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Abstract 

The present study involves the analysis and design optimization of thin and thick 

laminated composite structures using symholic computation. 

The fibre angle and wall thickness of balanced and unbalanced thin composite pres

sure vessels are optimized subject to a strength criterion in order to maximise in

ternal pressure or minimise weight , and the effects of axial and torsional forces on 

the optimum design are investigated. 

Special purpose symbolic computation routines are developed in the C programming 

language for the transformation of coordinate axes, failure analysis and the calcu

lation of design sensitivities. In the study of thin-walled laminated structures, the 

analytical expression for the thickness of a laminate under in-plane loading and its 

sensitivity with respect to the fibre orientation are determined in terms of the fibre 

orientation using symbolic computation. In the design optimization of thin com

posite pressure vessels, the computational efficiency of the optimization algorithm 

is improved via symbolic computation. 

A new higher-order theory which includes the effects of transverse shear and nor

mal deformation is developed for the analysis of laminated composite plates and 

shells with transversely isotropic layers. The Mathematica symbolic computation 

package is employed for obtaining analytical and numerical results on the basis of 

the higher-order theory. It is observed that these numerical results are in excellent 

agreement with exact three-dimensional elasticity solutions. The computational ef

ficiency of optimization algorithms is important and therefore special purpose sym

bolic computation routines are developed in the C programming language for the 

design optimization of thick laminated structures based on the higher-order theory. 

Three optimal design problems for thick laminated sandwich plates are considered, 

namely, the minimum weight, minimum deflection and minimum stress design. In 

the minimum weight problem, the core thickness and the fibre content of the surface 

layers are optimally determined by using equations of micromechanics to express the 

elastic constants. In the minimum deflection problem, the thicknesses of the surface 

layers are chosen as the design variables. In the minimum stress problem, the relative 

thicknesses of the layers are computed such that the maximum normal stress will 

be minimized. It is shown that this design analysis cannot be performed using a 

classical or shear-deformable theory for the thick panels under consideration due to 

the substantial effect of normal deformation on the design variables. 
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A6CTPaKT 

HaCTOxw;ee lICCJIe,ll;OBaHlIe BKJIIO"tIaeT B ce65I OIITlIM1I3aD;lIIO TOHKlIX 11 TOJICThlX CJIo

lICThlX KOMII031ITHhlX KOHCTPYKD;lIH lICIIOJIb3Y5I ClIMBOJIbHhlH MeTO,ll; Bhl"tIlICJIeHlI5I. 

IIpe,ll;MeTOM OIITlIM1I3aD;1I1I, C lICIIOJIb30BaHlIeM KplITeplI5I IIPO"tIHOCTlI, 5IBJI5IIOTC5I yrOJI 

apMlIpOBaHlI5I BOJIOKOH 11 TOJIID;lIHa CTeHKlI C6aJIaHClIpOBaHHhlX 11 Hec6aJIaHClIpOBaH

HbIX TOHKlIX KOMII031ITHhlX COCY,ll;OB ,ll;aBJIeHlI5I, B pe3YJIbTaTe "tIerO OIIpe,ll;eJI5IeTC5I 

MaKClIMaJIbHOe ,ll;OIIYCTlIMOe BHYTpeHHee ,ll;aBJIeHlIe lIJIlI MlIHlIMaJIbHhli BeC. 3<p<peKT 

IIPO,ll;OJIbHbIX 11 KPYTXW;lIX ClIJI Y"tIlITbIBaeTC5I IIplI OIITlIM1I3aD;1I1I IIapaMeTpOB KOH

CTPYKD;lIH. 

nJI5I IIpe06pa.30BaHlI5I KOOp,ll;lIHa T, aHaJI1I3a pa.3pymeHlI5I 11 OD;eHKlI "tIYBCTBlITeJIb

HOCTlI KOHCTPYKD;lIH IIplI OIITlIMaJIbHOM IIpoeKTlIpOBaHlIlI pa.3pa6oTaH MeTO,ll; CIIe

D;lIaJIbHbIX ClIMBOJIbHhlX BbI"tIlICJIeHlIH C lICIIOJIb30BaHlIeM aJIrOplITMlI"tIeCKOrO 5I3bIKa 

IIporpaMMlIpOBaHlI5I C. lIcIIOJIb3Y5I IIpoD;e,ll;Ypy ClIMBOJIbHOrO BbI"tIlICJIeHlI5I IIplI HC

CJIe,ll;OBaHlIlI TOHKOCTeHHhlX CJIOlICTbIX KOHCTPYKD;lIH 6hlJIO IIOJIY"tIeHO aHaJIHTlIlleCKoe 

BbIpa2KeHlIe ,ll;JI5I OIIpe,ll;erreHlI5I TOJIID;lIHhl CJI05I IIplI HarpY2KeHlIlI B IIJIaHe 11 ee "tIYB

CTBlITeJIbHOCTb B 3aBlIClIMOCTlI OT yrJIa apMlIpOBaHlI5I. Bhl"tIlICJIlITeJIbHaK 3<p<peK

TlIBHOCTb aJIroplITMa OIITlIM1I3aD;1I1I IIplI ,ll;1I3aHHe TOHKlIX KOMII031ITHbIX COCY,ll;OB 

,ll;aBJIeHlI5I 3Ha"tIlITeJIbHO YJIyqmeHa 6JIaro,ll;ap5I lICIIOJIb30BaHlIIO MeTO,ll;a ClIMBOJIbHbIX 

BhllllICJIeHlIH CIIeD;lIaJIbHoro Ha.3Ha"tIeHlI5I. 

Pa.3pa6oTaHa HOBaK YTO"tIHeHHaK HeKJIaCClIlleCKaK TeOplI5I YlllITbIBaIOlI(aK 3<p<peKT IIo

IIepe"tIHOrO C,ll;BlIra H 062KaTlI5I ,ll;JI5I aHaJI1I3a CJIOlICTbIX KOMII031ITHbIX IIJIaCTlIH 11 060-

JIO"tIeK C TpaHCBepCaJIbHO-1I30TPOIIHbIMlI CJI05IMlI. ClIMBOJIbHhlH 5I3hlK IIporpaMMlI

pOBaHlI5I Mathematica lICIIOJIb3yeTCjI ,ll;JI5I IIOJIY"tIeHlI5I aHaJIHTlIlleCKlIX H "tIHCJIeHHbIX 

pe3YJIbTaTOB Ha OCHOBe YTO"tIHeHHOH HeKJIaCClI"tIeCKOH Te0PlIlI. IIoKa.3aHo, lITO lllI

CJIeHHhle pe3YJIbTaThl IIpeKpacHo CXO,ll;5ITC5I C TOllHhlM TpexMepHhlM yIIpyrHM peme

HlIeM. BbI"tIlICJIlITeJIbHaK 3cpcpeKTlIBHocTb aJIroplITMa OIITlIM1I3aD;1I1I OlleHb Ba2KHa 

11 II03TOMY ,ll;JI5I OIITlIM1I3aD;1I1I TOJICThlX CJIOlICTbIX KOHCTPYKD;HH 6hlJIa pa.3pa6oTaHa 

OCHOBaHHaK Ha YTOllHeHHoH HeKJIaCClIllecKoH TeOplIlI IIpOD;e,ll;ypa ClIMBOJIbHOro Me

TO,ll;a CIIeD;lIaJIbHoro Ha.3Ha"tIeHlI5I C lICIIOJIb30BaHlIeM arrroplITMlIllecKoro 5I3bIKa C. 

PaCCMOTpeHhl TplI OIITlIM1I3aD;1I0HHhle 3a,ll;a"tI1I ,ll;JI5I TOJICThlX TpeXCJIOHHbIX IIJIlIT, a 

lIMeHHO, ,ll;1I3aHH MlIHlIMaJIbHOro Beca, MlIHlIMaJIbHhlX ,ll;e<popMaD;lIH 11 MlIHlIMaJIbHhlX 

HaIIpjl2KeHlIH. IIPlI IIo.n6ope OIITlIMaJIbHOro Beca TOJIID;lIHa 3aIIOJIHlITeJI5I 11 xapaK

TePlICTlIKlI BOJIOKOH BHemHlIX CJIOeB OIIpe,ll;eJI5IIOTC5I lICIIOJIb3Y5I ypaBHeHlI5I MlIKpo

MexaHlIKlI KOTOphle OIIpe,ll;eJI5IIOT 3Ha"tIeHlIe yIIpyrlIx KOHCTaHT. IIPlI paCCMOTpeHlIlI 

3a,ll;a"tI1I MlIHlIMaJIbHhlX .ll:e<popMaD;lIH TOJIlI(lIHhl BHemHlIX CJIOeB Bhl61IpaIOTC5I B Ka-
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"tJeCTBe nepeMeHHhIX. PaCCMaTpHBaJI 3a.n;a"tJY MHHHMaJIbHhIX HanpK2KeHHH OTHOCH

TeJIbHhIe TOJIIIJ;HHhI crroeB BhI"tJHCJIKIOTCK TaK, "tJTOOhI MaKCHMaJIbHOe HOpMaJIbHOe 

HanpK2KeHHe 6hIJIO MHHHMH3HpOBaHO. IIoKa3aHo,"tJTO H3-3a 3Ha"tJHTeJIbHOro BJIHKHHK 

062KaTHK Ha nepeMeHHhIe OnTHMH3a~HH 3TOT .n;H3aHH He M02KeT 6hITb ocymecTBJIeH 

HCnOJIb3YK KJIaCCH"tJeCKYIO HJIH C.n;BHroBYIO .n;e<l>opMa~HOHHYIO TeOpHIO npH paCCMO

TpeHHH TOJICThIX nJIHT. 
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Chapter 1 

Introd uction 

1.1 Overview 

Advanced composite materials have properties which are quite different from con

ventional materials. In many engineering applications it is more advantageous to use 

composite materials rather than conventional ones. In particular, advanced compos

ite materials are widely used in applications where a high strength-to-weight ratio 

is the most important criterion in the choice of material. 

The cost of advanced composite materials is significantly higher than that of con

ventional materials and therefore the design optimization of composite structures is 

important in order to maximise the benefits which composites offer and to better 

utilise these expensive materials. In particular, an effective way to reduce the cost 

of such structures is via hybridization. Laminated structures may fulfil the design 

requirements and yet be substantially cheaper than homogeneous structures owing 

to the use of cheaper materials as filler layers. 

The objective of the present study is the design optimization of a suite of laminated 

composite structures. In the first instance thin laminates are studied, in partic

ular balanced and unbalanced laminated composite pressure vessels with specially 

orthotropic layers whose elastic properties depend on the angle of reinforcing fibres. 

Clearly the analysis of laminated structures manufactured from different materials 

which may be orthotropic or transversely isotropic is a demanding area of compu

tational solid mechanics and one well suited to the use of symbolic computation. 

Symbolic computation systems are able to mathematically manipulate expressions 
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in symbolic form and may be used to derive analytical results or formulae for nu

merical computations. 

In the optimization study of composite pressure vessels, special purpose symbolic 

computation routines are developed to improve the computational efficiency of the 

optimization algorithm. These routines reduce the number of calculations required 

in each iteration of the optimization algorithm by combining the relationship be

tween the loading parameters and the material stress into one transformation matrix. 

The analysis of laminated composite structures on the basis of analytical solutions 

of the three-dimensional equations of elasticity is cumbersome. It is more com

mon rather to employ a two-dimensional theory which is derived from the three

dimensional theory of elasticity via some assumptions or hypotheses. For example, 

the classical shell theory is based on the Kirchhoff-Love assumptions which neglect 

transverse stresses. Clearly a theory based on certain assumptions will lose accuracy 

where those assumptions are not valid. In particular, the classical shell theory is 

accurate for thin structures but not for thick ones. The challenge then is to derive 

a two-dimensional theory which is accurate for thin and thick structures. This has 

led to the development of improved or refined theories which include the effects of 

transverse shear. However, in thick laminated composite structures, there are two 

important effects, namely transverse shear and normal deformation. A theory which 

neglects normal deformation is based on the assumption that the structure is rigid 

in the transverse direction, and this assumption is invalid for thick structures. 

Nonclassical theories which include both transverse shear and normal deformation 

are developed by Piskunov and Verijenko in Refs. [42, 31, 46, 45]. The approach is 

used in Ref. [44] to develop a higher-order theory which takes both transverse shear 

and normal deformation into account more comprehensively. 

Clearly the computational implementation of a theory which is accurate for thick 

composite laminated plates and shells with layers with significantly different elastic 

properties, is expected to exact demanding computational effort, and indeed this 

is the case. The higher-order theory introduces distribution functions and inte

grated stiffness constants which in general are multiple piecewise integrals through 

the thickness of the laminate and in the general case cannot be derived in a form 

suitable for direct numerical implementation. Therefore the higher-order theory is 

implemented using symbolic computation. In the first instance, a general purpose 

symbolic computation system is employed. However, in design optimization studies 

on the basis of the higher-order theory it is necessary to integrate the symbolic 

computations into the optimization algorithm. This requirement together with the 
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unimpressive computational efficiency of the general purpose system makes such 

studies infeasible using this system. Therefore special purpose symbolic computa

tion routines are developed in a conventional programming language for the imple

mentation of the higher-order theory. These routines are two orders of magnitude 

more efficient than the general purpose system and are easily incorporated into the 

optimization algorithm. 

In the present study, this new theory is employed for the analysis and design op

timization of thick structures using symbolic computation. In particular, three op

timization problems for thick composite sandwich plates are considered, namely, 

minimum weight, minimum de:H.ection and minimum stress designs. It is shown that 

the design analysis cannot be performed using a classical or shear-deformable theory 

due to the substantial effect of normal deformation. 

1.2 Symbolic Computation 

In a numerical optimization technique which involves phases of design and analysis, 

the efficiency depends heavily on the computational time taken by the analysis. The 

same considerations also apply to the evaluation of the design sensitivities which may 

be needed in the numerical optimization algorithm to determine the sensitivity of 

a design with respect to the problem parameters, and in particular to the design 

variables. 

The use of general purpose symbolic computation in a design optimization problem 

is computationally expensive due to the iterative nature of optimization algorithms. 

However, the development of special purpose symbolic computation software to per

form the analysis phase leads to substantial gains in computational efficiency as 

compared to using a general purpose symbolic computation tool. In optimization 

studies, computational efficiency is of paramount importance. Therefore the im

plementation of special purpose symbolic computation is preferable to the use of 

a general purpose symbolic computation system. The efficiency of special purpose 

symbolic computation stems from its dedication to the analysis of a specific class 

of functions. In fact, . the key observation which makes the development of special 

purpose symbolic computation software a realistic objective in a given problem is 

that, in general, the expressions needed in the calculations are confined to specific 

classes of functions . 

A major motivation to develop such routines is to be able to incorporate the symbolic 
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computations into an iterative solution procedure. These features are particularly 

important when symbolic computations need to be performed within each iteration, 

or when the efficiency of an iterative optimization procedure may be improved by 

incorporating some symbolic analysis before the iterations in order to reduce the 

number of numerical calculations required in each iteration. Even if the symbolic 

computations are not essential, the increased efficiency may justify the development 

of special purpose symbolic computation routines for specific applications. 

1.3 Optimization of Thin-Walled Structures 

Fibre-reinforced composite materials are finding increased use in various engineering 

applications, and the optimization of such structures is a natural part of the design 

process in order to maximize the benefits which these materials can offer. 

A major advantage of fibre reinforced composite materials is the large number of 

design variables available to the designer. To realize this potential and to maximize 

the benefits which composites can offer, the design has to be tailored to the specific 

requirements of the problem. Optimization of the design is an effective way of 

achieving this goal. 

Special purpose symbolic computation routines are developed in a conventional pro

gramming language for the transformation of coordinate axes, failure analysis and 

the calculation of design sensitivities. In the study of thin-walled laminated struc

tures, the analytical expression for the thickness of a laminate under in-plane loading 

and its sensitivity with respect to the fibre orientation are determined in terms of 

the fibre orientation using special purpose symbolic computation. In the design 

optimization of thin composite pressure vessels, the computational efficiency of the 

optimization algorithm is improved by using special purpose symbolic computation 

routines to combine the relationship between the loading parameters and the mate

rial stress into one transformation matrix. 

Thin composite pressure vessels are optimized subject to a strength constraint in 

order to maximise the internal pressure or minimise the weight of the structure. 

The fibre orientation is determined for balanced and unbalanced laminations in 

order to maximize the internal pressure, and the effects of axial and torsional forces 

on the optimal design are investigated. The weight of a liquid filled pressure vessel 

is minimized taking both the fibre orientation and the wall thickness as design 

variables. Both constant and variable wall thickness cases are investigated and 
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comparative numerical results are presented for single and multiple layered vessels. 

Simultaneous design of pressure vessels with respect to fibre orientations and thiCk

ness distributions does not seem to be considered in the literature. 

1.4 Higher-Order Theory for Thick Plates and 

Shells 

The effects of both transverse shear and normal deformation are substantial in thick 

structures. Therefore an improved higher-order theory is presented for the analy

sis of laminated transversely isotropic plates and shells subject to transverse shear 

and normal deformation. The theory is capable of analysing the three-dimensional 

stress-strain behaviour of laminated plates and shells with an arbitrary number of 

layers which may differ significantly in their physical and mechanical properties. 

Closed form solutions on the basis of the higher-order theory are considered for 

the analysis of thick structures. Mathematica is employed to generate analytical 

and numerical results. The numerical results are compared to those given in the 

literature in order to validate the analysis presented. The features of this theory 

and the implications of the numerical results are discussed. 

Special purpose symbolic computation routines are developed in the C programming 

language for a general and computationally efficient implementation of the higher

order theory. The routines process symbolic expressions and derive power series 

expressions for symbols. The software using these routines is able to derive the 

distribution functions of the higher-order theory, calculate the integrated stiffness 

constants exactly, and derive the stress and strain distributions through the thickness 

in power series form for a given laminate. 

1.5 Optimization of Thick Structures 

The optimal design of thick composite structures poses special challenges because 

of the additional effects of transverse shear and normal deformations which have to 

be taken into account for a realistic analysis. 

Three optimal designs of thick sandwich plates are considered on the basis of the 
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higher-order theory, namely, minimum weight, minimum deflection and minimum 

stress designs. The surface layers are made of a transversely isotropic composite 

material and the core material may be isotropic or transversely isotropic. 

In the minimum weight design problem, the core thickness and the fibre content of 

the surface layers are optimally determined by using equations of micromechanics 

to express the elastic constants. In the minimum deflection problem, the relative 

thickness of the surface and core layers is chosen as the design variable. In the 

minimum stress problem, the relative thicknesses of the layers are determined such 

that the maximum normal stress will be minimized. 

Numerical results are given for thick sandwich plates under sinusoidal loading and 

the effects of various input parameters are investigated. The deflection and stress 

behaviour is studied and it is shown that design analysis cannot be performed using a 

classical theory or a shear deformable theory for the thick plates under consideration. 

Design of thick sandwich structures using a higher-order theory which includes 

normal as well as shear deformation does not seem to be considered in the literature. 

In fact previous studies on the optimal design of thick laminated structures seem to 

be based on shear deformable theories only. 
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Chapter 2 

Optimization of Thin Walled 

Structures using Special Purpose 

Symbolic Computation 

2.1 Introduction 

The present chapter addresses the problem of optimally designing thin-walled com

posite laminates using symbolic computation. The analysis is based on the mem

brane theory of shells and the optimization is carried out with respect to fibre 

orientations and thickness distributions subject to a quadratic failure criterion. 

Symbolic computation software is developed in the C programming language for 

the transformation of coordinate axes, failure analysis and the calculation of design 

sensitivities. These computations arise in the design optimization studies of struc

tures made of fibre reinforced composite materials. The symbolic computations are 

integrated into an optimization algorithm resulting in a combined symbolic and 

numerical approach to determine the optimal design. 

In order to illustrate the approach using the special purpose symbolic computation 

for the design optimization of laminated structures, a laminate under in-plane loads 

is designed for minimum thickness taking the fibre orientation as the design variable. 

The relationship between the loading parameters and the material stress is com

bined and simplified into one transformation matrix using symbolic computation. 

The stresses are determined symbolically in terms of the fibre angle for a balanced 

symmetric laminate under a given loading, and substituted into a quadratic failure 
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criterion. The analytical expressions for the laminate thickness in terms of the fibre 

angle and its sensitivity with respect to the fibre angle are then determined using 

the symbolic computation software. 

Finally, an optimal design approach is presented for laminated composite pressure 

vessels. The fibre orientation and wall thickness are taken as the design variables. 

The lamination can be balanced or unbalanced. The balanced case refers to a 

lamination in which the layers with the same positive and negative fibre angles 

balance each other out . Two examples are considered. The first one involves pressure 

vessels under uniform internal pressure and subjected to axial and torsional forces, 

and the second example concerns circular cylindrical shells filled with a liquid. The 

optimal thickness distribution is obtained in the case of liquid filled vessels where 

the pressure distribution is a function of the axial coordinate. The effect of various 

problem parameters on the optimal designs are investigated. 

2.2 Literature Review 

Previous studies involving the optimization of laminated pressure vessels include 

Refs. [1]-[10]. In Ref. [1], the minimum mass of fibres is determined subject to 

a tensile strength condition assuming inextensible fibres. Designs in Ref. [2] are 

based on Fliigge's theory of shells and the Tsai-Hill failure criterion is employed 

as the strength condition. Optimal designs based on criteria other than · a failure 

one are given in Refs. [3]-[5]. Optimum shapes of filament-wound pressure vessels 

are determined subject to the Tsai-Hill failure criterion in Ref. [6]. Optimal fibre 

orientations for cylindrical pressure vessels are obtained by Fukunaga & Chou [7] 

for balanced stacking sequences. Karandikar et al. [8] considered a multiobjective 

approach to the design of composite pressure vessels by including deflection, weight 

and volume in the performance index. In Refs. [9] and [10], Donnell's shell theory is 

used to investigate the effect of temperature and fuzzy strength data, respectively, 

on the optimal design of laminated pressure vessels. Simultaneous design of pressure 

vessels with respect to fibre orientations and thickness distributions does not seem 

to be considered in the literature. 

A review of use of symbolic computation in the solution of engineering problems is 

given by Beltzer in Ref. [15]. Several general purpose symbolic computation packages 

are presently available for such analysis and have found use in the solution of various 

engineering problems such as rotor dynamics [16], flutter [17], instability [18] and 
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buckling [19]. Symbolic computation has also been employed in the buckling [20], 

stress [21] and vibration [22] analysis of composite structures. As pointed out by 

Graaf & Springer [21], symbolic computation provides a powerful tool for the analysis 

of laminated structures made of a fibre composite material in view of the complexity 

of axis transformations. 

2.3 Laminate under In-plane Load 

The approach for the design optimization of laminated composite structures using 

special purpose symbolic computation is presented in this section. 

A laminate under in-plane loads is designed for minimum thickness taking the fibre 

orientation as the design variable. The relationship between the loading parameters 

and the material stress is combined and simplified into one transformation matrix 

using symbolic computation. This involves tedious matrix algebra where the entries 

are series of trigonometric functions of the fibre angle. The stresses are determined 

symbolically in terms of the fibre angle for a balanced symmetric laminate under 

a given loading, and substituted into the Tsai-Wu failure criterion. The analytical 

expressions for laminate thickness in terms of the fibre angle, and its sensitivity 

with respect to the fibre angle, are then determined using the symbolic computation 

software. 

2.3.1 Basic Equations 

A balanced symmetric laminate of thickness H is considered. The laminate consists 

of an even number of orthotropic layers of equal thickness t. The fibre angles are 

orientated symmetrically with respect to the middle surface such that Ok = (-1 )k-10 

for k ::; n/2 and Ok = (-1 )kO for k ~ . n/2+ 1 where k is the layer number and n is the 

total number of layers. The coordinate axes are x, y and z where z is perpendicular 

to the plate with the origin lying in the middle surface of the plate. The laminate 

is subjected to the normal loads N~, Ny and the shear load N~y in the xy plane. 

Due to the symmetry of the lamination, the force resultants in the coordinate axes 

are given by 

(2.1) 
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where 

( 

Nx ) ( An 
[N] = Ny ,[A] = A12 

Nxy A16 

If) = (:: ) 

IXY 

(2.2) 

where Ai; are the external stiffnesses given by Ai; = HOi;(()), H = nt and Ex, Ey and 

IXY denote the normal and shear strains. Here Oi;( ()) are the transformed reduced 

stiffness coefficients given by 

On Qn cos4 () + 2( Q12 + 2Q66) cos
2 

() sin
2 

() + Q22 sin
4 

() 

012 (Qn + Q22 - 4Q66) sin2 () cos2 () + Q12(sin4 () + cos
4 

()) 

016 (Qn - Q12 - 2Q66) sin () cos
3 

() 

+Q12 - Q22 + 2Q66) sin
3 

() cos () 

022 Qn sin4 () + 2( Q12 + 2Q66) sin
2 

() cos
2 

() + Q22 cos
4 

() 

026 (Qn - Q12 - 2Q66) sin
3 

() cos () 

+( Q12 - Q22 + 2Q66) sin () cos
3 

() 

066 (Qn + Q22 - 2Q12 - 2Q66) sin
2 

() cos
2 

() 

+Q66(sin4 () + cos4 ()) (2.3) 

where the reduced stiffness coefficients Qi; are given by 

(2.4) 

It is noted that for the laminate configuration to be considered, On, 012, 022 and 

066 are independent of the layer number, since Oi;(()) = Oi;( -()) for these entries. 

Moreover A16 = A26 = 0 for laminates consisting of an even number of layers of 

equal thickness and alternating fibre orientations since 016( ()) = -016( -()) and 

026(()) = -026( -()). 

The stress-strain equations for the k-th orthotropic layer are given by 

(2.5) 

where [E] = [A]-l[N] from eqn. (2.1), and [S(k)] denotes the stress components 

[cr(k) cr(k) r(k)]T in the xy coordinate system x y xy . 

The stress components in the material coordinate system, denoted by 

10 



are obtained from the geometric stress components [s(k)] via the matrix transforma

tion 

(2.6) 

where [T(k)] = [T( Ok) ] denotes the transformation matrix for the k-th layer given by 

sin2 Ok 

cos2 Ok 

2 cos Ok sin Ok 

From eqns. (2.1), (2.5) and (2.6) it follows that 

2 cos Ok sin Ok) 

- 2 cos Ok sin Ok 

cos2 Ok - sin2 Ok 

[O"(k)] = [T(k)][Q(k)][Atl[N] 

We denote the force-stress transformation matrix 

which is a function of the fibre angle Ok of the k-th layer. 

2.3.2 Design Optimization 

(2.7) 

(2.8) 

(2.9) 

The design problem involves determining the optimal fibre orientation 0 to minimize 

the laminate thickness H subject to a strength criterion. In this study, the Tsai-Wu 

failure criterion is used which stipulates that the condition for non-failure is 

(k) (k) (k) (k) (k) (k) 
Fll 0"1 0"1 + F22 0"2 0"2 + F66 T12 T12 

+2F12 0"1k)0"~k) + F10"1k) + F2 O"~k) ~ 1 (2.10) 

where the strength parameters Fll , F22 , F66 , F12 , Fl and F2 are given by 

Fll = 1/(Xt Xc); F22 = 1/(YtYc); F66 = 1/ S2 

Fl = 1/ X t - 1/ Xc; F2 = I/Yt - I/Yc; F12 = -~J FllF22 

where Xt, Xc, Yt and Yc are the tensile and compressive strengths of the composite 

material in the fibre and transverse directions, and S is the in-plane shear strength. 

The optimal design problem is to determine the minimum thickness Hmin of a lami

nate under the in-plane loads Nx, Ny and Nxy subject to the failure criterion (2.10), 

VIZ. 

(2.11) 

subject to the constraint (2.10) . 
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2.4 Special purpose symbolic computation 

The special purpose symbolic computation routines developed in the C programming 

language for the optimization of laminated structures are presented in this section. 

Special purpose symbolic computation is useful in optimization studies for improving 

the computational efficiency of the optimization algorithm. General purpose sym

bolic computation packages cannot, in general, be integrated into an optimization 

program developed in a conventional programming language. Moreover, the compu

tational efficiency of general purpose symbolic computation systems is substantially 

less than that of special purpose systems which are dedicated to the specific prob

lem at hand. Therefore in optimization studies, where computational efficiency is 

of paramount importance, the implementation of special purpose symbolic compu

tation is more suitable than the use of a general purpose system. 

The present study requires tedious matrix algebra where the entries are series of dou

ble trigonometric functions of the fibre angle. Special purpose routines are therefore 

developed to handle such expressions. The routines can perform matrix algebra in

volving matrices of trigonometric series and simplify the results using trigonometric 

identities. Since the routines manipulate a specific class of functions only, they are 

relatively simple and their development is a feasible objective. 

Symbolic computation requires a great deal of dynamic memory allocation and ac

cess [24]. Therefore the C programming language is chosen for the development of 

the special purpose symbolic computation software presented in this section and a 

knowledge of the C language is assumed in the following discussion. 

2.4.1 Data Storage 

The first step is to define a storage class for the functions to be considered. Therefore, 

the structure trigt is defined by 

typedef struct /* structure for trig series */ 

{ 

real coeff ; /* coefficient */ 

int fn[2] ; /* function types */ 

int pow[2] ; /* powers */ 

int harm[2]; /* harmonics of argument */ 

char var; /* argument */ 
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} 

trigt; 

which contains a single term of the form 

in a double trigonometric series, where a, m, n , k and 1 are constants and () is a 

variable. In the laminate design application, () denotes the fibre orientation. 

A trigonometric series is stored as a null- terminated list of the trigt structure. 

Memory is dynamically allocated for each new series. A symbolic series is then ac

cessed via a pointer to its memory address. A symbolic matrix is a two-dimensional 

array of such pointers to each entry of the matrix. 

Various basic routines are coded to handle memory allocation for storing symbolic 

series and to define or duplicate a series. The routine trig_alloc(n) allocates 

memory for a series with n terms and returns the address of the allocated memory. 

The amount of memory required for a series is the size of the trigt structure 

multiplied by the number of terms in the series. When a series is no longer required, 

the memory it occupies is freed using the trig_free routine. 

The routine trig_set 0 is used a define a trigonometric series in an application. 

For example, the expression 

2 sin3 
() + 4 cos2 

() 

is defined in a program by the code 

trigt *ts; 

ts = trig_set(2.,FnSin,3, 4 . ,FnCos,2, 0 . ); 

(2.12) 

The series is accessed via the pointer ts which contains the memory address where 

the defined series is stored. 

2.4.2 Symbolic Processing 

The routine trig_add adds two series by appending the two arrays of the structure 

trigt to form the sum. This routine then invokes trig_collect to collect the 

similar terms. In order to make this routine more flexible, two constants may be 

given for pre-multiplying the two series before they are summed. 

The routine trig_mul t multiplies two series and invokes trig_collect. Both the 

trig_add and trig_mul t routines take the memory addresses of the two operand 
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senes as arguments and return the memory address of the new resultant senes 

created by the routine. 

The routine trig_diff differentiates a series with respect to 0 and returns the 

memory address of the symbolic derivative derived by the routine. The routine 

trig_diff_calc calculates the derivative of a series for a given 0 without creating 

its symbolic derivative. 

A double trigonometric series is simplified using the trig_expand routine, which 

is recursive and employs trigonometric identities to expand a given series into a 

series of single trigonometric functions of various harmonics, each to the power of 

one. This routine uses a routine trig_binomial to generate a symbolic binomial 

expansion. The trigonometric transformations that are employed by trig_expand 

are given by 

if term = a cosn+m kO sinn kO 

then result = a~ cosm kO sinn 2kO 

if term = a cos2n kO 

then result = (~)n binomial_expand (cos 2kO + l)n 

_ (Cl)n ~n {n! n-r 2kO} 
- '2 ~r=O (n-r)!r! cos 

if term = a cos2n
+1 kO 

then result = (~)n cos kO binomial_expand (cos 2kO + 1)n 

= (~)n I:~=o { (n-:!)! r! cos kO cos
n- r 2kO } 

if term = a sin2n k() 

then result = (~)n binomial_expand (1 - cos 2k())n 

= (Vn I:~=o { (n-:!)! r! ( - cos 2kOY } 

if term = a sin 2n+1 k() 

then result = (~)n sin kO binomial_expand (1 - cos 2k())n 

= (~)n I:~=o { (n-:!)! r! sin kO( - cos 2kOY } 

if term = a cos kO sin 10 

then result = a! [sin(l- k) 0 + sin(l + k) 0] 

if term = a cos kO cos 10 

then result = a! [cos(l- k) () + cos(l + k) 0] 
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if term = a sin kO sin 10 

then result = a~ [cos(l - k) 0 - cos(l + k) 0] 

where the binomial_expand operator indicates where the routine trig_binomial 

is invoked to expand a binomial expression. 

Terms with insignificant coefficients of trigonometric functions of high harmonics 

may appear in a series after processing by trig_expand. The routine trig_

significant discards insignificant terms in a series in order to make the results 

more presentable. 

When a series is to be manipulated by a routine, generally the routine is passed 

the address of the series. The routine then creates a new series for the result, 

without destroying the original series, and the. memory address of the new series 

is returned by the routine. The routine trig_op is used when a series is to be 

processed into a new version and the old version discarded. This routine takes the 

address of the pointer as the first argument and the name of a processing routine 

as the second argument. The processing routine (such as trig_collect, trig_

expand, trig_significant or trig_diff) is one which takes the address of a series 

as its only argument and returns the address of a new equivalent version of the 

series. The trig_op routine applies the processing function to the series, destroys 

the original version (using trig_free) and sets the pointer (which pointed at the 

original version) to the address of the new version. For example, the expression 

is differentiated and simplified by the code 

trigt *ts; 

ts = trig_set(2.,FnSin,3, 4.,FnCos,2, 0.); 

trig_op(tts,trig_diff); 

trig_op(tts,trig_expand); 

trig_op(tts,trig_significant); 

2.4.3 Matrix Algebra 

The determinant, adjoint and matrix product of symbolic matrices whose entries 

are double trigonometric series, are derived by the routines 
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trigt *trig_mat_det(sml) 1* determinant of matrix *1 

trigt **trig_mat_adj(sml,sm2) 1* adjoint of matrix *1 

trigt **trig_mat_mult(sml,sm2,sm3) 1* matrix product *1 

where sml, sm2 and sm3 are two-dimensional arrays of pointers to the entries of 

the associated matrix. The routine trig_mat_det returns a pointer to the resultant 

series, and the first arguments of trig_mat_adj and trig_mat_mul t are arrays of 

pointers to be assigned to the entries of the resultant matrix. 

The routines in Section 2.4.2 are used by the routines which process symbolic ma

trices. For example, trig_mat_mul t derives a matrix product using the routines 

trig_mul t and trig_add to multiply entries of the operand matrices and to sum 

the products. 

The routine trig_mat_op applies a processing routine to each entry of a matrix 

using trig_op, and therefore reassigns the pointer corresponding to each entry to 

the new versions of each entry and destroys the original versions. 

2.5 Method of Solution 

Since the symbolic computation is limited to series of trigonometric functions, it is 

necessary to restructure eqn. (2.8) so as to isolate these series. Therefore, noting 

that Aij = HQij(f)), we define a matrix [A6] such that [A] = H[As]. Using the 

adjoint matrix, the inverse matrix [A]-l in eqn. (2.8) now may be expressed as 

[A]-l = ~ 1 [Ad·A ]T 
HDetA6 J s 

(2.13) 

The symbolic matrix [T6(k)] is defined as 

(2.14) 

and the symbolic stress vector denoted [u!k)] = [u~~) u~;) r::J]T is defined as 

(2.15) 

Therefore the stress ruCk)] is given by 

(2.16) 
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Substituting the stresses (2.16) into the inequality (2.10) yields a quadratic equation 

in terms of H given by 

(k) (k) (k) (k) F (k) (k) F. (k) (k) 
Fll 0'31 0'31 + F22 0'152 0'152 + 120'31 0'152 + 66 Td2Ts12 

+[ F1 O'~~) + F2 O'~;)] (H DetAs) - (H Det As)2 = 0 

The solution of eqn. (2.17) gives the critical thickness Her(fJ) denoted by 

Her = hd+~ 
hs3 

where the hsi are symbolic series expanded from the expressions 

2Det As 

(2.17) 

(2.18) 

(2.19) 

The first and second derivatives of Her with respect to B may be determined ex

actly by differentiating the expression (2.18) with respect to the components hsi via 

symbolic computation. 

2.5.1 Program 

The procedure to derive DetAs, [Ts] , [0'15] and Her(B) is outlined below. Note that 

the dots represent omission. The symbolic computation routines for double trigono

metric series are given in Appendix B. 

First the pointers to symbolic series and matrices are defined by 

trigt 

trigt 

trigt 

*sym_h1,*sym_h2,*sym_h3; 

*sym_h1d,*sym_h2d,*sym_h3d; 

*sym_h1dd,*sym_h2dd,*sym_h3dd; 

trigt *sml[3] [3]; 

trigt *sym1; 
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trigt *sm_qb [3] [3] ; 1* Qb matrix *1 

trigt *sm_as [3] [3] ; 1* As matrix *1 

trigt *sm_ t [3] [3] ; 1* T matrix *1 

trigt *sym_det_as; 1* Det As *1 

trigt *sm_adj _as [3] [3] ; 1* Adj As *1 

trigt *sm_ ts [3] [3] ; 1* Ts matrix *1 

trigt *sym_ss [3] ; 1* stress = Ts N *1 

trigt *sym_quad_b; 1* quadratic coefficients *1 
trigt *sym_quad_c; 

The entries of the matrices [Q], [T] and [As] are defined as 

1* Qb matrix *1 

sm_qb[O] [0] = trig_set(q11,FnCos,4, 

2*(q12+2*q66),FnCosSin,2,2, q22,FnSin,4,O.); 

sm_qb[O] [1] = trig_set(q11+q22-4*q66,FnCosSin,2,2, 

q12,FnCos,4, q12,FnSin,4, 0.) ; 

sm_qb[0][2] = trig_set(q11-q12-2*q66,FnCosSin,3,1, 

q12-q22+2*q66,FnCosSin,1,3, 0.) ; 

sm_qb[1] [1] = trig_set(q11,FnSin,4, 

2*(q12+2*q66),FnCosSin,2,2, q22,FnCos,4, 0 . ); 

sm_qb[1][2] = trig_set(q11-q12-2*q66,FnCosSin,1,3, 

q12-q22+2*q66,FnCosSin,3,1, 0.); 

sm_qb[2][2] = trig_set(q11+q22-2*q12-2*q66,FnCosSin,2,2, 

q66,FnCos,4, q66,FnSin,4, 0.); 

sm_qb[1] [0] = trig_dup(sm_qb[O] [1],0); 1* symmetric entries *1 
sm_qb[2] [0] = trig_dup(sm_qb[O] [2] ,0); 

sm_qb[2] [1] = trig_dup(sm_qb[1] [2] ,0); 
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1* T matrix *1 

sm_t [0] [0] = trig_set( i., FnCos, 2, 

sm_t [0] [1] = trig_set( i., FnSin, 2, 

sm_t [0] [2] = trig_set( 2. , FnCosSin,1,1, 

1* As matrix *1 

sm_as[O][O] = trig_dup(sm_qb[O][O],O); 

sm_as[0][1] = trig_dup(sm_qb[0][1],O); 

sm_as[O] [2] = trig_const(O.); 

0.) ; 

0.) ; 

0.) ; 

Symbolic matrix algebra is performed to derive [Ta] and DetAs by the instructions 

sym_det_as = trig_mat_det(sm_as); 1* determinant of As matrix *1 

trig_mat_adj(sm_adj_as,sm_as); 1* Adjoint of As *1 

trig_mat_mult(sm1,sm_qb,sm_adj_as); 1* Qb Adj As *1 

trig_mat_op(sm1,trig_expand); 

trig_mat_mult(sm_ts,sm_t,sm1); 1* Ts = T (Qb Adj As) *1 

trig_mat_op(sm_ts,trig_expand); 1* simplify matrix entries *1 

trig_mat_op(sm_ts,trig_significant); 1* discard near zero terms *1 

The symbolic stress [O"s] = [Ts][N] is determined by the instructions 

sym_ss[O] = trig_add(nn[O] ,sm_ts[O] [0] ,nn[1] ,sm_ts[O] [1]); 

trig_reassign(&sym_ss[0],trig_add(1.,sym_ss[0],nn[2],sm_ts[0][2])); 

sym_ss[1] = trig_add(nn[O] ,sm_ts[1] [0] ,nn[1] ,sm_ts[1] [1]); 

trig_reassign(&sym_ss[1],trig_add(1.,sym_ss[1],nn[2],sm_ts[1][2])); 
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sym_ss [2] = trig_add(nn[O] ,sm_ts [2] [0] ,nn[1] ,sm_ts [2] [1]); 

trig_reassign(&sym_ss[2],trig_add(1.,sym_ss[2],nn[2],sm_t5[2][2])); 

The quadratic coefficients of eqn. (2.17) are derived by substituting the stresses into 

the inequality (2.10) in the following manner. 

for (i = 0; i < 3; i++) 

{ 

trig_reassign(&sym_quad_b, 

trig_add(i.,sym_quad_b,tf[i],sym_ss[i])); 

for (j = 0; j < 3; j++) 

{ 

} 

symi = trig_mult(sym_ss[i],sym_ss[j]); 

trig_reassign(&sym_quad_c, 

trig_add(i.,sym_quad_c,tff[i][j],symi)); 

trig_free(symi ); 

} 

where tf [i], tf [i] [j] are the strength parameters of the failure criterion (2.10). 

The components h61, hs2 and hl/3 in eqn. (2.18) are derived from the quadratic 

coefficients as follows. 

sym1 = trig_mult (sym_quad_b,sym_quad_b); 

sym_h2 = trig_add( 1.,symi,4.,sym_quad_c); /* h2 = discriminant */ 

/* now H = (hi + sqrt(h2))/h3 */ 

The first and second derivatives of the components hsll hs2 and hs3 in eqn. (2.18) 

are derived by 
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sym_hld = trig_diff(sym_hl); 1* first derivatives *1 

sym_h2d = trig_diff(sym_h2); 

sym_h3d = trig_diff(sym_h3); 

sym_hldd = trig_diff(sym_hld); 1* second derivatives *1 

sym_h2dd = trig_diff(sym_h2d); 

sym_h3dd = trig_diff(sym_h3d); 

Finally, the function calc_ trig_h (the) is defined to evaluate the symbols hSl' hs2 

and hs3 and their derivatives at a given fibre angle () and calculate Her, H~ and H::". 

real calc_trig_h(the) 1* calculate H. H' and HI! for given theta *1 

real the; 

{ 

real hl.h2 .h3; 

real hld.h2d.h3d; 

real hldd.h2dd.h3dd; 

real hn.hnd.hndd; 

hi = trig_calc(sym_hl.the); 1* evaluate symbloic series *1 

h2 = trig_calc(sym_h2.the); 

h3 = trig_calc(sym_h3.the); 

hid = trig_calc(sym_hld.the); 1* evaluate symbolic derivatives *1 

h2d = trig_calc(sym_h2d,the); 

h3d = trig_calc(sym_h3d.the); 

hldd = trig_calc(sym_hldd.the); 

h2dd = trig_calc(sym_h2dd.the); 

h3dd = trig_calc(sym_h3dd.the); 

hn = hi + sqrt(h2); 

hnd = hid + .5/sqrt(h2)*h2d; 1* 1st derivative of hn *1 

hndd = hldd + .5/sqrt(h2)*h2dd - . 25*pow(h2,-1.5)*h2d*h2d; 

1* 2nd derivative of hn = hi + sqrt(h2) *1 
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hcr = hn/h3; /* h_cr */ 

hd = hnd/h3 - hn*h3d/h3/h3; /* 1st derivative of h_cr */ 

hdd = hndd/h3 - 2*hnd*h3d/h3/h3 

- hn*h3dd/h3/h3 + 2*hn*h3d*h3d/h3/h3/h3; 

/* 2nd derivative of h_cr */ 

return (hcr); 

} 

2.5.2 Results 

The results of the symbolic computation are illustrated by considering a balanced 

symmetric laminated plate. The laminate consists of four layers of equal thickness 

with fibres orientated at ()/ - ()/ - ()/(), and is made of T300/5208 graphite/epoxy. 

The laminate is subjected to a loading [N] = [50 100 10]T MN/m. The elastic 

constants of this material are taken from Ref. [12] as El = 142GPa, E2 = 10.8GPa, 

G12 = 5.49GPa and V12 = 0.3, and the strength values as X t = 1568MPa, Xc = 
1341MPa, Yt = 57MPa, Yc = 212MPa, and S = 80MPa. 

The symbolic form of Her in terms of () is derived by the program described in 

Section 2.5.1 as 

Her = [ 11. 79 + 6.6539 cos 2() + 1.5328 cos 4() - 3.9125 cos 6() 

-5.2368 cos 8() - 0.58976 sin 2() - 0.093517 sin 6() + 

..; ( 785.63 + 722.95 cos 2() - 194.81 cos 4() 

-644.8 cos 6() - 459.63 cos 8() + 14.88 cos 10() 

+59.553 cos 12() + 40.009 cos 14() + 27.18 cos 16() 

-19.92 sin 2() - 10.243 sin 4() - 9.2797 sin 6() 

+2.5187 sin 8() + 4.3651 sin 10() + 0.54685 sin 12() 

+0.72858 sin 14())] 

/ (46.107 - 23.952 cos 4() - 5.2004 cos 8()) (2.20) 

This computation is performed in under 1~ seconds on a 386 Personal Computer. 

It is found that Mathematica [23], a general purpose symbolic computation system, 

is two orders of magnitude slower to derive this expression for Her. 

The optimal fibre angle ()opt may be computed from eqn. (2.20) using the Golden 

Section method. Alternatively, since the first and second derivatives of Her with 
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respect to 0 are also determined exactly, we may equate H~ to zero and employ 

Newton's method to find Oopt, the fibre angle at which the first derivative vanishes, 

using H::". It is found that Oopt = 54.476 degrees and Hmin(Oopt) = 17.5mm. 

The stress [0"3]' the determinant DetA3 and the derivatives of the component func

tions h3i are derived as 

0"31 = 2.5176 1015 
- 5.1442 1014 cos 20 - 1.8999 1015 cos 40 

+3.0248 1014 cos 60 + 1.8087 1013 cos 80 

+7.3099 1014 sin 20 + 1.15911014 sin60 

0"32 9.4041 1014 + 5.1442 1014 cos 20 

+ 1.0351 1014 cos 40 - 3.0248 1014 cos 60 

-4.0811 1014 cos 80 - 3.9826 1013 sin 20 

-6.3151 1012 sin 60 

7312 6.3826 1014 sin 20 + 5.75511014 sin 40 

-1.7247 1014 sin 60 - 2.1311014 sin80 

+ 7.5665 1013 cos 20 + 9.1092 1012 cos 60 

DetA3 

h' 1 

2.3053 1013 
- 1.1976 1013 cos 40 - 2.6002 1012 cos 80 

-1.3307 1013 sin 20 - 6.13141012 sin 40 

+2.347510
13

sin60+4.18941013 sin80 

-1.1795 1012 cos 20 - 5.611 1011 cos 60 

h~ - -1.4459 10
27 

sin 20 + 7.7924 1026 sin 40 

+3.8688 10
27 

sin 60 + 3.677 1027 sin 80 

-1.488 10
26 

sin 100 - 7.1463 1026 sin 120 

-5.6013 10
26 

sin 140 - 4.3489 1026 sin 160 

-3.9841 1025 cos 20 - 4.0975 1025 cos 40 

-5.5678 10
25 

cos 60 + 2.0149 1025 cos 80 

+4.3651 10
25 

cos 100 + 6.5622 1024 cos 120 

+ 1.02 1025 cos 140 

h; 9.5808 10
13 

sin40 + 4.1603 1013 sin 80 
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h" _ -2.6615 1013 cos 20 - 2.4525 10
13 

cos 40 
1 

+ 1.4085 1014 cos 60 + 3.3515 10
14 

cos 80 

+2.359 1012 sin 20 + 3.3666 10
12 

sin 60 

h" -2.8918 1027 cos 203.1169 10
27 

cos 40 
2 

+2.3213 1028 cos 60 + 2.9416 10
28 

cos 80 

-1.488 1027 cos 100 - 8.5756 10
27 

cos 120 

-7.8418 1027 cos 140 - 6.9582 10
27 

cos 160 

+ 7 .9681 1025 sin 20 + 1.639 10
26 

sin 40 

+3.3407 1026 sin 60 - 1.6119 10
26 

sin 80 

-4.36511026 sin 100 - 7.8746 1025 sin 120 

-1.428 1026 sin 140 

h~ 3.8323 1014 cos 40 + 3.3282 10
14 

cos 80 

2.6 Laminated Pressure Vessels 

This section is concerned with the optimization of composite pressure vessels sub

ject to the Tsai-Wu failure criterion and considers problems of maximum internal 

pressure and minimum weight. In the first problem, the fibre orientation is deter

mined for balanced and unbalanced laminations to maximize the internal pressure. 

The effects of axial and torsional forces on the optimum design are discussed. It is 

shown that the axial force affects the optimum fibre angle differently for shells with 

single and multiple layers. 

In the second problem, the design objective is the minimization of the weight of a 

liquid filled pressure vessel taking both the fibre orientation and the wall thickness as 

design variables. Both the constant and variable wall thickness cases are discussed. 

Comparative numerical results are presented for single and multiple layered vessels. 

It is noted that methods used in both design problems can be easily implemented 

in practical design situations. 

In this study, the relationship between the loading parameters and the material 

stress is combined and simplified into one transformation matrix using the special 

purpose symbolic computation routines presented in the previous section, in order 

to improve the computational efficiency of the optimization procedure. 
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2.6.1 Basic Equations 

The pressure vessel is modelled as a symmetrically laminated cylindrical shell of 

thickness H, length L and radius R where R refers to the radius of the middle 

surface. The shell is constructed of an even number of orthotropic layers of equal 

thickness t. The fibre orientation () is defined as the angle between the fibre direction 

and the longitudinal axis x. The fibre angles are orientated symmetrically with 

respect to the middle surface such that ()k = (_l)k-l() for k ~ n/2 and ()k = (_l)k() 

for k ~ n/2 + 1 where k = 1,2, ... , n is the layer number and n is the total number 

of layers. It is noted that n = 2 corresponds to a single lamina of thickness H = 2t 

and fibre orientation (). The coordinate axes x,</> and z refer to the longitudinal, 

circumferential and radial directions respectively, with the origin lying in the middle 

surface of the shell. 

Due to the symmetry of the lamination, the force resultants in the geometric coor

dinate axes are given by 

(2.21 ) 

where 

(2.22) 

In eqn. (2.22), Aij are the extensional stiffnesses given by Aij = HQij(()) for i,j = 

1,2 and i = j = 6, Ai6 = 2tQi6(()) for unbalanced laminates and Ai6 = 0 for balanced 

laminates with i = 1,2. Also in eqn. (2.22), fx, f4> and Ix4> denote the normal and 

shear strains. Here Qij(()) is the transformed reduced stiffness component. 

The stress-strain equations for the k- th orthotropic layer are given by 

[S(k)] = [Q!;)][f] 

where [f] = [A]-l[N] from eqn. (2.21), and 

denotes the stress vector in the x</> coordinate system. 

The stress vector in the material coordinate system, denoted by 
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is obtained from the geometric stress vector [s(k)] via the matrix transformation 

(2.24) 

where [T(k)] = [T( Ok)] denotes the transformation matrix for the k-th layer. From 

eqns. (2.23) and (2.24) it follows that 

(2.25) 

The design against failure is determined by employing a suitable failure criterion. 

In this study, the Tsai-Wu failure criterion (2.10) is used. 

The problem formulation and the performance index depend on the nature of the 

specific design problem. The problem statement involves maximizing or minimizing 

a cost function subject to the strength constraint given by the criterion (2.10). The 

optimization procedure is applied to two design problems. 

2.6.2 Problem 2.1: Design for Maximum Internal Pressure 

We consider a cylindrical pressure vessel with closed ends and subject to an internal 

pressure p, axial force F and torque T. The first design problem involves determining 

the fibre orientation 0 so as to maximize the internal pressure p for a given laminate 

thickness H under the forces F and T such that the optimal design satisfies the 

strength criterion (2.10). 

Method of solution 

The force resultants for this problem are given by 

pR F 
Nc = 2"" - 27rR' NIP = pR, (2.26) 

The vector [N] = [Nx NIP NXIPf can be expressed as a sum of two components: one 

due to the internal pressure p, and the other due to the external forces F and T , 
VIZ. 

[N] = [N]p p + [N]f (2.27) 

where [N]p is the coefficient vector of p, and [N]f incorporates the external forces. 
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From eqns. (2.26) and (2.27), it follows that 

(2.28) 

Similarly, the strain vector [E] may be expressed as 

(2.29) 

where [E]p = [A]-I[N]p and [E]f = [A]-I[N]" which follows from eqns. (2.21) 

and (2.27). Now the stresses in the material coordinates can be computed by in

serting [E] from eqn. (2.29) into eqn. (2.25) which gives 

(2.30) 

where 

(2.31 ) 

We substitute the stresses from eqn. (2.30) into the strength constraint (2.10) and 

obtain a quadratic failure criterion in terms of the internal pressure p as given by 

(2.32) 

where [u(k)] - [u(k) u(k) r(k)]T and [U(k)]f - [u(k) u(k) r(k)]T 
p - Ip 2p I2p - If 2f 12f • 

Solving the quadratic equation (2.32) for the k-th layer yields the burst pressure 

p~) = p~)(O; F, T) corresponding to that layer. The burst pressure of the vessel is 

given by 

P = minp(k) 
cr k cr (k=1,2, ... ,n) (2.33) 

If no positive real solution of eqn. (2.32) exists, then the pressure vessel fails under 

external load only, and the solution of the design problem does not exist as there is 

no feasible design satisfying the constraint (2.10). 
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Optimal design problem 

The design objective is the maximization of the burst pressure PC1" subject to the 

failure criterion (2.10). The optimization is carried over the fibre orientation (). The 

design problem can be stated as 

def ((). F T) _ . (k) Pmax - maxpC1" " - maxmlnpC1" 
9 9 k 

(2.34) 

where PC1"( ()j F, T) is given by eqn. (2.33). The maximum burst pressure pmax is 

determined by solving the max-min problem (2.34) which also yields the optimal 

fibre orientation ()opt. 

The optimization procedure involves the stages of evaluating the burst pressure PC1" 

for a given () and iteratively improving ()opt to maximize PC1". Thus the computational 

solution consists of successive stages of analysis and optimization until convergence 

is obtained. The optimization stage employs the Golden Section method in deter

mining ()opt. 

Numerical results for Problem 2.1 

The optimization of the laminated pressure vessel is illustrated by considering a 

cylindrical shell of mean radius R = 1m and thickness H = O.Olm. The laminate is 

made of T300/5208 graphite/epoxy the elastic constants of which are EI = 142GPa, 

E2 = 10.8GPa, G12 = 5.49GPa, and V12 = 0.3. The strength values are X t = 

1568MPa, Xc = 1341MPa, Yt = 57MPa, Yc = 212MPa, and S = 80MPa. The 

values for the material properties are taken from Ref. [12] . 

We first investigate the effect of fibre orientation on the burst pressure PC1" for dif

ferent values of the axial force. Figure 2.1 on Page 36 shows the curves of PC1" versus 

() for single-layered, four-layered and six- layered laminates with T = 0 for F = 0 

and F = 5MN. It is noted that the results for the four-layered (balanced) laminate 

are applicable to balanced laminates with any number of layers. For single-layered 

construction, it is observed that ()opt = 0 for F = 0 and ()opt = 90° for F = 5MN. 

The burst pressure PC1" is much higher for multilayered laminates with the balanced 

case giving the highest burst pressure. The effects of the axial force and torque on 

()opt and Pmax are investigated in Table 2.1. For single-layered laminates, ()opt = 0 for 

low values of F and jumps to 90° at a certain value of F > 0 which depends on the 

amount of torque applied. For multilayered laminates, the fibres align themselves 

with the longitudinal axis x as F increases. This result is to be expected on physical 

grounds. 
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Table 2.1: Optimal fibre angles and maximum pressure · (Problem 2.1) 

F T Single layer 4 layers 6 layers 

(MN) (MNm) ( unbalanced) (balanced) ( unbalanced) 

()opt Pmax ()opt Pmax ()opt Pmax 

(MPa) (MPa) (MPa) 

0 0 90.00° 1.19 54.39° 5.36 54.21° 4.17 

1 0 90.00° 0.86 53.56° 5.16 53.21° 3.98 

5 0 0.00° 0.59 50.25° 4.40 49.02° 3.29 

10 0 0.00° 0.60 45.94° 3.67 43.80° 2.68 

0 2 90.00° 1.03 54.32° 5.11 54.07° 3.77 

1 2 90.00° 0.70 53.50° 4.91 52.98° 3.57 

5 2 0.00° 0.52 50.00° 4.15 48.38° 2.90 

10 2 0.00° 0.53 45.54° 3.44 42.77° 2.33 

0 4 90.00° 0.51 54.23° 4.83 53.90° 3.34 

1 4 0.00° 0.25 53.36° 4.62 52.69° 3.15 

5 4 0.00° 0.26 49.69° 3.87 47.59° 2.49 

10 4 0.00° 0.27 45.01° 3.19 41.56° 1.98 

Failure surfaces with respect to maximum pressure are given in Figures 2.2 and 2.3 

for single- and four-layered laminates, respectively. Figure 2.2 indicates that there 

is a sharp drop in Pmax as F increases. Decrease in Pmax with respect to torque 

is more gradual. For the balanced laminate with four layers, the failure surface as 

shown in Figure 2.3 is rather flat with gradual decrease in Pmax with increasing axial 

force and torque. 

2.6.3 Problem 2.2: Design for Minimum Weight 

As our second problem, we consider a circular cylindrical shell of length L filled 

with a liquid of specific weight PI and under a given internal pressure. The design 

problem involves optimizing the fibre orientation () so as to minimize the weight of 

the liquid tank for a given pressure. It is noted that the weight of the tank can be 

evaluated in terms of the shell thickness H. 
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Method of solution 

The force resultants for this problem are derived in Refs. [13] and [14]. For a 

cylindrical tank with bulkheads attached to the ends of the cylinder, these forces 

are 

Nz: P;R + ~ cos ¢>(4x2 
- L2 - 2R2) 

N,p - PcR - PIR
2 

cos ¢> 

-PIRx sin ¢> (2.35) 

where Pc 2: PIR is the pressure at the center of the cylinder and x is the longitudinal 

axis with the origin located at the mid-point such that -L/2 ~ x ~ L/2. 

We note that Aij = Hr/i/Jij(O) where TJij = 1 for i,j = 1,2 and i = j = 6, TJi6 = 2/n 

for unbalanced laminates and TJi6 = 0 for balanced laminates with i = 1,2. We define 

a matrix [a] such that [a] = H-l[A]. Thus aij = Qij(O) for ij = 11,12,22 and 66, 

and ai6 = TJi6Qi6(O) for i = 1,2. From eqn. (2.21), it follows that [€] = H-l[a]-l[N] 

where [N] is defined by eqns. (2.22) and (2.35). Substituting [€] into eqn. (2.25), we 

find 

(2.36) 

where 

(2.37) 

We substitute the stresses from eqn. (2.36) into the strength constraint (2.10) and 

obtain a quadratic failure criterion in terms of the shell thickness H as given by 

{F ( (k))2 D (k))2 Po (k))2 F (k) (k)} 
11 O"lO + .£'22 0"20 + 66 T120 + 2 120"10 0"20 

{ 
(k) (k)} 2 + FlO"lO + F20"20 H - H = 0 (2.38) 

The solution of eqn. (2.38) gives for -any x and ¢> the minimum shell thickness H~) 

corresponding to the failure of the k-th layer. From eqn. (2.38), it follows that the 

critical thickness Hcr = Hcr(Oj x) at a point x is given by 

H = maxH(k) 
cr ,p,k cr (k = 1, 2, ... ,nj 0 ~ ¢> ~ 271") (2.39) 

It is noted that the critical thickness Hcr depends on the location x along the 

cylindrical shell as well as the internal pressure Pc and the specific weight PI of 

the liquid. 
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Optimal design problem 

The design objective for the cylindrical liquid tank problem is the minimization of 

the shell weight with the thickness subject to the strength condition (2.10). The 

weight of the shell is given by 

1
L/2 

W(O) = 27rRpt H(O; x)dx 
-L/2 

(2.40) 

where Pt is the specific weight of the fibre composite material used in the construction 

of the tank. 

Two distinct cases depending on whether the shell thickness is constant or variable 

over the length -L/2 ~ x ~ L/2 are considered. 

Case I. Constant thickness tank 

In this case H = H(O) and the weight is given by 

(2.41 ) 

Since the weight is proportional to the thickness, it is sufficient to minimize H( 0) to 

obtain the minimum weight design. Hmin (0) for a given 0 valid for all x is determined 

from 

Hmin(O) = max Her = max(maxH~») 
x x "',k 

(-L/2 ~ x ~ L/2, 0 ~ <P ~ 27r) (2.42) 

where H~) is determined from eqn. (2.38). 

Case II. Variable thickness tank 

In this case H = H(O;x) and the minimum thickness Hmin(O;X) at a point x for a 

given 0 is defined by Her in eqn. (2.39). Therefore Hmin(O; x) is determined as the 

maximum of H~) given by eqn. (2.39) at every point x producing a variable wall 

thickness. Thus 

H . (0· x) = maxH(k) 
mm, "',k er (2.43) 

Due to symmetry, the thickness distributions are the same for -:-L /2 ~ x ~ 0 and 

o ~ x ~ L/2. For this case, the weight is given by eqn. (2.40). 

In both cases, the design problem is to determine the optimal fibre orientation Oopt 

so as to minimize the weight of the shell, viz. 

Wmin = min W(O) 
o 

31 

(2.44) 



with Hmin obtained from eqn. (2.42) in Case I and from eqn. (2.43) in Case II. In 

eqn. (2.44), W(()) is given by eqn. (2.41) for the constant thickness case and by 

eqn. (2.40) for the variable thickness case. 

The minimum weight problem is solved by determining the minimum thickness 

Hmin satisfying the constraint (2.38) from eqn. (2.42) (Case I), or from eqn. (2.43) 

(Case II). The weight is minimized over the fibre orientation () by using a one

dimensional numerical optimization scheme, viz. the Golden Section method. Com

putations are continued until convergence is attained for (). 

Table 2.2: Optimal fibre angles and minimum weight for a single-layered constant 

thickness pressure vessel (Problem 2.2) 

Single layer we(())/We,min 

Po ()opt We ,min () 

(X 106) 0° 30° 45° 60° 90° 

1 0.00° 90.44 1.00 1.36 1.37 1.27 1.29 

2 0.00° 128.14 1.00 1.24 1.22 1.11 1.07 

3 90.00° 157.93 1.08 1.23 1.20 1.07 1.00 

4 90.00° 178.62 1.19 1.30 1.24 1.10 1.00 

5 90.00° 199.31 1.28 1.35 1.28 1.12 1.00 . 

6 90.00° 220.00 1.36 1.39 1.31 1.14 1.00 

8 90.00° 261.38 1.47 1.46 1.35 1.17 1.00 

10 90.00° 302.77 1.55 1.51 1.39 1.19 1.00 

20 90.00° 509.76 1.75 1.64 1.47 1.25 1.00 

30 90.00° 716.76 1.84 1.70 1.51 1.27 1.00 

40 90.00° 923.77 1.89 1.73 1.53 1.28 1.00 

50 90.00° 1130.79 1.92 1.75 1.54 1.29 1.00 

100 90.00° 2165.87 1.99 1.79 1.57 1.31 1.00 

200 90.00° 4236.06 2.02 1.81 1.58 1.32 1.00 

Numerical results for Problem 2.2 

Numerical results are given for single- and four-layered laminated cylinders made 

of the same graphite/epoxy material defined in Section 2.6.2. The numerical values 

are given for dimensionless quantities by introducing 

x = x/ L, h = H/ L, r = R/ L 
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T bl 2 3 Optl·mal fibre angles and minimum weight for a single-layered variable a e .: 

thickness pressure vessel (Problem 2.2) 

Single layer W1l ( 0) / W 1l,min 

Po Oopt W 1I ,min 0 

( x106
) 0° 30° 45° 

1 0.00° 84.71 1.00 1.22 1.27 

2 90.00° 111.23 1.14 1.25 1.25 

3 90.00° 131.01 1.29 1.34 1.31 

4 90.00° 151.14 1.40 1.41 1.35 

5 90.00° 171.47 1.48 1.46 1.38 

6 90.00° 191.93 1.55 1.50 1.40 

8 90.00° 233.05 1.64 1.56 1.44 

10 90.00° 274.32 1.70 1.60 1.46 

20 90.00° 481.18 1.86 1.70 1.52 

30 90.00° 688.19 1.92 1.74 1.54 

40 90.00° 895.20 1.95 1.76 1.55 

50 90.00° 1102.22 1.97 1.78 1.56 

100 90.00° 2137.31 2.01 1.81 1.58 

200 90.00° 4207.49 2.03 1.82 1.59 

Po = Pc/P1R, w = W/27rRL
2

pt 

From eqns. (2.40) and (2.45), it follows that 

j
l/2 

w( 0) = h( 0; X)dX 
-1/2 

60° 

1.25 

1.19 

1.22 

1.24 

1.25 

1.26 

1.27 

1.28 

1.30 

1.31 

1.31 

1.31 

1.32 

1.32 

90° 

1.09 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

We note that for the constant thickness shell (Case I) w(O) = h(O). 

(2.45) 

(2.46) 

In Tables 2.2-2.5, subscripts c and v refer to the constant and variable thickness 

cases, respectively. In particular w1l ( 0) refers to the weight of a shell with the 

thickness function Hmin(O; x) obtained from eqn. (2.43) and the fibre orientation 

specified as O. 

The effect of increasing the internal pressure Po on the optimal design is investigated 

in Tables 2.2 and 2.3 for single-layered constant and variable thickness shells, re

spectively. It is observed that Oopt is 0° for low values of Po and jumps to 90° as Po 

increases. The weight difference between the constant and variable thickness shells 

decreases with increasing Po. The right half of the tables is provided to compare the 

weight ratios of shells with specified and optimal fibre angles. 
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Table 2.4: Optimal fibre angles and minimum weight for a four-layered constant 

thickness pressure vessel (Problem 2.2) 

Four layers w e( 0) / We ,min 

po Oopt We,min 0 

( x106
) 0° 30° 45° 60° 90° 

1 44.96° 24.88 3.64 2.33 1.00 2.78 4.69 

2 48.72° 30.64 4.18 2.78 1.14 2.47 4.48 

3 49.84° 34.77 4.91 3.24 1.30 2.37 4.54 

4 50.50° 38.52 5.53 3.63 1.43 2.31 4.64 

5 50.93° 42.20 6.06 3.97 1.55 2.27 4.72 

6 51.22° 45.93 6.50 4.24 1.65 2.24 4.79 

8 51.60° 53.65 7.15 4.65 1.79 2.17 4.87 

10 51.82° 61.76 7.59 4.92 1.89 2.11 4.90 

20 52.52° 106.27 8.42 5.44 2.06 1.88 4.80 

30 52.97° 152.05 8.68 5.60 2.11 1.77 4.71 

40 53.30° 197.86 8.83 5.68 2.14 1.72 4.67 

50 53.51 ° 243.64 8.92 5.74 2.16 1.69 4.64 

100 53.94° 472.46 9.10 5.85 2.20 1.62 4.58 

200 54.16° 929.98 9.20 5.92 2.22 1.58 4.56 

Tables 2.4 and 2.5 give the same information as Tables 2.2 and 2.3 for balanced four

layered shells. It is observed that as Po increases, the optimal fibre angle approaches 

Oopt of the first problem with F = T = 0 (see Table 2.1). This is to be expected 

since the contribution of the liquid to resultant forces becomes less pronounced as the 

internal pressure increases as is evident from eqn. (2.35) and Problems 2.1 and 2.2 

converge. Comparison of Tables 2.4 and 2.5 indicates that Wmin values differ by 

about 20% for constant and variable thickness shells for small values of Po. This 

difference decreases as Po increases and drops to less than 2% for Po > 20. 

Figure 2.4 shows the optimal thickness distribution of the variable thickness shell 

with respect to the x axis and for increasing internal pressure. 
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Table 2.5: Optimal fibre angles and minimum weight for a four-layered variable 

thickness pressure vessel (Problem 2.2) 

Four layers . Wv( ())/Wv,min 

po ()opt Wv,min () 

( x106
) O· 30· 45· 60· 90· 

1 46.42· 20.03 4.23 2.24 1.03 2.46 4.60 

2 48.81 • 25.05 5.06 2.88 1.20 2.23 4.44 

3 49.94· 29.27 5.79 3.40 1.36 2.13 4.48 

4 50.59· 33.35 6.36 3.80 1.49 2.08 4.53 

5 50.98· 37.46 6.80 4.11 1.60 2.03 4.58 

6 51.25· 41.66 7.13 4.36 1.68 1.99 4.61 

8 51.60· 50.31 7.60 4.69 1.79 1.92 4.63 

10 51.95· 59.22 7.90 4.91 1.87 1.87 4.63 

20 53.08· 104.35 8.56 5.41 2.04 1.73 4.61 

30 53.49· 149.83 8.81 5.59 2.10 1.68 4.59 

40 53.71· 195.42 8.93 5.69 2.14 1.64 4.58 

50 53.84· 241.08 9.01 5.74 2.16 1.63 4.57 

100 54.110 469.62 9.16 5.86 2.20 1.59 4.55 

200 54.25· 927.00 9.23 5.92 2.22 1.57 4.54 
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Figure 2.1. Curves of burst pressure versus fibre angle with T = 0 

(Problem 2.1) 
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Figure 2.2. Surface of maximum pressure with respect to 

axial force and torque for a single-layered pressure vessel 

(Problem 2.1) 
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Figure 2.3. Surface of maximum pressure with respect to 

axial force and torque for a four-layered pressure vessel 

(Problem 2.1) 
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2.7 Conclusions 

In design optimization problems requiring symbolic computation, it may be neces

sary to integrate such computations into an iterative solution procedure to improve 

the computational efficiency. This is not possible using a closed general purpose 

symbolic computation package. In addition, proprietary general purpose symbolic 

computation tools often have high overheads in terms of cost, hardware requirements 

and processing time. These drawbacks may be overcome by developing special pur

pose symbolic computation software which is tailored according to the requirements 

of the specific problem. The development of such software can be realised for a given 

problem by noting that, in general, a specific class of functions will be needed in the 

solution of a particular problem. 

The design problems studied in this Chapter require tedious matrix algebra where 

the entries are series of double trigonometric functions of the fibre angle. Special 

purpose routines are developed to process such expressions. The routines perform 

matrix algebra involving matrices of trigonometric series and simplify the results 

using trigonometric identities. 

It is found that the special purpose symbolic computation is two orders of magni

tude more efficient than Mathematica. The efficiency of special purpose symbolic 

computation arises from its dedication to a specific class .of functions. This feature 

is particularly valuable in optimization studies where computational efficiency is 

important. 

In the laminate example which is considered, the relationship between the loading 

parameters and the material stress is combined and simplified into one transfor

mation matrix using symbolic computation. This involves tedious matrix algebra, 

where the matrix entries are series of double trigonometric functions of the fibre an

gle. The stress is determined symbolically and substituted into a quadratic failure 

criterion from which the critical thickness is obtained as an analytical function of 

the fibre angle via symbolic computation. The first and second derivatives of the 

critical thickness with respect to fibre angle are determined exactly with the aid of 

symbolic differentiation and may be used to determine the optimal fibre angle by 

means of an optimization algorithm. 

A solution method is presented for the optimal design of symmetrically laminated 

cylindrical pressure vessels with balanced and unbalanced stacking sequences on the 

basis of a strength failure criterion. 
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Two design problems are solved. In the first problem, a cylindrical pressure vessel 

is optimized taking the fibre angle as the design variable to maximize the burst 

pressure and the effects of the axial force and torque on the optimal designs are 

investigated. In the second problem, a cylindrical vessel filled with a liquid and 

subject to an internal pressure is studied. The weight of the shell is minimized 

taking the fibre angle and wall thickness as the design variables. Both constant and 

variable thickness shells are investigated. It is shown that the results for the second 

problem approach those of the first problem as the internal pressure increases. 

Numerical results are given for unbalanced (single- and six-layered) and balanced 

laminates noting that in the balanced case the number of layers does not affect the 

results. It is observed that fibre angles align themselves with the longitudinal axis as 

the axial force increases. Variable thickness shells are found to be about 20% more 

efficient than the constant thickness shells for low values of the internal pressure 

with the difference decreasing as this pressure increases. For single layer pressure 

vessels, the optimal fibre angle is found to be either O· or 90· with the switch-over 

point depending on the magnitude of the axial force, torque or the internal pressure. 
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Chapter 3 

Derivation of a Higher-Order 

Theory for Thick Laminated 

Plates and Shells 

3.1 Introduction 

The objective of the present chapter is to derive a nonclassical theory for the accu

rate analysis of thick laminated composite structures. The classical theory is based 
1 

on the Kirchhoff-Love hypotheses of straight inextensional normals and therefore 

neglects the phenomena of transverse shear and normal deformation. The exact 

prediction of the stress and strain state of thick laminated structures made of ad

vanced composite materials requires the use of three-dimensional elasticity models. 

However, quasi-three-dimensional models based on higher-order theories may accu

rately describe the behaviour of thick structures over some range of applicability and 

are considerably less computationally expensive than three-dimensional models. 

In this chapter, comprehensive higher-order theory of laminated plates and shells is 

presented. This theory considers plates and shells with transversely isotropic layers 

of different thicknesses and stiffnesses, and takes into account both transverse shear 

and normal deformation. 

The theory is based on kinematic hypotheses which are not taken a priori, but 

whose form are derived using an iterative technique where the classical Kirchhoff

Love hypotheses are assumed in the first iteration. New variables which have a clear 

physical meaning are introduced. 
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The equations of equilibrium and the boundary conditions are determined using 

Lagrange's variational principle, and the complete set of boundary conditions is 

derived. Various loading and boundary conditions which fully take into account 

transverse shear and normal deformation are considered. 

The unknown functions in the system of governing differential equations are defined 

on an arbitrary reference surface. The stress/strain state of the laminated structure 

is determined from the solution at the reference surface and through-the-thickness 

distribution functions defined by the theory. The order of the governing equations 

is 16 and is independent of the number of layers. 

3.2 Literature Survey 

The accurate analysis of laminated composite plates and shells is the subject of much 

investigation and new higher-order theories have been developed which attempt to 

accurately describe the three-dimensional elastic behaviour of laminated plates and 

shells. Surveys of these theories may be found in the reviews by Dudchenko et al [25], 

Librescu & Reddy [26], Reddy [27], Noor & Burton [28], and in the books of Bolotin 

& Novichkov [29], Grigorenko & Vasilenko [30] and Piskunov & Verijenko [31]. 

The two main approaches for deriving two-dimensional equations of plates and 

shells are the analytical method introduced by Reissner [32], Mindlin [33] and 

Gol'denveizer [34], and the method of hypotheses. 

In the second method, kinematic or static assumptions regarding the variation of 

displacements, strains and/or stresses through the thickness are introduced. Two 

approaches for the derivation of theories using the method of hypotheses have been 

employed, leading to single-layer and discrete-layer theories. In discrete-layer theo

ries, the hypotheses relate to each layer such that the order of the governing differen

tial equations is dependent of the number of layers, whereas in single-layer theories, 

the hypotheses relate to displacements, strain and/or stress through the thickness 

such that the order of the governing equations is independent of the number of 

layers. 

The generalization ofthe discrete-layer approach is given by Bolotin & Novichkov [29], 

Grigorenko & Vasilenko [30] and more recently by Reddy [35]. In principle, discrete

layer theories can model the interlaminar stress more accurately. However, these 

theories are computationally expensive as compared to single-layer theories. 
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The single-layer approach was introduced by Ambartsumyan [36] where the classi

cal hypotheses of Kirchoff-Love were used. He then used this approach to derive a 

higher-order theory of laminated plates and shells [37]. Examples of other single

layer theories are those of Reissner and Mindlin, first-order theories by Vasilenko 

& Savchenko [38] and Grigorenko et al. [39] with both transverse shear and normal 

deformation included, and higher-order theories by Stein [40] and Reddy [41]. How

ever in these and other more recent publications mentioned in the reviews [25, 28], 

there is no compatibility between the nonlinear kinematic model which considers the 

distortion of the normal, and the system of internal forces and moments which are 

equivalent to those obtained using the straight line hypothesis. Theories without 

these disadvantages have been derived by Piskunov [42] and Rasskazov [43]. The 

approach introduced in Ref. [42] has been extended by Piskunov et al. [31, 44] and 

Verijenko et al. [45,46, 47] to better represent the interlaminar stresses, include the 

direct effect of loading on transverse shear and normal deformation, and increase the 

range of applicability of the theory. The higher-order theory derived by Piskunov 

et al. in Ref. [44] is presented in this chapter. 

A study of the reviews mentioned earlier and some other recent papers [48, 49, 

50] reveals that in the design of multilayered structures in which the layers have 

significantly different physical characteristics, it is also necessary to consider the 

phenomenon of normal deformation. 

3.3 Basic Equations 

The shell is referenced by a curvilinear coordinate system xlO X2 which is parallel to 

the bounding surfaces and the surfaces of contact between the layers. The axes of 

the curvilinear orthogonal coordinate Xi = const (i = 1,2) coincide with the principle 

lines of curvature. The coordinate z = X3 is normal to the reference surface xlO X2. 

The reference surface z = 0 may be positioned arbitrarily in the package of layers. 

The layers are assumed to be perfectly bonded, and shells are taken as a geometry 

with small curvature relative to their thickness (see Figure 3.1 on Page 59) . The 

curvatures of the shell are given by kij . 

In following derivation, the index k = 1,2 ... n refers to the k-th layer of a laminate 

with n layers. The indices i = 1,2 and j = 1,2 refer to the coordinate directions 

XI, X2, and the index s has the range s = 1,2,3. A subscripted comma denotes 

differentiation with respect to the variables following the comma, and a superscripted 
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( k) refers to the k-th layer. 

The loads applied on the external surfaces are p+ = p~(x) and p- = p;(x) (s = 

1,2,3) respectively and are functions of the curvilinear orthogonal coordinates x = 

{Xl, X2}. The conditions on the external surfaces are 

u~~) = -p; (z = ao,k = 1) 

u~;) = p~ (z = an,k = n) 
(3.1) 

Since the layers are assumed to be rigidly bonded, the rigidity condition for an 

arbitrary surface z = ak-l is given by 

U!;-l) (static) 

u~k-l) (kinematic) 

(3.2) 

(3.3) 

The components of the deformation of k-th layer (k = 1,2 .. . n) for small bending 

are given in Ref. [51] as 

2e(~) 
'3 

u(k) + u(k) + 2k . 'u(k) 
',3 3,' '3 3 

2e~;) (k) + (k) 
ui,3 u 3,i 

(k) 
e33 

(k) 
U3,3 

The displacements of the reference surface (z = 0, k = m) are expressed as 

u~m)(x, 0) 

u;m) (x, 0) 

Ui ( x) (i = 1, 2) 

w(x) 

and the deformations of the reference surface as 

", .. 
'3 

1 
-(u· · + u ·· ) + k ··w 2 '.3 3.' '3 

-w " ,'3 

which satisfy the well-known equations [51] 

o 
o 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The generalized Hooke's law for the transversely isotropic k-th layer of the shell [37], 

where the surface of isotropy at any point (x, z) is orthogonal to the normal, is given 
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by 

(k) [ (k) (k)]J , (k) / E' 
en - O"n - Vk0"22 Ek - Vk0"33 k 

(k) 
e 22 

[ (k) (k)]/ E ,(k) / E' 
0"22 - VkO"n k - Vk0"33 k 

(k) [(k) (k)] , / E' (k) / E' 
e33 - - O"n + 0"22 Vk k + 0"33 k 

2 (k) 
e12 O"i~) /Gk 

2 (k) 
e13 

(k) /G' 
0"13 k 

2 (k) 
e23 O"~;) /G~ (3.10) 

where the elastic properties are assumed to be functions of the coordinate Z (ak-l ~ 

Z ~ ak). Ek(z), Vk(Z) and Gk(z) = E k /[2(1 + Vk)] are the modulus of elasticity, 

Poisson's ratio and shear modulus respectively in the plane of isotropy; E~(z) and 

Gk(z) are the moduli of elasticity and shear respectively in the transverse direction; 

and vHz) is Poisson's ratio, which characterizes the reduction in the plane of isotropy 

when tension is applied in the transverse direction. 

Classical assumptions are employed to derive basic equations for the derivation of 

the nonclassical higher-order theory. If the Kirchoff-Love hypotheses are assumed 

to be valid for each layer of the shell, then 

2e~;) = 0; e~~) = 0 

,..(k) - 0 
V33 -

(3.11) 

(3.12) 

By substituting eqns. (3.10) into the hypotheses (3.11), integrating within the con

ditions (3.2) and using the notation (3.7), we obtain the classical kinematic model 

U(k) = U · - W ·z · u
3
(k) = W 

t t ,t, (3.13) 

The tangential deformations of the k-th layer are obtained from eqns. (3.13) and (3.8) 

as 
. (k) 
eij = Cij + K.ijZ (3.14) 

where it is noted that C12 = C21, K.12 = K.21 and eW = e~~). 

Substituting eqn. (3.14) into eqn. (3.10) and using the static hypothesis (3.12) or 

the assumption Ek = 00, the in-plane stresses in the k-th layer are derived as 

E Ok [(C22 + Vkcn) + (K22 + VkKll)Z] 

Eok (1 - Vk)(CI2 + K12Z) 
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where EOk = Ekl(l - v~). 

The transverse stresses cannot be found using Hooke's law because of the hypothe

ses (3.11) and (3.12). Therefore, the transverse stresses are derived using the equa

tions of equilibrium for a shell [51] which for the k-th layer may be expressed as 

(k) (k) 
u · · · + U·33 '1,1 , , 

(k) (k) k . (k) 
U 33,3 + Ui3 ,i - i1 Ui j 

o 
o 

Using eqn. (3.16), the transverse shear stresses are derived as 

u~k) = _jZ u~~) . dz + A.k ,3 '1,1' 
alo_l 

and using eqn. (3.17), the transverse normal stress are derived as 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where A8k( x) are functions of integration which may be derived from the loading 

conditions (3.1) and static rigidity condition (3.12). 

Substituting the equations for stress (3.15) into the integrals (3.18) and calculating 

the functions of integration ~k(X) from the loading and rigidity conditions, the 

transverse shear stresses are derived in Ref. [31] as 

(k) "f -} +f 
Ui3 = L..l.W,i lk + Pi 2k + Pi 3k (3.20) 

where ~ is the Laplace operator, pi, pt are the external loads and f8k (z) are distri

bution functions given by 

where 

flk(z) 

hk{Z) 

f3k(Z) 

fk(Z) 

f;(z) 

B J 

BJI 

-

f; - fk Bfl I BJ 

fk1 BJ-1 

AIBJ 

l z 

EOkdz 
ao 

jZ EOkzdz 
ao 

jan EOkdz 
ao 

jan 
EOkZdz 

ao 
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The distribution functions f3k (z) enable the loading conditions on the external sur

faces to be satisfied once the reference surface has been positioned in the package of 

layers and also take into account the influence of the elastic properties of each layer 

on the stress distribution of the components u!;) under external loading. 

Substituting the derived transverse shear stress (3.20) into the integral (3.19) and 

calculating the functions of integration A3k ( x) from the loading conditions (3.1) and 

static rigidity condition (3.12), the transverse normal stress is derived in Ref. [31] 

as 

(3.23) 

where pi, pj are the normal components of the external loads and the functions 

B~k) are given by 

kijCij/sk + kij Kijf9k + (kllc22 - 2k12c12 + k22Cll)fsk 

+(kllK 22 - 2k12K12 + k22Kll)f9k (3.24) 

The distribution functions in eqns. (3.23) and (3.24) are given by 

where 

f4k(Z) 

fSk(Z) 

f6k(Z) 

f1k(z) 

fSk(Z) 

f9k(Z) -

fSk(Z) 

f9k(Z) -

FaDj21 D/l - F2k 

FaD /31 D /1 - F3k 

Fal D/l - 1 

Fal D/1 

fk - FlkB/ID/l . 

f: - FaB /11 D /1 

fk - FaB/1 D/l 

f: - FaBjll D/l 

(3.25) 

(3.26) 

Substituting eqns. (3.15) for the normal stresses u};) in terms of the deformations 

of the reference surface and eqn. (3.23) for the transverse normal stress u~;) into 

Hooke's law (3.10), the normal strain is obtained as 

(k) _ I ~ I 1 ( _ + _ 
e33 - 1I0kz W - lIOk Ui,i + E~ pi,d4k + pi,dsk + P3 f6k + pI f1k + Bq) (3.27) 
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The normal strain (3.27) may be expressed as 

(3.28) 

where B~ = Bu / Ek and we denote the distribution functions of the normal strain as 

Q'lk(Z) 

Q2k(Z) 

Qqk(Z) j9k/ E~ (q = 3 ... 6, 9 = q + 1) (3.29) 

Since e~ = u~71, the equation for the normal displacements may be expressed as 

(3.30) 

The function of integration w(x) + C3k (X) is determined from the conditions (3.11) 

and (3.7), ie. u~k)(x,ak_d = u~k-l)(x,ak) and u~m)(x,O) = w(x). Substituting 

eqn. (3.28) into (3.30) and integrating, we obtain 

where Cu = J; B~dz and we denote the distribution functions of the normal dis

placement through the thickness of the laminated shell as 

(q = 1. .. 6) (3.32) 

Substituting the equation (3.20) for the the transverse shear stress a!;) into the 

expression 2e~;) = aJ;) /G~ from eqn. (3.10), and substituting the equation in (3.31) 

for the normal displacement u~k) into the expression 2ei3 = u(k3) + u3(k) given in 
" ,1 

eqn. (3.5), we obtain 

where 

2e(k) _ u(k) = ' a~k)/G' _ u(k) 
13 3,1 ,3 k 3,1 

- -W,i - Llw,;( C{)lk - C{)k) - Ui,ijC{)2k - P~ijC{)3k - PtijC{)4k 

-P3,iC{)Sk - P3,iC{)6k - P"iC{)7k - ptC{)Sk - Cu,i 

C{)k(Z) jlk/G~ 

C{)7k(Z) - - hk/G~ 

C{)Sk(Z) - - f3k/G~ 
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Integrating eqn. (3.33) and satisfying the conditions (3.7) and (3.11), we obtain the 

tangential components of the displacement due to transverse shear as 

U~k)(X, z) = Ui - W,iZ - D.w,i1/Jlk - Uj,ji1/J2k - Pi,ji1/J3k - PJ,ji1/J4k 

-P3-i1/J5k - pji1/J6k - pi1/J7k - pt1/Jsk - Au , , 

where Au = J; Cu,idz and we denote 

1% ('Plk - 'Pk)dz 

1% 'Pgk dz (9 = 2 ... 8) 

(3.35) 

(3.36) 

The equations derived for e~;), e~ and u1;), u~;) are incompatible with the classical 

assumptions and are therefore not relevant to the classical theory. These equations, 

however, are important for the derivation of the higher-order theory. 

3.4 Higher-Order Theory 

The form the kinematic hypotheses of the higher-order theory is taken from eqn. (3.35) 

for the displacements u~k) and eqn. (3.31) for the deflection u~k). In particular, the 

higher-order theory is based on the kinematic hypotheses 

U~k)(X, z) 

u~k)(x, z) 

Ui - W,iZ - Xg,i1/Jgk (9 = 1 ... 8) 

W + Xq'Pqk (q = 1. .. 6) 

(3.37) 

(3.38) 

where Ui(X), w(x) are the displacements of the reference surface; Xl(X), X2(X) are 

new functions described below; and we denote 

X3(X) = Pi:i; X4(X) = Pti; Xs(x) = P3"; 

X6(X) = pt; X7,i(X) = pi; XS,i(X) = pt; 
(3.39) 

which are determined from the given loading. 

The distribution functions 'Pqk of the deflection through the thickness of the lami

nate are given by eqn. (3.32), and the distribution functions 1/Jgk of the tangential 

components of the displacement vector through the thickness of the laminate are 

given by eqns. (3.36). 

The first of the two new unknown functions Xl(X) and X2(X) is termed the shear 

function and the second is termed the compression function [56,57]. If Ek =I 00 but 
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vA: = 0 then CP1k = CP2k = .,p2k = 0 and thus X1( x) and X2( x) are also connected with 

Poisson's transverse reduction. The interpretation of the functions Xq (x) (q = 1 ... 6) 

in eqns. (3.37) and (3.38) is now discussed. Together with the functions cpqk(a) 

(q = 1 ... 6) they represent the additional normal deflection of the surface z = a 

relative to the deflection of the reference surface. The derivatives Xg,i together with 

the functions .,pgk( a) (9 = 1 ... 8) represent the angles of the tangents to the distorted 

normal at z = a (in the directions Xi) which are added to the angles of the straight 

normals to the displaced reference surface, as illustrated in Figure 3.2. The other 

terms involving Xg (9 = 3 ... 8), which are determined from the external loads, take 

into account the normal deformation caused by the direct loading. 

Substituting the kinematic model given in eqns. (3.37) and (3.38) into the strain

displacement relations given by eqns. (3.4)-(3.6) and using the notation (3.8), the 

components of the strain tensor are obtained as 

(3.40) 

where 9 = 1 ... 8, q = 1 ... 6 and Cij and ""ij are the strains of the reference surface 

given by eqn. (3.8); and we denote ""!J) = -Xg,ij and 

fJSk(Z) - hk/G~ (3.41 ) 

It . t d th t (g) - (g) d (g) (g) 
IS no e a ""n,2 - ""12,1 an ""22,1 = ""12,2. 

Using Hooke's law for a transversely isotropic material (3.10), the components of 

the stress tensor may be determined as 

(k) 
O'n 

A (k) A (k) (k) 
lIken + 12ke22 + A 13ke33 

(k) 
0'22 

A (k) A (k) (k) 
12ken + 1Ike 22 + A 13ke33 

(k) A [(k) (k)] (k) 
(3.42) 0'33 - 13k en + e22 + A33ke33 

(k) 2G' e(k) 0'12 k 12 

(k) 
0'13 

2G' (k) 
k e13 

(k) 
2G' e(k) 0'23 k 23 

where 
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A12k D.12k/ D.k 

A 13k - D.13k/ D.k 

A33k D.33k/ D.k (3.43) 

and 

D.k (1 + lJk)[1 - lJk - 2(lJ~? Ek/ E~]/ EZE~ 

D.uk [1 - (lJ~)2 Ek/ E~]/ EkE~ 

D.12k [lJk + (lJ~)2 Ek/ E~]/ EkE~ 

D.13k lJ~(1 + lJk)/ EkE~ 

D.33k (1 - lJ~)/ EZ (3.44) 

are the elastic constants for the transversely isotropic k-th layer. 

Substituting the components of the strain tensor (3.40) into the stress tensor (3.42) 

gIves 

(k) 
O"u 

(k) 
0"33 

AUk(CU + ~uZ + ~W-rPgk + kUXq!.pqk) 

+A12k(C22 + ~22Z + ~W-rPgk + k22 Xq!.pqk) + A 13kXq(}qk 

A12k(CU + ~uZ + ~~;)-rPgk + kUXq!.pqk) 

+AUk (C22 + ~22Z + ~~~-rPgk + k22Xq!.pqk) + A 13kXq(}qk 

A13k[cU + C22 + (~u + ~22)Z + (~W + ~W)-rPgk 

+(ku + k22 )Xq!.pqk] + A33kXq(}qk 

2Gk(C12 + ~12Z + ~~~)-rPgk + k12 Xq!.pqk) 

(k) ( 
O"i3 - Xt,iJtk 

where 9 = 1 ... 8, q = 1 ... 6 and t = 1,2,3. 

(3.45) 

The above equations define the components of the displacement vector and the 

stress and strain tensors at an arbitrary point in the k-th layer. The model equa

tions include: the system of independent unknown functions of the reference surface 

Ui, W, Xp (i,p = 1,2); the known functions Xg (g = 3 ... 8) which are determined from 

the given loads p- , p+ on the external surfaces; and the system of known functions 

of the normal coordinate z, incorporating the laws governing the variation of the 

components of the displacement vector and of the stress and strain tensors through 

the thickness of the package of layers. Clearly, the describing equations are not 

dependent on the thicknesses, stiffnesses and other properties of the layers. More

over, the equations of this model may consider layers with elastic characteristics 

that are constant or variable. Thus the model is comprehensive with respect to the 

configuration of the package of layers. 
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3.5 Equilibrium & Boundary Conditions 

The equations of equilibrium and the boundary conditions are determined using the 

Lagrange variational principle as follows: 

OU = orr + J J fv {e1~) + ~~ [O"i~) + O"~~)] - ~k 0"1;)} 00"1;) dV - oH = 0 (3.46) 

where orr is the variation of the potential energy of deformation, and oH is the 

variation of the work of the external forces. Using the components of the strain 

tensor in eqns. (3.40), we derive 

orr = J fs{l:n[O"~k)o(cij + K,ijZ + K,~;)1jJgk + kijXq<{)q) 

+O"};)O(Xt,i,Btk) + 0"1;)0(XqQqk)]dz }dS 

where i,j = 1,2, t = 1,7,8, q = 1 ... 6 and 9 = 1 ... 8. 

(3.47) 

Using notation similar to that of classical theory, the forces and moments are ex

pressed as integrals of the stresses, viz. 

N; . = jan O"~~) dz . 
'1 '1' ao 

M·· = jan O"~~) Z dz . 
'1 '1 , 

ao 
(3.48) 

Higher-order forces and moments which describe the influence of transverse shear 

and normal deformation are denoted 

N~1!) = jan O"~~)(,., k dz . 
'1 '1 TP , 

ao 

Q(1) = l an 
O"~k),B kdz . , ,3 I , 

ao 

where p = 1,2. 

Eqn. (3.46) may be expressed using these forces and moments as 

orr = J fs[NijOUi,j + Nijkijow - MijoW,ij - Mi1)oxP,ij 

+Ni1)kij oXp + Q!I)OXl,i + Q~p)OXp] dS 

where p = 1,2. 

(3.49) 

(3.50) 

The variation of the work of the external loads consists of the variation of the load 

HI which is applied to the bounding surfaces and that of the boundary forces H
2

• 

Therefore 

J is[p-; OU~I) + p; ou~n)]dS 

l {l:n 

[O"i~ ou~k) + O"i~) ou~k) + 0"17) oufk)]dz }dL 
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where s = 1,2,3; hand 1 are the normal and tangent to the boundary L of the shell; 

ul~, ul;) and ul7) are components of the stress tensor at an arbitrary point in the 

k-th layer on the edge L of the shell. 

Using the hypotheses (3.37) and (3.38), the variation of the work of the given loading 

is expressed as 

J !s(PiOUi + P30W + pr)OXp) dS 

-i (Ph OW + p~)OXp) dL (3.53) 

where the summation index P = 1,2, we denote h = i and the generalized loads are 

given by 

- + + Pi - Pi Pi 

-+ ++-++ P3 aOPi,i anPi,i P3 P3 

pr) tPp1(aO)p~i + tPpn(an)pti + <pp1(aO)P3 + <ppn(an)p3 

Ph - aop"i: + anpt 

p~) tPp1(aO)p"i: + tPpn(an)pt (3.54) 

Equating the variation of given functions to zero, we may express eqn. (3.52) as 

oH2 = i {N~hOUh + Nh10Ul - Mhhow,h .- Mzlp)oxp,h 

+(Mh1.1 + Qh)OW + [MZf~) + Q~(p)]oXp}dL 

-[Mh1.10W + MZ1(P)Oxp]f~ (3.55) 

where an asterisk denotes forces acting on the boundary of the shell, and we denote 

(3.56) 

The equations of equilibrium may now be obtained as 

N. ... +p' - 0 '3.3 , -

Mij•ij - kij Nij + P3 = 0 

M (l) Q(l) Q(l) (1) (1) .... + .. - - k ·· N .. +p - 0 
'3.'3 '.' 3 '3 '3 3-

M~?~. - Q(2) _ k .. N~?) + p(2) - 0 
'3.'3 3 '3 '3 3- (3.57) 

and the boundary conditions are given by 
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(Nhl - Nhl ) OUI = 0 

(Mhh,h + 2Mhl,1 + Ph - R~) OW = 0 

(Mhh - Mhh)OW,h = 0 

(Mn) - M~11») OX1,h = 0 

(M~~ - M~12») OX2,h = 0 

(M(1) + 2M(1) + Q(1) + p(1) _ R*(1») OX1 = 0 
hh,h hl,1 h h h 

(M(2) + 2M(2) + p(2) - R*(2») OX2 - 0 hh,h hl,1 h h -

where we denote the generalized reactions 

R~ = Q~ + Mhl,l; R~(p) = Q~(p) + M~,(,~) 

(3.58) 

(3.59) 

Modelling different constraints on the boundary of the shell is now considered on 

the basis of these boundary conditions. The first group of constraints corresponds 

to the four degrees of freedom Uh, UI, W, W,h. These external boundary conditions 

are modelling constraints belonging to the boundary of the two-dimensional region 

of the reference surface of the shell (z = 0), and determine in general the type of 

support for the shell. The second group of constraints given by the conditions (3.58) 

models the constraints on the boundary through the thickness of the shell as shown 

in Figure' 3.3. This group of internal boundary conditions concerns the modelling of 

transverse shear and normal deformation at the edges of the shell. The laminate is 

modelled more accurately when both types of boundary conditions are considered. 

Substituting the components of the stress tensor (3.45) into the integrals (3.48) 

and (3.49) yields the equations of elasticity, viz. the equations for the generalized 

forces and moments. Thus the in-plane forces may be expressed as 

Nu = Bcu + BC22 + BoKu + BoK22 

+BgK~'i) + BqKW + (kuCq + k22 Cq + Hq)Xq 

N22 ~ Nu 

N12 - (B - B)C12 + (Bo - BO)K12 + (Bg - Bg)K~~,> 

+k12 (Cq - Cq)Xq (3.60) 

where q = 1 ... 6 and 9 = 1 ... 8. The bending and twisting moments may be 

expressed as 

Mu - Bocu + Boc22 + DooKu + DOOK22 

+DogKW + DogK~~) + (kuCoq + k22 COq + Hoq)Xq 

M22 ~ Mu 
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the higher-order forces and moments as 

N
(p ) 
11 

N
(p ) 
22 

~ N(p) 
~ 11 

N
(p ) 
12 (Tp - Tp)C12 + (TpO - TpO)~12 

+(Tpq - Tpq)~W + kl2(Lpq - Lpq)Xq 

M
(p ) 
11 

- - (g) 
BpC11 + BpC22 + DpO~11 + DpO~22 + Dp9~11 

- (g) -) 
+Dp9~22 + (k11Cpq + k22 Cpq + Hpq Xq 

M
(p) ~ M(p) 
22 ~ 11 

Ml~ ) (Bp - .8p )CI2 + (DpO - DpO)~12 
- (g) -

+(Dpg - Dp9)~12 + kl2(Cpq - Cpq)Xq 

and the shear forces as 

Qi DtXt,i 

Q,(.I) D tXt,i 

Q~) - PP(C11 + C22) + PpO(~11 + ~22) 
+Ppg(~W + ~W) + Rpg(k11 + k22 )Xq + f4qXq 

where p = 1,2, t = 1,7,8, q = 1 ... 6 and 9 = 1 ... 8. 

(3.61 ) 

(3.62) 

(3.63) 

The equations for the generalized forces and moments include the integrated stiff

nesses of heterogeneous shells given by 
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B = ran Allkdz 
Jao 

Bo = I:on A 1lkzdz 

Bg = I:on Allk-rPgkdz 

Cq = I:on Allk<,Oqkdz 

Hq = I:on A13kaqkdz 

Doo = I:on A 12kZ
2
dz 

Dog = I:on A12k-rPgkZdz 

COg = I:on A 12k<,OqkZdz 

DpO = Dop 

Dpg = I:on Allk-rPpk-rPgkdz 

Cpq = I:on A 1lk-rPpk<,Oqkdz 

Hpq = I:on A13k-rPpkaqkdz 

Tp = I:on A12k<,Opkdz 

Tpo = I:on A12k<,OpkZdz 

Tpg = I:on A 12k<,Opk-rPgkdz 

Lpg = I:on A12k<,Opk<,Ogkdz 

Dt = I:on ftk dz 

Pp = I:on A13kapkdz 

Ppg = I:on A13kapk-rPgkdz 

14g = I:on A33kapkagkdz 

13 = ran A12kdz Jao 

130 = I:on A12kZdz 

Bg = I:on A 12k-rPgkdz 

Cq = I:on A12k<,Oqkdz 

Doo = I:on AllkZ2dz 

Dog = I:on Allk-rPgkZdz 

COg = I:on Allk<,OqkZdz 

Hoq = I:; A13kaqkZdz 

DpO = Dop 

Dpg = I:on A12k-rPpk-rPgkdz 

Cpq = I:on A12k-rPpk<,Oqkdz 

Tp = I:on Allk<,Opkdz 

T pO = I:on Allk<,OpkZdz 

Tpg = I:; Allk<,Opk-rPgkdz 

Lpg = I:on Allk<,Opk<,Ogkdz 

Ppg = I:on A13k<,Opkagkdz 

Dt = I~n ftk/3lkdz 

Ppo = I:on A13kapkzdz 

Rpg = I:on A13kapk<,Ogkdz 

(3.64) 

The system of governing differential'equations for heterogeneous composite shells is 

expressed in matrix form as 

[D]{V} = [Dp]{P} (3.65) 

where [D] is the matrix of differential operators on the vector of unknown functions 

(3.66) 

and [Dp] is the matrix of differential operators on the vector of given loads 

(3.67) 

The integrated stiffnesses, all of which are given in eqn. (3.64), appear in the matrices 

[D] and [Dp], in particular, as coefficients of differential operators. 

The order of the general system of differential equations (3.65) is sixteen. Therefore 

eight boundary conditions have to be satisfied on each edge of the shelL 

One of the advantages of this higher-order theory is that the equations for the 

tangential components of the displacement vector and the stress and strain tensors 
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consist of similar terms which separately take into account the states of pure bend

ing, transverse shear and normal deformation. This enables efficient analytical and 

numerical application of this theory using an independent but analogous approxima

tion of the components of the displacement vector which belong to these states. It 

also allows the experience gained in using analytical and numerical methods in sim

ilar applications but on the basis of classical theory to be extended to a nonclassical 

approach based on higher-order theory. 
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c 
CD 

o 
CD 

Xa= Z 

Figure 3.1. Geometry of laminated shell. 
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N 

W,1 Z 

X,1 'f'(Z) 

Figure 3.2. Kinematic model. 
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External Condi tions (z - 0) 

Moving Cla.mpeu, 

Hinge Clamped Moving Free End 

~. ~. 
~ 

~l~x. ~~ 
Constraints 

'U2 = N12 = 0 ; 'Ul = 'U2 = 0 ; Ul = U2 = 0 ; Nu - N12 - 0 ; 

·w = Mu = 0 w = WI = 0 , W,l = M ll,l1- MIl = M ll ,l1-

1-2M12 ,2 1- PI = 0 1-2M12,21- PI = 0 

Internal Conditions (z =f. 0) 

Flexible out Flexible in No 

of End Plane Rigid End Plane Constraints 

¥. ~. ~. ~ 
.. 

Z Z Z Z -+-x. -+-x. ~. ~. 
Constraints 

X - M(p) - O· 
XI' = XI',' = OJ M(l) 2M(1) M(l) - M(l) 1- 2M(1) 1'- 11 - , XI,l = 11,1 1- 12,2 11 - 11,1 12,2 

P = 1,2 P= 1,2 1-Q~l) 1- p~l) = 0 1-Q~l) 1- p1
l
) = 0 

M(2) M(2) M(2) - M(2) 1- 2M(2) X2,1 = 11,1 1- 2 12,2 
U - 11,1 12,2 

1-pi
2
) = 0 1-pi

2
) = 0 

Figure 3.3. Boundary Conditions. 
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3.6 Conclusions 

A higher-order theory of laminated shells and plates subject to both transverse shear 

and normal deformation is derived. The proposed theory is capable of analysing 

thick plates and shells with an arbitrary number of transversely isotropic layers 

which have significantly different elastic properties. Moreover, the layers may be 

constructed of materials which have low transverse rigidity. 

The kinematic hypotheses of the higher-order theory are not taken a priori but are 

formulated using an iterative technique where the classical Kirchhoff-Love hypothe

ses are assumed in the first iteration. Moreover, the new variables introduced by 

the theory have a clear physical meaning. 

The unknown functions in the system of governing differential equations are defined 

on an arbitrary reference surface in the package of layers, and the order of the 

governing equations is independent of the number of layers. 

Various loading and boundary conditions are considered which enable transverse 

shear and normal deformation to be fully taken into account, and the complete set 

of boundary conditions is derived. 
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Chapter 4 

Implementation of the 

Higher-Order Theory using 

Symbolic Computation 

4.1 Introduction 

The objective of this chapter is to implement the higher-order theory presented in 

Chapter 3 for the numerical analysis of plates and shells based on an analytical 

solution. 

The distribution functions and integrated stiffness constants of the higher-order 

theory involve multiple piecewise integrals through the thickness of the laminate, 

and in the general case these integrals cannot be expressed in an exact form for 

direct implementation into a computer program. Therefore symbolic computation 

is employed for the implementation of the higher-order theory. 

The general purpose Mathematica symbolic computation system is used to derive 

the distribution functions, calculate the integrated stiffness constants, solve the 

system of governing differential equations analytically and finally to evaluate the 

stress/strain state for a given laminate. 

In order to improve the computational efficiency of the analysis, special purpose 

symbolic computation routines are developed in the C programming language as 

an alternative to using a general purpose symbolic computation system such as 

M athematica. 
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Numerical results based on the higher-order theory are obtained for thick plates 

and shells subject to a sinusoidal load. Both homogeneous and sandwich structures 

are considered and the effect of normal deformation is investigated. 

4.2 Basic Equations and Some Analytical Solu

tions 

On the basis of the higher-order theory, the system of governing differential equa

tions for a rectangular shell with double curvature and subject to normal loading 

on both bounding surfaces, is derived as 

BUl,U + HB - B) Ul,22 + HB + B) U2,12 

-BO\1W,l + (Bku + Bk22 ) W,l 

-Bl \1Xl,l + HlXl,l + (ClkU + Clk22 ) Xl,l 

-B2 \1X2,1 + H2X2,1 + (C2kU + C2k22 ) X2,1 

= Bs \1 q~ - Hsq~ - (Csku + CS k22) q~ 

+Bs\1q1- Hsq1- (Csku + CS k22) q1 

HB + B) Ul,12 + BU2,22 + HB - B) U2,U 

-Bo\1w,2 + (Bk22 + Bku) W,2 

-Bl \1Xl,2 + Hl Xl,2 + (Cl k22 + ClkU) Xl,2 

-B2 \1X2,2 + H2X2,2 + (C2k22 + C2kU) X2,2 

= Bs \1 q~ - Hsq~ - (Csku + CS k22) q~ 

+ + -
+Bs\1q,2 - Hsq,2 - (Csku + CSk22) q~ 

Bo \1Ul,l - (Bku + Bk22 ) Ul,l - Bo \1U2,2 - (Bk22 + Bku) U2,2 

-Doo \1
2
w - [B(k:l + ki2) + 2Bkuk22] w 

+2(Boku + Bok22) W,U + 2(Bok22 + Boku) W,22 

-DOl \1
2
Xl + HOI \1Xl - [Cl(k:l + ki2) + 2Cl ku k22] Xl 

+[ (COl + Bl)ku + (COl + Bl )k22] Xl,U 

+[ (COl + Bdk22 + (COl + Bl)ku ] Xl,22 

-D02 \1
2

X2 + H02 \1X2 - [C2(k:l + k~2) + 2C2kUk22] X2 

+[ (C02 + B2)ku + (C02 + B2)k22] X2,U 

+[ (C02 + B2)k22 + (C02 + B2)ku] X2,22 
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= DOS'\l2q- - Hos'\lq-

-[CS(k;l + ki2) + 2Csku k22 - 1] q-

-[ (Cos + Bs)ku + (Cos + Bs)k22] q~l 

-[ (Cos + Bs)k22 + (Cos + Bs)ku ] q~2 

Bl '\lUl,l - HlUl,l - (ClkU + Cl k22 ) Ul,l 

+Bl '\lu2,2 - HlU2,2 - (Clk22 + ClkU) U2,2 

+DOl '\l2w - HOI '\lw - [Cl(k;l + ki2) + 2ClkUkd w 

+[ (COl + Bdku + (COl + Bdk22] W,U 

+[ (COl + Bl)k22 + (COl + Bl)ku ] W,22 

-Du '\l2Xl + (2Hu + Dd'\lXl 

-[Ru + Lu(k;l + ki2) + 2kuk22Lu + 2Pu(ku + k22 )] Xl 

+2( CukU + CUk22) Xl,U 

+2(Cu k22 + CukU) Xl,22 
2 -

-D12'\l X2 + (2H12 + P12 )'\lX2 
- 2 2 -

-[R12 + L12(kU + k22 ) + 2kuk22L12 

+(P12 + R12)(ku + k22] X2 

+[ (C12 + T12)ku + (C12 + T12 )k22] X2,U 

+[ (C12 + T12)k22 + (C12 + T12)ku] X2,22 . 

= DIS '\l2q- - (HIS + PlS)'\l q-

+[RlS - !;?u(ao) + (PIS + RlS)(ku + k22 ) 

22-
+LlS(kU + k22 ) + 2kuk22LlS] q-

-[ (CIS + TlS)ku + (CIS + TlS )k22] q~l 

-[ (CIS + TlS )k22 + (CIS + TlS)ku ] q22 , 
2 + - + +D16'\l q - (H16 + PI6)'\lq 

+[R16 - !;?In(an) + (P16 + R16)(ku + k22 ) 

2 2 - + 
+L16(ku + k22 ) + 2kuk22L16] q 

-[ (C16 + T16)ku + (C16 + T16 )k22] q!l , 

-[ (C16 + T16)k22 + (C16 + T16)ku ] q12 , 

B2'\lUl,1 - H21J},1 - (C2kU + C2k22 ) Ul,l 

+B2'\lU2,2 - H2U2,2 - (C2k22 + C2kU) U2,2 

2 [2 2 -+D02'\l w - H02'\lW - C2(kU + k22 ) + 2C2kUk22] w 
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+[ (C02 + B2)kn + (002 + B2)k22] W,n 

+[ (C02 + B2)k22 + (002 + B2)kn ] W,22 

-D2l V
2
Xl + (H2l + P2l)VXl 

-[R2l + L2l (k;1 + ki2) + 2knk22£2l 

+(P2l + R2l )(kn + k22 )] Xl 

+(C2l + T2l)kn + (021 + T21 )k22 ) Xl,n 

+(C2l + T21)k22 + (021 + T21)kn) Xl,22 

-D22V
2

X2 + (H22 + P22 )VX2 

-[R22 + L22(kil + k~2) + 2knk22£22 + 2P22 (kn + k22] X2 

+2(C22kn + 022k22) X2,n + 2(C22 k22 + Onk22) X2,22 

= D2SV2q- - (H2S + P2S )Vq-

+[R2S - 'P2l(aO) + (P2S + R2s)(kn + k22 ) 
22-

+L2s(kn + k22 ) + 2knk22L2S] q-

-[ (C2S + T2s)kn + (025 + T2S )k22] q;1l 

-[ (C2S + T2S)k22 + (025 + T2S)kn ] q~2 

+D26V 2q+ - (H26 + P26 )Vq+ 

+[R26 - 'P2n(an) + (P26 + R26)(kn + k22 ) 

2 2 - + 
+L26(kn + k22 ) + 2knk22L26] q 

- - + 
-[ (C26 + T26)kn + (C26 + T26)k22] q,n 

- - + 
-[ (C26 + T26)k22 + (C26 + T26)kn ] q22 , (4.5) 

where Ul (x), U2 (x) are the displacements of the reference surface; w( x) is the deflec

tion of the reference surface; Xl(X), X2(X) are the shear and compression functions 

introduced by the higher-order theory; q+(x), q-(x) are the normal loads on the 

bounding surfaces of the shell; kn, k22 are the curvatures of the shell; and the inte

grated stiffness constants are given in Chapter 3. 

In the case of a plate, i.e. kn = k22 = 0, the system (4.1)-(4.5) reduces to 

BUl,n + HB - B)Ul,22 + HB + B)U2,12 - Bo VW,l + HlXl,l - Bl VXl,l 

+H2X2,1 - B2VX2,1 = BsVq;1 - Hs q;1 + B6V q1- H6 q1 

HB + B)Ul,2l + BU2,22 + HB - B)U2,n - Bo VW,l + H1Xl,2 - Bl VXl,2 

+H2X2,2 - B2VX2,2 = BsVq~ - Hs q~ + B6Vq~ - H6 q~ 

-Bo VUI,1 - Bo VU2,2 - Doo V
2
w + DOl V

2
Xl - HOI VXl + D02 V 2X2 

-H02VX2 = q- + Hos Vq- DosV2q- + q+ + Hoo Vq+ DooV2q+ (4.6) 
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HI UI,I - BI VUI,I + HI U2,2 - BI VU2,2 + DOl V
2
w ~ HOI V W 

RUXI - (2Hu + DI)XI + Du V
2
Xl R l2 X2 - (H12 + P12 )X2 + D12 V

2
X2 

= (cpu(ao) - RIS)q- + (HIS + PIS) Vq- DIS V
2
q-

+( CPln( an) - RI6)q+ + (H16 + P16) V q+ Dl6 V
2
q+ 

H2UI,l - B2 VUI,I + H2U2,2 - B2 VU2,2 + D02 V
2
w - H02 Vw 

2 - - 2 
R2lXI - (H21 + P21 )XI + D21 V Xl R22 X2 - (H22 + P22)X2 + D22 V X2 

= (CP21(ao) - R 2S )q- + (H2S + P22 ) Vq- D2SV2q-

- + - + 2+ 
+(CP2n(an) - R26 )q + (H26 + P22 ) Vq D26V q 

In the present study, the system of governing equations is solved analytically using 

double trigonometric series approximations. The loading is expressed as 

00 00 

q± (X) = L L a!n sin AmXI sin "Yn X2 (4.7) 
m=l n=l 

where Am = m7r jbI, "Yn = n7r jb2 and bl x b2 are the dimensions of the shell. 

The hinged-supported boundary conditions are satisfied if the unknown functions 

. relating to the reference surface are given by 

00 00 

UI = L L Amn cos AmXI sin "Yn X 2 
m=ln=l 

00 00 

U2 L L Bmn sin AmXI cos "Yn X 2 
m=l n=l 

00 00 

w L L Cmn sin AmXI sin "Yn X 2 
m=ln=l 

00 00 

Xl L L Dmn sin AmXI sin "Yn X 2 
m=ln=l 

00 00 

X2 = L L Emn sin AmXI sin "Yn X 2 
m=ln=l 

(4.8) 

where Amn , B mn , Cmn , Dmn and Emn are constants chosen to satisfy the system of 

differential equations. 

Substituting eqns. (4.8) and (4.7) for a given pair (m, n) into the system of governing 

equations leads to a system of linear algebraic equations in terms of the constants 

Amn , Bmn , Cmn , Dmn and Emn. In the case of a plate with loading on the surface 

z = an only, i.e. q- = 0, q+ =I 0, the system of linear algebraic equations is given by 
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+EmnAm(H2 + B2/~ + B2A~) 
= -a~nAm(H6 + B6/~ + B6A~) 

-tAmn(B + BhnAm - tBmn(2B/~ + BA~ - BA~) 

+Emnln(H2 + B2/~ + B2A~) 
= -a!m/n(H6 + B6/~ + B6A~) 

CmnDoob~ + A~)2 + Dmnb~ + A~)(Hol + DOI/~ + D01A~) 
= a~n(1- H06/~ - Dos/! - HosA~ - 2Dos/~A~ + D06A~) 

Cmnb~ + A~) ( HoI + DOI/~ + D01A~) + EmnRI2 

+Dmnb~ + A~)(2Hll + DI + Dll/~ + DllA~) 

(4.9) 

- - 2 4 - 2 
= a~n(<PIn(an) - RI6 - (H16 + PI6hn - DI61n - (H16 + PI6 )Am 

- 2D16/~ A~ - DI6A~) 

-AmnAm(H2 + B2/~ + B2A~) - Bmnln(H2 + B2/~ + B2A~) 
- 2 2 - 2 2 

+DmnR2I + Emn(/n + Am)(H22 + P22 + D22/n + D22Am) 
- - 2 4 - 2 

= a!m(<P2n(an) - R26 - (H26 + P26hn - D261n - (H26 + P26 )Am 

- 2D26/~ A~ - D26A~) 

The solution (4.8) is then substituted into the kinematic hypotheses of higher-order 

theory given in Chapter 3 as 

U!k)(X, z) 

u~k)(x, z) 

Ui - W,iZ - Xg ,itPgk (i = 1,2; 9 = 1 ... 8) 

W + Xq<Pqk (q = 1 . . . 6) 

( 4.10) 

(4.11) 

where <Pk, <pqk are distribution functions derived in Chapter 3, and for case of normal 

loading only we have 

X3(X) = 0; X4(X) = 0; Xs(x) = q-; 

X6(X) = q+; x7Ax) = 0; XS,i(X) = 0; 
(4.12) 

Therefore using the hypotheses (4.10) and (4.11), the displacements and deflection 

at any point in the shell may be determined from the displacements and deflection 

of the reference surface. 

The components of the strain tensor are given in Chapter 3 as 

e(k) - 1:" • • + "' ··Z + ".(g).,. k + k··X ef) 
,j - ""3 ""3 "'ij 'l/g '3 qrqk 

(k) 
2ei3 = Xt,i/3tk 

(k) 
e33 = xqaqk 
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(g = 1. .. 8) 

(t = 1,7,8) 

(q=1. . . 6) 

(4.13) 



where we denote K~J ) = -Xg,ij, Q:qlr; and f3tk are distribution functions given in 

Chapter 3, and eij and Kij are the strains of the reference surface given by 

( 4.14) 

The components of the stress tensor are determined from eqn. (4.13) using Hooke's 

Law and are given in Chapter 3 as 

( 4.15) 

where AUIr;, A 121r;, A 131r;, A331r; are the stiffness parameters of the k-th layer (see 

Chapter 3). 

Solution Procedure 

In order to analyse a given structure on the basis of the above higher-order the

ory, firstly the distribution functions of the theory are derived and the integrated 

stiffnesses are calculated. 

Using the trigonometric approximations given in eqns. (4.7) and (4.8), the sys

tem of governing equations (4.1)-(4.5) is solved analytically for the displacements 

Ul (x), U2( x) of the reference surface, the deflection w( x) of the reference surface, and 

for the shear and compression functions Xl(X) and X2(X), respectively. 

From the kinematic hypotheses (4.10) and (4.11) the displacements and deflection 

through the thickness of the laminate at any point on the shell may be deter

mined from the solution (4.8) and the distribution functions tPglr;, cpqlr; . Finally from 

eqns. (4.13) and (4.15) the stress-strain state of the shell may be determined. 

4.3 Implementation using Mathematica 

In this section, the higher-order theory is implemented using the Mathematica sym

bolic computation system. This involves four distinct tasks: the first task derives 

the distribution functions defined by the higher-order theory; the second calculates 

the integrated stiffness constants using the derived distribution functions; the third 
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solves the system of governing equations using the integrated stiffness constants cal

culated by the second task; and the fourth calculates the displacements, deflections, 

strains and stresses through the shell using the solution of the third task and the 

distribution functions derived by the first task. 

4.3.1 Derivation of Distribution Functions 

The first task in the Mathematica application is the derivation of the distribution 

functions defined by the higher-order theory. In general, these distribution functions 

are multiple piecewise integrals which involve the "layer integral" operator 

( 4.16) 

where am :::; ak-l :::; Z < ak (i.e., z is a point in the k-th layer of a laminate and 

m < k), and ao, al, ... an are the coordinates of the interfaces of a laminate with 

n layers. Note that z is the coordinate through the thickness of the laminate and 

z = 0 at the reference surface. For the case z < am (ie. k :::; m), the layer integral 

operator is expressed as 

(4.17) 

In the higher-order theory, the lower limit of the layer integrals is either z = 0 or z = 

ao. In the implementation of the theory, an artificial interface is introduced at the 

coordinate am = 0 if the reference surface does not coincide with a laminae interface. 

This simplifies the program since the lower limit of integration may specified by an 

index, in particular 0 for ao, and m for am = o. 

The distribution functions are the higher-order theory are given in Chapter 3 as 

fZ(z) = 1% EOkZdz 
ao 

f4k(Z) = FaDJ2/ DJl - F2k ; fSk(Z) = Fa DJ3 / Djl - F3k 

f6k(Z) = Fa/ Djl - 1; f7k(Z) = Fa/ Dj1 
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alk(Z) = lJ~kZ; a2k(Z) = -lJ~k 

aqk(Z) = fgk/ E~ (q = 3 ... 6, 9 =q + 1) 

c,oqk( z) = 10% aqkdz (q = 1. .. 6) 

c,ok(Z) = flk/G~; c,07k(Z) = - hk/G~; c,oSk(Z) = - hk/G~ 

.,plk(Z) = 10% (c,olk - c,ok)dz 

.,pgk( z) = 10% c,ogkdz (9 = 2 ... 8) (4.18) 

It is noted that the first two functions, viz. fk(Z) and fk(z), are integrals whose 

integrands contain the material stiffness parameter EOk. This parameter is deter

mined from the elastic characteristics of the k-th layer. For a composite laminate, 

EOk is constant through each layer, but depends on the layer number k. Only in 

the case of a homogeneous shell is EOk constant through the entire thickness of the 

shell. Now consider the integral fZ(z) = J:o EOkzdz. This notation is expanded as 

J;(z) = 1% EOk(d( + I: l{1.r Eor(d( 
{1./O-1 r=l (1.r-1 

k-l 

- tEOk(z2 - aLl) + :L tEor(a~ - a~_l) (4.19) 
r=l 

where z is a coordinate in the k-th layer. It is noted that fZ(z) is defined only on the 

domain ak-l :::; z :::; ak. However, the notation fk(z) represents a set of n functions 

J; (z ), f; (z) ... f: ( z) for the n layers in the laminate. Therefore the function fk (z ) 

is considered to be discontinuous with respect to the "argument" k. Moreover, the 

argument z may be considered to define k since ak-l :::; z :::; ak and therefore fk(z) 

may be considered to be discontinuous with respect to its argument z, in particular, 

at the coordinates all a2 ... an-l. 

The entire set of distribution functions is built up from the functions fk(Z) and fk(z) 

and it is clear that all of the distribution functions in eqns. (4.18) may be consid

ered to be discontinuous at the laminae interfaces since each distribution function 

represents a set of n functions. 

The distribution functions in eqns. (4.18), expressed using the layer integral nota

tion, seem uncomplicated. However, every integral must be integrated piecewise 

and many of the distribution functions such as cPqle and .,pgle .are multiple piecewise 
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integrals. The complexity of such integrals increases dramatically as the number of 

layers in the laminate increases. Even for a three-layered shell, the task of expand

ing the functions into exact formulas for numerical computation is too overwhelming 

to be attempted without the aid of symbolic computation. 

In the Mathematica application, the layer integral operator J:
m 

(where ak-l ~ z ~ 

ak) is defined by the code 

LayInt[fn_,m_Integer,k_Integer,z_] := Block[{r,zeta}, 

Return[If[m < k, 

Integrate[fn[k,zeta],{zeta,a[k-1],z}] + 

Sum[Integrate[fn[r,zeta],{zeta,a[r-1] ,a[r]}],{r,m+1,k-1}], 

If[m >= k, 

Integrate[fn[k,zeta],{zeta,a[k],z}] + 

Sum[Integrate[fn[r,zeta],{zeta,a[r],a[r-1]}],{r,k+1,m}], 

Integrate[fn[k,zeta],{zeta,a[k],z}] 

]]]]; 

where the argument fn is a function which takes two arguments, namely a z

coordinate ( and the corresponding layer number r such that ar-l ~ ( ~ ar • 

The distribution functions given in eqns. (4.18) are defined using the LayInt proce

dure as follows. 

fsi [k_Integer ,z_] = eO[k] z; 

fs [k_Integer, z_] = LayInt[fsi,O,k,z]; 

fi [k_Integer, z_] = eO [k] ; 

f [k_Integer ,z_] = LayInt[fi,O,k,z]; 

cbf = f[n,a[n]]; cbf1 = fs[n,a[n]]; 

f1 [k_Integer,z_] 

f2 [k_Integer,z_] 

f3 [k_Integer,z_] 

F1[k_Integer,z_] = 
F2[k_Integer,z_] = 
F3[k_Integer,z_] = 

= fs[k,z] - f[k,z] cbf1/cbf; 

= f[k,z]/cbf - 1; 

= f [k,z] /cbf; 

LayInt[f1,O,k,z]; 

LayInt[f2,O,k,z]; 

Laylnt[f3,O,k,z]; 

cdf1 = Together[F1[n,a[n]]]; 

cdf2 = Together[F2[n,a[n]]]; 
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cdf3 = Together[F3[n,a[n]]]; 

f4[k_Integer,z_] = F1[k,z] cdf2/cdf1 - F2[k,z]; 

fS[k_Integer,z_] = Fl[k,z] cdf3/cdf1 - F3[k,z]; 

f6[k_Integer,z_] = F1[k,z]/cdf1 - 1; 

f7[k_Integer,z_] = F1[k,z]/cdf1; 

f8[k_Integer,z_] = f[k,z] - F1[k,z] cbf/cdf1; 

f9[k_Integer,z_] = fs[k,z] - F1[k,z] cbf1/cdf1; 

alp1[k_Integer,z_] = nuO[k] z; 

alp2[k_Integer,z_] = -nuO[k]; 

alp3[k_Integer,z_] = f4[k,z]/e2[k]; 

alp4[k_Integer,z_] = fS[k,z]/e2[k]; 

alpS[k_Integer,z_] = f6[k,z]/e2[k]; 

alp6[k_Integer,z_] = f7[k,z]/e2[k]; 

vphi1[k_Integer,z_] = Laylnt[alp1,m,k,z]; 

vphi2[k_Integer,z_] = Laylnt[alp2,m,k,z]; 

vphi3[k_Integer,z_] = Laylnt[alp3,m,k,z]; 

vphi4[k_Integer,z_] = Laylnt[alp4,m,k,z]; 

vphiS[k_Integer,z_] = Laylnt[alpS,m,k,z]; 

vphi6[k_Integer,z_] = Laylnt[alp6,m,k,z]; 

vphi [k_Integer,z_] = f1[k,z]/g2[k]; 

vphi7[k_Integer,z_] = -f2[k,z]/g2[k]; 

vphi8[k_Integer,z_] = -f3[k,z]/g2[k]; 

psi1[k_Integer,z_] = Laylnt[vphi1,m,k,z] - Laylnt[vphi,m,k,z]; 

psi2[k_Integer,z_] = Laylnt[vphi2,m,k,z]; 

psi3[k_Integer,z_] = Laylnt[vphi3,m,k,z]; 

psi4[k_Integer,z_] = Laylnt[vphi4,m,k,z]; 

psiS[k_Integer,z_] = Laylnt[vphiS,m,k,z]; 

psi6[k_Integer,z_] = Laylnt[vphi6,m,k,z]; 

psi7[k_Integer,z_] = Laylnt[vphi7,m,k,z]; 

psi8[k_Integer,z_] = Laylnt[vphi8,m,k,z]; 

where n is the number of layers, a[O], a[l] ... a[n] are the coordinates of the 

laminae interfaces, and m is the index of the laminae interface that coincides with 

the reference surface such that a em] = o. Also, eO [k] , nuO [k] and g2 [k] are elastic 
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characteristics of the k-th layer. 

The above Mathematica code defines the distribution functions for a generallami

nate. In order the derive the distribution functions for the three-layered symmetri

cally laminated shell, we define the following elastic and geometric constants 

n = 4; 

m = 2; 

a[O] 

a[l] 

a[2] 

a[3] 

a[4] 

el [1] 

e2[lJ 

el [2] 

e2[2J 

el [3J 

e2[3] 

el [4J 

e2[4] 

nuO 

eO 

del 

delll 

del12 

del13 

de133 

aU 

a12 

a13 

a33 

= - h/2; 

= - h hr; 

= 0 ; 

= h hr; 

= h/2; 

= bel; nul [lJ = bnul; gl [lJ = bgl; 

= be2; nu2 [lJ = bnu2; g2[lJ = bg2; 

= fel; nul [2] = fnul; gl [2] = fgl; 

= fe2; nu2 [2J = fnu2; g2[2J = fg2; 

= fel; nul [3J = fnul; gl [3J = fgl; 

= fe2; nu2 [3] = fnu2; g2[3] = fg2; 

= bel; nul [4J = bnul; g1[4J = bgl; 

= be2; nu2 [4] = bnu2; g2[4] = bg2; 

[k_Integer] = el[k] nu2[k] / (e2[k] (1 - nul[kJ)); 

[k_IntegerJ = el[kJ / (1 - nul[k]-2); 

[k_Integer] = (1 + nul[k]) (1 - nul[k] -

2 nu2[kJ-2 el[kJ/e2[kJ) / (el [kJ -2 e2 [k]) ; 

[k_IntegerJ = (1 - nu2[k]-2 el[k]/e2[k])/(el[k] e2[k]); 

[k_Integer] = (nul[k] + nu2[k]-2 el[k]/e2[k]) / (el[k] e2 [k]) ; 
[k_Integer] = nu2[k] (1+ nul[k]) / (el[k] e2 [k]) ; 

[k_Integer] = (1 - nul[k]-2) / el[k]-2; 

[k_IntegerJ = delll[kJ/del[k]; 

[k_Integer] = del12[k]/del[k]; 

[k_Integer] = del13[k]/del[k]; 

[k_IntegerJ = de133[kJ/del[kJ; 

where h is the thickness of the shell and hr is a parameter which determines the 

thickness of the core layer (0 ~ hr ~ t). Also, el [k], e2 [kJ, nul [k], nu2 [k] , 

gl [kJ, g2 [kJ are the elastic characteristics E, E', 11, 11', G, G' of the transversely 
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isotropic k-th layer; and in particular bel, be2, bnul, bnu2, bgl, bg2 are the elastic 

characteristics of the surface (or bearing) layers of the sandwich shell, and fel, fe2, 

fnul, fnu2, fgl, fg2 are the elastic characteristics of the core (or filler) layer. 

Once the material and geometric parameters have been specified, the distribution 

functions may be derived for each layer by the code 

Do [fl [r, z_] = fl [r ,z] , {r, 1 ,n}] 

Do [f2 [r ,z_] = f2 [r ,z] , {r,l,n}] 

Do[f3[r,z_] = f3 [r ,z] , {r, 1 ,n}] 

Do [Fl [r ,z_] = F1[r ,z] , {r,l,n}] 

Do [F2 [r , z_] = F2 [r ,z] , {r,l ,n}] 

Do [F3 [r , z_] = F3[r,z], {r,l,n}] 

Do[f4[r,z_] = f4[r,z], {r,l,n}] 

Do[f5[r,z_] = f5[r,z], {r,l,n}] 

Do[f6[r,z_] = f6[r,z], {r,l,n}] 

Do [alpl [r ,z_] = alpl [r ,z] , {r,l,n}] ; 

Do [alp2[r,z_] = alp2[r,z], {r, 1 ,n}] ; 

Do [alp3[r,z_] = alp3 [r ,z] , {r, 1 ,n}] ; 

Do [alp4[r,z_] = alp4 [r ,z] , {r,l ,n}]; 

Do [alp5 [r, z_] = alp5 [r ,z] , {r, 1 ,n}] ; 

Do [alp6[r,z_] = alp6 [r ,z] , {r,l,n}] ; 

Do[betal[r,z_] = betal[r,z],{r,l,n}] 

Do[beta7[r,z_] = beta7[r,z],{r,l,n}] 

Do[beta8[r,z_] = beta8[r,z],{r,l,n}] 

Do[vphil[r,z_] = vphil[r,z],{r,l,n}]; 

Do[vphi2[r,z_] = vphi2[r,z],{r,l,n}]; 

Do[vphi3[r,z_] = vphi3[r,z],{r,l,n}]; 

Do[vphi4[r,z_] = vphi4[r,z],{r,l,n}]; 

Do[vphi5[r,z_] = vphi5[r,z],{r,l,n}]; 

Do[vphi6[r,z_] = vphi6[r,z],{r,l,n}]; 

Do[psil[r,z_] = psil[r,z], {r,l,n}]; 

Do [psi2[r,z_] = psi2[r,z], {r,l,n}]; 
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Do [psi3 [r, z_] = psi3[r,z] , {r, 1 ,n}] ; 

Do [psi4 [r ,z_] = psi4[r,z], {r, 1 ,n}] ; 

Do [psi5 [r, z_] = psi5[r,z], {r,l ,n}] ; 

Do [psi6 [r, z_] = psi6[r,z] , {r,l,n}] ; 

Do [psi 7 [r, z_] = psi7[r,z] , {r, 1 ,n}] ; 

Do [psi8 [r ,z_] = psi8[r,z] , {r, 1 ,n}] ; 

The computational efficiency of the above code heavily depends on the sequence of 

the derivations. For example, because functions "pgk are piecewise integrals of the 

functions r.pqk, the latter are derived first so that they are ready to be employed in 

the derivations of the functions "pgk. If the sequence were reversed, the functions 

r.pqk would be derived by Mathematica repetitively. 

These distribution functions are required for the calculation of the integrated stiff

ness constants which appear in the system of governing equations, and for the deter

mination of the displacements, deflection, strains and stresses through the thickness 

of the laminate. 

4.3.2 Derivation of Integrated Stiffnesses 

The second task of the Mathematica application is the calculation of the integrated 

stiffnesses using the distribution functions derived by the first task. 

The integrated stiffness constants are definite layer integrals through the thickness 

of the laminate from ao to an. Their integrands contain stiffness parameters which 

depend on the layer number and distribution functions which are "discontinuous" at 

the laminae interfaces. In general, the integrated stiffnesses are multiple piecewis~ 

integrals which even for a three-layered laminate are too tedious to calculate exactly 

without the aid of symbolic computation. 
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For example, consider the integrated stiffnesses 

B = I:on Allkdz 13 = I:; A 12kdz 

Bo = I:on Allkzdz Bg . I:on AllktPgkdz 

Doo = I:an 
AllkZ2dz Doo = I:on A12kZ2dz 

Dog = I:on A1lktPgkZdz Dpg = I:on AllktPpktPgkdz ( 4.20) 

Hq = I:on A13kaqkdz Hoq = I:on A13kaqkZdz 

Hpq = I:on A13ktPpkaqkdz Dl = I:on flkf3lk dz 

Ppg = I:on A13kapktPgkdz 14g = I:on A33kapk<Pqkdz 

Clearly the integrals B, 13, Bo and Doo may be readily calculated for any given 

laminate as 

n 

B LAllr(ar - ar-l) 
r=l 

n 

13 - LA12r(ar - ar-l) 
r=l 

n 

Bo L tAllr( a; - a;_l) 
r=l 

n 

Doo L tAllr( a~ - a~_l) (4.21 ) 
r=l 

However, with the exception of those given in eqns. (4.21), the integrated stiffness 

contain distribution functions such as aqk' <pqk and tPgk, and in general require 

substantial symbolic processing in order to be calculated exactly. 

In the Mathematica application, the integrands of the stiffness constants (4.20) which 

appear in the system (4.6) are defined by the code 

cib [k_Integer .z_] = a11 [k]; 

cibb [k_Integer . z_] = a12 [k] ; 

cibO [k_Integer. z_] = all[k] z· • 
cibOb [k_Integer . z_] = a12 [k] z; 

cidOO [k_Integer . z_] = a11 [k] z-2; 

cibl [k_Integer . z_] = a11 [k] psil [k.z] ; 

cib2 [k_Integer . z_] = a11 [k] psi2[k.z]; 

cib5 [k_Integer . z_] = all [k] psi5[k.z]; 

cib6 [k_Integer . z_] = all [k] psi6[k.z]; 
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ciblb [k_Integer, z_] = a12 [k] psi! [k,z] ; 

cib2b [k_Integer ,z_] = a12 [k] psi2 [k,z] j 

cib5b [k_Integer, z_] = a12[k] psi5[k,z]j 

cib6b [k_Integer , z-:] = a12 [k] psi6[k,z]j 

cidOl [k_Integer , z_] = a11 [k] psi! [k,z] z· , 

cid02 [k_Integer , z_] = al1[k] psi2 [k,z] Zj 

cid05 [k_Integer , z_] = a11 [k] psi5 [k,z] z· , 

cid06 [k_Integer , z_] = a11 [k] psi6 [k,z] z· , 

cidll [k_Integer , z_] = a11 [k] psil [k,z] psil [k,z] ; 

cid12 [k_Integer , z_] = a11 [k] psi! [k,z] psi2 [k,z] j 

cid22 [k_Integer , z_] = a11 [k] psi2 [k,z] psi2 [k,z] ; 

cid15 [k_Integer , z_] = a11 [k] psi! [k,z] psi5 [k,z] ; 

cid16 [k_Integer , z_] = a11 [k] psil[k,z] psi6 [k,z] j 

cid25 [k_Integer , z_] = a11 [k] psi2 [k,z] psi5 [k,z] ; 

cid26 [k_Integer , z_] = a11 [k] psi2 [k,z] psi6[k,z]; 

cihl [k_Integer , z_] = a13 [k] alpl[k,z]; 

cih2 [k_Integer , z_] = a13 [k] alp2[k,z]; 

cih5 [k_Integer , z_] = a13 [k] alp5[k,z]; 

cih6 [k_Integer , z_] = a13[k] alp6[k,z]; 

cihOl [k_Integer , z_] = a13[k] alpl [k,z] z· , 

cih02 [k_Integer , z_] = a13 [k] alp2 [k,z] z· , 
cih05 [k_Integer , z_] = a13 [k] alp5[k,z] z· , 
cih06 [k_Integer , z_] = a13[k] alp6[k,z] z; 

cihll [k_Integer , z_] = a13[k] psi! [k,z] alpl [k,z] ; 

cih12 [k_Integer , z_] = a13 [k] psi! [k,z] alp2 [k,z] ; 

cih21 [k_Integer , z_] = a13[k] psi2 [k,z] alpl [k,z] ; 

cih22 [k_Integer , z_] = a13[k] psi2 [k,z] alp2[k,z]; 

cih15 [k_Integer , z_] = a13 [k] psi! [k,z] alp5 [k,z] ; 

cih16 [k_Integer , z_] = a13[k] psi! [k,z] alp6[k,z]; 

cih25 [k_Integer , z_] = a13[k] psi2 [k,z] alp5 [k,z] ; 

cih26 [k_Integer , z_] = a13[k] psi2 [k,z] alp6[k,z]; 

Before any numerical computations are performed, the geometric and material pa-
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rameters of a given laminate are specified. For example, 

h = 1/100 

hr = 1/4 

bel = 2 10
A

5 

be2 = 2 10
A

5 

bnul = 3/10 

bnu2 = 3/10 

fel = 2 10
A

3 

fe2 = 2 10
A

3 

fnul = 3/10 

fnu2 = 3/10 

The above code specifies that the sandwich shell is lcm thick and the core layer is 

half the total thickness of the shell. The surface and core layers of the sandwich 

shell are defined to be isotropic (E = E') and the surface layers are two orders of 

magnitude of stiffer than the core layer. 

The stiffness constants may then be calculated for the given laminate using the 

Laylnt operator as follows 

cb = N[Laylnt[cib, o ,n , a En] ]] ; 

ebb = N [Laylnt [cibb, o ,n , a En] ]] ; 

cbO = N[Laylnt[ci bO, o ,n , a En] ]] ; 

cbl = N[Laylnt[cibl, o ,n , a En] ]] ; 

cb2 = N[Laylnt[ci b2, o , n , a En] ] ] ; 

cb5 = N[Laylnt[ci b5, o , n , a En] ]] ; 

cb6 = N[Laylnt[cib6, o , n , a En] ]] ; 

cbOb = N[Laylnt[ci bOb, o • n • a En] ]] ; 

cblb = N[Laylnt[ciblb, o ,n , a En] ]] ; 

cb2b = N[Laylnt[cib2b, o ,n , a En] ]] ; 

cb5b = N[Laylnt[cib5b, o ,n , a En] ]] ; 

cb6b = N[Laylnt[cib6b, o ,n , a En] ]] ; 

4.3.3 System of Governing Equations 

The third task of the Mathematica application is to solve the system of govern

ing differential equations. The trigonometric approximations given in eqns. (4.7) 
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and (4.8) are employed to solve the system analytically. This leads to a system of 

algebraic equations for the constants Amn, Bmn, Cmn , Dmn and Emn in the analytical 

solution (4.8). 

In order to simplify the code, the following differential operators are defined: 

Dn[f_] := D[f,xl ,xl] + D [f , x2 , x2] 

Dnn[f_] := Dn[Dn [f]] 

Dl [f_] := D[f,xl] 

D2 [f_] := D[f ,x2] 

Dl1 [f_] := D[f ,xl,xl] 

D12 [f_] := D[f,xl,x2] 

D21 [f_] := D[f,x2,xl] 

D22 [f_] : = D [f , x2 , x2] 

Dn1[f_] : = D [D [f ,xl] ,xl,xl] + D[D[f,xl],x2,x2] 

Dn2 [f_] := D[D[f,x2],xl,xl] + D[D[f,x2] ,x2,x2] 

The trigonometric approximations (4.8) for the unknown functions in the system of 

governing equations are defined for a given pair (m, n) by the code 

ul = Amn Cos [ lam xl] Sin[gam x2] 

u2 = Bmn Sin [lam xl] Cos [gam x2] 

w = Cmn Sin [lam xl] Sin[gam x2] 

chii = Dmn Sin[lam xl] Sin[gam x2] 

chi2 = Emn Sin [lam xl] Sin[gam x2] 

where lam and gam are symbols for Am and In respectively. 

The loading q± (x) in eqn. (4.7) is defined by the code 

q3p = amn$p Sin [lam xl] Sin [gam x2] 

q3m = amn$m Sin[lam xl] Sin [gam x2] 

The left-hand sides of the equations in system (4.6), for example, are defined by the 

code 

eql = cb Dll[ul] + (cb - cbb)/2 D22[ul] + 

(cb + cbb)/2 D12[u2] + (-cbO) Dnl[w] + 

(-cbl) Dnl[chil] + chl Dl[chil] + 

(-cb2) Dnl[chi2] + ch2 Dl[chi2] 

eq2 = (cb + cbb)/2 D2l[ul] + cb D22[u2] + 

(cb - cbb)/2 Dll[u2] + (-cbO) Dn2[w] + 
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(-cbl) Dn2[chil] + chl D2[chil] + 

(-cb2) Dn2[chi2] + ch2 D2[chi2] 

eq3 = (-cbO) Dnl[ul] + (-cbO) Dn2[u2] + cdOO Dnn[w] + 

cdOl Dnn[chil] + (-chOl) Dn[chil] + 

cd02 Dnn[chi2] + (-ch02) Dn[chi2] 

eq4 = (-cbl) Dnl[ul] + chl Dl[ul] + (-cbl) Dn2[u2] + 

chl D2[u2] + cdOl Dnn[w] + (-chOl) Dn[w] + 

cdll Dnn[chil] + (-chsll) Dn[chil] + crbll chil + 

cd12 Dnn[chi2] + (-chs12) Dn[chi2] + crb12 chi2 

eq5 = (-cb2) Dnl[ul] + ch2 Dl[ul] + (-cb2) Dn2[u2] + 

ch2 D2[u2] + cd02 Dnn[w] + (-ch02) Dn[w] + 

cd2l Dnn[chil] + (-chs2l) Dn[chil] + 

crb2l chil + cd22 Dnn[chi2] + 

(-chs22) Dn[chi2] + crb22 chi2 

and the right-hand sides by 

rl = cb6 Dnl[q3p] - ch6 Dl[q3p] 

r2 = cb6 Dn2[q3p] - ch6 D2[q3p] 

r3 = q3p + ch06 Dn[q3p] - cd06 Dnn[q3p] 

r4 = crbs16 q3p + chs16 Dn[q3p] - cd16 Dnn[q3p] 

r5 = crbs26 q3p + chs26 Dn[q3p] - cd26 Dnn[q3p] 

rl += cb5 Dnl[q3m] - ch5 Dl[q3m] 

r2 += cb5 Dn2[q3m] - ch5 D2[q3m] 

r3 += q3m + ch05 Dn[q3m] - cd05 Dnn[q3m] 

r4 += crbs15 q3m + chs15 Dn[q3m] - cd15 Dnn[q3m] 

r5 += crbs25 q3m + chs25 Dn[q3m] - cd25 Dnn[q3m] 

The expressions for the left-hand sides of the system of equations are simplified into 

algebraic expressions in terms of the unknowns Amn , Bmn, Cmn , Dmn and Emn by 

the code 

eqal = Cancel[eql/Cos[lam xl]/Sin[gam x2]] 

eqa2 = Cancel[eq2/Sin[lam xl]/Cos[gam x2]] 

eqa3 = Cancel[eq3/Sin[lam xl]/Sin[gam x2]] 

eqa4 = Cancel[eq4/Sin[lam xl]/Sin[gam x2]] 

eqa5 = Cancel[eq5/Sin[lam xl]/Sin[gam x2]] 
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and the right-hand sides by 

ra1 = Cancel [r1/Cos[lam x1]/Sin[gam x2]] 

ra2 = Cancel[r2/Sin[lam x1]/Cos[gam x2]] 

ra3 = Cancel[r3/Sin[lam x1]/Sin[gam x2]] 

ra4 = Cancel[r4/Sin[lam x1]/Sin[gam x2]] 

ra5 = Cancel[r5/Sin[lam x1]/Sin[gam x2]] 

The system of algebraic equations may now be solved by the code 

amn$p = -qO 

amn$m = 0 

lambda[mw_,nw_] := mw Pi/a1; 

gamma [mw_,nw_] := nw Pi/a2; 

mw = nw = 1; 

lam = lambda[mw,nw]; 

gam = gamma[mw,nw] 

soln = N[Solve[{eqa1 == ra1, eqa2 -- ra2, eqa3 == ra3, 

eqa4 == ra4, eqa5 == ra5}, 

{Amn,Bmn,Cmn,Dmn,Emn} 

]] ; 

{Ac[mw,nw]} = Amn /. soln; 

{Bc[mw,nw]} = Bmn /. solnj 

{Cc[mw,nw]} = Cmn /. soln; 

{Dc[mw,nw]} = Dmn /. solnj 

{Ec[mw,nw]} = Emn / . soln; 

where it is specified that a sinusoidal load of amplitude qO is acting on the top 
surface of the shell. 

Finally, the solution is defined as 

u1[x1_ ,x2_] := Ac[mw,nw] Cos [lam xi] Sin[gam x2]j 
u2 [xC ,x2_] := Bc[mw,nw] Sin [lam xi] Cos[gam x2]j 
w[xC,x2_] := Cc[mw,nw] Sin [lam xi] S in [gam x2] ; 
chi1 [xC ,x2_] := Dc[mw,nw] Sin [lam xi] Sin [gam x2] ; 
chi2 [x1_ ,x2_] := Ec[mw,nw] Sin [lam xi] Sin[gam x2]j 
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4.3.4 Stresses and Strains 

The fourth task of the Mathematica application is the calculation of the displace

ments, deflection, strains and stresses through the thickness of the laminate from 

the solution (4.8) using the kinematic hypotheses of the higher-order theory. 

The kinematic hypotheses given in eqns. (4.10) and (4.11) and the strains given in 

eqns. (4.13) include the solution (4.8) which is determined by the third task of the 

application, and distribution functions of the higher-order theory which are derived 

by the first task. 

In order to simplify the code, a notation for the derivatives of Ui (x), W, Xgk are 

defined, for example 

w$l [xC ,x2_] := D[w[xdl,xd2],xdl] /. {xdl -) xl, 

w$2 [xC ,x2_] := D[w[xdl,xd2] ,xd2] /. {xdl -) xl, 

w$11 [xl_ ,x2_] := D[w[xdl,xd2] ,xdl,xdl] /. {xdl -) xl, 

w$12 [xC ,x2_] := D[w[xdl,xd2],xdl,xd2] /. {xdl -) xl, 

w$22[xl_,x2_] := D[w[xdl,xd2],xd2,xd2] /. {xdl -) xl, 

ul$1[xl_,x2_] := D[ul[xdl,xd2],xdl] /. {xdl -) xl, 

ul$2[xl_,x2_] := D[ul[xdl,xd2],xd2] /. {xdl -> xl, 

u2$1 [xC ,x2_] := D[u2[xdl,xd2],xdl] /. {xdl -> xl, 

u2$2[xl_,x2_] := D[u2[xdl,xd2],xd2] /. {xdl -) xl, 

chil$l [xl_ ,x2_] := D[chil[xdl,xd2],xdl] /. {xdl -> xl, 

chi2$1 [xl_ ,x2_] := D[chi2[xdl,xd2],xdl] / . {xdl -> xl, 

chi5$1 [xC ,x2_] := D[chi5[xdl,xd2],xdl] /. {xdl -> xl, 

chi6$1 [xl_ ,x2_] := D[chi6[xdl,xd2],xdl] / . {xdl -> xl, 

where, for example, chi2$1 denotes the derivative X2,1. 

The displacements (4.10) and deflection (4.11) are defined by 

ulk[xl_,x2_,k_Integer,z_] = Expand[ 

ul[xl,x2] - w$1[xl,x2] z -

chil$1[xl,x2] psil[k,z] - chi2$1[xl,x2] psi2[k,z] 

chi5$1[xl,x2] psi5[k,z] - chi6$1[xl,x2] psi6[k,z] 

] ; 

u2k[xl_,x2_,k_Integer,z_] = Expand[ 

u2[x1,x2] - w$2[xl,x2] z -

chil$2[xl,x2] psil[k,z] - chi2$2[xl,x2] psi2[k,z] _ 
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chi5$2[xl,x2] psi5[k,z] - chi6$2[xl,x2] psi6[k,zl 

] ; 

u3k[xl_,x2_,k_Integer,z_] := 

v[xl,x2] + chil[xl,x2] vphil[k,z] + chi2[xl,x2] vphi2[k,z] + 

chi5[xl,x2] vphi5[k,z] + chi6[xl,x2] vphi6[k,z] 

The strains of the reference surface given by eqns. (4.14) are calculated by the code 

serll[xl_,x2_] := N[(ul$1[xl,x2] + ul$1[xl,x2])/2 + kll v[xl,x2]]; 

ser22 [xl_,x2_] := N[(u2$2[xl,x2] + u2$2[xl,x2])/2 + k22 v[xl,x2]]; 

ser12[xl_,x2_] := N[(ul$2[xl,x2] + u2$1[xl,x2])/2 + k12 v[xl,x2]]; 

skrll[xl_,x2_] := N[-v$ll[xl,x2]]; 

skr22[xl_,x2_] := N[-v$22[xl,x2]]; 

skr12[xl_,x2_] := N[-v$12[xl,x2]]; 

skr2l [xl_,x2_] := N[-v$2l[xl,x2]]; 

The strains through the thickness given by eqns. (4.13) are calculated by the code 

sell[xl_,x2_,k_Integer,z_] := Expand[N[ 

serll[xl,x2] + skrll[xl,x2] z -

chil$l1 [xl ,x2] psil [k,z] - chi2$11 [xl ,x2] psi2 [k,z] -

chi5$11[xl,x2] psi5[k,z] - chi6$11[xl,x2] psi6[k,z] + 

kll (chil[xl,x2] vphil[k,z] + chi2[xl,x2] vphi2[k,z] + 

chi5[xl,x2] vphi5[k,z] + chi6[xl,x2] vphi6[k,z]) 

]]; 

se22 [xl_,x2_,k_Integer,z_] := Expand[N[ 

ser22[xl,x2] + skr22[xl,x2] z -

chil$22[xl,x2] psil[k,z] - chi2$22[xl,x2] psi2[k,z] -

chi5$22[xl,x2] psi5[k,z] - chi6$22[xl,x2] psi6[k,z] + 

k22 (chil[xl,x2] vphil[k,z] + chi2[xl,x2] vphi2[k,z] + 

chi5[xl,x2] vphi5[k,z] + chi6[xl,x2] vphi6[k,z]) 
]] ; 

se12[xl_,x2_,k_Integer,z_] := Expand[N[ 

ser12[xl,x2] + skr12[xl,x2] z -

chil$12[xl,x2] psil[k,z] - chi2$12[xl,x2] psi2[k,z] 

chi5$12[xl,x2] psi5[k,z] - chi6$12[xl,x2] psi6[k,z] 
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]]; 

se13[xl_,x2_,k_Integer,z_] := Expand[N[chil$1[xl,x2] betal[k,z]/2]]; 

se23[xl_,x2_,k_Integer,z_] := Expand[N[chil$2[xl,x2] betal[k,z]/2]]; 

se33[xl_,x2_,k_Integer,z_] := Expand[N[chil[xl,x2] alpl[k,z] + 

chi2[xl,x2] alp2[k,z] + chi5[xl,x2] alp5[k,z] + 

chi6[xl,x2] alp6[k,z] 

]]; 

Finally, the stresses through the thickness given by eqns. (4.15) are calculated by 

the code 

ssll[xl_,x2_,k_Integer,z_] := Expand[N[all[k] sell[xl,x2,k,z] + 

a12[k] se22[xl,x2,k,z] + a13[k] se33[xl,x2,k,z]]]; 

ss22[xl_,x2_,k_Integer,z_] := Expand[N[a12[k] sell[xl,x2,k,z] + 

all[k] se22[xl,x2,k,z] + a13[k] se33[xl,x2,k,z]]]; 

sS33[xl_,x2_,k_Integer,z_] := Expand[N[a13[k] sell[xl,x2,k,z] + 

a13[k] se22[xl,x2,k,z] + a33[k] se33[xl,x2,k,z]]]; 

ss12[xl_,x2_,k_Integer,z_] := Expand[N[2 g2[k] se12[xl,x2,k,z]]]; 

ss13[xl_,x2_,k_Integer,z_] := Expand[N[2 g2[k] se13[xl,x2,k,z]]]; 

ss23[xl_,x2_,k_Integer,z_] := Expand[N[2 g2[k] se23[xl,x2,k,z]]]; 

4.4 Homogeneous Shell 

. 
In order to illustrate the higher-order model, a transversely isotropic homogeneous 

shell is considered. The homogeneous shell is modelled as a special case of a sandwich 

shell with the same elastic constants for the surface and core layers. 

As given in Appendix A, the distribution functions for the normal displacements are 

derived by Mathematica as 

Ell' ____ Z2 
2E'(1 - II) 

Ell' 

E'(l _lI)z 

_1_ (z4 _ 2z3 _ Z2 hZ) 
4E' h2 3h 2 + 2 
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I',(z) - 4~' (~> ~: - z; _ h;) 
4?s(z) -2~' (~: - ~~ +Z) 

4?6( Z) = - 2~' (~: - ~: - Z) ( 4.22) 

and the distribution functions for the tangential displacements are derived as 

Ell' 3 E (Z3 h2Z) 
1/Jt(Z) 6E'(1- II)Z - 2G'(1 -112) 3" - 4 

Ell' ____ z2 

2E'(1 - II) 

_1_ ( 2ZS _ Z4 _ Z3 hZ2) 
tP3(Z) - 8E' 5h2 3h 3 + 2 

__ 1_ (2Z S Z4 _ z3 _ hZ2) 

8E' 5h2 + 3h 3 2 

tPS(Z) 
1 (2Z S Z3 2) 

- 4E' 5h3 - h + Z 

__ 1 (2ZS _ Z3 _ Z2) 

4E' 5h3 h 

2~' (Z - ~) 

( 4.23) 

Consider the components of the displacement vector expressed as polynomials in 

terms of z, viz. 

(k) 
u· , 

(k) 
U 3 

ao + alZ + a2z2 + a3z3 + a4z4 + aszs 

- bo + bIZ + b2z
2 + b3z

3 + b4z4 
( 4.24) 

Substituting the distribution functi~ns (4.22) and (4.23) for the homogeneous shell 

into displacements (4.10) and (4.11), the coefficients of the polynomials (4.24) are 

determined as 

bo W 

-W,i - XI,i 8G'(1 _ 112) 

Ell' 1 
-X2 E'(l - II) - 2E,(q- - q+) 
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Ev' 1 
X2 ,i2E'(1 - v) + 4E,(q~ - q~) 

Ev' 3 
XI 2E'(1_ v) + 4hE,(q-+ q+) 

Xl,' [6G'(:- V2 ) - 6E'~V~ V)]- 4:E,(q~ + q~) 
o 

o 
1 (_ +) 

- 2h3 E' q + q 

1 _ +) 
lOh3 E,(q,i + q,i (4.25) 

Clearly the displacements vary through the thickness in a nonlinear manner: the 

tangential displacements as a fifth order polynomial and the normal displacements 

as a fourth order polynomial. In terms of the kinematic model, this implies that the 

normal to the reference surface is distorted and changed in length by the deforma

tion. 

If the effect of normal reduction is neglected (Ek = 00), the above equations of 

the higher-order theory take into account the effect of transverse shear only on the 

stress and strain state of the shell. If E' = 00 then bl = b2 = b3 = b4 = 0 and the 

normal displacements are constant through the thickness (u~k) = w). For this case, 

the coefficients for the tangential displacements are given by 

ao Ui 

Eh2 
al -W,i - XI,i 2G'(1 _ v2) 

a2 O· , 
E 

a3 - XI ,i 6G'(1 _ v2) 

a4 - 0 

as - 0 (4.26) 

Consequently for the "shear" model 

(4.27) 

If we also assume that G~ = 00 then cpqk(Z) = 0 (q = 1 .. . 6) , "pgk(Z) = 0 (g = 1 ... 8) 

. and ao = Ui, al = -W,i· Here the influence of transverse shear is not taken into 

account and we obtain the classical model, viz. 

u(k) - w· u(k) = u · - w .z 
3 - 'I 1 ,I 
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It is noted that the higher-order model described above considers the effect of normal 

reduction caused by the external loads as well as Poisson's ratio effects including 

the elongation or reduction of the reference surface. 

If Poisson's ratio effect is neglected (X2 = 0) and the influence of the external loads 

in the kinematic hypotheses (4.10) and (4.11) is neglected (Xg = 0, 9 = 3 ... 8), then 

the coefficients of u~k) in eqn. (4.24) vanish except for 

bo w 

Ev' 
(4.28) 

X1 2E'(1 - v) 

In this simplified case, the distribution of the displacements through the thickness 

may be inaccurate. For example, if only one external surface of a symmetrically 

laminated shell is under load, then the displacements uC;) would be symmetric with 

respect to the middle surface, which is obviously not the true behaviour. 

4.5 Special Purpose Symbolic Computation 

The objective of the present study is to implement the higher-order theory for the 

general case, i.e. for a laminate with any number of layers, and in this respect the 

use of a general purpose system is found to be impractical due to the unimpressive 

computational efficiency of such systems. 

Therefore special purpose symbolic computation software is developed in the C 

programming language for the computational implementation of the higher-order 

theory. As discussed in Chapter 2, the exceptionally high computational efficiency 

of special purpose symbolic computation is a result of its dedication to the analysis 

of a specific class of functions. 

The symbolic computation system developed in this section is specifically designed to 

implement the higher-order theory presented in Chapter 3. Therefore the routines 

presented in this section handle symbolic expressions where the symbols may be 

defined as piecewise integrals, laminae stiffness parameters, constants or symbolic 

expressions. An algorithm is developed to recursively expand symbols into power 

series of the z-coordinate. 
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4.5.1 Symbols 

In the application, symbols are referred to by handles which are enumerated con

stants. The definition of symbols are stored in an array and the symbols' handles 

are used as indices to this array. In addition, the special handles SymPosl, SymNegl, 

SymZ2 and SymZ are defined for the intrinsic "symbols" 1, -1, Z2 and z. 

Symbolic expressions are null-terminated lists of these handles. The special handle 

SymPlus delimits terms to be added, where a list of symbols delimited by SymPlus 

is a term in which the listed symbols are to be multiplied. 

The C structure symt is defined to store the definition of a symbol. The symbol 

may be defined as a constant, a stiffness parameter (which is a function of the 

layer number), a power of z, a symbolic expression, or a layer integal of a symbolic 

expression. An element type in the structure symt indicates which of the above 

classes the symbol is defined as; in particular, type is set to STConst for a a constant, 

STVect for a stiffness vector, STZ for a power of z, STExpr for a symbolic expression; 

and STInt for an integral of a symbolic expression. 

Storage elements are allocated in the structure symt for the information associated 

with the symbol. There is a real number element rv, integer number elements ivl 

and i v2, and elements rp, pp, and expr which are pointers to arrays of real numbers, 

power series and symbolic expressions, respectively. Depending on the class type of 

the symbol, a subset of these storage elements is used. For example, if a symbol is 

defined as an integral, the limits of integration are stored in number elements and a 

pointer is set to the symbolic expression to be integrated. In particular, if the symbol 

is a constant, then the constant is stored in rv; if the symbol is a stiffness parameter, 

the pointer to the list of values is stored in rp; if the symbol is a power of z, the 

(integer) exponent is stored in ivlj and if the symbol is an expression or integral 

of an expression of other symbols, the pointer to that expression is stored in expr. 

In the integral case, the index of the-lower limit, given by m in the operators (4.16) 

and (4.17), is stored in ivl, and the upper limit is taken as z. A symbol may also 

be defined as the type SymDlnt which is a layer integral with lower and upper limits 

al and au, respectively. In this case, the indices 1 and u are stored in ivl, iv2, and 

the symbolic expression to be integrated is referenced by the pointer expr. 
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4.5.2 Power Series 

By the nature of the application, symbols defined as any of the above types may 

be derived via symbolic computation as ann-vector of power series. After this 

computation, the type of symbol is changed to STMPow and the pointer pp is set to 

the derived array of power series. This operation is nontrivial for the types STExpr 

and STInt. Symbols of the type STDInt may be evaluated to a constant via symbolic 

computation. 

Symbolic computation routines for storing, adding, multiplying and integrating 

power series in terms of z are defined next. Power series are stored in null-terminated 

lists of the structure powt. This structure contains a single term in a power series, in 

particular it stores a real coefficient and an integer exponent. The routines pow_add 

and pow _mul t are defined to add two power series and multiply two power series, 

respectively. These routines invoke a routine pow_collect to collect like terms in 

the resultant power series. They take as arguments two pointers to the two power 

series and return a pointer to the resultant power series. 

The routine pow_integrate is defined to integrate a power series from a lower limit 

to z, and is declared as 

powt *pow_integrate(powt *ps, real b, real c) 

where ps is a pointer to the power series to be integrated, b is the lower limit of 

integration and c is a constant to be added to the integral. The routine returns a 

pointer to the resultant power series. 

4.5.3 Symbolic Processing 

The primary task of the symbolic computation software is to expand symbols into 

power series of the coordinate z. Symbols which are constants or powers of z are 

trivially expanded into a power series of one term. Symbols which are stiffness 

constants may be expanded into a trivial power series for a given layer number k. 

Layer integrals must be expanded into a power series for each layer number k since 

we assume that their integrands contain stiffness constants (and, in general, other 

expressions which are discontinuous at the laminae interfaces) and therefore must 

be integrated piecewise. 

Symbolic expressions are expanded into power series by the routine sym_expand, 

declared as 
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powt *sym_expand(int k, int sym, int *se) 

where k is the layer number, sym is a symbol handle, and se is the pointer to a 

symbolic expression. The pointer se is only relevant if sym equals SymExpr or Symlnt 

which are special handles to direct the routine to expand the symbolic expression 

se, or to expand and then also integrate se. 

This routine invokes the routines sym_ term and sym_ tail to dissect an expression 

into its first term and into another expression comprising the second through to the 

last term, respectively. Consider the symbolic expression defined by 

int see] = {Sdfl,Sfl,Sf2,SymPlus,Sdf2,SF1,SF2,SymPlus,SymNegl,O}; 

where those handles other than SymPlus and SymNegl are handles for user-defined 

symbols. The function call sym_term(se) returns a pointer to the symbolic expres-

slon 

{Sdfl,Sfl,Sf2,O} 

and sym_ tail(se) returns a pointer to the symbolic expression 

{Sdf2,SF1,SF2,SymPlus,SymNegl,0} 

Therefore, the routine sym_expand recursively expands symbolic expressions as fol

lows 

sym_expand(k,SymExpr,se) 

= pow_add( 

pow_mult( 

sym_expand(k,se[O]), 

sym_expand(k,SymExpr,sym_term(se+l)) 

) , 

sym_expand(k,SymExpr,sym_tail(se)) 

) 

where, since sym_expand returns a power series, the routines pow_mul t and pow_add 

are invoked to perform the necessary algebra. Clearly, se [0] is the handle of the first 

symbol in the first term of the expression se (which is a list of handles of symbols 

delimited by SymPlus), and sym_term(se+l) returns the symbolic expression which 

comprises the second through to last symbols of the first term. Since the symbols in 

each term are to be multiplied, pow _mul t is invoked to perform that operation, and 

since the separate terms in the expression are to be summed, pow_add is invoked. 

Layer integrals are expanded by expanding their integrands (which are symbolic 

expressions) into a power series and then integrating the resultant power series 

using pow_integrate. 
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The routine lam_int integrates symbolic expressions from a lower to an upper limit, 

and is declared as 

real lam_int(int m, int k, int *se) 

where se is a pointer to the symbolic expression to be integrated by the operator 

The routine sym_expand expands a layer integral from am to z where am ~ ak-l ~ 

z ~ ak, as follows 

sym_expand(k,SymInt,se) 

= pow_integrate(sym_expand(k,SymExpr,se),a[k-l], 

lam_int(m,k-l,se)) 

where a[k-l] = ak-l , and m is the index of the lower limit of the layer integral. 

When z < am, the algorithm switches to 

sym_expand(k,SymInt,se) 

= pow_integrate(sym_expand(k,SymExpr,se),a[k], 

lam_int(m,k,se)) 

The routine sym_deri ve invokes sym_expand to expand symbols of the types STExpr 

and STInt into power series for each k = 1,2, . . . , n, and stores the n power series 

associated with the symbol in the element pp of the symt structure. Symbols which 

are definite integrals, i.e. symbols of the type STDInt, evaluate to constants, so 

sym_derive evaluates these symbols using lam_int (which invokes sym_expand) 

and stores the result in the element rv. 

In an application, if a symbol is contained in many symbolic expressions and is itself 

a symbolic expression (or an integral of a symbolic expression), the computational 

efficiency is improved by deriving that symbol using sym_deri ve before processing 

so that the symbol is expanded once only. 

4.5.4 Application to Higher-Order Theory 

In the application of the special purpose symbolic computation to the higher-order 

theory, the symbols relating to the distribution functions given in eqns. (4.18) are 

defined as follows: 
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f = Int[a_O,z] EO dz 

fs = Int[a_O,z] EO 2 dz 

Bf = Int[a_O,a_n] EO dz 

Bfl = Int[a_O,a_n] EO 2 dz 

fl = fs - f Bfl l/Bf 

f2 = fs l/Bf - 1 

Fl = Int [a_O ,z] fl dz 

F2 = Int[a_O,z] f2 dz 

Ofl = Int[a_O,a_n] fl dz 

Of2 = Int[a_O,a_n] f2 dz 

f4 = Fl Of2 1/0fl - F2 

alpl = nuO 2 

alp2 = - nuO 

alp3 = f4 1/E2 

vphi = fl 1/G2 

vphil = Int [a_m,z] alpl 

vphi2 = Int [a_m,z] alp2 

vphi3 = Int [a_m,z] alp3 

psil = Int [a_m,z] (vphil - vphi) dz 

psi2 = Int [a_m,z] vphi2 dz 

psi3 = Int [a_m,z] vphi3 dz 

where EO, nuO, E2 and G2 are symbols for the stiffness parameters EOk, lIOk, Ek and 

Gk" 

The symbols for the integrated stiffnesses are defined as follows: 

B = Int [a_O, a_n] A11 dz 

Bl = Int [a_O ,a_n] A11 psil dz 

DOO = Int [a_O, a_n] A11 2-2 dz 

DOl = Int [a_O, a_n] A11 psil 2 dz 

DOlb = Int [a_O, a_n] A12 psi1 2 dz 

D02 = Int [a_O, a_n] A11 psi2 2 dz 

D03 = Int [a_O, a_n] All psi3 2 dz 

D11 = Int [a_O ,a_n] A11 psil psil dz 

012 = Int [a_O ,a_n] A11 psil psi2 dz 

013 = Int [a_O ,a_n] All psi1 psi3 dz 
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A listing of the symbolic computation routines described in this section is given in 

Appendix C. These routines are integrated into a computer program which imple

ments the solution procedure described in Section 4.2. By means of the analytical 

solution (4.8), the governing differential equations are reduced to linear algebraic 

equations which are solved using Gauss-Jordan reduction. Then the displacements, 

strain and stresses may be derived at any point (xl, x2) as a power series of the 

coordinate z through the thickness of the laminate via the symbolic computation. 

4.5.5 Symbolic Results 

Consider sandwich shells with isotropic core and surface layers. The stiffness of the 

surface of layers is El = 1, and the core layer is one order of magnitude weaker than 

the surface layers, i.e. Ed E2 = 10. The shell is symmetrically laminated and the 

thicknesses of the surface layers are half the thickness of the core layer. Both core 

and surface layers have the elastic properties Ilk = 0.3 and Gk = Ek /2(1 + Ilk)' The 

application employing the special purpose symbolic computation routines derives 

the distribution functions as 

psi1[1,z] = - 0.0753348 + 0.0892857 z - 0.404762 z-3 

psi1[2,z] = 0.691964 z - 0.404762 z-3 

psi1[3,z] = 0.691964 z - 0.404762 z-3 

psi1[4,z] = 0.0753348 + 0.0892857 z 0.404762 z-3 

psi2[1,z] = - 0.214286 z-2 

psi2[2,z] = - 0.214286 z-2 

psi2[3,z] = - 0.214286 z-2 

psi2[4,z] = - 0.214286 z-2 

psi3[1,z] = - 0.00343798 - 0.0529369 z - 0.00224072 z-2 

- 0.125694 z-3 - 0.151515 z-4 + 0.225352 z-5 

psi3[2,z] = 0.184659 z-2 - 0.258216 z-3 

- 0.151515 z-4 + 0.225352 z-5 

psi3[3,z] = 0.184659 z-2 - 0.258216 z-3 

- 0.151515 z-4 + 0.225352 z-5 

psi3[4,z] = - 0.00162239 + 0.0301597 z + 0.0136044 z-2 

+ 0.0106701 z-3 - 0.151515 z-4 + 0.225352 z-5 

psi4[1,z] = - 0.00162239 - 0.0301597 z + 0.0136044 z-2 

- 0.0106701 z-3 - 0.151515 z-4 - 0.225352 z-5 

psi4[2,z] = 0.184659 z-2 + 0.258216 z-3 
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- 0.151515 z-4 - 0.225352 z-5 

psi4[3,z] = 0.184659 z-2 + 0.258216 z-3 

- 0.151515 z-4 - 0.225352 z-5 

psi4[4,z] = - 0.00343798 + 0.0529369 z - 0.00224072 z-2 

+ 0.125694 z-3 - 0.151515 z-4 - 0.225352 z-5 

psi5[1,z] = 0.0505062 + 0.74868 z - 0.21831 z-2 

+ 0.56338 z-3 - 0.901408 z-5 

psi5[2,z] = - 2.5 z-2 + 4.3662 z-3 - 0.901408 z-5 

psi5[3,z] = - 2.5 z-2 + 4.3662 z-3 - 0.901408 z-5 

psi5[4,z] = 0.0198063 - 0.37632 z - 0.28169 z-2 

+ 0.56338 z-3 - 0.901408 z-5 

psi6[1,z] = - 0.0198063 - 0.37632 z + 0.28169 z-2 

+ 0.56338 z-3 - 0.901408 z-5 

psi6[2,z] = 2.5 z-2 + 4.3662 z-3 - 0.901408 z-5 

psi6[3,z] = 2.5 z-2 + 4.3662 z-3 - 0.901408 z-5 

psi6[4,z] = - 0.0505062 + 0.74868 z + 0.21831 z-2 

+ 0.56338 z-3 - 0.901408 z-5 

where the first argument is the layer number. The core layer is divided into two 

sublayers in order to introduce an artificial interface at the reference surface, and 

therefore the expressions for each distribution function in the layers k = 2,3 are 

identical. 

The computational efficiency of the special purpose routines is found to · be more 

than two orders of magnitude higher than that of the Mathematica implementation 

described in Section 4.3. Moreover, it is found that the Mathematica implementation 

is impractical for a laminate with more than three layers whereas the special purpose 

symbolic computation implements the higher-order theory for the general case. 
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4.6 Numerical Results 

Using the method of solution outlined in Section 4.2, numerical results are obtained 

for square plates and shells which are hinged-supported at their edges and subject 

to a normal sinusoidal load of magnitude qo· 

4.6.1 Isotropic Plates 

Table 4.1 gives the deflection and normal stress at the centre of a square isotropic 

plate with thickness ratio of ajh = 2 and Poisson's ratio v = 0.3. Results are given 

for the full model of the higher-order theory and the shear model which neglects 

normal deformation. These results are compared to the exact three-dimensional 

solution given in Ref. [52] and to the classical theory which neglects both transverse 

shear and normal deformation. It is observed that the full model of the higher-order 

theory is in good agreement with the exact solution whereas the shear and classical 

models are grossly inaccurate. 

Table 4.1: Deflection and stress at the centre of an isotropic plate 

U3E jqoh 

Higher-order theory 

3-D Full Shear Classical 
zjh Solution model ~,% model ~,% theory ~,% 

-0.5 1.215 1.221 0.4 -12 -63 

0.0 0.967 0.964 -0.3 1.070 11 0.448 -54 

0.5 0.772 0.784 1.6 39 -42 

(jlljqO 

-0.5 -1.205 -1.186 -2 -0.973 -19 -0.790 -34 

0.5 0.832 0.793 -5 0.973 17 -0.790 -5 

Figure 4.1 on Page 105 shows the deflection and normal stress distributions through 

the thickness at the centre of a square isotropic plate subject to a sinusoidal load. 

In the case ajh = 3, the maximum deflection occurs at zjh = -0.43 and not at 

the top surface, whereas in the case ajh = 2 the maximum deflection occurs at 

the top surface where the loading is applied. This phenomenon is predicted only 

by three-dimensional and higher-order theories which consider the effect of normal 

deformation. 
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4.6.2 Transversely Isotropic Plates 

Table 4.2 gives the deflection and normal stress at the centre of square transversely 

isotropic plates with thickness ratio ajh = 5. ' In the case of the shear and classical 

models, the modulus E' is equated to 00 and is therefore irrelevant. It is observed 

that the effect of normal deformation is substantial in transversely isotropic plates 

and this effect increases with E j E'. The shear and classical models which neglect 

normal deformation are inaccurate. 

Table 4.2: Deflections and normal stresses at the centre of square transversely 

isotropic plates (Xl = X2 = aj2) with ajh = 5, v' = 0 and G' = G. 

U3E jqoh 

Higher-order theory 

zjh Shear Classical 

Full model model model 

EjE' = 1 EjE' = 50 EjE' = 100 EjE' = 1 ... 100 

-0.5 21.83 40.01 58.56 

-0.25 21.59 28.19 34.93 

0 21.42 19.70 17.19 21.46 17.52 

0.25 21.34 15.69 9.93 

0.5 21.33 15.01 8.56 

unjqO 

-0.5 -5.15 -6.60 -8.08 -5.12 -4.94 

-0.25 -2.39 -2.10 -1.82 -2.39 -2.47 

0 -0.01 0.59 1.17 0.00 0.00 

0.25 2.38 2.40 2.41 2.39 2.47 

0.5 5.11 4.25 3.38 5.12 4.94 

Table 4.3 compares the deflection behaviour of isotropic and transversely isotropic 

square plates of various thickness ratios. As the thickness ratio of the plate increases, 

the effect of normal deformation decreases and the shear model (which predicts a uni

form deflection through the thickness) becomes more accurate. In the transversely 

isotropic case (E j E' = 10) where the plate is 10 times weaker in the transverse 

direction, the effect of normal deformation is more pronounced, as expected. 

Figure 4.2 shows the deflection and normal stress distributions through the thickness 

at the centre of a square transversely isotropic plate with ajh = 3, v = 0.3 and 
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Table 4.3: Deflection behaviour at the centre of isotropic and transversely isotropic 

plates (Xl = X2 = a/2) with v' = vE' 1 E and G' = E' /2(1 + v'). 

W = u3EIQoh 

EIE' = 1 EIE' = 10 

alh Wtop Wmid Whot Wshear Wtop Wmid Whot Wshear 

2 1.22 0.96 0.78 1.07 7.58 4.31 3.97 4.87 

3 3.60 3.49 3.15 3.68 15.97 12.35 11.36 12.91 

4 9.28 9.38 8.83 9.69 29.44 25.91 24.60 26.57 

5 20.62 20.98 20.16 21.46 50.67 47.37 45.76 48.17 

10 291.66 294.25 291.20 296.06 403.81 402.72 398.86 404.83 

v' = v E' 1 E. In the case E 1 E' = 100, the minimum deflection occurs at z 1 h = 0.21 

and not at the bottom surface as in the case E 1 E' = 10. It is noted that this effect 

is not observed if v' = v. 

4.6.3 Heterogeneous Plates 

Consider a plate with a modulus of elasticity which is a continuous function E(z) = 

Eoe-
z 

where Eo is the modulus of elasticity of the mid-surface z = 0 of the plate. 

This plate is modelled by approximating the continuous function using a piecewise 

linear function through the thickness of the plate. Table 4.4 shows the deflection 

behaviour at the centre of the partially heterogeneous plate with distinct sublayers 

of constant moduli of elasticity. The modulus for elasticity for the k-th layer is taken 

as Ek = Eoe-
zlc 

where Zk = H ak + ak-l). Deflections are given for the top, middle 

and bottom surfaces of the plate. It is .observed that as the number of sublayers 

increases, the deflection converges. This problem demonstrates the ability of the 

software to analyse laminates with a large number of layers. 

4.6.4 Sandwich Plates 

Table 4.5 gives the deflections and compressive normal stresses at the centre of the 

top surface of various sandwich plates. The core and surface layers are isotropic 

with v = 0.3 and G = E12(1 + v). The plates are symmetrically laminated and 

the thicknesses tt, t3 of the surface layers are half the thickness t2 of the core layer. 
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Table 4.4: Deflection at the centre of a partially heterogeneous plate (Xl = X2 = a/2) 

with Ek = Eoe-z/c, Vk = 0.3 and Gk = Ek/2(1 + Vk). 

Number of W ="U3EO/qoh 

sublayers Wtop Wmid Whot 

8 3.6425 3.5514 3.1291 

12 3.6408 3.5492 3.1269 

16 3.6401 3.5485 3.1262 

20 3.6400 3.5481 3.1258 

24 3.6397 3.5479 3.1256 

28 3.6396 3.5478 3.1255 

32 3.6395 3.5477 3.1254 

40 3.6394 3.5476 3.1253 

48 3.6394 3.5476 3.1253 

Young's moduli for the surface and core layers are EI and E2, respectively. Therefore 

in the case Ed E2 = 10 the core layer is one order of magnitude weaker than the 

surface layers, and in the case EI/ E2 = 100 the core is two orders of magnitude 

weaker. Three models are considered: the full model of the higher-order theory, the 

shear model, and a combined model where the full model is used for the core layer 

and the classical model is used for the surface layers. The results obtained using 

these three models are compared to those given by Brukker in Ref. [53] where the 

core layer is modelled using an exact three-dimensional elasticity solution and the 

surface layers are modelled using the classical hypotheses. Results are compared for 

the range a/h = 3, ... ,10 where for t2/t l ~ 2 the thickness ratio of surface layers is 

greater than 10 and therefore Brukker's solution is considered to be exact. Brukker's 

model is identical to the combined model except that the core layer is modelled using 

a three-dimensional elasticity solution whereas in the combined model, the higher

order theory is used to model the core layer. 

In Table 4.5 it is observed that the discrepancies between the combined model and 

Brukker's solution are less than 1%. All three models predict a deflection within 

1% of Brukker's solution in the case of thin plates (a/h = 10) with EI/E2 = 10. 

Moreover, the deflection given by the shear model for moderately thick plates (a / h = 
4, 5) with Ed E2 = 10 is within 2% of Brukker's solution. 

The most important observation from Table 4.5 is that Brukker's solution is closer 

to both the combined and shear models than it is to the full model of the higher-
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Table 4.5: Deflections and stresses at the centre of the top surface of square sym

metrically laminated sandwich plates (Xl = X2 = a/2) with isotropic layers and 

tl = t3 = t 2/2. 

u3Edqoh 

EI/E2 a/h Brukker's Higher-order theory 

Solution Full Combined Shear 

[53] model ~,% model ~,% model ~,% 

10 425.40 425.36 -0.0 425.32 -0.0 429.14 0.9 

10 5 46.96 47.22 0.6 46.94 -0.0 47.08 0.3 

4 25.47 25.76 1.1 25.45 -0.1 25.14 -1.3 

3 12.33 12.64 2.5 12.32 -0.1 11.65 -5.5 

10 1298.0 1277.9 -1.5 1297.9 -0.0 1292.3 -0.4 

100 5 211.2 202.3 -4.2 211.5 0.1 202.1 -4.3 

4 115.6 110.6 -4.3 116.0 0.3 106.3 -8.0 

3 52.7 52.1 -1.1 53.1 0.8 - -

Ull/qO 

10 23.88 23.73 -0.6 23.89 0.0 23.99 0.5 

10 5 7.19 7.03 -2.2 7.19 0.0 7.23 0.6 

4 5.20 5.04 -3.1 5.19 -0.2 5.18 -0.4 

3 3.66 3.53 -3.6 3.65 -0.3 3.54 -0.3 

10 37.78 35.07 -5.4 37.78 0.0 37.74 -1.8 

100 5 17.59 15.26 -13.2 17.60 0.1 17.02 -3.2 

4 14.14 12.16 -14.0 14.17 0.2 13.19 -6.7 

3 10.87 9.61 -11.6 10.92 0.5 - -

order theory. This indicates that normal deformation should be modelled in both 

the core and surface layers in order to obtain accurate results. 

Table 4.6 gives the deflection behaviour of sandwich plates of various thickness 

ratios. It is observed that as the thickness ratio of the plate increases, the effect 

of normal deformation decreases and the shear model becomes more accurate. The 

phenomenon of negative deflection at the bottom surface is observed for a plate with 

a/ h = 2 and Ed E2 = 100. This phenomenon is caused by Poisson's effect and is 

observed using exact three-dimensional elasticity solutions. 

Figure 4.3 gives the deflection and normal stress distributions through the thickness 

at the centre of a sandwich plate with a/ h = 3. Since the core layer is weaker 
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Table 4.6: Deflection behaviour at the centre of square symmetrically laminated 

sandwich plates (Xl = X2 = a/2) with isotropic layers and tl = t3 = t 2/2. 

W = U3E/Qoh 

El/E2 = 10 El/E2 = 100 

a/h Wtop Wmid Wbot Wshear Wtop Wmid Wbot Wshear 

2 5.26 3.53 2.64 4.02 22.23 5.88 -2.26 11.09 

3 12.64 11.05 9.97 11.65 52.07 35.52 27.02 43.71 

4 25.76 24.40 23.08 25.14 110.58 94.16 85.45 106.29 

5 47.22 46.17 44.55 47.08 202.26 186.08 177.11 202.12 

than the surface layers (Ed E2 > 1), it absorbs most of the normal deformation. 

As expected, the normal deformation of the core layer increases with E l / E2 • The 

stress is substantially reduced in the core layer as compared to the stresses in the 

surface layers. It is observed that the stress distribution through the thickness of 

the surface layers becomes more symmetrical when Ed E2 = 100. 

4.6.5 Isotropic Shells 

Table 4.7 shows the deflections and normal stresses at the centre of a square isotropic 

shell with a/h = 5 and radius of curvature R. The shell has double curvature 

kll = k22 = 1/ R. Numerical results obtained using the higher-order theory are 

compared to those of the classical shell theory. It is observed that as the curvature 

of the shell increases, the influence of transverse shear and normal deformation on 

the deflection at the mid-surface tends to decrease and on the normal stress at the 

top surface tends to increase. 

Figure 4.4 shows the relative deflection W / Wclass at the centre of a square isotropic 

shell versus a / h where Wclass is the deflection given by classical shell theory. The shell 

is doubly curved with a curvatures kll = k22 = 1/ R and radius of curvature R = 

a. The curves show the deflection Wshear predicted by the shear-deformable model 

and the deflections given by the higher-order theory at the top, bottom and mid

surface of the shell. (Both the classical and shear-deformable theory neglect normal 

deformation and therefore predict a constant deflection through the thickness.) It is 

observed that the effect of normal deformation is more pronounced at the top surface 

where the load acts. Over the given range a/ h = 5 ... 10, the deflection Wshear is 

close to the deflections at the centre and bottom of the shell, but deviates more 
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Table 4.7: N ondimensionalized deflections and normal stresses at the centre of square 

doubly curved isotropic shells with a/h = 5 where W = U3E/qoh and ij = un/qo. 

Higher-order theory Classical shell theory 

aiR Wtop Wmid Wbot Utop Ubot W Utop Ubot 

0.00 21.83 21.42 21.33 -5.15 5.11 17.52 -4.94 4.94 

0.25 20.77 20.37 20.27 -4.37 5.36 16.78 -4.31 5.15 

0.50 18.10 17.70 17.60 -3.33 5.09 14.91 -3.46 4.95 

0.75 14.92 14.51 14.42 -2.34 4.52 12.56 -2.60 4.49 

1.00 12.00 11.59 11.50 -1.55 3.89 10.30 -1.87 3.93 

1.25 9.61 9.21 9.11 -0.96 3.30 8.36 -1.31 3.40 

1.50 7.76 7.36 7.26 -0.54 2.81 6.80 -0.90 2.94 

1.75 6.35 5.94 5.85 -0.24 2.40 5.57 -0.60 2.54 

2.00 5.27 4.86 4.77 -0.03 2.06 4.61 -0.38 2.22 

substantially from the deflection at the top surface (since normal deformation is 

neglected by the shear model). As a/h increases, i.e. as the shell becomes thinner, 

the effect of normal deformation is reduced and the deflections given by higher

order and shear-deformable theory approach the deflection predicted by the classical 

theory. At a/h = 10, the discrepancies of the classical theory are less than 5%, and 

the shear-deformable theory is accurate. 

4.6.6 Laminated Shells 

The effect of curvature on a square doubly curved laminated shell is considered. The 

shell is constructed using two identical three-layered sandwich shells separated by a 

cellular filler material, and therefore the shell has seven distinct layers. The three

layered surface shells have metal bearing layers and a glass/epoxy composite core 

material. The filler layer between the two sandwich shells is made of polystyrene. 

The metal layers have thickness tl = 5mm and elastic properties El = 70GPa, 

111 = 0.3 and Gl = Ed2(1 + 111)' The two composite layers have a thickness 

t2 = 15mm and elastic properties E2 = 26GPa, E~ = 8.4GPa, G2 = 11.5GPa, 

G~ = 3GPa and 112 = 0.13. The polystyrene filler layer has thickness t4 = 150mm 

and elastic properties E4 = 19.6MPa, 114 = 0.4 and G4 = E4/2(1 + 114). The shell has 

thickness ratio a/ h = 5 and is subjected to a sinusoidal load of magnitude qo = 1kPa 

on its top surface. The curvatures of the shell are kll = k22 = 1/ R. 
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Figure 4.5 and 4.6 illustrate the influence of curvature on the deflection and normal 

stress at the centre of the shell. The deflection and stresses are given relative to 

the case of zero curvature. Figure 4.5 gives the curves of the relative deflection as 

predicted by the shear-deformable model (in which case the deflection is uniform 

through the thickness) and by the higher--order theory at the top, bottom and mid

surface of the shell. Figure 4.6 shows the relative normal stresses at the top and 

bottom surfaces of the shell as predicted by the higher--order theory and by the 

shear-deformable theory. 

It is observed in Figure 4.5 that as the curvature increases, the relative deflections 

decrease. Moreover, the relative deflection at the top (loaded) surface is least effected 

by the curvature, although the actual deflection at the top surface is greater than 

the deflection at the bottom surface and mid-surface (due to the effect of normal 

deformation) as is evident from Table 4.8. 

Table 4.8: Nondimensionalized deflections and normal stresses at the centre of a 

square doubly curved laminated shell with a/h = 5 where W = 106w/a and a = 

0"1l/103 qO. 

Higher--order theory Shear-deformable theory 

aiR Wtop Wmid Wbot atop abot W atop O"bot 

0.00 12.59 9.85 8.75 -0.159 0.111 10.53 -0.133 0.133 

0.02 12.49 9.76 8.66 -0.148 0.117 10.43 -0.124 0.140 

0.04 12.21 9.49 8.38 -0.136 0.119 10.15 -0.113 0.144 

0.06 11.78 9.05 7.95 -0.122 0.119 9.72 -0.101 0.145 

0.08 11.23 8.50 7.40 -0.108 0.117 9.17 -0.088 0.144 

0.10 10.61 7.88 6.78 -0.094 0.112 8.55 -0.076 0.141 

0.12 9.95 7.22 6.12 -0.080 0.106 7.90 -0.064 0.136 

0.14 9.29 6.56 5.46 -0.068 0.099 7.24 -0.053 0.130 

0.16 8.65 5.92 4.82 -0.056 0.091 6.61 -0.044 0.124 

0.18 8.05 5.32 4.22 -0.046 0.083 6.02 -0.035 0.117 , 

0.20 7.49 4.77 3.67 -0.037 0.075 5.47 -0.028 0.111 

In Figure 4.6, both the shear-deformable and higher--order theory predict that the 

relative stress at the bottom surface of the shell decreases with increasing curvature 

whereas the relative stress at the at the top surface of the shell increases initially 

and then decreases. Moreover, the relative stress at the bottom surface as given 

by the higher--order theory is more effected by curvature than that given by the 
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shear-deformable theory, whereas the relative stress at the top surface given by the 

two theories are similarly effected by curvature. 
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4.7 Conclusions 

The comprehensive higher-order theory presented in Chapter 3 is implemented for 

computational studies. In the general case, the distribution functions and integrated 

stiffnesses cannot be derived in a form suitable for direct numerical implementation, 

and the calculation of these functions using a numerical method detracts from the 

increased accuracy offered by the higher-order theory. Therefore symbolic com

putation is employed to derive the distribution functions, calculate the integrated 

stiffness constants, solve the system of governing differential equations analytically, 

and finally to evaluate the stress/strain state of a given laminate. 

The theory is implemented using the Mathematica symbolic computation system, 

and this application is used to derive analytical results and obtain numerical results. 

However, in order to improve the computational efficiency of the analysis, special 

purpose symbolic computation routines are developed in the C programming lan

guage as an alternative to using a general purpose symbolic computation system such 

as Mathematica. The routines handle symbolic expressions where the symbols may 

be defined as piecewise integrals through thickness of a laminate, laminae stiffness 

parameters, constants or symbolic expressions. Symbols and symbolic expressions 

are expanded into power series using a recursion technique. It is found that the 

special purpose symbolic computation is more than two orders of magnitude more 

efficient than Mathematica owing to its dedication to the requirements of the specific 

problem . 

.The numerical results obtained for thick homogeneous and heterogeneous plates are 

compared to those in the literature in order to validate the hig~er-order theory. It 

is found that for an isotropic plate with thickness ratio a/h = 2, the higher-order 

theory predicts the deflection distribution to within 2%, and the normal stresses 

to within 5%, of the exact three-dimensional elasticity solution, whereas the shear

deformable model (which neglects the effect of normal deformation) and the classical 

model are grossly inaccurate. 

The more weaker plates are in the transverse direction, the more pronounced is the 

effect of normal deformation, and the inaccuracy of the shear~deformable model 

increases. However, it is observed that as the ratio a/ h increases, i.e. the structure 

becomes thinner, the effect of normal deformation is reduced, and for plates with 

a/h 2:: 10, i.e. thin plates, the shear-deformable theory may be considered to be 

accurate. 
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Numerical results are given for doubly curved isotropic shells. with thickness ratio 

a/h = 5. It is observed that as the curvature of the shell increases, the influence of 

transverse shear and normaf deformation on the deflection at the mid-surface tends 

to decrease and on the normal stress at the loaded surface tends to increase. 

Numerical results for sandwich plates where the higher-order theory is used to model 

the core layer and the classical theory is used to model the surface layers are com

pared to those given in the literature where the core layer is modelled as a three

dimensional elastic body. It is found that the discrepancies are at most 0.8% over 

the range a/ h = 3, ... ,10 for the core layer one or two orders of magnitude weaker 

than the surface layers. 

The higher-order theory predicts phenomena which can only be observed using 

three-dimensional elasticity solutions or a theory which considers normal deforma

tion. In particular, in the case of an isotropic plate with a/h = 3, the maximum 

deflection occurs near the top surface where the loading is applied, whereas in the 

case a/h = 2 the maximum deflection occurs at the top surface. Moreover, for a 

sandwich plate with a/h = 2, negative deflection is observed at the bottom surface 

when the core layer is two orders of magnitude weaker than the surface layers, but 

is not observed when the core layer is only one order weaker than the surface layers. 

It is noted that this phenomenon is caused by Poisson's effect. 

The numerical results obtained indicate that the new higher-order theory is accu

rate for thick structures, whereas, in general, the shear-deformable theory and the 

classical theory are inaccurate. Therefore in the analysis of thick structures, not 

only transverse shear but also normal deformation should be taken into account. 
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Chapter 5 

Optimization of Thick Sandwich 

Plates based on Higher-Order 

Theory 

5 .1 Introduction 

The objective of the present chapter is the optimization of thick sandwich structures 

on the basis of the higher-order theory presented in Chapter 3. 

In the case of sandwich plates with significantly different mechanical properties of the 

surface and core layers, normal deformation needs to be accounted for to determine 

the deflection profile through the thickness in an accurate manner. The core layer 

absorbs some of the deformation and this leads to vastly different deflections of the 

top and bottom surfaces of the plate with the amount of core deformation depending 

on the relative stiffnesses and thicknesses of the surface and core layers. Moreover 

the stress distribution through the thickness of thick laminated plates is no longer 

symmetrical even for symmetrical structures. This is due to the fact that the load is 

applied on the top surface and it is physically clear that due to the non-symmetry 

of loading, the resulting stress distribution cannot be symmetrical as predicted by 

theories which fail to take normal deformation into account. 

It is known that the classical theory yields inaccurate results for thick composite 

structures as a result of neglecting transverse shear and normal deformation. Since 

the accurate analysis of the stress and strain behaviour of thick laminated compos

ite plates is essential for the optimal design of such structures, the classical theory 
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cannot be used for this purpose. Moreover, it is shown in this chapter that shear

deformable theories (which neglect normal deformation) are also inadequate for the 

design optimization of thick plates. Clearly a three-dimensional elasticity solution 

would provide an accurate analysis. However, such solutions are computationally 

demanding. Therefore, owing to the importance of both accuracy and computa

tional efficiency in design optimization studies, the higher-order theory developed 

in Chapter 3 is better suited to such studies. Certainly the accuracy of this theory 

was demonstrated in the previous chapter, and, as discussed in Sections 3.1 and 3.2, 

the computational demands of single-layer theories such as this higher-order theory, 

are less than those of three-dimensional and discrete-layer higher-order theories. 

However, the computational implementation of the proposed higher-order theory 

poses special computational problems due to the need to evaluate multiple piecewise 

integrals through the thickness of the laminate to compute stiffnesses. Moreover, 

due to the iterative nature of optimization solutions, these calculations need to be 

performed using computationally efficient algorithms. These difficulties are over

come by developing special purpose symbolic computation routines to perform the 

necessary calculations. The routines developed in this chapter bypass some of the 

symbolic processing performed by the more flexible routines developed in Section 4.5 

in order to improve the efficiency of the symbolic computations. 

Three optimal design problems for thick laminated sandwich plates are considered. 

The first problem involves the minimum weight design of a sandwich plate subject to 

a constraint on the deflection of the bottom surface. The design variables are chosen 

as the thickness of the core layer and the fibre content of the surface layers which 

are made of a transversely isotropic composite material. Numerical results are given 

for a sandwich plate with a steel honeycomb core layer. The relationship between 

the laminate thickness, fibre content and deflection constraint is established. 

The second problem involves the minimum deflection design of a sandwich plate. 

In this problem the relative thickness of the surface and core layers is chosen as 

the design variable. The optimal design for minimum deflection is based on the 

observation that the deflection of the bottom surface decreases as the core thickness 

becomes smaller, but increases again once this thickness drops below a certain level. 

Moreover, the bottom surface may undergo negative deflection for certain combina

tions of material properties. These phenomena are peculiar to thick structures and 

can only be analysed using three-dimensional elasticity solutions or a higher-order 

theory which includes normal deformation. The effect of the relative stiffness of the 

surface and core layers on the optimal thickness of the surface layers is investigated. 
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The third problem is a minimum stress problem which involves the computation of 

the relative thicknesses of the layers such that the resulting lamination will reflect 

the stress pattern in a more realistic fashion and thereby will minimize the maximum 

stress. In this regard, the present study departs from conventional designs which 

automatically assume a symmetrical lamination. In the case of thick structures, 

such conventional designs cease to be optimal as shown in this chapter. 

5.2 Literature survey 

A number of refined theories were developed for sandwich plates to include the effect 

of shear deformation in the surface and core layers [67, 68, 69]. However optimum 

designs of sandwich plates and shells were mostly based on classical sandwich the

ory. Various optimization studies for sandwich structures include minimum weight 

beams [70], plates under compressive loads [71, 72] and bending loads [73], and 

acoustic sandwich panels [74]. Design of sandwich shells with fibre composite sur

face layers was given in Refs. [75] and [76]. Sandwich plates under uncertain bending 

loads were designed in Ref. [77] . 

The design of thick sandwich structures does not seem to be studied using a higher

order theory which includes normal as well as shear deformation. In fact previous 

studies on the optimal design of thick laminated structures seem to be based on 

shear-deformable theories only. In this regard, studies include maximum frequency 

design [78, 79], maximum buckling load design [79, 80], and maximum stiffness 

design [81]. 

5.3 Software 

In this section, software dedicated to the implementation of the higher-<>rder theory 

for design optimization is developed in the C programming language. 

This software processes power series and double trigonometric series using simple 

programming techniques. The routines which handle power series are used for 

the calculation of the distribution functions and integrated stiffness constants of 

the higher-<>rder theory, and the routines which handle trigonometric series are 

used for the calculation of the displacements (3.37) and (3.38), strains (3.40) and 

stresses (3.42) using the solution (4.8) of the system (4.6). 
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The special purpose symbolic computation routines developed in this chapter for the 

derivation of the distribution functions and calculation of the integrated stiffnesses 

differ from the more flexible but less efficient routines developed in Section 4.5. The 

routines developed in the present study mimic the symbolic computations of those of 

Section 4.5 but without the recursive expansion of symbolic expressions. Rather, the 

various operations to derive symbols (such as the distribution functions) as power 

series or to evaluate symbols (such as the integrated stiffness) are explicitly initiated 

via calls to routines which perform those operations. For example, if the next step of 

the procedure is to sum two particular symbols, the relevant operator routine, in this 

case a routine which handles summation, is called with arguments which reference 

the two operands. In Section 4.5, a symbolic expression could be defined and the 

operator routines would be initiated automatically with the appropriate arguments 

by the routine which expands a symbolic expression into a power series. 

5.3.1 Symbols 

In the application, the distribution functions tPgk, CPqk, f3tk and fr.qk in eqns. (3.37), 

(3.38) and (3.40) become symbols which are referred to by handles. For example, 

the function tPlk is referenced by the handle Fpsil, an enumerated constant. These 

symbols are n vectors of power series with a maximum of Pc coefficients. The 

coefficients of these symbols are stored in a multidimensional array and the handles 

to the symbols are used as indices to the first dimension of the array. The index 

to the second dimension is the layer number k, and the third dimension contains 

the Pc coefficients of the power series of the relevant symbol for the k-th layer. In 

the application, the value of a symbol is returned by the C function zfn (sym, k, z) 

where sym is the handle of the symbol to be evaluated at z where ak-l =:; z < ak. 

5.3.2 Distribution Functions 

First a set of routines is developed for the derivation of the distribution functions. 

This set includes routines for algebraic operations involving power series. Also, the 

routine calc_layint performs the layer integral operations (4.16) and (4.17) using 

the observation that 

(5.1) 
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where 
np-l 

dp+1 = Cp/(p + 1) and do = - I: CpaP
+1 /(p + 1) (5.2) 

p=O 

The distribution functions of the higher-order theory have a hierarchal co-dependency 

as is evident from eqns. (4.18). Therefore the order in which they are derived by the 

symbolic computation routines is dictated by their dependency on other distribution 

functions. 

5.3.3 Integrated Stiffnesses 

The higher-order theory defines a large set of integrated stiffness constants which 

appear in the system of governing differential equations. It is observed that these 

integrals may be generalized to the form 

(5.3) 

where Ak = AUk, A12k , A l3k , A33k is a stiffness parameter of the k-th layer, /'lk(z) and 

/'2k(Z) are either distribution functions or are equal to unity, and p = 0,1,2. In the 

application, a C function calc_lamint (vm, fnO, fnl, p) calculates any integrated 

stiffness, where vm [] is an n-vector of stiffness constants, and fnO and fnl are 

handles of distribution functions. Some examples of integrated stiffness constants 

and the corresponding C function calls which evaluate them are given in Table 5.1 

where FNull is an intrinsic handle for /'ik(Z) = 1. 

Table 5.1: Evaluation of integrated stiffness constants 

Integrated stiffness constant 

Bl = f:on Au "plk dz 

CO2 = f:on Au 'P2k Z dz 

Du = f:on Au "pik dz 

H2S = f:n Al3 "p2k aSk dz 

C function call 

calc_lamint(all,Fpsil,FNull,O) 

calc_lamint(all,Fvphi2,FNull,1) 

calc_lamint(all,Fpsil,Fpsil,O) 

calc_lamint(a13,Fpsi2~Falpha5,O) 
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5.3.4 Trigonometric Series 

The second set of routines is dedicated to processing trigonometric series approxi

mations of the functions 

U;(X), W(X), Xg(X) (i=1,2; 9=1, ... ,8) (5.4) 

which are required for the calculation of the displacements, stresses and strains. 

In the application, these series are symbols referred to by a handle which is an 

enumerated constant. 

The coefficients of the solution (4.8) of the system (4.6) are solved for any given pair 

(m, n) using Gauss-Jordan reduction, and the coefficients of X3(X), ... , Xs(x) are 

determined from the given loading. These coefficients are then stored in an array 

which is indexed by the handle of the symbol. 

The routine eval_ trig_ term differentiates and evaluates a term of the form 

(5.5) 

A routine eval_ trig takes the handle of a symbol as an argument, and uses eval_

trig_ term to differentiate and evaluate a double trigonometric series whose terms 

are of the form (5.5) and whose coefficients have been calculated. 

Macro symbols for the trigonometric approximations of the functions (5.4) are de

fined; for example the C directives 

#define xul(xl,x2,td) 

#define xw(xl,x2,td) 

#define xchil(xl,x2,td) 

eval_trig( Cul, 

eval_trig( Cw, 

Tcos_sin,td,xl,x2) 

Tsin_sin,td,xl,x2) 

eval_trig( Cchil, Tsin_sin,td,xl,x2) 

define macros for the symbols for the functions Ul(X), w(x) and Xl(X), where Cul, 

Cw and Cchi 1 are their handles and td indicates the differential operation to be 

performed. For example W,12(Xl, X2) is evaluated by the macro xw(xl ,x2, TD12) as 

given in Table 5.2. 

Using these macros, the displacements (3.37), deflection (3.38), strains (3.40) and 

stresses (3.42) are readily evaluated. 

The entire analysis based on the higher-order theory is incorporated into an opti

mization algorithm where, in each iteration, the stress/strain state of the plate is 

determined from the configuration and material properties and of the laminate. 
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Table 5.2: Evaluation of functions of the reference surface 

Function Macro symbol 

Ul,2(XbX2) xu1(x1.x2.TD2) 

U2,n(XbX2) xu2(x1.x2.TD11) 

X6,l22(Xb X2) xchi6 (x1.x2. TD122) 

X9,22(Xb X2) xchi(g.x1.x2. TD22) 

5.4 Optimal Design Problems 

Three design problems are studied, namely the minimization of weight, deflection 

and stress of thick laminated sandwich plates. The sandwich structure is composed 

of relatively stiff top and bottom surface layers of thickness tl and t 3, respectively, 

and a core layer of thickness t2 in between the surface layers as shown in Figure 5.1 

on Page 128. The surface layers are made of a transversely isotropic material and 

carry most of the bending loads. In the minimum weight problem the core is made 

of a honeycomb material, and in the minimum stress problem, results are given for 

isotropic and transversely isotropic core layers which can model a variety of materials 

including honeycomb. The plate is of rectangular shape with sides a and b in the 

Xl and X2 directions , respectively, and a normal sinusoidal load of magnitude qO is 

applied on the top surface. 

5.4.1 Minimum Weight Design 

The weight W of the sandwich plate is given by 

(5.6) 

where the subscripts sand c refer to the surface and core layers. For the sandwich 

structure under consideration tlJ = tl + t3 and tc = t2. Let the surface layers be 

made of a randomly orientated fibre composite material with isotropy in the plane 

and transverse isotropy through the thickness. In this case, PIJ depends on the fibre 

volume content Vj so that PIJ = plJ(Vj). In the minimum weight design problem, tlJ 

is taken as fixed and the total thickness h = tlJ + tc as variable with a constraint on 

the total thickness. The design variables are chosen as vJ and h. 

Using eqn. (5.6) and noting that tc = h - t lJ , the weight is obtained as 

(5.7) 
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The design problem can be stated as 

(5.8) 

subject to thickness and fibre content constraints 

h ~ ho, Vf,min ~ vf ~ vf,max (5.9) 

and a deflection constraint at a given point 

(5.10) 

where ho, Vf,min, vJ,max and Wo are specified quantities and Wb denotes the deflection 

of the bottom surface. As the higher-order theory employed in this study is capable 

of determining the deflection at any point through the thickness of the plate, the 

location of the deflection in the z-direction has to be specified for design purposes. 

The deflection of the bottom surface is chosen as a constraint because of its practical 

importance. 

The deflection depends on the fibre content v f through the values of the elastic 

constants E6 , E~, G6 , G~ and 1I1J. For an in-plane randomly oriented material, the 

following micromechanical equations are used 

EIJ EJvJ/3 + Emvm 

E' 
6 E'm/(l - (1- 3E'm/Ej).jVf) 

G6 Gf vJl3 + GmVm 

G' 
6 Gm /(l - (1 - 3Gm/Gj )Vf) 

116 0.3 (5.11) 

where f and m refer to the fibre and matrix properties, respectively, and a prime 

indicates a property in the transverse direction. 

Here the expressions EIJ and G6 are taken from Ref. [82] and the factor 1/3 reflects 

the reduction in moduli for a randomly oriented fibre composite as compared to 

a unidirectional composite. The expressions are valid for sufficiently stiff fibres 

(Ef » Em) [82]. The expressions for E~ and G~ for the elastic constants through 

the thickness are taken from Ref. [83] and the fibre properties are multiplied by a 

factor 1/3 in line with the expressions for E6 and G6 to account for the random 

orientation of the fibres. An average value is assigned to 116 [82]. 

The density is computed from 

(5.12) 

120 



The efficiency of a minimum weight design can be assessed by defining an efficiency 

index given by 
Wmin 

7]= 
W(0.5,.h) 

(5.13) 

where W(0.5, h) is the weight of a plate made of surface layers only with vI = 0.5 

and h determined such that the deflection constraint (5.10) is satisfied. The index 

provides a weight comparison between the optimally designed sandwich structure 

and its single layer counterpart with no core region. 

The minimum weight design involves the computation of the fibre content v I and 

the total thickness h so as to solve the optimization problem (5.8)-(5.10). For a 

given h and deflection constraint Wo, the minimum vI is determined such that the 

inequality (5.10) is satisfied. The optimal h is obtained by minimising the weight 

over h. This procedure yields the minimum weight sandwich having the optimal v I 

and h. A Golden Section algorithm is used to compute the minimum fibre content 

v I and the optimal thickness hopt ' 

5.4.2 Minimum Deflection Design 

The deflection behaviour of thick sandwich structures differ substantially from their 

thin counterparts when the effects of shear and normal deformation are taken into 

account and the optimal design problem should be formulated accordingly. One 

difference involves the deflection of the bottom surface with the load applied at 

the top surface. In this case, as the thickness of the surface layers increase, the 

deflection of the bottom surface does not necessarily decrease. In fact it decreases 

with increasing tl and t3, but starts to increase after reaching a minimum. This is 

observed in Figure 5.2 on Page 129 where the curves of Wb at the centre of the plate 

are plotted against t. = tl + t3 with t3 = tl for a square laminate with a/h = 2 and 

Ed E2 = 50. In Figure 5.2, Wb is nondimensionalised with respect to the deflection 

Wiso of an isotropic plate with stiffness E = E1 • It is observed that the deflection of 

the sandwich plate approaches that of the isotropic plate as t. increases. 

The deflection behaviour observed in Figure 5.2 can be explained by noting that the 

core layer absorbs some of the deformation in the normal direction. However, if the 

core layer becomes too thin, its capacity to absorb the deflection diminishes, leading 

to an increase in the deflection of the bottom surface as the core thickness becomes 

too smalL As a result the bottom surface of a structure with no core layer may 

deflect more than an optimally designed sandwich structure. This phenomenon can 
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neither be investigated nor taken into account using the classical theory of plates or 

a theory which excludes the effect of normal deformation. 

In the light of these results the minimum deflection problem may be stated as 

minmaxWb(Xl, X2, t a) 
t. X1,X2 

(5.14) 

where 0 :::; ts :::; h with ts = 0 and ts = h corresponding to a plate of core layer 

only and surface layer only, respectively. The efficiency of the optimally designed 

laminates is assessed by defining the ratio 

h = Wb(XI, X2;topt) 

Wb(XI,X2; h) 
(5.15) 

where (XI, X2) is the location of maximum deflection, topt the optimal value of ts 

and Wb( XI, X2; h) the deflection of a laminate composed of surface layers only. The 

quantity h serves as an efficiency index to compare the optimal sandwich to its single 

layer counterpart with no core layer. 

The solution of the minimum deflection problem is obtained by solving the minmax 

problem (5.14) which yields the optimal thickness of the surface layers. 

5.4.3 Minimum Stress Design 

In thick sandwich plates with a core region whose stiffness is relatively low, the stress 

distribution through the thickness is not symmetrical even if the lamination is. This 

is due to the fact that the transverse load applied on the top surface leads to stresses 

in the top layers which are different from those in the bottom layers. The resulting 

stress distribution cannot be symmetrical as predicted by theories which fail to take 

normal deformation into account. An optimal design for minimum stress involves 

the computation of the relative thicknesses of layers such that the maximum normal 

stress will be minimized. 

The normal stresses are given by Un = un(XI, X2, z, t1 ) and U22 = U22(XI, X2, z, t1 ) 

with the core thickness t2 being a given parameter. Then the maximum normal 

stress is given by 

The optimal design problem can be stated as 

mlnumax 
t1 
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for a given total thickness h = tl + t2 + t3. The thickness of the top and bottom 

layers are subject to the practical constraint 

(5.18) 

In the present problem, the total thickness h is specified and t2 is an input parameter. 

Thus t3 = h - tl - t2 where tl is the optimal thickness of the top layer. 

5.5 Numerical Results 

Numerical results are given for a square sandwich plate of dimensions a x a (a = 1m) 

subjected to a sinusoidal load of amplitude qo = 1 MPa on the top surface. 

5.5.1 Minimum Weight Design 

Results are given for surface layers made of T300 graphite fibres whose properties 

are taken as 

EI = 258.6 GPa, Ei = 18.2 GPa, vI = 0.2 

GI = 36.7 GPa, G, = 20 GPa, PI = 1750kg/m3 
(5.19) 

and the epoxy matrix properties are taken as 

Em = 3.45 GPa, Vm = 0.35 

Gm = Em/2(1 + vm), Pm = 1200 kg/m3 
(5.20) 

The core section is made of a 17-7 PH stainless steel honeycomb material with the 

elastic constants [84] 

Ec = 1.58 GPa, Pc = 124 kg/m3 

(5.21) 
GXllC = 0.50 GPa, GlIZC = 0.68 GPa 

These values correspond to a honeycomb with a cell size of 0.25in. First the depen

dence of the weight Won the thickness h is investigated for various values of t8 and 

Wo as shown in Figure 5.3 on Page 130. It is observed that W displays a minimum 

point with respect to h which increases with increasing t8. The fibre contents for 

various values of t8 and Wo are shown in Figure 5.4 with 0.2 ~ vI ~ 0.7. As expected 

VI decreases as h increases for a given t 8 , but increases as the deflection constraint 

becomes smaller. 
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N ext the minimum weight results are presented. The minimum weight decreases 

as the deflection constraint is relaxed as shown in Figure 5.5 for a given surface 

layer thickness t8 = 20mm. However, W min increases as t8 increases as shown in 

Figure 5.6 for a given constraint Wo = 0.88mm. 

Table 5.3: Optimal hand Vf for the minimum weight design. 

t8 Wo hopt vf W min Efficiency 

(mm) (mm) (mm) (%) (kg) 7J 

20 .88 163 47.2 46.93 0.196 

22 .84 168 43.4 49.72 0.201 

24 .78 175 40.4 52.90 0.206 

26 .76 179 37.3 55.46 0.210 

28 .72 185 35.0 58.42 0.216 

30 .70 188 32.6 61.03 0.220 

32 .66 195 30.9 64.10 0.225 

34 .64 199 29.2 66.77 0.227 

36 .62 204 27.6 69.47 0.232 

38 .60 208 26.4 72.19 0.236 

40 .58 213 25.1 74.94 0.240 

Table 5.3 gives the hopt and v f values for a minimum weight design for various 

values of t8 and woo It is observed that the minimum weight sandwich construction 

provides a substantial weight saving as compared to a single layer construction with 

the efficiency decreasing as the deflection constraint becomes tighter. 

5.5.2 Minimum Deflection Design 

In this problem the design variable is the total thickness t8 of the surface layers. 

Results are given for a fixed h with the thickness ratio specified as a/h = 2. 

The elastic properties of the transversely isotropic surface layers are given by EI = 
1 GPa, VI = 0.3, GI = Ed2(1 + VI)' vf = vlEU Ell G~ = EU2(1 + vD. The core 

layer is taken to be isotropic with its elastic properties given by E2, V2 = 0.3 and 

G2 = E2/2(1 + V2) . As EI is fixed at 1 GPa, in the ratios Ed E2 and Ell Ef used 

in the figures, the denominator is varied. The total relative thickness of the surface 

layers is t8/h = (tl + t3)/h. We consider a symmetrically laminated plate, and 
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Figure 5.7 shows the optimal thickness topt!h vs Ed E2 for Ed E~ = 5,10,20. It is 

observed that topt decreases as the ratio Ell E 2 increases, that is, as the surface layers 

become stronger relative to the core layer. The minimum values of the deflection, 

Wb,min, are given in Figure 5.8. As Ell E2 increases, Wb,min decreases due to the 

core region absorbing more of the normal deformation. An interesting phenomenon 

observed in Figure 5.8 is the existence of negative deflection for Ell E~ = 5 when 

Ell E2 ~ 74. This phenomenon is further investigated below. Figure 5.9 gives 

the corresponding curves for the efficiency ratio b. The efficiency of the design, 

in general, increases as Ell E2 increases, i.e., as the core layer becomes weaker. 

Negative values for b occur as a result of Wb,min becoming negative for certain ratios 

of elastic moduli as observed in Figure 5.8. 

Figure 5.10 shows the curves of the toptlh plotted against Ed E~ for various values of 

Ed E2. It is observed that topt increases for high values of Ed E2 and decreases for 

low values of Ell E2 as Ed E~ increases, i.e., as the through-the-thickness modulus 

E~ decreases. For intermediate values, i.e. for Ed E2 = 50, it increases for low 

values of Ell E~ and decreases as Ed E~ increases. As shown in Figure 5.11, the 

values of Wb,min increase as E~ becomes smaller. The corresponding efficiency curves 

are given in Figure 5.12. Again it is observed that b is negative in some cases. 

Next the behaviour of the deflection through the thickness. is investigated, in par

ticular the phenomenon of negative deflection and the effect of excluding normal 

deformation. Figure 5.13 shows the deflection curves through the thickness of the 

plate for various cases with Ed E2 = 50 and Ell E~ = 10. The deflection curve 

for the optimal sandwich with topt/ h = 0.803 (tl = t2 = topt/2) is shown in Fig

ure 5.13a. It is observed that the top layer deflects more than the bottom one and 

there exists a minimum point across the thickness. The corresponding curve for a 

single-layered laminate is shown in Figure 5.13b. For this case the efficiency index 

is b = 1.11/3.79 = 0.293 indicating a 70% reduction in the deflection. Figure 5.13c 

shows the deflection of the sandwich plate with the effect of normal deformation 

neglected. It is clear that neglecting this effect leads to a completely erroneous 

result. 

The corresponding deflection curves are given in Figures 5.14a, 5.14b and 5.14c for 

Ed E2 = 90 and Ed E~ = 5. In is observed from Figure 5.14a that the bottom 

surface of the optimal sandwich has a negative deflection. This explains the neg

ative values for b which for this case is b = -0.443/1.11 = -0.40. Figure 5.14c 

again shows the effect of neglecting the normal deformation. In this case the phe-
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nomenon of negative deflection cannot be observed when the normal deformation is 

left unaccounted. 

5.5.3 Minimum Stress Design 

The elastic properties of the transversely isotropic surface layers are given by El = 

1 GPa, E~ = E1 /2, 111 = 1I~ = 0.3, Gl = El/2(1 + lid and G~ = E~/2(1 + 1If). The 

elastic properties ofthe core layer are given by E2, 112 = 1I~ = 0.15, G2 = E2/2(1+1I2) 

and G~ = E~/2(1 + 1I~). As El is fixed at 1 GPa, in the ratio El / E2 used in the 

figures, the denominator is varied. 

To assess the efficiency of the designs, a comparison is made between the optimally 

designed and symmetrical sandwich plates. For this purpose, an efficiency index is 

defined as 

(5.22) 

where ti indicates the optimal thickness of the top surface and £1 = (h - t 2 )/2, i.e. 

the thickness of the top layer of a symmetrical plate. In the discussion below, 1] is 

referred to as the stress ratio. 

First the behaviour of the stress ratio is investigated as a function of the design 

variable t l . Figure 5.15a shows the curves of 1] versus tl/h for various values of the 

core thickness t2/h for a thickness ratio 'of a/h = 2 and an isotropic core layer. It 

is observed that in general the minimum stress ratio is achieved by a nonsymmetric 

design. Figure 5.15b shows the same curves as in Figure 5.15a with the effect of 

normal deformation neglected. For this case, the results indicate that the optimal 

design is always a symmetric laminate and the stress ratio is greater than one for 

any other configuration. Therefore it is essential to include normal deformation 

in the analysis of thick sandwich plates to obtain the correct optimization results. 

Figure 5.16a shows the curves of 1] versus tl/h for various thickness ratios for a 

transversely isotropic core with E~/ E2 = 10 and t2/h = 0.5. As in the previous 

case, the stress ratio in minimized at certain values of t l . Figure 5.16b shows the 

same curves as in Figure 5.16a with the effect of normal deformation neglected. In 

the vicinity of the optimal point (tl/h = 0.25), the greater the thickness ratio, the 

greater the error as compared to the results given in Figure 5.16a. Figures 5.15 

and 5.16 indicate that an optimal choice of tl can lead to substantial reductions in 

the stress ratio, i.e., the optimal plate will be considerably more efficient than the 

symmetrical one as determined by the efficiency index 1]. 
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The optimal values of t l , denoted by ti, and the corresponding stress ratios are plot

ted against t2/h in Figure 5.17 for various values of Ed E2. The jump discontinuities 

in the values of tl occur due to the existence of local minima. It is observed that 

in all cases the top layer is thinner than the bottom layer except for Ed E2 = 10 

and t2/h = 0.8. However, ti approaches the symmetrical case as t2 increases. Fig

ure 5.17b shows that the efficiency of the design drops as t2 increases. The curves of 

ti/h and 7J versus a/h are shown in Figure 5.18 for various values of t2/h and with 

E;/ E2 = 1 (isotropic core). As a/h increases, i.e., as the plate becomes thinner, tUh 

tends to get larger, and in some cases, the top layer can be thicker than the bottom 

layer. This situation arises as the core layer becomes thicker. As a/h increases, the 

efficiency drops, except for the case t2 / h = 0.8 as can be seen from Figure 5.18b. 

Corresponding curves for a sandwich plate with a transversely isotropic core are 

given in Figure 5.19 where E;/ E2 = 10. In this case, the top layer can be thicker 

than the bottom layer in several cases. However, the general trend of ti/h as a 

function of a/h is similar to the case with an isotropic core layer. A comparison 

of Figures 5.18b and 5.19b indicates that the efficiency drops in the case of a plate 

with a transversely isotropic core. 

The effect of stiffness ratio Ed E2 on ti and 7J is investigated in Figure 5.20 which 

shows the curves of ti/h and 7J versus Ed E2 for a/h = 4. The results are obtained 

subject to the constraint tdh ~ 0.02. It is observed that ti shows different trends 

depending on the values of t2/h and E I / E2. The efficiency, in general, improves 

with increasing Ed E2. 

Typical stress distributions through the thickness are shown in Figure 5.21 for the 

case a/h = 3, Ed E2 = 20, E I / E~ = 2, E;/ E2 = 1 and t2/h = 0.6. Figure 5.21a 

shows the stress distribution for an optimal plate, Figure 5.21b for a symmetrical 

plate, and Figure 5.21c for a symmetrical plate with the effect of normal deformation 

neglected. It is observed that in the case of an optimal plate, the maximum stresses 

are the same at the top and bottom layers. Figure 5.21c indicates that neglecting 

normal deformation would yield a completely incorrect stress distribution and render 

the solution meaningless as is illustrated by Figures 5.15b and 5.16b. 
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5.6 Conclusions 

Optimal designs of thick sandwich plates are given using the higher-order theory, 

which includes the effects of normal deformation as well as transverse shear de

formation. The higher-order theory can provide accurate solutions for very thick 

laminates with layers having significantly different mechanical properties. There

fore this approach makes it possible to optimize sandwich plates with thickness 

ratio a/h ~ 5. 

The higher-order theory is implemented using symbolic computation in preference 

to an analytical or numerical method, since deriving the necessary analytical ex

pressions would be extremely cumbersome while a numerical method would to some 

extent nullify the accuracy afforded by the higher-order theory. In order to operate 

at the highest possible computational efficiency, special purpose symbolic computa

tion routines are developed and incorporated into an optimization algorithm. These 

routines bypass some of the symbolic processing which makes the routines developed

in Section 4.5 relatively more flexible, and as such can achieve a higher degree of 

efficiency. It is found that the use of a general purpose symbolic computation system 

for the present optimization studies is infeasible as it leads to excessive computer 

time. 

When normal deformation is considered, the through-the-thickness distribution of 

the normal stresses ceases to be symmetrical in the case of unsymmetrical loading, 

i.e. loading loading on one surface of the plate only, and conventional symmetrical 

designs are non-optimal. Moreover, normal deformation results in the bottom sur

face having a minimum deflection at a certain thickness ratio of surface and core 

layers and the minimum deflection design is based on this observation. Another 

interesting observation is the existence of negative deflection of the bottom surface 

at certain stiffness ratios. This phenomenon arises as a result of Poisson's effect on 

the normal deformation. 

Three design problems are formulated and solved, namely optimal designs for mini

mum weight, minimum deflection and min-max normal stress. The minimum weight 

problem involves the determination of the fibre content of transversely isotropic sur

face layers made of a randomly oriented fibre composite material. The other design 

variable is taken as the core layer thickness. Minimum weight designs subject to 

a deflection constraint are obtained and the effects of problem parameters on the 

design variables and weight are studied. It is observed that fibre content decreases 

as the sandwich thickness increases for a given deflection. 
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In the minimum deflection problem, the thicknesses of the surface layers are chosen 

as the design variables. The effect of the relative stiffness Ell E2 of the surface and 

core layers is investigated and it is observed that surface layer thickness is smaller 

if the core stiffness E2 is low due to more of the deflection being absorbed by a 

softer core region. However, surface layer thickness does not show a definite trend 

as the through-the-thickness stiffness E~ of surface layers decreases. This thickness 

decreases for low Ed E2 ratios and increases for high Ed E2 ratios as E~ decreases. 

The optimal design for minimum stress involves the computation of the relative 

thicknesses of the layers such that the maximum normal stress will be minimized. 

The resulting design leads to vastly improved sandwich plates which have normal 

stresses up to 40% less than those of a symmetrical sandwich. However, the efficiency 

drops for a transversely isotropic core as compared to an isotropic core. It is observed 

that the thicknesses of the top and bottom layers of an optimal plate depend on 

the relative thickness of the core layer, the thickness ratio of the plate and on the 

relative stiffness of the core layer as compared to the surface layers. It emerges 

that although the top layer on which the load acts is in general thinner than the 

bottom layer for a minimum stress design, this is not always the case and the bottom 

layer can also be thinner depending on the geometric and material parameters. In 

particular this is the case if the core layer is thick compared to the surface layers. It 

is demonstrated that normal deformation has a substantial effect on the design and 

the effect of normal deformation becomes more pronounced when the plate becomes 

thicker. 

Deflection and stress profiles through the thickness are studied with a view towards 

assessing the effect of the configuration on the bottom surface deflection and maxi

mum normal stress and the effect of neglecting normal deformation. It is observed 

that if the theory used in the design analysis does not include normal deforma

tion, the design of thick structures becomes meaningless as it leads to non-optimal 

sandwich plates. 

156 



Chapter 6 

Conclusions 

6.1 Overview 

In the present study the design optimization of a suite of laminated composite 

structures is performed. In the first instance thin laminated composite structures 

are optimized, in particular balanced and unbalanced laminated composite pressure 

vessels with specially orthotropic layers whose elastic properties depend on the angle 

of the reinforcing fibres. 

Special purpose symbolic computation routines are developed in a conventional pro

gramming language in order to improve the efficiency of the optimization algorithm. 

These routines combine the relationship between the loading parameters and the 

stress into one transformation matrix and thereby reduce the number of calcula

tions required in each iteration of the optimization algorithm. It is found that the 

development of such routines, which are dedicated to a specific class of functions, is 

a feasible objective. 

A new higher-order theory which includes the effects of both transverse shear and 

normal deformation is developed for the analysis and design optimization of thick 

laminated composite structures with transversely isotropic layers. The form of the 

kinematic hypotheses of the theory are derived using an iterative technique where 

the classical Kirchhoff-Love hypotheses are assumed in the first iteration and new 

variables which have a clear physical meaning are introduced. The governing differ

ential equations contain stiffness constants which are integrals through the thickness 

of the laminate. The unknown functions in the governing equations are defined on 

an arbitrary reference surface and the order of the system of governing equations is 
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independent of the number oflayers. The stress/strain state of a laminated structure 

is determined using the kinematic hypotheses which inClude the solution of the gov

erning equations (for the reference surface) and through-the-thickness distribution 

functions defined by the theory. 

The distribution functions and integrated stiffnesses of the theory are multiple piece

wise integrals through the thickness of the laminate. In the general case, these inte

grals are not able to be derived in a form suitable for exact numerical calculations 

and the evaluation of these integrals using a numerical method detracts from the 

accuracy afforded by the higher-order theory. These difficulties are overcome by 

employing symbolic computation to derive the distribution functions, calculate the 

integrated stiffness constants exactly, and derive the stress and strain distributions 

through the thickness in power series form, for a given laminate. 

In addition to using a general purpose symbolic computation system, special purpose 

symbolic computation routines are developed for the implementation of the theory. 

These routines are found to be at least two orders of magnitude more efficient in 

the performance of the required computations than the general purpose system. 

Therefore in optimization studies, where computational efficiency is of paramount 

importance, the development of special purpose symbolic computation software is 

preferable to using a general purpose symbolic computation system. Moreover, 

special purpose symbolic computation routines are easily incorporated into an op

timization algorithm whereas this is not possible using a closed general purpose 

system. 

The numerical results obtained indicate that the new higher-order theory is accu

rate for thick structures whereas, in general, the shear deformable theory and the 

classical theory are inaccurate. Therefore in the analysis of thick structures, not 

only transverse shear but also normal deformation should be taken into account. 

Sandwich plates of thickness ratio a/ h ::; 5 are optimized for minimum weight, 

minimum deflection and minimum stress on the basis of the higher-order theory. 

Such designs are not possible using a theory which neglects normal deformation. 

6.2 Symbolic Computation 

Special purpose symbolic computation software is developed in the C language for 

the transformation of coordinate axes, failure analysis and the calculation of design 
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sensitivities for fibre reinforced composite structures. The symbolic computation 

routines perform tedious matrix algebra where the entrIes of the matrices are series 

of double trigonometric functions and simplify the results using trigonometric iden

tities. The symbolic computations are integrated into an optimization algorithm 

resulting in a combined symbolic and numerical approach to determine the optimal 

design. 

Special purpose symbolic computation routines are also developed for the implemen

tation of the higher-order theory. Symbols may be defined as laminae parameters, 

symbolic expressions or piecewise integrals of symbolic expressions. Symbols and 

symbolic expressions are recursively expanded into power series which may be inte

grated and evaluated. 

6.3 Optimization of Thin Pressure Vessels 

Two design problems for thin laminated composite pressure vessels are solved. In 

the first problem, a cylindrical pressure vessel is optimized taking the fibre angle 

as the design variable to maximize the burst pressure and the effects of the axial 

force and torque on the optimal designs are investigated. In the second problem, 

a cylindrical vessel filled with liquid and subject to an internal pressure is studied. 

The weight of the shell is minimized taking the fibre angle and the wall thickness as 

the design variables. Both constant and variable thickness shells are investigated. It 

is shown that the results for the second problem approach those of the first problem 

as the internal pressure increases. 

Numerical results are given for unbalanced (single- and six-layered) and balanced 

laminates noting that in the balanced case the number of layers does not affect 

the results. It is observed that fibre angles align themselves with the longitudinal 

axis as the axial force increases . . Variable thickness shells are found to be about 

20% more efficient than the constant thickness shells for low values of the internal 

pressure with the difference decreasing as this pressure increases. For single-layered 

pressure vessels, the optimal fibre angle is found to be either 00 or 90 0 with the 

switch-over point depending on the magnitude of the axial force, torque and the 

internal pressure. 
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6.4 Higher-Order Theory 

The numerical results obtained for thick homogeneous and heterogeneous plates are 

compared to those given in the literature to validate the higher-order theory. It 

is found that for an isotropic plate with thickness ratio a/h = 2, the higher-order 

theory predicts the deflection distribution to within 2% and the normal stresses 

to within 5% of the exact three-dimensional elasticity solution whereas the shear 

deformable model which neglects the effect of normal deformation and the classical 

theory are grossly inaccurate. 

As the transverse rigidity of plates decreases, the effect of normal deformation be

comes more pronounced and the inaccuracy of the shear-deformable model increases. 

However, it is observed that as the ratio a/ h increases, the effect of normal deforma

tion is reduced and, in general, the shear-deformable theory is accurate for plates 

with a/h ~ 10. 

Numerical results for a sandwich plate where the higher-order theory is used to 

model the core layer and the classical theory is used to model the surface layers 

are compared to those given in the literature where the core layer is modelled as a 

three-dimensional elastic body. It is found that the discrepancies are at most 0.8% 

for a/ h = 3, ... ,10 and a core layer up to two orders of magnitude weaker than the 

surface layers. 

6.5 Optimization of Thick Sandwich Plates 

Three design problems are formulated and solved, namely, optimal designs for mini

mum weight, minimum deflection and minimum normal stress. The minimum weight 

problem involves the determination of the optimal thickness of the core layer and 

the optimal fibre content of the surface layers. It is observed that fibre content 

decreases as the sandwich thickness increases for a given deflection constraint. 

In the minimum deflection problem, the thicknesses of the surface layers are cho

sen as the design variables. The design optimization is based on the observation 

that the deflection of the bottom surface decreases as the core layer becomes thin

ner but increases again once the thickness of the core layer relative to the surface 

layers drops below a critical level. Moreover, the bottom surface may undergo neg

ative deflection for certain combinations of material properties. These phenomena 

160 



are peculiar to thick structures and can only be analysed using three-dimensional 

elasticity solutions or a higher-order theory which includes normal deformation. 

The optimal design for minimum stress involves the computation of the relative 

thicknesses of the layers such that the maximum normal stress will be minimized. It 

is demonstrated that normal deformation has a substantial effect on the design and 

this effect becomes more pronounced as the thickness of the plate increases. When 

normal deformation is taken into account, the maximum normal stresses in the top 

and bottom layers are not equal in the case of a symmetrical sandwich. The design 

optimization produces a configuration where these maximum stresses are equal and 

leads to vastly improved sandwich plates which have normal stresses up to 40% less 

than those of a symmetrical sandwich. It is found that if the theory used in the 

design analysis does not include normal deformation, the design of thick structures 

becomes meaningless as it leads to non-optimal sandwich plates. 
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6.6 Recommendations for Future Work 

Higher-order theory for orthotropic materials 

The present higher-order theory could be extended to orthotropic materials. This 

would enable the optimization of composite structures reinforced with continuous 

fibres where the fibre orientation is a design variable. The boundary conditions 

could be extended to cylindrical shells for the optimization of pressure vessels. 

Object-oriented symbolic computation 

The development of special purpose symbolic computation routines lends itself to

wards an object-oriented approach and such routines could be developed using the 

C++ language for various applications. 

Design optimization of thick structures 

A three-dimensional failure criterion could be used as a design constraint for the 

optimization studies of thick structures based on the higher-order theory. 

The optimization studies could be extended to structures under other loading condi

tions such as uniformly distributed and localized loads and under various boundary 

conditions. 
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Appendix A 

Symbolic Results from Mathematica 

For transversely isotropic homogeneous shells, the Mathematica implementation of 

higher-order theory derives the distribution functions as 

fl[z_] = -(el h~2)/(8 (1 - nul~2)) + (el z~2)/(2 (1 - nul~2)) 

betal[z_] = (el (h - 2 z) (h + 2 z))/(8 g2 (-1 + nul) (1 + nul)) 

beta7[z_] = -(h - 2 z)/(2 g2 h) 

beta8[z_] = (h + 2 z)/(2 g2 h) 

alpl[z_] = (el nu2 z)/(e2 (1 - nul)) 

alp2[z_] = -«el nu2)/(e2 (1 - nul))) 

alp3[z_] = «h - 2 z)~2 (h + 2 z))/(8 e2 h~2) 

alp4[z_] = «h - 2 z) (h + 2 z)~2)/(8 e2 h~2) 

alp5[z_] = -«h - 2 z)~2 (h + z))/(2 e2 h~3) 

alp6[z_] = «h - z) (h + 2 z)~2)/(2 e2 h~3) 

vphi[z_] = (-(el h~2)/(8 (1 - nul~2)) + (el z~2)/(2 (1 - nul~2)))/g2 

vphil[z_] = -(el nu2 z~2)/(2 e2 (-1 + nul)) 

vphi2[z_] = (el nu2 z)/(e2 (-1 + nul)) 

vphi3[z_] = (z (3 h~3 - 3 h~2 z - 4 h z~2 + 6 z~3))/(24 e2 h~2) 

vphi4[z_] = -(z (-3 h~3 - 3 h~2 z + 4 h z~2 + 6 z~3))/(24 e2 h~2) 

vphi5[z_] = -(z (2 h~3 - 3 h~2 z + 2 z~3))/(4 e2 h~3) 

vphi6[z_] = -(z (-2 h~3 - 3 h~2 z + 2 z~3))/(4 e2 h~3) 

vphi7[z_] = (1 - (1 - nul~2) «el h)/(2 (1 - nul~2)) + 

(el z)/(l - nul~2))/(el h))/g2 

vphi8[z_] = (1 - nul~2) «~1 h)/(2 (1 - nul~2)) + 

(el z)/(l - nul~2))/(el g2 h) 

psil[z_] = (el z (-3 e2 h~2 + 4 e2 z~2 - 4 g2 nu2 z~2 -

4 g2 nul nu2 z~2))/(24 e2 g2 (-1 + nul) (1 + nul)) 

psi2[z_J = (el nu2 z~2)/(2 e2 (-1 + nul)) 

psi3[z_J = (z~2 (15 h~3 - 10 h~2 z - 10 h z~2 + 12 z~3))/(240 e2 h~2) 

psi4[z_J = -(z~2 (-15 h~3 - 10 h~2 z + 10 h z~2 + 12 z~3))/ 

(240 e2 h~2) 

psi5[z_] = -(z~2 (5 h~3 - 5 h~2 z + 2 z~3))/(20 e2 h~3) 

psi6[z_] = -(z~2 (-5 h~3 - 5 h~2 z + 2 z~3))/(20 e2 h~3) 

psi7[z_] = -(z (-h + z))/(2 g2 h) 

psi8[z_] = -(z (h + z))/(2 g2 h) 
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and the integrated stiffnesses as 

cb = (el h (-e2 + el nu2-2))/ 

«1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

ebb = -(eel h (e2 nul + el nu2-2))/ 

«1 + nul) (-e2 + e2 nul + 2 el nu2-2))) 

cbO = 0 

cbl = 0 

cb2 = (el-2 h-3 nu2 (-e2 + el nu2-2))/ 

(24 e2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cb5 = -eel h-3 (-e2 + el nu2-2))/(48 e2 (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cb6 = (el h-3 (-e2 + el nu2-2))/(48 e2 (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

eel = -(el-2 h-3 nu2 (-e2 + el nu2-2))/ 

(24 e2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cclb = (el-2 h-3 nu2 (e2 nul + el nu2-2))/ 

cc2 = 0 

cc2b = 0 

(24 e2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cc5 = (9 el h-2 (-e2 + el nu2-2))/ 

(160 e2 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cc5b = (-9 el h-2 (e2 nul + el nu2-2))/ 

(160 e2 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cc6 = (9 el h-2 (-e2 + el nu2-2))/ 

(160 e2 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cc6b = (-9 el h-2 (e2 nul + el nu2-2))/ 

(160 e2 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

chl = 0 

ch2 = -«el-2 h nu2-2)/«-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2))) 

ch5 = (el h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2)) 

ch6 = -eel h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2)) 

chOl = (el-2 h-3 nu2-2)/(12 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

ch02 = 0 
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ch05 = -(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2)) 

ch06 = -(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2)) 

chll = -(el-3 h-5 nu2-2 (4 e2 + g2 nu2 + g2 nul nu2))/ 

(480 e2 g2 (-1 + nul)-2 (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

ch12 = 0 

ch22 = -(el-3 h-3 nu2-3)/(24 e2 (-1 + nul)-2 

(-e2 + e2 nul + 2 el nu2-2)) 

ch21 = 0 

ch16 = (el-2 h-4 nu2 (17 e2 + 4 g2 nu2 + 4 g2 nul nu2))/ 

(1680 e2 g2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

ch26 = -(el-2 h-3 nu2-2)/ 

(48 e2 (-1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

ch15 = (el-2 h-4 nu2 (17 e2 + 4 g2 nu2 + 4 g2 nul nu2))/ 

(1680 e2 g2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

ch25 = (el-2 h-3 nu2-2)/ 

(48 e2 (-1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cdOO = (el h-3 (-e2 + el nu2-2))/ 

(12 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cdOl = -(el-2 h-5 (4 e2 + g2 nu2 + g2 nul nu2) . 

(-e2 + el nu2-2))/(480 e2 g2 (-1 + nul) 

(1 + nul)-2 (-e2 + e2 nul + 2 el nu2-2)) 

cd02 = 0 

cd05 = (13 el h-4 (-e2 + el nu2-2))/ 

(4480 e2 (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cd06 = (13 el h-4 (-e2 + el nu2-2))/ 

(4480 e2 (1 + nu1) (-e2 + e2 nu1 + 2 e1 nu2-2)) 

cdl = (e1-2 h-5) / (120 g2 (-1 +. nul) -2 (1 + nul) -2) 

cdll = (el-3 h-7 (-e2 + el nu2-2) (68 e2-2 + 32 e2 g2 nu2 + 

32 e2 g2 nul nu2 + 5 g2-2 nu2-2 + 

cd12 = 0 

cd21 = 0 

10 g2-2 nu1 nu2-2 + 5 g2-2 nu1-2 nu2-2))/ 

(80640 e2-2 g2-2 (-1 + nu1)-2 (1 + nu1)-3 

(-e2 + e2 nul + 2 el nu2-2)) 

cd22 = (el-3 h-5 nu2-2 (-e2 + el nu2-2))/ 
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(320 e2-2 (-1 + nul)-2 (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cd16 = -(el-2 h-6 (268 e2 + 83 g2 nu2 + 83 g2 nul nu2) 

(-e2 + el nu2-2))/ (967680 e2-2 g2 (-1 + nul) 

(1 + nul)-2 (-e2 + e2 nul + 2 el nu2-2)) 

cd26 = (el-2 h-5 nu2 (-e2 + el nu2-2))/ 

(640 e2-2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cd15 = -(el-2 h-6 (268 e2 + 83 g2 nu2 + 83 g2 nul nu2) 

(-e2 + el nu2-2))/(967680 e2-2 g2 (-1 + nul) 

(1 + nul)-2 (-e2 + e2 nul + 2 el nu2-2)) 

cd25 = -(el-2 h-5 nu2 (-e2 + el nu2-2))/ 

(640 e2-2 (-1 + nul) (1 + nul) (-e2 + e2 nul + 2 el nu2-2)) 

cpb12 = 0 

cpb21 = 0 

cpb22 = -(el-3 h-3 nu2-3)/(24 e2 (-1 + nul)-2 

(-e2 + e2 nul + 2 el nu2-2)) 

cpb16 = (13 el-2 h-4 nu2-2)/(4480 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cpb26 = -(el-2 h-3 nu2-2)/(48 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cpb15 = (13 el-2 h-4 nu2-2)/(4480 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

cpb25 = (el-2 h-3 nu2-2)/(48 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

crbll = (el-2 h-3 nu2-2)/(12 (-1 + nul) 

crb12 = 0 

crb21 = 0 

(-e2 + e2 nul + 2 el nu2-2)) 

crb22 = (el-2 h nu2-2)/«-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2)) 

crb16 = -(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2)) 

crb26 = (el h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2)) 

crb15 = -(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2)) 

crb25 = -(el h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2)) 

chsll = (el-2 h-5)/(120 g2 (-1 + nul)-2 (1 + nul)-2) -

(el-3 h-5 nu2-2 (4 e2 + g2 nu2 + g2 nul nu2))/ 

(240 e2 g2 (-1 + nul)-2 (1 + nul) 
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(-e2 + e2 nul + 2 el nu2-2» 

chs12 = 0 

chs21 = 0 

chs22 = -(el-3 h-3 nu2-3)/(i2 e2 (-1 + nul)-2 

(-e2 + e2 nul + 2 el nu2-2» 

chs16 = (13 el-2 h-4 nu2-2)/ 

(4480 e2 (-1 + nul) (-e2 + e2 nul + 2 el nu2-2» + 

(el-2 h-4 nu2 (17 e2 + 4 g2 nu2 + 4 g2 nul nu2»/ 

(1680 e2 g2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2» 

chs26 = -(el-2 h-3 nu2-2)/(24 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2» 

chs15 = (13 el-2 h-4 nu2-2)/ 

(4480 e2 (-1 + nul) (-e2 + e2 nul + 2 el nu2-2» + 

(el-2 h-4 nu2 (17 e2 + 4 g2 nu2 + 4 g2 nul nu2»/ 

(1680 e2 g2 (-1 + nul) (1 + nul) 

(-e2 + e2 nul + 2 el nu2-2» 

chs25 = (el-2 h-3 nu2-2)/(24 e2 (-1 + nul) 

(-e2 + e2 nul + 2 el nu2-2» 

crbs16 = -(el h-2 nu2)/(8 e2 (-1 + nul» + 

(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2» 

crbs26 = (el h nu2)/(2 e2 (-1 + nul» -

(el h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2» 

crbs15 = -(el h-2 nu2)/(8 e2 (-1 + nul» + 

(el h-2 nu2)/(10 (-e2 + e2 nul + 2 el nu2-2» 

crbs25 = -(el h nu2)/(2 e2 (-1 + nul» + 

(el h nu2)/(2 (-e2 + e2 nul + 2 el nu2-2» 
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Appendix B 

Routines for Trigonometric Series 

1*--- composites 

* 
* evan summers 
* university of natal 

* november 1991 

* 
* symbolic computat ion for laainates 

* double trigonometric series 

* 
*1 

typedef struct 1* structure for trig series *1 
{ 

real coeff; 

int fn[2] ; 

int pov[2] ; 

int hara[2]; 

char var; 
} 

trigt; 

1*--- manifest constants ---*1 

'define THull «trigt*)O) 

'define FnCosSin 0 

'define FnCos 1 

'define FnSin 2 

1*--- declarations ---*1 

int 

trigt 
void 

void 
trigt 
trigt 

trigt 

trigt 

trigt 

trigt 

trigt 

trigt 
trigt 

trigt 

trigt 

trigt 

real 

real 

int 

trig_size(trigt *sym1); 1* nuaber of teras in series *1 
*trig_alloc(int n); 1* allocate aeaory for series *1 
trig_free(trigt *sym1); 1* free aeaory *1 
trig_afree(trigt *sya1 •... ); 1* au1tiple free *1 
*trig_clear(trigt *sym); 1* clear tera in series *1 
*trig_copy(trigt *sya1.trigt *sya2.int n); 1* copy series *1 
*trig_dup(trigt *sya1.int n); 1* duplicate series *1 
*trig_rea1loc(trigt **sya1.int n); 

1* change size of .eaory allocated *1 
*trig_reassign(trigt **sym1.trigt *sya2); 

/* reallocate pointer to series to nev series */ 
*trig_op(trigt **sya1.trigt *fn(»; 1* operate on series *1 
**tris-aat_op(); 1* operate on aatrix *1 
*trig_set(); 1* define a series *1 
*trig_set_const(trigt *sya1.real cnst); 

1* set series equal to 1 constant tera */ 
*trig_const(real cnst); 

/* define series equal to 1 constant tera *1 
*trig_ault_const(trigt* syal.real cnst); 

1* aultiply series by constant *1 
*trig_add(real cnstl.trigt *syal.real cnst2.trigt *sym2); 

1* add 2 series *1 
trig_calc(trigt *syal.real var); 

1* calculate nuaerical value of series *1 
*trig_aat_calc(); 

1* evaluate syabolic aatrix *1 
trig_cap(trigt *syal.trigt *sya2); 

1* co.pare tvo teras for algebraic addition *1 
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trigt *trig_collect(trigt *syml); /* collect like terms in series */ 
trigt *trig_mult(trigt *syml.trigt *sym2); /* multiply tvo series */ 
trigt *trig_binomial(real cnstO.real coeff.int fnO.int harmO •. 

real cnstl . int povO •... ); 

/* expand binomial */ 
trigt *trig_expand(trigt *syml); 

/* simplify trigonometric series into harmonics */ 
trigt *trig_significant(trigt *syml); /* discard insignificant terms */ 

trigt *trig_diff(trigt *syml); /* differentiate */ 

real trig_diff_calc(trigt *syml.real var); 
/* evaluate derivative of symbolic matrix */ 

real *trig_mat_calc_diff(); 

void trig_mat_free(); /* free memory allocated for matrix */ 
void trig_mat_mfree(); /* free many matrices */ 

trigt **trig_mat_mult_const(); 

/* multiply matrix by constant */ 
trigt *trig_mat_minor_det(); 

/* derive the determinant of a minor of a matrix */ 
trigt *trig_mat_det(); 

/* derive and simplify determinant of matrix */ 
trigt **trig_mat_adj(); 

/* derive and simplify adjoint of matrix */ 
trigt **trig_mat_mult(); 

/* derive product of tvo matrices */ 
char *trig_format(char *buf.trigt *syml); 

/* format term for ASCII output */ 

void trig_output(char *msg.trigt *syal); /* display series */ 
void trig_aat_output(); /* display symbolic matrix */ 

char *trig_format_tex(char *buf.trigt *syml); 

/* format term in TeX format */ 
void trig_output_tex(FlLE *stream.char *msg.trigt *syml); 

/* output in TeX */ 
void trig_mat_output_tex(); 

/* output symbolic matrix in TeX */ 

int trig_size(sym) /* number of teras in series */ 
trigt *sym; 
{ 

int n; 

if (!sym) return (0); 

for (n - 0; sym[n].coeff !- 0.; n++); 
return (n); 
} 

int n_free - O. n_alloc - 0; /* globals */ 

trigt *trig_alloc(n) /* allocate memory for series */ 
{ 

trigt *syaO; 

symO - (trigt*) malloc«n+l)*sizeof(trigt»; 
if (symO -- Null) 

{ 

printf("cannot allocate memory (~d teras)\n".n); 
return (Null); 
} 

n_alloc++; 

memset(symO.O.(n+l)*sizeof(trigt»; 
return (syaO); 
} 

void trig_free(symO) /* free memory */ 
trigt *syaO; 
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{ 

if (syaO .- Hull) 
printf("error: free: null pointer\n"); 

else 
if (n_alloc <- n_free) 

printf("error: free: exceeded\n"); 

else 

} 

{ 

free(syaO); 

n_free++; 
} 

trigt .trig_copy(syaO,syal,n) 

trigt .syaO,.syal; 
{ 

if (n -= 0) n - trig_size(sym1) + 1; 
aemcpy(syaO,sya1,sizeof(trigt)*n); 

return(syaO) ; 
} 

trigt .trig_dup(sya1,n) /. duplicate series ./ 

trigt .sya1; 
{ 

trigt .syaO; 
if (n .- 0) n • trig_size(sya1) + 1; 

syaO - trig_alloc(n); 
trig_copy(syaO,sya1,n); 

return (symO); 
} 

trigt .trig_clear(sym) 

trigt .sya; 
{ 

int i; 
sya[O] . coeff • 0.; 
for (i • 0; i < 2; i++) 

{ 

sya[O].fn[i] - 0; sya[O].pow[i] - 0; sya[O].harm[i] 0; 
} 

return(sya) ; 
} 

trigt .trig_realloc(sya1,n) /. change s i ze of .e.ory allocated ./ 
trigt "sya1; 
{ 

trigt .syaO; 
syaO· trig_dup(.sya1,n); 
trig_free(.sya1); 
.sya1 • syaO; 

return (.sya1); 
} 

/. reallocate pointer to series to new series ./ 
trigt .trig_reassign(syaO,sya1) 
trigt •• syaO,.syal; 
{ 

if (.syaO) trig_free(.syaO); 

.syaO - syal; 
return (.syaO); 
} 

trigt .trig_op(syaO,fn) /. operate on series ./ 
trigt .. syaO; 
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trigt *fn(); /* operator */ 
{ 

trigt *syml; 
if (*symO) 

{ 

syml - fn(*symO); 
trig_free(*symO); 

*symO - syml; 
} 

return (*symO); 
} 

trigt **trig_lIlat_op(sIllO,fn) /* operate on matrix */ 

trigt **SIllO; 
trigt *fn(); /* operator */ 
{ 

int i,j; 
for (i - 0; i < 3; i++) 

for (j - 0; j < 3; j++) 
trig_op(lsIll0[i*3+j),fn); 

return (SIllO); 
} 

/* set series equal to 1 constant term */ 
trigt *trig_set_const(symO,cnst) 

trigt *symO; 
real cnst; 
{ 

int i; 

syaO[O).coeff - cnst; 
for (i - 0; i < 2; i++) 

{ 

syaO[O) .fn[i) - 0; 
symO[O).pov[i) = 0; 

symO[O).harm[i) - 0; 
} 

symO[1).coeff - 0.; 
return(s)'1l0) ; 
} 

trigt *trig_lIIult_const(symO,cnst) 
trigt *syaO; 
real cnst; 
{ 

int i; 

trigt *syal; 

sya1 - trig_dup(symO,O); 
for (i - 0; sya1[i).coeff; i++) 

{ 

syml[i).coeff *- cnst; 
} 

return (s)'1l1) ; 
} 

trigt *trig_add(cnst1,sym1,cnst2,sya2) /* add 2 series */ 
trigt *sya1,*sya2; 
real cnst1,cnst2; 
{ 

int i,n,n1,n2,ns; 
trigt *syaO; 

n1 - trig_size(sym1); 
n2 - trig_size(sya2); 
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symO - trig_alloc(ns - n1 + n2); 

n - 0; 
if (sym1 tt cnst1 !- 0 . ) 

for (i - 0; i < n1; i++) 
{ 

trig_copy(tsymO[n] ,tsym1[i] ,1); 

symO[n].coeff *= cnst1; 

n++; 
} 

if (sym2 tt cnst2 !- 0.) 

for (i - 0; i < n2; i++) 
{ 

trig_copy(tsymO[n] ,tsym2[i] ,1); 

symO[n].coeff *= cnst2; 

n++; 
} 

symO[n].coeff - 0.; 
if (n > ns) printf("error: add: size\n"); 

trig_op(tsymO,tris-collect); 

return(symO) : 
} 

real trig_calc(symO,varO) /* calculate numerical value of series */ 

trigt *symO: 
real varO: 
{ 

int i,k; 

real fact, term, sum - 0.; 

if (symO -- Null) return (0.): 
for (i - 0; syaO[i].coeff !- 0.; i++) 

{ 

term - symO[i].coeff; 

for (k - 0: k < 2; k++) 
if (symO[i].fn[k]) 

{ 

if (symO[i].fn[k] -= FnCos) 

fact - cos(symO[i].harm[k]*varO); 
else 

if (symO[i].fn[k] -- FnSin) 

fact - sin(symO[i].harm[k]*varO); 
if (symO[i] .POll[k] !- 1) 

fact - pOll(fact,(real)symO[i].poll[k]); 
term *- fact; 
} 

SUII +- tena: 
} 

return (sum); 
} 

real *trig_aat_calc(mO,saO,varO) /* evaluate symbolic matrix */ 
real *aO; 
trigt *saO[]: 

real varO: 
{ 

int i,j; 

for (i - 0; i < 3; i++) 

for (j - 0: j < 3; j++) 

aO[i*3+j] - trig_calc(smO[i*3+j],varO); 
return (aO): 
} 
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/* compare tvo teras for algebraic addition */ 
int trig_cmp(syaO,sym1) 

trigt *symO,*sya1; 
{ 

int i; 
for (i - 0; i < 2; i++) 

{ 
if (symO->fn[i] !- sym1->fn[i]) return (0); 
if (symO->fn[i]) 

{ 
if (symO->pov[i] !- sym1->pov[i]) return (0); 

if (symO->harm[i] !- sym1->harm[i]) return (0); 
} 

} 
return (1); 
} 

void trig_svitch_fn(symO,i,j) 

trigt *symO; 
{ 

trigt sym1; 
trig_copy(1sym1,symO, 1); 
symO->fn[i] - sym1.fn[j]; 
symO->pov[i] - sym1.pov[j]; 
symO->harm[i] - sym1.harm[j]; 
symO->fn[j] - sym1.fn[i]; 

symO->pov[j] - sym1.pov[i]; 
symO->harm[j] x sym1.harm[i]; 
} 

void trig_order_fn(tO) 

trigt *to; 
{ 

if (to->fn[l] -- FnCos 11 to->fn[O] !- FnCos) 
trig_svitc~fn(tO,O,l); 

} 

trigt *trig_order(symO) 
trigt *symO; 
{ 

int i,j,ns; 

trigt *sya1; 
sya1 - trig_dup(symO,O); 

for (i - 0; syaO[i].coeff; i++) trig_order_fn(1syaO[i]); 
return (aya1); 
} 

trigt *trig_collect(sya1) /* collect like teras in series */ 
trigt *sya1; 
{ 

int i,j,n; 

trigt *syaO,*sya2; 

syaO - trig_dup(sya1,O); 
n· trig_size(syaO); 

for (i - 0; i < n; i++) 
{ 

trig_order_fn(1syaO[i]); 

if (symO[i].fn[O] 11 syaO[i].fn[O] -- syaO[i].fn[l] 

11 syaO[i].hara[O] -- syaO[i].hara[l]) 
{ 

if (syaO[i].fn[O] _x FnSin) 
{ 

syaO[i].pov[l] +- symO[i].pov[O]; 
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symO[i).fn[O] - 0; 
symO[i).pov[O) - 0; 
} 

else 

} 

{ 
symO[i).pov[O) += symO[i).pov[1); 

symO[i).fn[1) - 0; 
symO[i).pov[1) - 0; 
} 

if (syaO[i).fn[O) 11 symO[i).hara[O) < 0) 

{ 

} 

if (symO[i).fn[O) -= FnSin) 
{ 
symO[i).coeff *- -1; 
symO[i).harm[O) *= -1; 
} 

else 

} 

{ 
symO[i).hara[O) *= -1; 
} 

if (symO[i).fn[1) 11 symO[i).hara[1) < 0) 

{ 
if (symO[i).fn[1) -- FnSin) 

{ 
symO[i).coeff *= -1; 
symO[i).harm[1) *= -1; 
} 

else 

} 

{ 
syaO[i).hara[1) *- -1; 
} 

for (i = 0; i < n; i++) 
{ 

if (symO[i).coeff) 
for (j • 0; j < n; j++) 

{ 

if (i !- j 11 syaO[j).coeff 11 trig_cap(lsyaO[i),lsyaO[j)) 
{ 

} 
} 

syaO[i).coeff +- syaO[j).coeff; 

syaO[j).coeff - 0.; 
} 

for (j - 0, i - 0; j < n; j++) 
if (syaO[j).coeff) 

{ 

if (i !- j) trig_copy(lsyaO[i),lsyaO[j),1); 

} 

syaO[i).coeff - 0.; 
trig_realloc(lsyaO,O); 
return (syaO); 
} 

trigt *trig_ault(sya1,sya2) /* aultiply tvo series */ 
trigt *sya1,*sya2; 
{ 

trigt *syaO; 
int i,j,k,1,n,n1,n2,ns; 
trigt *to,*t1,*t2; 
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real rvO,rvl,rv2; 

rvl - trig_calc(syml,dvthe)j 

rv2 - trig_calc(sym2,dvthe); 

nl - trig_size(syml); 

n2 - trig_size(sym2); 
symO = trig_alloc(ns = nl*n2); 

n - 0; 

for (i - 0; i < nl; i++) 
for (j - 0; j < n2; j++) 

{ 

to - symO + n; 
tl - syml + i; 
t2 - sym2 + j; 

trig_order_fn(tl); 

trig_order_fn(t2); 
trig_clear(tO); 

to->coeff = tl->coeff*t2->coeff; 

for (k - 0; k < 2; k++) 
{ 

if (tl->fn[k] tt t2->fn[k] -- 0 tt !to->fn[k]) 
{ 

to->fn[k] - tl->fn[k]; 
to->pov[k] - tl->pov[k]; 

to->harm[k] - tl->harm[k]; 
} 

else 

if (tl->fn[k] -= 0 tt t2->fn[k] tt !to->fn[k]) 
{ 

to->fn[k] = t2->fn[k]; 

to->pov[k) • t2->pov[k]; 

to->hara[k] - t2->hara[k]; 
} 

else 

if (tl->fn[k] tt tl->fn[k] -= t2->fn[k] tt 

tl->harm[k] _. t2->harm[k] tt !to->fn[k]) 
{ 

to->fn[k] = tl->fn[k]; 
to->pov[k] • tl->pov[k) + t2->pov[k]; 
to->hara[k] - tl->hara[k]; 
} 

else 
if (tl->fn[k] tt t2->fn[k] tt to->fn[l-k] -= 0 tt 

!to->fn[k] tt !to->fn[l-k]) 
{ 

to->fn[O] • tl->fn[k]; 
to->pov[O] • tl->pov[k]j 
to->hara[O] - tl->harm[k]; 

to->fn[l] - t2->fn[k]; 
to->pov[l] = t2->pov[k]; 

to->hara[l] - t2->hara[k); 
} 

else 

if (tl->fn[k] I I t2->fn[k) 
{ 

char bufl(32),buf2[32]; 

printf("error: ault: Xs: Xs\n", trig_format(bufl, to, 
trig_format(buf2,t2»; 

} 
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} 

n++; 
} 

symO[n].coeff - 0.; 
if (n > ns) printf("error: mult: size\n"); 

trig_op(tsymO,trig_collect); 

return (symO); 
} 

trigt *trig_binomial(cnstO,coeff,fnO,harmO,cnst1,powO,fn1,pow1,harm1) 

real cnstO,cnst1,coeff; 
{ 

int i,j,n,ns; 

trigt *symO; 
symO - trig_alloc(ns· 128); 

for (i - 0; i <- powO; i++) 
{ 

symO[i].coeff - cnstO*binomial_coeff(powO,i); 

if (i < powO) 
syaO[i].coeff *- pow(cnst1,(real)(powO - i»; 

if (i) 

{ 

symO[i].coeff *- pow(coeff,(real)i); 
symO[i].fn[O] - fnO; 
symO[i] .pow[O] - i; 

symO[i].harm[O] - harmO; 
} 

else 
{ 

symO[i] .fn[O] • 0; 

symO[i].pow[O] - 0; 
} 

if (fn1 11 pow1) 
{ 

symO[i].fn[1] - fn1; 

symO[i].pow[1] - pow1; 
symO[i].harm[1] - hara1; 
} 

else 
{ 

symO[i].fn[1] - 0; 

symO[i].pow[1] - 0; 
symO[i] . hara[1] - 0; 
} 

if (fnO -- FnSin) trig_switch_fn(lsyaO[i],O,1); 
} 

syaO[i].coeff - 0.; 
if (i > ns) printf("error: binomial: size\n"); 
trig_realloc(lsyaO,O); 
return (syaO); 
} 

/* simplify trigonometric series into haraonics */ 
trigt *trig_expand(sya1) 
trigt *sya1; 
{ 

int n - 0; 
int i,j,k,n1,n2,mO,m1,m2,ns; 

int stat - 0; 

trigt *syaO,*sya2,*t; 

symO - trig_alloc(ns - 256); 

for (i - 0; sya1[i].coeff !- 0.; i++) 
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{ 

t - &:sy.1 [i] ; 

if (t->fn[O] -- FnSin 11 t->fn[l] !- FnSin) 
{ 

trig_svitch_fn(t,O,l); 
} 

if (t->fn[O] 11 t->fn[O] _s t->fn[l] 11 

t->hara[O] -- t->hara[l]) 
{ 

if (t->fn[O] -- FnSin) 
{ 

t->pov[l] +- t->pov[O]; 

t->fn[O] - 0; 
t->pov[O] .. 0; 
} 

else 

} 

{ 

t->pov[O] +- t->pov[l]; 

t->fn[1] - 0; 
t->pov[l] .. 0; 
} 

if (t->fn[O] 11 t->hara[O] < 0) 
{ 

if (t->fn[O] -- FnSin) 
{ 

t->coeff .- -1; 
t->hara[O] .- -1; 
} 

else 

} 

{ 

t->hara[O] .- -1; 
} 

if (t->fn[l] 11 t->hara[l] < 0) 
{ 

if (t->fn[l] -- FnSin) 
{ 

t->coeff .- -1; 
t->hara[l] ... -1; 
} 

else 

} 

{ 

t->hara[l] ... -1; 
} 

aO - Min(t->pov[0],t->pov[1]); 
a1 - Max(t->pov[0],t->pov[1]); 

sya2 - Hull; 

if (aO -- 0 11 a1 > 1) /. cos·n ax, sin·n ax ./ 
{ 

stat .. 1; 
a2 .. a1/2; 
if (Even(aO) 

{ 

if (t->pov[O] -- a1 11 t->fn[O] -- FnCos) 
sya2 - trig_binoaial(t->coeff,.5,FnCos, 

2.t->hara[0], . 5,a2,O); 
elae 

if (t->pov[1] -- a1 11 t->fn[l] -- FnSin) 
aya2 - trig_binoaial(t->coeff,-.5,FnCos, 
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. 2*t->hara[1],.5,m2,O); 

else 
printf (llerror: expand: %s\n" ,trig_format (bufO, t»; 

} 

else 
{ 

if (t->pov[O] _ .. m1 tt t->fn[O] -= FnCos) 

sym2 - trig_binomial(t->coeff,.5,FnCos, 

2*t->harm[0] , 

. 5,m2,t->fn[0],l,t->hara[0]); 

else 
if (t->pov[l] -- a1 tt t->fn[l] _. FnSin) 

sym2 - trig_binomial(t->coeff,-.5,FnCos, 

2*t->hara[1] , 
.5,m2,t->fn[1],l,t->hara[1]); 

else 
printf("error: expand: %s\n" ,trig_format(bufO,t»; 

} 

} 

else 

if (t->fn[O] -- FnCos tt t->fn[l] -= FnSin 

tt t->hara[O] -- t->hara[l] tt t->pov[O] -= t->pov[l]) 
{ 

stat - 2; 
symO [n] . coeti 

symO[n] .fn[O] 

symO[n] .pov[O] 
symO [n] . fn[l] 
symO [n] . pov [1] 

symO[n] .harm[1] 

- pov(.5,(real)aO)*t->coeff; 

n++; 
} 

else 

.. 0; 

- 0; 
.. FnSin; 

'" t->pov [0] ; 

- 2*t->harm[0]; 

if (t->fn[O] -- FnCos tt t->fn[l] -- FnSin 
tt t->hara[O] -= t->hara[1] tt Even(a1 - mO» 
{ 

stat - 3; 
a2 - (m1 - aO)/2; 
if (t->pov[O] _. aO) 

{ 

sym2 - trig_binomial(pov(.5,(real)aO)*t->coeff, 
-.5,FnCos,2*t->harm[0],.5,m2,FnSin, 
mO,2*t->hara[0]); 

} 

else 
{ 

sym2 - trig_binoaial(pov(.5,(real)aO)*t->coeff, 
.5,FnCos,2*t->hara[0),.5,a2,FnSin, 
aO,2*t->hara[0]); 

} 

} 

else 

if (mO tt Even(m1» 
{ 

stat - 4; 
a2 - a1/2; 

if (m1 -- t->pov[O]) 
{ 

if (t->fn[O] -- FnCos) 

sym2 - trig_binomial(t->coeff,.5,FnCos,2*t->hara[0], 

.5,a2,t->fn[1],t->pov[1],t->hara[1]); 
else 

if (t->fn[O] -- FnSin) 

sya2 - trig_binoaial(t->coeff,-.5,FnCos,2*t->hara[0], 
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.S,a2,t->fn[1],t->pov[1],t->harm[1]): 

} 

e18e 
if (a1 -- t->pov[l]) 

{ 

} 

else 

if (t->fn[l] -- FnCo8) 
8ym2 ~ trig_binoaial(t->coeff,.S,FnCos,2*t->harm[1], 

.S,a2,t->fn[0],t->pov[0],t->harm[0]): 

else 
if (t->fn[l] -- FnSin) 

} 

sym2 - trig_binoaial(t->coeff,-.S,FnCos,2*t->hara[1], 
.S,a2,t->fn[0],t->pov[0],t->hara[0]): 

if (t->pov[O] -= 1 tt t->pov[l] -= 1) 
{ 

stat - S: 
if (t->fn[O] -- FnSin tt t->fn[l] -- FnCos) 

{ 

symO[n].coeff - .S*t->coeff: 
symO[n) .fn[O] • 0: 
8ymO[n) .pov[O] - 0: 
8yaO[n) .fn[l] - FnSin: 
syaO[n] .pov[l] - 1: 
syaO[n].hara[l] - t->hara[O] - t->hara[l]: 
n++: 

symO[n].coeff - .S*t->coeff: 
syaO[n] .fn[O] - 0: 
syaO[n] .pov[O] - 0: 
symO[n] .fn[l] ~ FnSin: 

syaO[n) .pov[l] - 1: 
8ymO[n).hara[1] - t->harm[l] + t->hara[O]: 
n++: 
} 

else 

if (t->fn[O] -- FnCos tt t->fn[l] -- FnSin) 
{ 

- .S*t->coeff: 

- 0: 

- 0: 

- FnSin: 
• 1: 

syaO [n] . coeff 
syaO[n] .fn[O] 

syaO[n] .pov[O] 
8yaO[n) .fn[l] 
8yaO[n] .pov[l] 
syaO[nJ . hara [1] 
n++: 

- t->harm[l] - t->hara[O]: 

- .S*t->coeff; 

• 0: 

- 0: 
- FnSin: 

- 1: 

8yaO [n) . coeff 
8yaO[n] .fn[O] 
8yaO[n) .pov[O] 
8yaO[n] .fn[1] 
ayaO[nJ .pov[l] 
8yaO[n] .hara[1] - t->hara[l] + t->hara[O]: 
n++: 
} 

e18e 

if (t->fn[O] -- FnCos tt t->fn[l] -- FnCos) 
{ 

8yaO[n).coeff •. S*t->coeff: 
8yaO[n) .fn[O] - FnCo8: 

8yaO[n) .pov[O] • 1: 

8yaO[n).hara[O] - ab8(t->harm[1] - t->hara[O]); 
8yaO[n) .fn[l] - 0: 
8yaO[nJ .pov[l] • 0: 
n++: 

8yaO[n).coeff - .S*t->coeff: 
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ayaO[n) .fn[O] • FnCoaj 

ayaO[n) .pov[O] - 1j 
ayaO[n).hara[O] • t->hara[1] + t->hara[O]j 

ayaO[n) .fn[1] • OJ 
aymO[n) .pov[1] '" OJ 
n++j 
} 

else 
if (t->fn[O] .'" FnSin 1t t->fn[1] •• FnSin) 

{ 

ayaO[n).coeff •• S*t->coeffj 
a}'llO[n) .fn[O] • FnCoaj 

ayaO[n) .pov[O] • 1j 
ayaO[nJ .hara[O] • aba(t->hara[1] - t->hara[O]) j 

ayaO [n] . fn[1] • 0 j 
ayaO[n) .pov[1] • OJ 
n++j 

ayaO[n).coeff '" -.S*t->coeffj 

aymO [n) • fn[O] '" FnCos j 
s}'110 [n) . pov [0] • 1 j 
a}'llO[n).harm[O] • t->harm[1] + t->harm[O]j 

symO[n) .fn[1] • OJ 
symO[n] .pov[1] • OJ 

n++j 
} 

else 
printf(lterror: expand\nlt)j 

} 

else 

if (t->fn[O] .- FnCos 11 t->fn[1] .- FnSin 
11 t->hara[O] .- t->hara[1]) 
{ 

stat· 6j 

S}'llO[n).coeff • pov(.S,(real).O)*t->coeffj 

if (t->pov[O] .- .0) 
{ 

ayaO[n) .fn[O] • FnSinj 
ayaO[n) .pov[O] •• OJ 

ayaO [nJ .hara[O] • 2*t->hara[0] j 

syaO[n).pov[1] -•• OJ 
} 

else 
{ 

ayaO[n).pov[O] -- .OJ 
syaO[n] .fn[l] • FnSinj 
ayaO[n) .pov[1] •• OJ 
ayaO[n).hara[1] .2*t->hara[O]j 
} 

n++j 
} 

else 
{ 

trig_copy(1syaO[n),1aya1[i],1)j 
n++j 
} 

if (sya2) 
{ 

n1 - trig_aize(aya2)j 

if (n+n1 > ns - 64) 
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{ 

trig_realloc(lsymO,ns +- 32); 

} 

trig_copy(lsymO[nJ,sym2,nl); trig_free(sym2); 

n +- nl; 
} 

else 
if (n > ns - 64) 

{ 

trig_realloc(lsymO,ns +- 32); 
} 

} 

symO[n].coeff - 0.; 

trig_op(lsymO,trig_collect); 
if (stat) trig_op(lsymO,trig_expand); 
return (symO); 
} 

trigt *trig_significant(syml) /* discard insignificant terms */ 

trigt *syml; 
{ 

int i,j,n; 

trigt *symO; 

real rll. - 0.; 

symO - trig_dup(syml,O); 

n" trig_size(symO); 

for (i - 0; i < n; i++) 
if (fabs(symO[i].coeff) > rm) 

rm - fabs(symO[i] . coeff); 

for (i - 0; i < n; i++) 
if (fabs(symO[i].coeff/rm) < dvsig) 

symO[i].coeff - 0.; 

i .. 0; 

for (j - 0; j < n; j++) 
if (symO[j].coeff) 

{ 

if (i !- j) trig_copy(lsymO[i],tsymO[j],l) ; 
i++; 
} 

symO[i].coeff .. 0.; 

trig_realloc(lsymO,O); 

return (symO); 
} 

trigt *trig_diff(tl) /* differentiate */ 
trigt *tl; 
{ 

int i,k,nl,n - O,ns; 
trigt *to; 
real rvO,rvl; 

nl - trig_size(tl); 

to - trig_alloc(ns - nl*2); 
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for (i - 0: i < n1: i++) 
{ 

if (t1[i).fn[0) 11 t1[i).fn[0) -- t1[i).fn[1) 11 

t 1[i) .harm[O) -- t 1[i) . harm [1) ) 
{ 

t1[i).pov[0) +- t1[i).pov[1): 

t1[iJ .fn[1) - 0: 

t1[i).pov[1) - 0: 
t1 [i) .hara[1) - 0: 
} 

if (t1[i).fn[0) 11 !t1[i).fn[1) 
{ 

trig_clear(ltO[n): 

to[n).coeff - t1[i).coeff*t1[i).pov[0)*t1[i).harm[0): 

to[n).pov[O) - 1: 
to[n) .hara[O) - t1[i) .hara[O): 

if (t1[i).fn[0) -- FnCos) 
{ 

to[n).coeff *E -1: 

to[n).fn[O) - FnSin: 
} 

else 
if (t1[i).fn[0) -- FnSin) 

{ 

to[n] .fn[O) - FnCos: 
} 

if (t1[i).pov[0) > 1) 
{ 

to[n).fn[1) - t1[i).fn[0): 

to[n) .pov[1) - t1[i) .pov[O) - 1: 
to[n).hara[1) ~ t1[i).harm[0): 
} 

n++: 
} 

else 

if (t1[i) .fn[1) tt !t1[i) .fn[O) 
{ 

trig_clear(1tO[n): 

to[n).coeff - t1[i).coeff*t1[i).pov[1)*t1[i).hara[1): 

to[n] .pov[O) - 1: 
to[n) .hara[O) - t1[i) .hara[1): 

if (t1[i).fn[1) -- FnCos) 
{ 

to En) .coeff *- -1: 
to[n).fn[O) - FnSin; 
} 

else 

if (t1[i).fn[1) -- FnSin) 
{ 

to[n].fn[O) - FnCos; 
} 

if (t1[i) .pov[1) > 1) 

{ 

to[n) .fn[1) - t1[i].fn[1): 
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to[n] .pOll[1] · .. t1[i] . pOll [1] - 1; 
to[n] .harm[l] .. t1[i] .harm[l]; 
} 

n++; 
} 

else 
if (t1[i].fn[0] tt t1[i].fn[1] tt t1[i].harm[0] == t1[i].harm[1]) 

{ 

trig_clear(ltO[n]); 

to[n].coeff" t1[i].coeff*t1[i].pOll[0]*t1[i].harm[0]; 

if (t1[i].pOll[0] -= 1) 

{ 

to[n] .fn[O] .. 0; 
to[n] .pOll[O] .. 0; 

to [n] • harm [0] .. 0; 
} 

else 
{ 

to[n] .fn[O] .. t 1[i] . fn[O] ; 

to[n] .POll[O] .. t 1[i] . pOll [0] -
to[n] .harm[O] .. t1[i] .harm[0]; 
} 

to[n].fn[l] .. t1[i].fn[l]; 
to[n].poll[l] .. t1[i].pOll[1] + 1; 

to[n] .harm[l] .. t1[i] . harm [1] ; 

1 ; 

if (t1[i].fn[0] _ .. FnCos) to[n].coeff * .. - 1; 

n++; 

trig_clear(ttO[n]); 

to[n].coeff - t1[i] . coeff*t1[i].poll[1]*t1[i] .harm[1]; 

to[n].fn[O] - t1[i].fn[O]; 
to[n].poll[O] .. t1[i].pOll[0] + 1; 
to[n] .harm[O] .. t1[i] . harm [0] ; 

if (t1 [i] . pOll [1] -= 1) 

{ 

to[n] .fn[l] .. 0; 
to[n].poll[l] .. 0; 
to[n).harm[l) .. 0; 
} 

else 
{ 

to[n).fn[l) - t1[i).fn[1); 
to[n) .poll[l) - t1[i] .poll[l) - 1; 
to[n) .harm[l) - t1[i) • harm [1] ; 
} 

if (t1[i].fn[1] .- FnCos) to[n].coeff * .. -1; 

n++; 
} 

else 

if (t1[i].fn[0] tt t1[i] . fn[1]) 
{ 

char bufl [32] ; 

printf("error: diff: Xs\n",trig_foraat(buf1,lt1[i]»; 
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getchO; 
} 

} 

to[n].coeff - 0; 

if (n > ns) printf("error: diff: size\n"); 
trig_op(ttO,trig_order); 
trig_realloc(ttO,O); 
return (to); 
} 

real trig_diff_calc(t,arg) /* differentiate */ 

trigt *t; 
real arg; 
{ 

int i,n; 
real sua - 0, term; 

for (i - 0; i < n; i++) 
{ 

if (!t[i].fn[O] tt !t[i].fn[1]) continue; 

if (t[i] .fn[O]) 
{ 

term - t[i].coeff*t[i].harm[O]; 

if (t[i] .fn[O] _ .. FnCos) 
{ 

if (t[i] • pOll [0] != 1) 

term *- t[i].pOll[O]*POll(COS(t[i].harm[O]*arg), 
(real)t[i].pOll[O] - 1.); 

term *- - sin(t[i].harm[O]*arg); 
} 

else 

if (t[i].fn[O] -- FnSin) 
{ 

if (t[i].pOll[O] !- 1) 

term *- t[i].pOll[O]*POll(sin(t[i].harm[O]*arg), 
(real)t[i].pOll[O] - 1.); 

tera *- cos(t[i].harm[O]*arg); 
} 

if (t[i].fn[1] -- FnCos) 

tera *- pOll(cos(t[i].hara[1]*arg),(real)t[i].pOll[1]); 
else 

if (t[i].fn[1] -- FnSin) 

term *- pOll (s in ( t [i] . harm [1] *arg) , (real)t [i] . pOll [1] ) ; 

SUIII +a term; 
} 

if (t [i] .fn[1]) 
{ 

tera - t[i].coeff*t[i].harm[1]; 
if (t[i].fn[1] a- FnCos) 

{ 

if (t[i] .poll[1] !- 1) 

term *- t[i].pOll[1]*POll(COS(t[i].harm[1]*arg), 
(real)t [i] .poll[1] - 1.); 

term * .. - sin(t[i].harm[1]*arg); 
} 

else 
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if (t[i].fn[l] _. FnSin) 

{ 

if (t[i].pow[l] !- 1) 
tera *= t[i].pow[l]*pow(sin(t[i].harm[l]*arg), 

(real)t [i] .pow[l] - 1.); 

term *. cos(t[i].harm[l]*arg); 

} 

if (t[i].fn[O] -= FnCos) 
tera *- pow(cos(t[i].harm[O]*arg),(real)t[i].pow[O]); 

else 
if (t[i].fn[O] == FnSin) 

term *= pow(sin(t [i] . harm [0] *arg) , (real)t [i] .pow [0]) ; 

SUIII += term; 
} 

} 

return (SUIII); 

} 

/*--- aatrices ---*/ 

/* multiply matrix by constant */ 
trigt **trig_mat_mult_const(sm,cnst) 

trigt *sm [] ; 
real cnst; 
{ 

int i,j,n; 

for (i = 0; i < 3; i++) 

for (j - 0; j < 3; j++) 

for (n - 0; sll[i*3+j] [n] .coeff !- 0 . ; n++) 
sm[i*3+j][n].coeff *- cnst; 

return (Sll); 
} 

/* derive the determinant of a minor of a aatrix */ 
trigt *trig_mat_minor_det(smO,i,j) 
trigt *smO [] ; 
{ 

int al,m2,nl,n2; 

trigt *symO,*syml,*sym2; 

al - (i+l)X3j nl - (j+l)X3j 
a2 - (i+2)X3; n2 - (j+2)X3; 

syml - trig_ault(saO[al*3+nl],smO[m2*3+n2]); 
sym2 - trig_ault(smO[m2*3+nl],smO[ml*3+n2]) j 

symO - trig_add(1.,syml,-1.,sym2); 
trig_free(syal); trig_free(sym2); 

trig_op(lsymO,trig_collect); 

return (syaO); 
} 

/* derive and siaplify determinant of aatrix */ 
trigt *trig_aat_det(smO) 
trigt *smO [] ; 
{ 

int i; 
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trigt .symO - Hull,.sym1; 

for (i - 0; i < 3; i++) 
{ 

sym1 - trig_mat_minor_det(smO,O,i); 

trig_reassign(lsym1,trig_mult(sym1,smO[i)); 

trig_reassign(lsymO,trig_add(1.,symO,1.,sym1» ; 

trig_free(sym1); 
} 

trig_op(lsymO,trig_collect); 
trig_op(lsymO,trig_expand); 
trig_op(lsymO,trig_significant); 

return (symO); 
} 

/. derive and simplify adjoint of matrix ./ 
trigt •• trig_mat_adj(smO,sm1) 

trigt .smO [) ,.sm1 0 ; 
{ 

int i,j; 

for (i • 0; i < 3; i++) 

for (j - 0; j < 3; j++) 
smO[j.3+i) - trig_mat_minor_det(sm1 ,i ,j) ; 

return (smO); 
} 

/. derive product of tvo matrices ./ 
trigt •• trig_mat_mult(smO,sm1,sm2) 
trigt .smO [) , .sm1 0 , .sm2 0 ; 
{ 

int i,j,k; 
trigt .symO; 

for (i - 0; i < 3; i++) 

for (j - 0; j < 3; j++) 
{ 

smO[i.3+j) - Hull; 
for (k • 0; k < 3; k++) 

{ 

symO - trig_mult(sml[i.3+k),sm2[k.3+j); 
trig_reassign(lsmO[i.3+j), 

trig_add(1.,smO[i.3+j),l . ,symO»; 
trig_free(symO); 
} 

trig_op(lsmO[i.3+j),trig_collect) ; 
} 

return (smO); 
} 
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Appendix C 

Routines for Piecewise Integrals 

/*--- higher order theory 

* 
* Evan Bryan Summers 
* University of Hatal, Durban 4001, South Africa 

* Kay 1992 

* 
* 
* Higher Order Theory 
* Symbolic Computation 

* 
*/ 

typedef struct /* power series ito z */ 
{ 

real coeff: 
int pow: 
} 

powt: 

typedef symh int: /* symbol handle */ 

typedef struct /* symbol definition */ 
{ 

char *desc: 
uchar type: 
uchar stat: 

powt **pp: 
s}'llh *expr: 

real *rp: 
real rv: 
int iv1,iv2: 
} 

s}'1lt; 

/*--- power series ---------------------------------------------*/ 

Idef ine PHull «powU)0) 

int pow_size(ps) /* nuaber of teras in series */ 
powt *ps: 
{ 

int i: 
if (!ps) return (0): 

for (i - 0: ps[i).coeff: i++): 
if (i > n_pow_size) n_pow_size • i: 
return (i): 
} 

powt *pow_alloc(n) /* allocate aeaory for series */ 
{ 

powt *ps: 

ps - (powt*) aalloc«n+1)*sizeof(povt»: 
if (ps _. PHull) 

{ 

printf("cannot allocate aemory (%d teras)\n",n): 
return (PHull) j 
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} 

memset(ps,O,(n+l)*sizeof(povt»; 
n_pov_nterm++; n_pov_alloc++; 

return (ps); 
} 

void pov_free(ps) /* free memory */ 

povt *ps; 
{ 

if (ps) 

} 

{ 

free(ps); 

n_pov_free++; 
} 

povt *pov_clear(ps) 

povt *ps; 
{ 

memset(ps,O,sizeof(povt»; 

return(ps) ; 
} 

povt *pov_copy(psl,ps2,n) 

povt *psl,*ps2; 
{ 

if (n z= 0) n • pov_size(ps2) + 1; 

memcpy(psl,ps2,sizeof(povt)*n); 

return(ps1} ; 
} 

povt *pov_dup(psl,n) /* duplicate series */ 

povt *psl; 
{ 

povt *ps2; 

if (n -- 0) n - pov_size(psl) + 1; 

ps2 - pov_alloc(n); 
pov_copy(ps2,psl,n); 

return (ps2); 
} 

povt *pov_realloc(psl,n) /. change size of memory allocated */ 
povt •• psl; 
{ 

povt *ps2; 

ps2 - pov_dup(*psl,n); 
pov _free ( *psi) ; 

*psl - ps2; 
return (.psl); 
} 

/. reallocate pointer to nev series ./ 
static povt .pov_reassign(ps2,psl) 
povt •• ps2,*ps1; 
{ 

if (.ps2) pov_free(*ps2); 
.ps2 -= psl; 
return (.ps2); 
} 

povt .pov_op(psl,fn) /. operate on series ./ 
povt •• psl; 

povt .fn(); /. operating function */ 
{ 
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povt .ps2; 
if (.psl) 

{ 

ps2· fn(.psl); 
pov_free(.ps1) ; 

.psl • ps2; 
} 

return (.psl); 
} 

real pov_calc(ps,z) 
povt .ps; 

real z; 
{ 

int i,n; 

real rv = 0.; 
if (ps) 

{ 

for (i • 0; ps[i] . coeff; i++) 
{ 

if (ps[i].pov == 0) rv += ps[i] .coeff; else 

if (ps[i].pov -= 1) rv +- ps[i].coeff*z; else 
if (fabs(z) > dvsig) 

rv +- ps[i] . coeff*pov(z,(double)ps[i] . pov); 
} 

} 

return (real_sig(rv»; 
} 

povt *pov_collect(psl) 

povt *psl; 
{ 

int i,j,n; 
povt *ps; 

if (!psl) return (PHull); 

ps • pov_dup(psl,n - pov_size(psl»; 

for (i • 0; i < n; i++) 
{ 

if (ps[i].coeff) 
{ 

for (j .. 0; j < n; j++) 
{ 

if (i !- j tt ps[j].coeff 1t ps[i ] .pov -= ps[j].pov) 
{ 

} 

} 

} 

ps[i].coeff += ps[j] . coeff; 
ps[j].coeff - 0.; 
} 

for (j • 0, i • 0; j < n; j++) 
{ 

if (chk_sig(ps[j].coeff» 
{ 

if (i !- j) pov_copy(lps[i],lps[j],l) ; 
i++; 
} 

} 

ps[i].coeff·O.; 
pov_realloc(lps,i); 
return (ps); 
} 
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povt *pov_add(psl,ps2) 

povt *psl,*ps2; 
{ 

povt *ps; 

int n - 0; 
int nl,n2; 

nl - pov_size(psl); 

n2 - pov_size(ps2); 

ps - pov_alloc(nl+n2); 
if (nO 

{ 

pov_copy(ps,psl,nl); 

n +- nl; 
} 

if (n2) 
{ 

pov_copy(tps[n),ps2,n2); 

n +- n2; 
} 

ps[n).coeff - 0.; 
pov_op(tps,pov_collect); 
return (ps); 
} 

povt *pov_mult_const(psl,cnst) 

povt *psl; 

real cnst; 
{ 

povt *ps2; 
int i,n; 

ps2 - pov_dup(psl,n - pov_size(psl»; 
for (i - 0; i < n; i++) 

ps2[i).coeff *- cnst; 
return (ps2); 
} 

povt *pov_sua(psl,cnst,ps2) 

povt **psl,*ps2; 
real cnst; 
{ 

povt *ps; 

ps - pov_ault_const(ps2,cnst); 

pov_reassign(psl,pov_add(*psl,ps»; 
pov_free(ps) ; 

return (*psO; 
} 

povt *pov_ault(psl,ps2) 
povt *psl,*ps2; 
{ 

povt *ps; 
int i,j,n,nl,n2; 

if (psl -- Plull tt ps2 -= Plull) return (Plull); 
if (psl -- Plull) return (pov_dup(ps2,O»; 
if (ps2 -- Plull) return (pov_dup(psl,O»; 

nl - pov_size(psl); 
n2 - pov_size(ps2)j 

if (nl .. 0 I I n2 -- 0) return (pov_zero(»j 
ps - pov_alloc(nl*n2); 

n - OJ 
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for (i - 0; i < nl; i++) 
for (j • 0; j < n2; j++) 

{ 

ps[n].coeff - psl[i].coeff*ps2[j].coeff; 
ps[n].pov - psl[i].pov+ps2[j].pov; 

n++; 
} 

ps[n].coeff·O.; 
pov_op(lps,pov_collect); 

return (ps); 
} 

povt *pov_integrate(psl,zO,cnst) 

povt *psl; 
real zO,cnst; 
{ 

int i,j ,n; 

povt *ps; 
if (!psl) return (PNull); 

n - pov_size(psl); 

ps - pov_dup(psl,n + 1); 
for (i - 0; i < n; i++) 

{ 

ps[i].pov++; 

ps[i].coeff /- (real) ps[i].pov; 
} 

ps[n].coeff - - pov_calc(ps,zO) + cnst; 

ps[n].pov - 0; 
n++; 

ps[n].coeff - 0; 
return (ps); 
} 

povt *pov_define(args) 

char args; 
{ 

povt *ps; 

int n - 0, ns - 8; 
char *arg; 
ps • pov_alloc(ns); 

for (arg - largs; *(real*)arg;) 
{ 

ps[n].coeff. * (double*)arg; arg +- sizeof(double); 
ps[n].pov. *(int*)arg; arg +- sizeof(int); 
n++; 
} 

ps[n].coeff - 0.; 
pov_realloc(lps,n); 
return (ps); 
} 

/.--- syabolic expressions -----------------------______________ */ 

static int sya_size(se) /. nuaber of teras in series ./ 
syah .se; 
{ 

int n; 
if (!se) return (0); 

for (n - 0; se[n]; n++); 
return (n); 
} 

static syah .sya_alloc(n) /. allocate .e.ory for series ./ 
{ 
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syah *se: 
se • (syah*) .alloc«n+l)*sizeof(symh»: 

if (se ... Hull) 
{ 

printf(ltcannot allocate .emory (%d terms)\nlt,n): 

return (Hull): 
} 

n_sYJD_nsYJD++ : 

n_sYJD_alloc++: 

.emset(se,O,(n+l)*sizeof(symh»: 

return (se): 
} 

static void sYJD_free(se) 1* free .e.ory *1 
syah *se: 
{ 

if (se) 

} 

{ 

free(se): 
n_sYJD_free++: 
} 

static syah *sYJD_copy(sel,se2,n) 

syah *sel,*se2: 
{ 

if (n .s 0) n • sYJD_size(se2) + 1: 
.emcpy(sel,se2,sizeof(symh)*n): 

return(sel): 
} 

static syah *sya_dup(sel,n) 1* duplicate series *1 
s)'llh *sel: 
{ 

syah *se2: 

if (n •• 0) n • sYJD_size(sel): 
se2 • sYJD_alloc(n): 

sya_copy(se2,sel,n): 

se2[n] = 0: 
return (se2); 
} 

1* Change size of .emory allocated *1 
static syah *sya_realloc(sel,n) 

syah **sel; 
{ 

s)'llh *se2; 
se2 • sya_dup(*sel,n): 
sYJD_free(*se1) : 
*sel • se2: 
return (*se1): 
} 

1* reallocate pointer to new series *1 
static s)'llh *sYJD_reassign(se2,sel) 

syah **se2,*sel; 
{ 

if (*se2) sya_free(*se2); 
*se2 • sel; 

return (*se2): 
} 

static syah sya_define(desc,is,type) 
char *desc: 
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syah is; 
int type; 
{ 

int i; 
char *arg; 

arg· (char*)ltype + sizeof(int); 

sym[is].desc - desc; 
sym[is].type - type; 

if (sym[is].type·- SymConst) 
{ 

sym[is].rv - *(real*)arg ; arg +- sizeof(double); 
} 

else 
if (sym[is].type .- SymMConst) 

{ 

sym[is].rp· *(real**)arg; arg +- sizeof(void*); 
} 

else 
if (sya[is].type·- SymZ) 

{ 

sym[is] . ivl - *(int*)arg; arg += sizeof(int) ; 
} 

else 

if (sym[is].type .- SymExpr) 
{ 

sym[is].expr· sym_dup«syah*)arg.O) ; 
} 

else 
if (sya[is].type _. Syalnt) 

{ 

sya[is].ivl - *(int*)arg; arg +- sizeof(int); 
sya[is].expr· sym_dup«symh*)arg.O) ; 
} 

else 

if (sya[is].type .- SymLamlnt) 
{ 

sya[is].ivl • *(int*)arg; arg +. sizeof(int) ; 

sya[is].iv2 • *(int*)arg; arg +- sizeof(int); 
sya[is].expr - sya_dup«syah*)arg.O) ; 
} 

else 
{ 

fprintf(fdeb."error: sym: define\n") ; 

return (0); 
} 

sya_output(flog.is); 

return (is); 
} 

static syah *sya_tera(se) 
syah *se; 
{ 

int i; 

if (!se) return (Null); 

for (i - 0; se[i] II se[i] !- SymPlus; i++); 
if (!i) return (Null); 

return (sya_dup(se.i» ; 
} 
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static syah *sya_tail(se) 

syah *se; 
{ 

int i; 
if (se) 

{ 

for (i = 0; se[i] tt se[i] != SymPlus; i++); 

if (se[i] -= SymPlus) 
return (sya_dup(se+i+1,0»; 

} 

return (Hull); 
} 

static int sya_term_si ze(se) 

syah *se; 
{ 

int i; 
if (!se) return (0); 

for (i - 0; se[i] tt se[i] !- SymPlus; i++); 
return (i); 
} 

static int sym_tail_si ze(se) 

symh *se; 
{ 

int i; 
if (se) 

{ 

for (i - 0; se[i] tt se[i] !- SyaPlus; i++); 

if (se[i] -- SyaPlus) 
return (sya_size(se+i+1»; 

} 

return (0); 
} 

povt *sya_expand(k,is , se) 
syah is; 

s)'llh se [] ; 
{ 

povt *ret - Hull; 

if (k < 1) { n_err++; return (Hull);} 

if (is -- SyaHone) ret - lull; else 

if (is -- SyaExpr tt (!se I I !se[O]» ret - lull; else 
if (is -- SyaExpr) 

{ 

syah *spO,*sp1; 
povt *ps; 

spO - sya_tera(se+1); 
sp1 - sya_tail(se+1); 

ret - sya_expand(k,se[O]); 

if (spO) 
{ 

ps - sya_expand(k,SymExpr,spO); 

pov_reassign(lret,pov_ault(ret,ps»; 
pov_free(ps); 
sya_free(spO); 
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} 

if (spi) 
{ 

} 
else 

ps - sym_expand(k,SymExpr,spi); 
pov_reassign(lret,pov_add(ret,ps»; 

pov_free(ps); 
sym_free(spi); 
} 

if (is -- SymPosi) ret - pov_define(l.,O,O.); else 

if (is -- SymMegi) ret - pov_define(-l.,O,O.); ~lse 
if (is -- SymZ) ret = pov_define(l.,l,O . ); else 

if (is -- SymZ2) ret = pow_define(1.,2,O.); else 
if (is < SymUserEnd) 

{ 

if (sym[is].type -- SymZ) 
ret - pow_define(l.,sym[is].ivi,O.); 

else 

if (sym[is].type -- SymConst) 
ret - pow_define(sym[is].rv,O,O.); 

else 

if (sym[is].type -- SymMConst) 
ret - pow_define(sym[is].rp[k-i],O,O.); 

else 

if (sym[is].type -= SymMPow) 

ret • pow_dup(sym[is].pp[k-i],O); 
else 

if (sym[is].stat 1 SSmpov) 

ret - pov_dup(sym[is].pp[k-i]~O); 

else 

if (sym[is].type -= SymExpr) 

ret - sym_expand(k,SymExpr,sym[is].expr); 
else 

if (sym[is].type -- Symlnt) 
{ 

powt .ps; 

real rv; 

ps - sym_expand(k,SymExpr,sym[is].expr); 

if (k> sym[is].ivi) 
{ 

rv - lam_int(sya[is].ivi,k-i,sym[is].expr); 
ret - pov_integrate(ps,ga[k-i],rv); 
} 

else 
{ 

rv - lam_int(sym[is].ivi,k,sym[is].expr); 
ret - pow_integrate(ps,ga[k],rv); 
} 

pow_free(ps); 
} 

else 

if (sym[is].stat 1 SSconst) 

ret • pov_define(sym[is].rv,O,O.); 
else 

if (sym[is].type -- SymLamlnt) 
{ 

real rv; 

sym[is].rv - lam_int(sym[is].ivl,sya[is].iv2,sym[is].expr); 
ret - pow_define(sym[is].rv,O,O.); 
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} 

else 

} 

{ 

fprintf(fdeb,"error: expand: type\n" ) ; 
n_err++; 
} 

else 
{ 

fprintf(fdeb,"error: expand\n"); 
n_err++; 
} 

return (ret); 
} 

static real lam_int(m,k,se) 

symh .se; 
{ 

real ret; 

povt .psl,.ps2; 

if (k < 0 II k > n_lay) 
{ 

fprintf(fdeb,"error: integrate: layer number\n") ; 
n_err++; 
return (0.); 
} 

if (k --.) return (0.); 

if (!se) se - (symh.) (lse + 1); 

if (k > m) 

{ 

ret - lam_int(m,k-l,se); 

psl - sym_expand(k,SymExpr,se); 

ps2 - pov_integrate(psl,ga[k-l] ,0.) ; 
ret +- pov_calc(ps2,ga[k]); 
} 

else 
{ 

ret - lam_int(m,k,se): 

psl - sym_expand(k,SyaExpr,se); 

ps2 - pov_integrate(psl,ga[k] ,0.); 
ret +- pov_calc(ps2,ga[k-l]); 
} 

pov_free(psl) ; 
pov_free(ps2); 

return (real_sig(ret» ; 
} 

void sya_derive(is) 
symh is; 
{ 

if (!sya[is].type) return; 

if (sya[is].stat l (SSmpovISSconst» return ; 

if (sya[is].type -- SyaExpr) 
{ 
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int i, n; 
sym[is].pp. (powt **) aalloc(n s n_lay*sizeof(powt*»; 

aemset«void*)sym[is].pp,O,n); 
for (i - 0; i < n_lay; i++) 

sym[is].pp[i] - sym_expand(i+1,SymExpr,sya[is].expr); 

sya[is].stat I- SSmpow; 

} 
else 
if (sym[is].type -- Symlnt) 

{ 

powt *ps; 
real rv; 
int i, n, at 

sym[is].pp - (powt **) malloc(n E n_lay*sizeof(powt*»; 
aeaset«void*)sym[is].pp,O,n); 

rv - 0.; 
for (m - sym[is].iv1; m > 0; a--) 

{ 
ps - sya_expand(a,SymExpr,sya[is].expr); 
sya[is].pp[a-1] - pov_integrate(ps,ga[a],rv); 
rv - pow_calc(sya[is].pp[a-1],ga[a-1]); 
pow_free(ps); 
} 

rv·O.; 
for (m - sym[is].iv1 + 1; m <- n_lay; m++) 

{ 

ps s sym_expand(m,SymExpr,sym[is].expr); 

sym[is].pp[m-1] • pow_integrate(ps,ga[a-1],rv); 
rv· pow_calc(sym[is].pp[a-1],ga[a]); 
pow_free(ps); 
} 

sya[is].stat 1- SSapow; 
} 

else 
if (sym[is].type _. SymLamlnt) 

{ 

sya[is].rv.lam_int(sym[is].iv1,sym[is].iv2,sym[is].expr); 
sym[is].stat I- SSconst; 
} 

} 

real sym_eval(is,k,z) 
syah is; 
real z; 
{ 

real ret; 

if (sym[is].type .- SymZ) 

return (pov(z,l.*sym[is].iv1»; 
else 

if (sym[is].type -- SymConst) 
return (sym[is].rv); 

if (sya[is].stat 1 SSconst) 
return (sya[is].rv); 

else 

if (sya[is].type.- SymLamlnt) 

return (laa_int(sym[is].iv1,sya[is].iv2,sya[is].expr»; 

if (sya[is].type •• SyaMConst) 
return (sym[is].rp[k-1]); 
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if (k < 1) k - 1ayer_number(z); 
if (k > n_1ay) 

{ 

fprintf(fdeb,"error: eva1: 1ayer\n"); 
n_err++; 
} 

if (sym[is].stat t SSmpov) 
ret. pov_calc(sym[is].pp[k-1],z); 

else 
if (sym[is].type _. SymMPov) 

ret. pov_calc(sym[is].pp[k-1],z); 

else 
if (sym[is].type .- SymExpr) 

{ 

povt .ps; 
ps - sym_expand(k,SymExpr,sym[is].expr); 

ret - pov_calc(ps,z); 
pov_free(ps); 
} 

else 
if (sym[is].type·- Symlnt) 

{ 

povt .ps; 
ps - sym_expand(k,is); 

ret - pov_calc(ps,z); 
pov_free(ps) ; 
} 

else 
{ 

fprintf(fdeb,"error: eva1: type\n"); 
n_err++; 
} 

return (ret); 
} 
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Appendix D 

Routines for Optimization based on Higher-Order Theory 

/.--- higher order optimization 

• 
• optiaization based on higher order theory 

• 
• evan sUDllllers 
• university of natal, durban 

• 
• dedicated symbolic computation routines 

• 
./ 

/. trigonometric series ./ 

'define TTsnl Oxl0 

'define TTcsl Ox20 
'define TTsn2 OxOl 
#define TTcs2 Ox02 

#define TTsc Ox12 

#define TTcc Ox22 

#define TTss Oxll 

#define TTcs Ox21 

/. differential operators ./ 

#define TON one OxOOOO 

#define TOKask OxOfff 

'define TOl OxOl00 
#define T02 Ox0200 

#define TOOl Ox0010 
#define T002 

#define TOOOl 

#define T0002 

#define TOl1 

#define T012 

#define T022 
#define T0111 

#define T0112 

'define T0122 
#define TD222 

Ox0020 

OxOOOl 

Ox0002 
Ox0110 

Ox0120 

Ox0220 
Ox0111 

Ox0112 

Ox0122 
Ox0222 

/. coefficients for trigonometic series ./ 
#define Cul 0 
#define Cu2 1 
#define Cv 2 
'define Cchig 2 
#define Cchil 3 
'define Cchi2 4 
#define Cchi3 5 
'define Cchi4 6 
'define Cchi5 7 

'define Cchi6 8 

/. distribution functions ./ 
#define Ff OxOOOl 

'define Ffs Ox0002 

'define FFl Ox0003 
#define FF2 Ox0004 

'define FF3 Ox0005 

#define Ffg Ox0005 
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'define Ff1 OxOO06 

'define Ff2 OxOO07 

'define Ff3 OxOO08 

'define Ff4 OxOO09 

'define Ff5 OxOOOa 

'define Ff6 OxOOOb 

'define Ff7 OxOOOc 

'define Ff8 OxOOOd 

'define Ff9 OxOOOe 

'define Fbeta1 OxOOOf 

'define Fbeta7 Ox0010 

'define Fbeta8 OxOO11 

'define Falpg OxOO11 

'define Falp1 OxOO12 

'define Falp2 OxOO13 

'define Falp3 OxOO14 

'define Falp4 OxOO15 

'define Falp5 OxOO16 

'define Falp6 OxOO17 

'define Fvphi OxOO18 

'define Fvphig OxOO18 
'define Fvphit OxOO19 
'define Fvphi2 Ox001a 
'define Fvphi3 Ox001b 
'define Fvphi4 Ox001c 

'define Fvphi5 Ox001d 
'define Fvphi6 Ox001e 
'define Fvphi7 Ox001f 

'define Fvphi8 Ox0020 

'define Fpsig Ox0020 
'define Fpsit Ox0021 
'define Fpsi2 Ox0022 
'define Fpsi3 Ox0023 
'define Fpsi4 Ox0024 
'define Fpsi5 Ox0025 
'define Fpsi6 Ox0026 
'define Fpsi7 Ox0027 
'define Fpsi8 Ox0028 

/*----- types -----*/ 

typedef struct /* stress and strain state at so.e (x,z) */ 
{ 

real u1,u2,u3; 

real e11,e12,e13,e22,e23,e33; 

real sll,s12,813,s22,823,s33; 
real e33i,slli,813i,s33i; 
} 

sss; 

/*---- macros -----*/ 

/* functions of the reference surface */ 
'define xu1(x1,x2,td) eval_trig(Cu1, TTcs,td,x1,x2) 

'define xu2(x1,x2,td) eVal_trig(Cu2, TTsc,td,x1,x2) 

'define xv(x1,x2,td) eval_trig(Cv, TTss,td,xl,x2) 
'define xchil(x1,x2,td) eval_trig(Cchi1,TTss,td,x1,x2) 

'define xchi2(x1,x2,td) eval_trig(Cchi2,TTss,td,x1,x2) 

'define xchi5(x1,x2,td) eval_trig(Cchi5,TTss,td,x1,x2) 
'define xchi6(x1,x2,td) eval_trig(Cchi6,TTss,td,x1,x2) 
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'define xchi(icf ,xl,x2, td) eval_trig(Cchig+icf, TIss, td,xl,x2) 

/*---- globals -----*/ 

/* geometry */ 

int n_lay, a_ref; 
real gh,ga[Mn+l],gbl,gb2; 

real gkll,gk12,gk22,gk21; 

/* aaterial properties */ 

real ael[Mn],ae2[Mn],agl[Mn],ag2[Mn]; 

real anul [Mn] ,anu2[Mn) ; 
real meO [Mn] ,anuO [Mn] ; 

real aall[Mn],aa12[Mn),ma13[Mn],ma33[Mn); 

/* coefficients of distribution functions */ 

real cfd[41] [Mn] [Mp+l] ; 

/*----- material -----*/ 

void aat_depend(void) /* calculate dependent aaterial constants */ 
{ 

int i; 
real mdel,adelll,adel12,adel13,adel33; 

for (i s 0; i < n_lay; i++) 
{ 

- ael [i] / (1 - anu1[i] *anul [i]) ; aeO[i] 
anuO[i] - ael[i]/me2[i]*mnu2[i]/(1 - anul[i]); 

- (1 + mnu1[i]); adel 
adel 

adel 

adel11 
ade1l2 

ade1l2 

ade1l3 
adel33 

*- (1 - anul[i] - 2*mnu2[i]*anu2[i]*ael[i]/me2[i]); 
/s (mel[i]*mel[i]*me2[i]); 

- (1 - anu2[i]*anu2[i] .. el[i]/ae2[i])/ael[i]/ae2[i]; 
• (anul[i] + anu2[i]*anu2[i]*ael[i]/ae2[i]); 

/- ae1[i]/ae2[i]; 

- anu2[i]*(1 + anul[i])/ael[i]/ae2[i]; 
• (1 - anu1[i] *IIIIlu1[i] ) /ae1[i] /ae1[i] ; 

} 

aal1[i] 

aa12[i] 
aa13 [i] 

aa33[i] 
} 

- ade1l1/adel; 
- ade1l2/adel; 

- ade1l3/adel; 
- adel33/mdel; 

/*----- coaputation of coefficients -----*/ 

/* set coefficents to zero */ 
void coeff_clear(real cf[Mn] [Mp+l]) 
{ 

int i,k; 

for (k - 1; k <- n_lay; k++) 

for (i - 0; i <- Mp; i++) 
cf [k] [i] - 0; 

return; 
} 

/* add a tera to a series 
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cnst is a scalar, 
vn is n-vector of layer paraaeters 

pz is power of z 

*/ 

void coeff_add_term(cf,cnst,vn,pz) 

real cf[Mn][Hp+1]; 

real cnst,*vn; 
int pz; 
{ 

int k; 
real term; 

for (k - 1; k <- n_lay; k++) 
{ 

term - cnst; 
if (vn) term *- vn[k-1]; 

cf[k] [pz] +"" term; 
} 

return; 
} 

/* add two series */ 
/* preaultiply by cnst*vn/vd */ 
/* where vn, vd are layer vectors */ 

void coeff_add(cf1,cnst,vn,vd,cf2) 
real cf 1 [Mn] [Mp+1] , cf2 [Mn] [Hp+1] ; 

real cnst,*vn,*vd; 
{ 

int i,k; 

real term; 

for (k - 1; k <- n_lay; k++) 
{ 

tera - cnst; 
if (vn) tera *- vn[k-1]; 

if (vd) tera /- vd[k-1]; 

for (i - 0; i <- Hp; i++) 
cf1[k] [i] +- tera*cf2[k] [i]; 

} 

return; 
} 

/* calculates definite integral of series */ 
/* froa a_a to a_k */ 

real coeff_laaint(a,k,cf) 
real cf [Mn] [Mp+1J ; 
int a,k; 
{ 

int i,l; 

real ret - 0; 
real zpu,zpl; 

for (1 - a+1; 1 <- k; 1++) 
{ 

zpu - ga[l]; zpl - ga[l-lJ; 
for (i - 0; i <- Hp; i++) 

} 

{ 

ret +- cf[l] [i]*(zpu - zpl)/(i+1)j 

zpu *- ga[l]; zpl *. ga[l-l]j 
} 
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return (ret); 

} 

/* evaluates a series */ 

real coeff_eval(cf,z) 

real dO; 
real z; 
{ 

int i; 

real zp - 1, ret - 0; 

for (i - 0; i <- Mp; i++) 
, { 

ret +- cf[i]*zp; 

zp *- z; 
} 

return (ret); 
} 

/* integrates a series fro. a_a to z */ 

real coeff_layint(cfO,m,cfn) 

real dO[Mn] [)tp+l] ,dn[Mn] [Mp+1]; 

int a; 

{ 

int i,l; 
real term; 
real zpu, zpl; 

for (term - 0, 1 - a; 1 >- 1; 1--) 
{ 

dO[l] [0] - 0; 

for (i • 0; i < Mp; i++) 

dO[l] [i+l] - cfn[l] [i]/(i+1); 

dO [1] [0] • tera - coeff_eval (dO [1] ,ga[l]); 

term· coeff_eval(cfO[l],ga[l-l]); 
} 

for (term - 0, 1 - .+1; 1 <- n_lay; 1++) 
{ 

dO[l] [0] • 0; 

for (i - 0; i < Mp; i++) 
cfO[l][i+l] - cfn[l] [i]/(i+l); 

cfO[l] [0] - tera - coeff_eval(cfO[l],ga[l-l]); 

tera - coeff_eval(cfO[l],ga[l]); 
} 

return (tera); 
} 

/*----- distribution functions -----*/ 

/* evaluates distribution function */ 
real zfn(int fn, int k, real z) 
{ 

int i; 

real ret - 0, zp - 1; 

for (i - 0; i <- 6; i++) 
{ 

ret +- cfd[fn] [k][i]*zp; 

zp *- z; 
} 
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return (ret); 
} 

/* derives distribution functions */ 

void calc_dist(void) 

{ 

int i,k; 
real cf[8] [Mn] [Mp+1] • {O}; 

real cbf,cbf1,cdf1,cdf2,cdf3; 

memset«void*)cfd,O,sizeof(cfd»; 

coeff_add_term(cf[O],1.,meO,O); 

coeff_add_term(cf[1],1.,meO,1); 

cbf • coeff_layint(cfd[Ff],O,cf[O]); 

cbf1 • coeff_layint(cfd[Ffs],O,cf[1]); 

coeff_add(cfd[Ff1],1.,Hull,Hull,cfd[Ffs]); 

coeff_add(cfd[Ffl],-cbfl/cbf,Hull,Hull,cfd[Ff]); 

coeff_add(cfd[Ff2],1/cbf,Hull,Hull,cfd[Ff]); 
coeff_add_term(cfd[Ff2],-1.,Hull,O); 
coeff_add(cfd[Ff3],1/cbf,Hull,Hull,cfd[Ff]); 

cdfl • coeff_layint(cfd[FF1],O,cfd[Ffl]); 

cdf2 = coeff_layint(cfd[FF2],O,cfd[Ff2]); 
cdf3 • coeff_layint(cfd[FF3],O,cfd[Ff3]); 

coeff_add(cfd[Ff4],cdf2/cdfl,Hull,Hull,cfd[FF1]); 
coeff_add(cfd[Ff4],-1.,Hull,Hull,cfd[FF2]); 

coeff_add(cfd[Ff5],cdf3/cdfl,Hull,Hull,cfd[FF1]); 

coeff_add(cfd[Ff5],-1.,Hull,Hull,cfd[FF3]); 
coeff_add(cfd[Ff6],1/cdfl,Hull,Hull,cfd[FF1]); 
coeff_add_term(cfd[Ff6],-1.,Hull,O); 
coeff_add(cfd[Ff7],l/cdfl,Hull,Hull,cfd[FF1]); 
coeff_add(cfd[Ff8],1.,Hull,Hull,cfd[Ff]); 

coeff_add(cfd[Ff8],-cbf/cdfl,Hull,Hull,cfd[FF1]); 

coeff_add(cfd[Ff9],l.,Hull,Hull,cfd[Ffs]); 
coeff_add(cfd[Ff9],-cbf1/cdfl,Hull,Hull,cfd[FF1]); 

coeff_add_term(cfd[Falpl],l.,mnuO,l); 

coeff_add_term(cfd[Falp2],-1.,mnuO,O); 

coeff_add(cfd[Falp3],1.,Hull,me2,cfd[Ff4]); 
coeff_add(cfd[Falp4],l.,Hull,me2,cfd[Ff5]); 
coeff_add(cfd[Falp5],l.,Hull,me2,cfd[Ff6]); 
coeff_add(cfd[Falp6],l.,Hull,me2,cfd[Ff7]); 

coeff_add(cfd[Fvphi], 1.,Hull,mg2,cfd[Ff1]); 
coeff_add(cfd[Fvphi7],-1.,Hull,mg2,cfd[Ff2]); 
coeff_add(cfd[Fvphi8],-1.,Hull,mg2,cfd[Ff3]); 

coeff_add(cfd[Fbetal],1.,Hull,mg2,cfd[Ffl]); 
coeff_add(cfd[Fbeta7],l.,Hull,mg2,cfd[Ff2]); 

coeff_add(cfd[Fbeta8],l.,Hull,mg2,cfd[Ff3]); 

coeff_layint(cfd[Fvphi1],m_ref,cfd[Falpl]); 

coeff_layint(cfd[Fvphi2],m_ref,cfd[Falp2]); 

coeff_layint(cfd[Fvphi3],m_ref,cfd[Falp3]); 
coeff_layint(cfd[Fvphi4],m_ref,cfd[Falp4]); 

coeff_layint(cfd[Fvphi5],m_ref,cfd[Falp5]); 
coeff_layint(cfd[Fvphi6],m_ref,cfd[Falp6]); 
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coeff_add(cf[2] ,1. ,Null ,Null ,cfd[Fvphi 1]); 
coeff_add(cf[2],-1.,Nu11,Nu11,cfd[Fvphi]); 

coeff_1ayint(cfd[Fpsi1],m_ref,cf[2]); 

coeff_1ayint(cfd[Fpsi2],m_ref,cfd[Fvphi2]); 
coeff_1ayint(cfd[Fpsi3],m_ref,cfd[Fvphi3]); 
coeff_1ayint(cfd[Fpsi4], __ ref,cfd[Fvphi4]); 
coeff_1ayint(cfd[Fpsi5], __ ref,cfd[Fvphi5]); 

coeff_1ayint(cfd[Fpsi6],a_ref,cfd[Fvphi6]); 
coeff_1ayint(cfd[Fpsi7], __ ref,cfd[Fvphi7]); 

coeff_1ayint(cfd[Fpsi8],m_ref,cfd[Fvphi8]); 
} 

/*----- operators on distribution functions -----*/ 

/* layer integral operator to calculate stiffnesses */ 
real ca1c_1ayint(m,k,zu,vm,fnO,fn1,pz) 
real nO; 
real zu; 
int _,k; 

int fnO,fn1; 
int pz; 
{ 

int i,j,l; 
int np; 

real cf[16] ; 

real term,ret = 0; 

real zpu, zp1; 

for (1 - m+1; 1 <= k; 1++) 
{ 

for (i - 0; i < 16; i++) cf[i] - 0; 

if (fnO -- 0) {cf[O] - 1; np - O;} else 
if (fn1 -- 0) 

{ 

for (i - 0; i <- 6; i++) 

cf [i] - cfd[fnO] [1] [i] ; 

np - 6; 
} 

else 
{ 

for (i - 0; i <= 6; i++) 

for (j - 0; j <- 6; j++) 

cf[i+j] +- cfd[fnO] [1] [i]*cfd[fn1] [1] [j]; 

np - 12; 
} 

if (pz) 
{ 

for (i - 12; i >- 0; i--) cf[i+pz] - cf[i]; 
for (i - 0; i < pz; i++) cf[i] - 0; 
np += pz; 
} 

zp1 - ga[1-1]; 

if (1 -- k) zpu - zu; else zpu - ga[l]; 
for (term - 0, i - 0; i <= np; i++) 

{ 

term +- cf[i]*(zpu - zp1)/(i+1); 
zp1 *- ga[1-1]; 

if (1 -- k) zpu *- zu; else zpu *- ga[l]. } , 
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if (va) tera.- vm[l-l); 

ret +- term; 
} 

return (ret); 
} 

real 

real 

/. definite layer integral fro. a_O to a_n ./ 

calc_laaint(vm,fnO,fn1,pz) 

vaO; 

{ 

int 
real 
real 

real 

i,j,np,k; 
cf [16) ; 

tera,ret - 0; 
zpu,zpl; 

for (k - 1; k <- n_lay; k++) 
{ 

for (i - 0; i < 16; i++) cf[i) - 0; 

if (fnO -- 0) {cf[O) - 1; np - O;} else 

if (fn1 -- 0) 

{ 

for (i - 0; i <- 6; i++) 
cf [i) - cfd[fnO) [k) [i) ; 

np - 6; 

} 

else 
{ 

for (i - 0; i <- 6; i++) 
for (j - 0; j <- 6; j++) 
cf[i+j) +- cfd[fnO) [k) [i).cfd[fn1) [k) [j); 

np - 12; 
} 

if (pz) 
{ 

for (i - 12; i >- 0; i--) cf[i+pz) - cf[i); 

for (i - 0; i < pz; i++) cf[i) - 0; 

np +- pz; 
} 

zpu - ga[k); zpl - ga[k-1); 
for (term - 0, i - 0; i <= np; i++) 

{ 

tera +- cf[i).(zpu - zpl)/(i+1); 
zpu.- ga[k]; zpl .- ga[k-1]; 
} 

if (va) tera.- va[k-1); 

ret +- tera; 
} 

return (ret); 
} 

/.----- integrated stiffnesses -----./ 

'define cbg(g) 

'define cbgb(g) 

'define ccg(g) 

'define ccgb(g) 
'define ccOg(g) 

calc_laaint(.a11,Fpsig+g,O,O) 
calc_laaint(.a12,Fpsig+g,O,O) 

calc_laaint(.a11,Fvphig+g,O,O) 
calc_laaint(.a12, Fvphig+g,O, 0) 
calc_laaint(.a11,Fvphig+g,O,l) 
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#define cCOgb(g) ·calc_lamint(aa12, Fvphig+g, 0', 1) 
#define ccgq(g,q) calc_lamint (aall,Fpsig+g, Fvphig+q,O) 

'define ccgqb(g,q) calc_lamint (aa12,Fpsig+g, Fvphig+q,O) 

#define cdOg(g) calc_lamint(mall,Fpsig+g,O,l) 

'define cdOgb(g) calc_lamint(ma12,Fpsig+g,0,1) 

#define cdgq(g,q) calc_lamint(mall,Fpsig+g,Fpsig+q,O) 

#define cdgqb(g,q) calc_lamint(aa12,Fpsig+g,Fpsig+q,0) 
#define chg(g) calc_lamint(aa13,Falpg+g,0,0) 

#define chOg(g) calc_lamint(aa13,Falpg+g,0,1) 

#define chgq(g,q) calc_lamint(aa13,Fpsig+g,Falpg+q,0) 
#define clgq(g,q) calc_lamint(aal1,Fvphig+g,Fvphig+q,0) 
#define clgqb(g,q) calc_lamint(aa12,Fvphig+g,Fvphig+q,0) 
#define cpgq(g,q) calc_lamint(aa13,Fvphig+g,Falpg+q,0) 
#define cpgqb(g,q) calc_lamint(aa13,Falpg+g,Fpsig+q,0) 
#define crgq(g,q) calc_lamint (aa33, Falpg+g, Fvphig+q, 0) 
#define crgqb(g,q) calc_lamint(ma33,Falpg+g,Falpg+q,0) 
#define ctgq(g,q) calc_lamint(aall,Fvphig+g,Fpsig+q,O) 
#define ctgqb(g,q) calc_lamint (aa12, Fvphig+g, Fpsig+q, 0) 

1* calculates integrated stiffnesses *1 
void calc_stiff() 
{ 

cb - calc_lamint(aall,O,O,O); 

cbb - calc_lamint(aa12,0,0,0); 
cbO - calc_lamint(mall,O,O,l); 
cbOb - calc_lamint(ma12,0,0,1); 
cdOO - calc_lamint(mall,0,0,2); 
cdOOb - calc_lamint(ma12,0,0,2); 

cdl - calc_lamint(Hull,Ffl,Fbetal,O); 

cbl - cbg(l); cblb - cbgb(l); 

cb2 - cbg(2); cb2b - cbgb(2); 

cb3 - cbg(3); cb3b - cbgb(3); 
cb4 - cbg(4); cb4b - cbgb(4); 

cbS - cbg(S); cbSb - cbgb(S); 
cb6 - cbg(6); cb6b - cbgb(6); 

chl - chg(l); chOl - chOg(l); cdOl - cdOg(l); 

ch2 - chg(2); ch02 - chOg(2); cd02 - cdOg(2); 

ch3 - chg(3); ch03 - chOg(3); cd03 - cdOg(3); 
ch4 - chg(4); ch04 - chOg(4); cd04 - cdOg(4); 

chS - chg(S); ch05 - chOg(5); cd05 - cdOg(5); 
ch6 - chg(6); ch06 ~ chOg(6); cd06 - cdOg(6); 

ccl - ccg(l); cclb - ccgb(l); ccOl - ccOg(l); ccOlb - ccOgb(l); 

cc2 - ccg(2); cc2b - ccgb(2); cc02 - ccOg(2); cc02b - ccOgb(2); 
cc3 - ccg(3); cc3b - ccgb(3); cc03 - ccOg(3); cc03b - ccOgb(3); 

cc4 - ccg(4); cc4b - ccgb(4); cc04 - ccOg(4); cc04b - ccOgb(4); 
cc5 • ccg(S); ccSb - ccgb(5); cc05 - ccOg(5); cc05b - ccOgb(S); 
cc6 - ccg(6); cc6b· ccgb(6); cc06. ccOg(6); cc06b - ccOgb(6); 

ccll - ccgq(l,l); ccl1b. ccgqb(l,l); 
cc12 - ccgq(1,2)-; cc12b. ccgqb(1,2); 
cc21 • ccgq(2,1); cc21b • ccgqb(2,1); 

cc22 - ccgq(2,2); cc22b - ccgqb(2,2); 
cclS - ccgq(l,S); cclSb - ccgqb(l,S); 
cc16· ccgq(1,6); cc16b - ccgqb(1,6); 
cc2S - ccgq(2,S); cc25b. ccgqb(2,S); 

cc26 - ccgq(2,6); cc26b - ccgqb(2,6); 

chll· chgq(l,l); cdll - cdgq(l,l); 

ch12 - chgq(l,2); cd12 - cdgq(1,2); 
ch2l - chgq(2,l); 

ch22 • chgq(2,2); cd22 - cdgq(2,2); 
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ch15 - chgq(1.5); cd15 - cdgq(1.5); 
ch16 • chgq(1.6); cd16 • cdgq(1.6); 

ch25 - chgq(2.5); cd25 - cdgq(2.5); 
ch26 - chgq(2.6); cd26 = cdgq(2.6); 

cl11 • clgq(1.1); cl11b • clgqb(1.1): 

c112· clgq(1.2); c112b· clgqb(1.2); 
c121 • clgq(2.1); c121b • clgqb(2.1); 

c122· clgq(2.2); c122b - clgqb(2.2); 
c115 • clgq(1.5); c115b· clgqb(1.5); 
c116 • clgq(1.6); c116b· clgqb(1.6); 

c125· clgq(2.5); c125b - clgqb(2.5); 

c126· clgq(2.6); c126b - clgqb(2.6): 

cp11 • cpgq(1.1); cp11b • cpgqb(1.1); 

cp12· cpgq(1.2); cp12b· cpgqb(1.2); 
cp21 • cpgq(2.1); cp21b· cpgqb(2.1): 
cp22 • cpgq(2.2); cp22b· cpgqb(2.2); 
cp15. cpgq(1.5); cp15b z cpgqb(1.5); 

cp16· cpgq(1.6); cp16b - cpgqb(1.6); 
cp25· cpgq(2.5); cp25b· cpgqb(2.5): 

cp26· cpgq(2.6): cp26b - cpgqb(2.6): 

cr11 - crgq(1.1); cr11b - crgqb(1.1): 
cr12 • crgq(1.2); cr12b· crgqb(1.2): 
cr21· crgq(2.1); 

cr22· crgq(2.2); cr22b - crgqb(2.2); 
cr15· crgq(1.5); cr15b • crgqb(1.5); 
cr16 • crgq(1.6); cr16b. crgqb(1.6); 

cr25 • crgq(2.5); cr25b· crgqb(2.5); 

cr26· crgq(2.6); cr26b - crgqb(2.6); 

ct11 • clgq(1.1); cl11b· ctgqb(1.1); 

ct12· clgq(1.2); c112b - ctgqb(1.2); 
ct21· clgq(2.1); c121b· ctgqb(2.1); 

ct22· clgq(2.2); c122b - ctgqb(2.2); 
ct15 • clgq(1.5); c115b. ctgqb(1.5); 

ct16 • clgq(1.6); c116b. ctgqb(1.6); 

ct25 - clgq(2.5): c125b - ctgqb(2.5); 
ct26 • clgq(2.6); c126b· ctgqb(2.6); 
} 

/*----- governing equations -----*/ 

/* system of equations for plate */ 
void ays_plate(tc.qc .... vn.q3p.q3m) 
real tc[5] [5] .qc[5]; 

int ... wn; 
real q3p.q3m; 
{ 

real laa.laa_2.1aa_3.1aa_4; 
real gaa.gu_2.gu_3.gaa_4: 

laa • va*M_PI/gb1; 
gaa • wn*M_PI/gb2; 

10_2 • laa*laa; lu_3 - laa_2*laa; laa_4 - laa_3*laa; 

gu_2 • gam*gaa: gam_3 - gam_2*gam; gaa_4 • gaa_3*gam; 

tc[O] [0] • -(cb*gaa_2)/2 + (cbb*gam_2)/2 - cb*laa_2; 

tc[O] [1] • -(cb*gam*lam)/2 - (cbb*gaa*laa)/2; 
tc[0][2] • cbO*gam_2*laa + cbO*laa_3; 

tc[O] [3] - ch1*laa + cb1*gam_2*laa + cb1*laa_3; 
tc[O] [4] • ch2*laa + cb2*gaa_2*laa + cb2*laa_3: 
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tc[l] [0] • -(cb*gam*lam)/2 - (cbb*gaa*laa)/2; 
tc[l][l] • -(cb*gam_2) - (cb*lam_2)/2 + (cbb*lam_2)/2; 

tc[l] [2] • cbO*gam_3 + cbO*gam*lam_2; 
tc[l] [3] - chl*gam + cbl*gam_3 + cbl*gam*lam_2; 
tc[l] [4] • ch2*gam + cb2*gam_3 + cb2*gaa*laa_2; 

tc[2][0] • -(cbO*gam_2*lam) - cbO*lam_3; 

tc[2] [1] • -(cbO*gam_3) - cbO*gam*lam_2; 
tc[2] [2] • cdOO*gam_4 + 2*cdOO*gam_2*lam_2 + cdOO*lam_4; 

tc[2][3] • chOl*gam_2 + cdOl*gam_4 + chOl*lam_2 
+ 2*cdOl*gam_2*lam_2 + cdOl*laa_4; 

tc[2] [4] - ch02*gam_2 + cd02*gam_4 + ch02*lam_2 
+ 2*cd02*gam_2*lam_2 + cd02*laa_4; 

tc[3][0] • -(chl*laa) - cbl*gam_2*laa - cbl*laa_3; 
tc[3] [1] • -(chl*gam) - cbl*gam_3 - cbl*gaa*laa_2; 

tc[3][2] • chOl*gam_2 + cdOl*gam_4 + chOl*laa_2 
+ 2*cdOl*gam_2*lam_2 + cdOl*lam_4; 

tc[3][3] - crllb + (2*chl1 + cdl)*(laa_2 + gaa_2) 
+ cdll*gam_4 + 2*cdll*gaa_2*lam_2 + cdll*lam_4; 

tc[3][4] • cr12b + (ch12 + cp12b)*(lam_2 + gam_2) 
+ cd12*gam_4 + 2*cd12*gam_2*lam_2 + cd12*lam_4; 

tc[4][0] • -(ch2*lam) - cb2*gam_2*lam - cb2*laa_3; 

tc[4] [1] • -(ch2*gam) - cb2*gam_3 - cb2*gaa*laa_2; 
tc[4] [2] • ch02*gam_2 + cd02*gam_4 + ch02*laa_2 

+ 2*cd02*gam_2*lam_2 + cd02*lam_4; 
tc[4][3] - cr21b + (ch21 + cp21b)*(laa_2 + gaa_2) 

+ cd21*gam_4 + 2*cd21*gam_2*lam_2 + cd21*lam_4; 

tc[4] [4] • cr22b + (ch22 + cp22b)*(laa_2 + gaa_2) 

+ cd22*gam_4 + 2*cd22*gaa_2*laa_2 + cd22*lam_4; 

qc[O] • -(q3.*chS*lam) - q3p*ch6*laa - q3.*cbS*gam_2*lam 

- q3p*cb6*gaa_2*lam - q3.*cbS*lam_3 - q3p*cb6*lam_3; 

qc[l] • -(q3.*chS*gam) - q3p*ch6*gam - q3.*cbS*gam_3 

- q3p*cb6*gam_3 
- q3.*cbS*gam*lam_2 - q3p*cb6*gam*lam_2; 

qc[2] • q3. + q3p - q3m*chOS*gam_2 - q3p*ch06*gam_2 

- q3.*cdOS*gam_4 - q3p*cd06*gaa_4 - q3.*chOS*lam_2 
- q3p*ch06*lam_2 - 2*q3.*cdOS*gaa_2*lam_2 

- 2*q3p*cd06*gam_2*lam_2 

- q3.*cdOS*laa_4 - q3p*cd06*laa_4; 
qc[3] • q3.*(zfn(Fvphil,1,ga[0]) - crlSb) 

+ q3p*(zfn(Fvphil,n_lay,ga[n_lay]) - cr16b) 

- q3.*(chlS + cplSb)*(lam_2+ gam_2) 

- q3.*cdlS*gam_4 - q3p*cd16*gam_4 

- q3p*(ch16 + cp16b)*(laa_2 + gaa_2) 

- 2*q3.*cdlS*gam_2*lam_2 

- 2*q3p*cd16*gam_2*lam_2 
- q3.*cdlS*laa_4 - q3p*cd16*laa_4; 

qc[4] • q3m*(zfn(Fvphi2,1,ga[0]) - cr2Sb) 
+ q3p*(zfn(Fvphi2,n_lay,ga[n_lay]) - cr26b) 

- q3.*(ch2S + cp2Sb)*gaa_2 - q3p*(ch26 + cp26b)*gaa_2 
- q3.*cd2S*gam_4 - q3p*cd26*gaa_4 
- q3.*(ch2S + cp2Sb)*laa_2 

- q3p*(ch26 + cp26b)*1~2 

- 2*q3m*cd2S*gam_2*lam_2 
- 2*q3p*cd26*gam_2*lam_2 

- q3.*cd2S*lam_4 - q3p*cd26*laa_4; 
} 

int sys_solve_coeff(is,dc,vm,wn,q3p,q3.) 
int is; 

real dcO; 
int _,wn; 

real q3p,q3.; 
{ 
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int i,j,l; 
real tc[5] [5] ,qc[5] ,ainv[25]; 

int nc; 

real det; 

if (is -- 1) 

sys_shell(tc,qc,vm,vn,q3p,q3m); 

else 
sys_plate(tc,qc,vm,vn,q3p,q3m); 

for (i • 0; i < 5; i++) 

for (j - 0; j < 5; j++) 
tc [i][j] - real_sig( tc [i][j] ) ; 

for (nc - 2; nc < 5; nc++) 
{ 

for (j - 0; j <- nc; j++) 
{ 

if (real_chksig(tc[nc] [j]» break; 
if (real_chksig (tc [j] [nc]» break; 
} 

if (j > nc) break; 
} 

for (i - nc; i < 5; i++) 
{ 

dc[i] • 0; 

if (real_chksig(qc[i]» break; 
} 

if (i -- 5 11 SolveSysGJ«real*)tc,5,qc,dc,nc,ainv,ldet» 
{ 

return (1); 

} 

lprintf("error: no solution: %d diaensions\n",nc); 
return (0); 
} 

int sys_solve(int is) 
{ 

int i; 
int ret; 

for (i z 0; dcmn[i][O] ; i++) 
{ 

dc[i] [Cchi5] • q3m[i]; 

dc[i] [Cchi6] - q3p[i]; 
} 

for (i - 0; dcmn[i][O]; i++) 
{ 

ret - sys_solve_coeff(is,dc[i], 

dcan[i] [0] ,dcan[i] [1] ,q3p[i] ,q3a[i]); 
if (!ret) break; 
} 

return (ret); 
} 

/*----- trigonemtric series -----*/ 

/* evaluate tera in double trigonoaetric series */ 
/* tt is type of series */ 

218 



/. td is differential operator ,./' 

real eval_trig_term(va,vn,tt,td,xl,x2) 

real xl,x2: 
int va,wn; 
int tt,td; 
{ 

real lam,gam: 
real ret. 1.; 

lam • va.K_PI/gbl; 
gam • vn.K_PI/gb2: 

if (td a: TD1) 
{ 

ret •• lam: 

if (tt a: TTsnl) tt ~ (tta:-TTsnl)ITTcsl: 
else {ret· -ret: tt • (tta:-TTcsl)ITTsnl:} 
} 

else 
if (td a: TD2) 

{ 

ret •• gam: 

if (tt a: TTsn2) tt - (tta:-TTsn2)ITTcs2: 

else {ret· -ret; tt • (tta:-TTcs2)ITTsn2:} 
} 

if (td a: TOOl) 
{ 

ret .- lam: 
if (tt a: TTsnl) tt • (tta:-TTsnl)ITT~sl: 

else {ret· -ret: tt • (tta:-TTcsl)ITTsnl:} 
} 

else 

if (td a: TD02) 
{ 

ret •• gam; 

if (tt a: TTsn2) tt • (tta:-TTsn2)ITTcs2: 

else {ret • -ret: tt • (tta:-TTcs2)ITTsn2:} 
} 

if (td a: TD001) 
{ 

ret •• laa: 

if (tt a: TTsnl) tt • (tta:-TTsnl)ITTcsl: 
else {ret· -ret: tt • (tta:-TTcsl)ITTsnl:} 
} 

else 

if (td a: TD002) 
{ 

ret •• gam: 

if (tt a: TTsn2) tt • (tta:-TTsn2)ITTcs2: 

else {ret • -ret: t t • (tta:-TTcs2)ITTsn2:} 
} 

if (tt •• TTsc) ret •• sin(laa.xl).cos(gaa.x2): 
if (tt - TTss) 
if (tt •• TTcs) 

if (tt •• TTcc) 

return (ret): 
} 

ret •• sin(laa.xl).sin(gaa.x2): 
ret •• cos(laa.xl).sin(gaa.x2): 
ret •• cos(laa.xl).cos(gaa.x2): 

/. evaluate 
real eval_trig(icf,tt,td,xl,x2) 
int icf; 

real xl,x2: 
int tt,td: 
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{ 

int i; 

real ret - 0; 

for (i - 0; dcmn(i](O]; i++) 
ret +- dc(i] [icf]*eval_trig_tera(dcan[i] [0], 

dCIlll[i] (1] , tt, td,xl ,x2); 

return (ret); 
} 

/*----- stress and strain -----*/ 

/* alternative formulation for transverse shear */ 

real eval_s13(xl,x2,k,z) 

real xl,x2,z; 

int k; 
{ 

int i; 
real beta,betas,betaOs,betaOb; 

real betags,nugs,nugbs,thegs; 

real betagb(8],nug[8],nugb[8],theg[8]; 
real cbg(8] , chg (8] ,ccg(8] ,ccgb(8]; 

real term, ret; 

betas - calc_layint(0,k,z,ma12,0,0,0); 

betaOs - calc_layint(O,k,z,mall,O,O,l); 

beta - betas/cbb; 

betaOb - cbO*beta - betaOs; 

cbg(O] - cbl; chg(O] - chl; ccg(O] - ccl; 
cbg[l] - cb2; chg[l] - ch2; ccg[l] • cc2; 
cbg[2] - cb3; chg(2] - ch3; ccg[2] - cc3; 
cbg(3] - cb4; chg[3] - ch4; ccg[3] - cc4; 
cbg(4] - cbS; chg(4] • chS; ccg(4] • ccS; 
cbg(S] - cb6; chg(S] - ch6; ccg(S] • cc6; 

for (i - 0; i < 6; i++) 
{ 

ccgb[O] 

ccgb[l] 

ccgb(2] 
ccgb(3] 

ccgb[4] 
ccgb(S] 

betags - calc_layint(O,k,z,mall,Fpsil+i,O,O); 
nugs - calc_layint(O,k,z,mall,Fvphil+i,O,O); 
nugbs - calc_layint(0,k,z,aa12,Fvphil+i,0,0); 

thegs - calc_layint(0,k,z,aa13,Falpl+i,0,0); 

betagb[i] 
nug(i] 
nugb[i] 
theg[i] 
} 

- cbg[i]*beta - betags; 

- ccg[i]*beta - nugs; 
- ccgb[i]*beta - nugbs; 
- chg(i]*beta - thegs; 

ret - -(xv(xl,x2,TDlll) + xv(xl,x2,TD122»*betaOb; 
for (i - 0; i < 6; i++) 

z cclb; 

cc2b; 

• cc3b; 
z cc4b; 

., ccSb; 

'"' cc6b; 

ret -- (xchi(i+l,xl,x2,TDlll) + xchi(i+l,xl,x2,TD122»*betagb(i]; 

for (i - 0; i < 6; i++) 
{ 

ret +- xchi(i+l,xl,x2,TD1)*(gkll*nug(i] + gk22*nugb[i]); 
ret +- xchi(i+l,xl,x2,TD2)*gk12*(nug[i] - nugb[i]); 
ret +- xchi(i+l,xl,x2,TD1)*theg[i]; 
} 

return (ret); 
} 

/* evaluates stress/strain values */ 
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void eval_88(88,x1,x2,k,z) 

888 *88; 
real x1,x2,z; 

int k; 
{ 

int i; 
real xer11,xer12,xer22; 
real xkr11,xkr12,xkr22; 

88->u1 - xu1(x1,x2,O) - xv(x1,x2,TD1)*z; 

for (i - 1; i <- 6; i++) 
88->u1 +- -xchi(i,x1,x2,TD1)*zfn(Fp8ig+i,k,z); 

88->u2 - xu2(x1,x2,O) - xv(x1,x2,TD2)*z; 

for (i - 1; i <- 6; i++) 
88->u2 +- -xchi(i,x1,x2,TD2)*zfn(Fp8ig+i,k,z); 

88->u3 = xv(x1,x2,O); 

for (i - 1; i <- 6; i++) 
88->u3 += xchi(i,x1,x2,O)*zfn(Fvphig+i,k,z); 

xer11 - (xu1(x1,x2,TD1) + xu1(x1,x2,TD1»/2 + gk11*xv(x1,x2,O); 

xer12 - (xu1(x1,x2,TD2) + xu2(x1,x2,TD1»/2 + gk12*xv(x1,x2,O); 
xer22 - (xu2(x1,x2,TD2) + xu2(x1,x2,TD2»/2 + gk22*xv(x1,x2,O); 

xkr11 - -xv(x1,x2,TD11); 
xkr12 - -xv(x1,x2,TD12); 
xkr22 - -xv(x1,x2,TD22); 

88->e11 - xer11 + xkr11*z; 

for (i • 1; i <- 6; i++) 
88->e11 +- -xchi(i,x1,x2,TD11)*zfn(Fp8ig+i,k,z); 

for (i - 1; i <- 6; i++) 

88->e11 +- gk11*xchi(i,x1,x2,O)*zfn(Fvphig+i,k,z); 

88->e22 - xer22 + xkr22*z; 
for (i - 1; i <- 6; i++) 

88->e22 +- -xchi(i,x1,x2,TD22)*zfn(Fp8ig+i,k,z); 
for (i - 1; i <- 6; i++) 

s8->e22 +- gk22*xchi(i,x1,x2,O)*zfn(Fvphig+i,k,z); 

88->e12 - xer12 + xkr12*z; 

for (i - 1; i <- 6; i++) 

88->e12 +- -xchi(i,x1,x2,TD12)*zfn(Fpsig+i,k,z); 
for (i - 1; i <- 6; i++) 

88->e12 +- gk12*xchi(i,x1,x2,O)*zfn(Fvphig+i,k,z); 

8s->e13 - xchi(1,x1,x2,TD1)*zfn(Fbeta1,k,z); 
88->e13 +- xchi(7,x1,x2,TD1)*zfn(Fbeta7,k,z); 
s8->e13 +- xchi(8,x1,x2,TD1)*zfn(Fbeta8,k,z); 
88->e13 /- 2; 

88->e23 - xchi(1,x1,x2,TD2)*zfn(Fbeta1,k,z); 
88->e23 +- xchi(7,x1,x2,TD2)*zfn(Fbeta7,k,z); 

88->e23 +- xchi(8,x1,x2,TD2)*zfn(Fbeta8,k,z); 
s8->e23 /- 2; 

88->e33 - 0; 

for (i - 1; i <- 6; i++) 

8s->e33 +- xchi(i,x1,x2,O)*zfn(Falpg+i,k,z); 

S8->811 
88->822 

8s->s33 

ss->s12 

- aa11[k-1]*8s->e11 + aa12[k-1]*S8->e22 + aa13[k-1]*ss->e33; 
- aa12[k-1]*88->e11 + aa11[k-1]*ss->e22 + aa13[k-1]*S8->e33; 

- aa13[k-1]*ss->e11 + aa13[k-1]*ss->e22 + aa33[k-1]*ss->e33; 
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ss->s13 K 2*mg2[k-1]*ss->e13; 

ss->s23 - 2*mg2[k-1]*ss->e23; 

ss->s13i - eval_s13(x1.x2.k.z); 

ss->s33i • xchi5(x1.x2.0)*zfn(Falp5.k.z)*ae2[k-1]; 

ss->s33i +- xchi6(x1.x2.0)*zfn(Falp6.k.z)*ae2[k-1]; 

ss->e33i - (ss->s33i - (ss->sll + ss->s22)*anu2[k-1])/ae2[k-1]; 

ss->slli - ma11[k-1]*ss->e11 + ma12[k-1]*ss->e22 + aa13[k-l]*ss->e33i; 
} 
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