF, the QFT

design algorithm can be represented on the inverse Nichol’s

chart. Each point on the same curve on the inverse Nichol’s

chart implies the same magnitude of the transfer function

; i.e., , and each point on the

inverse Nichol’s chart is the magnitude and phase frequency

response of the rational function Thus, the template of

the rational function has to be moved into a suitable region

by applying lead or lag compensators to keep the frequency

response of the rational function with the specified gain

margin, phase margin, and suitable gain response of the CETF.

Thus, the proposed robust CCC design maintains system

stability and reduces contouring error even when the cross-

coupling gains vary along the contour path or under different

contour commands.

D. Stability Analysis for the Integrated Control System

Theorem 1: In internally connected systems, the input sig-

nals, denoted as , are injected into each internal connection

point to result in the mixed output signals, denoted as The

internally connected systems are internally stable if the set

of input signals and output signals are bounded-input-

bounded-output (BIBO) stable.

Proof: See [43].

Theorem 2: If the integrated controlled system is designed

to meet the following requirements.

(A1) with feedforward controllers, the position feedback

loop controller achieves internal stability for each

axis, and

(A2) the equivalent SISO control system, as shown in Fig. 4,

remains internally stable as the cross-coupling gains

are varied, then the designed integrated control system as

shown in Fig. 3 is internally stable.

Proof: The authors can prove this theorem by examining

the transfer function between the injected input and the

mixed output Define two rational functions, and , as

Clearly, requirements (A1) and (A2) achieve all stable zeros

of the rational function Since the poles of the rational

function contain the poles of the forward path gains

between each injected bounded input and each mixed output

...
...

. . .
...
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Fig. 5. The experimental setup.

TABLE I
THE SPECIFICATIONS OF THE SERVO SYSTEM

, the poles of the transfer function for each injected bounded

input and each mixed output of Fig. 3 are thus stable.

Therefore, from Theorem 1, the integrated control system is

internally stable.

According to the above discussion, the integrated control

system which integrates the CCC and the feedforward con-

troller reduces both contouring and tracking errors. Moreover,

analysis and derivation of the integrated controller indicate

that the design of the feedforward controller and the design

of the coupled controller design can be mutually independent.

Furthermore, since represents the contouring errors of an

integrated control system without CCC and can be mainly

reduced by applying the feedforward controllers, (15) shows

that the contouring errors can be further improved by using

the CCC. In summary, the integrated controller can thus be

obtained as in the following procedures.

Design Procedures

Step 1: The tracking error in motion control is reduced by

implementing a feedforward controller.
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TABLE II
EXPERIMENTAL RESULTS FOR CORNER CONTOUR

TABLE III
EXPERIMENTAL RESULTS FOR CIRCULAR CONTOUR

Fig. 6. The gain-phase plot of the rational function CK: (Solid: � = 79:38�; Cx = 0:9829, Cy = 0:1843:) (Dashed: � = 13:24�;
Cx = 0:2290;Cy = 0:9734:)

Step 2: CCC is next implemented to further reduce the

contouring error of the system.

Thus, both the tracking accuracy and contouring accuracy

for the present integrated control system are obtained. If fre-

quency responses and stability are specified, both the optimal

ZPETC and the robust CCC can be directly adopted in the

present integrated system.

IV. EXPERIMENTAL RESULTS

The experimental setup for the present study is shown in

Fig. 5. A PC-486 generated control commands and recorded

signals including the input commands for different contours,

the implementation of a robust variable-gain CCC controller,

the optimal ZPETC controller, and the control inputs to the
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(a)

(b) (c)

(d) (e)

Fig. 7. Experimental results for corner contour. � � � � � � � � ��� P; � � �� �� � robust CCC; ����� � optimal ZPETC; ——— robust CCC;+ optimal ZPETC.

velocity loop. A Sanyo UT-80 DC servo driver included an

analog current feedback signal, a velocity loop, a current

loop, and a PWM output. The computer sent and received

the control inputs and position outputs through the interface

of an AD/DA card at a sampling period of 1 ms. The

specifications of the present servo system is provided in

Table I.

Step 1: The controlled plants of the two axes were

identified as
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(a)

(b)

Fig. 8. Performance index comparison for corner contour. (a) IAE for
contouring errors, (b) IAE for tracking errors.

Step 2: The proportional controllers used for

the position loop were 0.2800 and 0.2544, respectively. Thus,

the control system was stabilized with matched gains for the

two axes [44].

Step 3: By choosing a fourth- and sixth-order DPF for the

and axes, respectively, the optimal ZPETC for the two

axes were obtained as [20]

Step 4: By applying the QFT procedures, the robust CCC

[29] with a gain margin of 50 dB and a phase margin of 90

was designed as

The gain-phase plot of the rational function for different

cross-coupling gains is shown in Fig. 6.

Step 5: By combining the position loop gains in Step 2 with

the optimal ZPETC and robust CCC obtained in Steps 3–4,

respectively, the integrated control system is thus constructed.

Experiments were conducted under two typical motion

commands.

1) The corner command included two linear commands.

The first linear segment was with a 79.38 inclination

angle and a 20.3485-mm length at a speed of 1.285

m/min. The second linear command was with a 13.24

inclination angle and a 21.8303-mm length at a speed

of 1.3098 m/min.

2) The circular command was performed with a 1.5-mm

radius at a speed of 0.4712 m/min.

The experimental results for the corner command are shown

in Fig. 7 and summarized in Table II. Fig. 8 is the bar chart

for the indexes IAE and ISE, the integration of the absolute

error and squared error, respectively, normalized with the

results of the P controller. The experimental results for the

circular command are also shown in Fig. 9 and are summarized

in Table III. Fig. 10 is the bar chart of IAE and ISE also

normalized with the results of the P controller.

According to the experimental results, the proposed inte-

grated control system renders the best performance in both

the tracking and contouring accuracy. A discussion of the

integrated controller follows.

1) Although tracking accuracy is greatly improved by im-

plementing a ZPETC, reduction of the contouring errors

is limited because of modeling error and nonlinearity in

real mechanical systems.

2) When the CCC is further appended to the ZPETC to

form the integrated control system, both tracking error

and contouring error significantly decrease.

3) As the motion command changes suddenly, for example,

at the corner, its contouring error increases significantly.

In a general CCC, such increasing contouring error can

be reduced by including a time-delay command at the

corner in practice. In the present integrated system, the

contouring error due to a sudden changing command is

effectively suppressed because the included feedforward

controller greatly reduces the corresponding tracking

error.

In fact, different types of feedforward controllers and CCC’s

can be employed in the proposed integrated controller. In

this paper, the present control system integrates the optimal

ZPETC [20] and the robust CCC [29] to provide sufficient

frequency responses and gain-phase margin with systematic
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(a)

(b) (c)

(d) (e)

Fig. 9. Experimental results for circular contour. � � � � � � � � � � � P; � � � � � � � robust CCC; � � � � � � optimal ZPETC; ———
robust CCC; + optimal ZPETC.

design procedures. Therefore, the present system can be ap-

plied more widely to different commands in real applications.

Experimental results also indicate that both contouring error

and tracking error of this integrated controller under differ-

ent contouring commands are greatly reduced. Note that the

present PC-486 is capable of handling all control computations

with the eighth-order identified plants, the fourth- and sixth-

order DPF for optimal ZPETC, and the fourth-order CCC.

Lower order models can be chosen for those design with

a tradeoff between control performance and implementation

cost. In real applications, the design based on a fourth-order

plant model renders satisfactory results [20].

V. CONCLUSIONS

In motion control systems, tracking errors can be reduced

by applying suitable feedforward control design. Moreover, the

present CETF analysis in (15) indicates that contouring error

can be reduced by applying CCC. The proposed integrated

controller which combines the ZPETC and the CCC leads

to both tracking and contouring motion precision. Both the

optimal ZPETC design, applying the Lagrange optimization

method, and a robust CCC design, applying the QFT method,

were employed in this study for the proposed integrated

controller. The present optimal ZPETC with a digital prefilter
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(a)

(b)

Fig. 10. Performance index comparison for circular contour. (a) IAE for
contouring errors. (b) IAE for tracking errors.

is in a concise format and leads to more efficient computations

compared to existing optimal ZPETC methods [15]–[20].

Furthermore, the present robust CCC renders desirable gain

and phase margins while stability is not guaranteed in exist-

ing CCC methods [21]–[28]. Thus, the proposed integrated

controller renders both tracking and contouring accuracy with

desirable frequency responses and stability.

Theoretically, tracking error in motion control can be kept

small enough to simultaneously reduce contouring error. Un-

fortunately, the improvement of tracking accuracy is limited

because of 1) the unstable zeros in the plant of the feedforward

control design; 2) system uncertainty and modeling errors; and

3) some unavoidable undesirable mechanical factors. Thus,

accuracy in a real motion control system is limited if only an

advanced feedforward controller is applied. Therefore, the role

of the CCC in improving the contouring accuracy becomes

more crucial. The proposed integrated controller includes

both the feedforward and the cross-coupled controllers and it

significantly reduces both the contouring and tracking errors.

System analysis of the proposed integrated controller con-

cludes that the feedforward controller and the cross-coupled

controller can be designed separately. Thus, systematic design

procedures for the present integrated control system, which

integrates the robust CCC and the optimal ZPETC, provide the

desirable stability margin and bandwidth. Experimental results

on a dc servo table also indicate that the present integrated

controller gives satisfactory control performance and precision

under different contouring commands.
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