
I. J. Computer Network and Information Security, 2012, 11, 21-31
Published Online October 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2012.11.03

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

Analysis and Evaluating Security of Component-

Based Software Development: A Security Metrics
Framework

Irshad Ahmad Mir

1
, S.M.K Quadri

2

1
Research Scholar, Post Graduate Department of Computer Science, University of Kashmir, India,

2
Director, Post Graduate Department of Computer Science, University of Kashmir, India

irshad.mir@hotmail.com, quadrismk@hotmail.com

Abstract — Evaluating the security of software systems

is a complex problem for the research communities due

to the multifaceted and complex operational

environment of the system involved. Many efforts

towards the secure system development methodologies

like secSDLC by Microsoft have been made but the

measurement scale on which the security can be

measured got least success. As with a shift in the

nature of software development from standalone

applications to distributed environment where there are

a number of potential adversaries and threats present,

security has been outlined and incorporated at the

architectural level of the system and so is the need to

evaluate and measure the level of security achieved . In
this paper we present a framework for security

evaluation at the design and architectural phase of the

system development. We have outlined the security

objectives based on the security requirements of the

system and analyzed the behavior of various software

architectures styles. As the component-based

development (CBD) is an important and widely used

model to develop new large scale software due to

various benefits like increased reuse, reduce time to

market and cost. Our emphasis is on CBD and we have

proposed a framework for the security evaluation of

Component based software design and derived the

security metrics for the main three pillars of security,

confidentiality, integrity and availability based on the

component composition, dependency and inter

component data/information flow. The proposed

framework and derived metrics are flexible enough, in
way that the system developer can modify the metrics

according to the situation and are applicable both at the

development phases and as well as after development.

Index Terms — Security Evaluation, Software

Architecture, Security metrics, Component-

dependencies

I. INTRODUCTION

To incorporate the security into the software

development process seems to be a challenging task

and the evaluation of security is even more challenging.

The main reason behind it is the inappropriateness in

the specification of non-functional security

requirements at hand during the early system

development stages and the complex nature of

operational environment. A well-established scale

against which we can measure the level of security a

software system exhibit is still a great challenge for the

research community. Traditionally security is treated as

an afterthought, in which the protection mechanisms

employed after the development stages of the software

[1]. To evaluate the software system for security is one
of the most critical aspects of security which got

attention lately. Almost 100 years ago Lord Kelvin

stated ―If you can’t measure it you can’t improve it.

Security metrics are seen as an important factor in

making sound decision about various aspects of

security architecture & controls, to the effectiveness

and efficiency of security operations [2]. A security

evaluation framework and derived security metrics that

provide an indicator of security and identify the most

critical elements of software system at early

development stages is required and is the focus of our

current study. The evaluation of software security is a

very hard problem due to the complex nature of

operational environment. Varieties of software

architectures and design approaches have been

proposed and utilized in industries, such as object

oriented analysis and design (OOAD), component
based design (CBD), Enterprise architecture

framework (EA), and newly the Service oriented

analysis and design (SOAD). The most common

approach towards the development of software system

is that, a software system is treated as an integrated set

of small components which share/transmit process and

store the information and data. Each component

provides certain level of functionality and abstraction

to other accessing elements. As with the current

networked cyber space various threats to software

systems are present in the operational environment,

security becomes the utmost important issue. Various

22 Analysis and Evaluating Security of Component-Based Software Development:

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

secure system development methodologies have been

proposed such as SecSDLC and Secure System

Development by Microsoft (SDL) [3]. SDL is the

process that Microsoft has adopted for the development

of software that needs to stand with malicious attack.

In this SDL of Microsoft, they have incorporated the

security related activities such as development threat

models for design phase and static analysis code

scanning etc. Incorporating the security in

development phases is one aspect, the question arises

how much we achieved or can we predict and evaluate

the security at the early development phases? The

answer to this is the security metrics. As far as security
evaluation in general and particularly at architectural

design phases of the software development is

concerned, it is very hard problem to be solved and has

got attention lately. Of course due to the possibility of

threats that are unknown, no system will ever be 100 %

secure [4] but the metrics which provide an early

indicator of security is helpful and needed. According

to [5] the following approach should enable new type

of security metrics.

 Identify security features that require system

level functions.

 Evaluate the extent to which security features

protect system from deliberate damage that

would cause system failure.

 Device verification and validation metric at

system level that show security requirements

are met.

Evaluating the credibility of the security features

does not solve the problem completely as new attacks

and vulnerabilities are emerging but a scale of

measurement that can be applicable at both the

development stages and the operational phase is the

requirement of the IT industries and also is the focus of

our current study. In the current study we initially

focused on the specification of non-functional security

requirements. We argue that the specified security

requirements generally must satisfy one or more well

established security attributes of fig.1. We have

analyzed the various software architectural styles and
their place in software development. Our main focus

will be on Component based Software Development

(CBD) , because all the other architectural styles

follow and inherit the CBD . we believe that the

component level is the best level of software

architecture in a way that it neither provides the more

complex fine-grained details like Object Oriented

Analysis and design(OOAD) nor too coarse-grained

like Service Oriented Architecture(SOA). Further we

have proposed a security evaluation framework and

derived the security metrics for the three main

attributes of security, which are the confidentiality,

integrity and availability. Our evaluation is based on

the dependencies among the various distributed

components and on the flow of data/information

among them. The derived metrics can provide an early

indicator for the developers to identify the critical

components in system and act as the correction

measures in making early decisions about the

component composition and protection mechanism.

These early indicators can reduce the further

maintenance cost considerably.

The rest of the paper is organized as: Section 2

provides the overview of the security requirement

specification, section 3 we analyze the software

architectures and design. In section 4 we analyze the

behavior of Component Based Design (CBD), its

various models and composition. In section 5 we

present a security evaluation framework and derive
various metrics. Finally the conclusion in section 6.

II. SOFTWARE SECURITY REQUIREMENTS

The need to consider security from the ground is a

fundamental step to the secure system development [6].

The requirement phase is the opportunity for the

product team to consider how security be integrated

into the development process. While these early plans

are subject to change as the project proceeds, but early

articulation of these plans helps to ensure that no

requirements are overlooked. According to [7] the

most current software requirements specifications are
either (i). Totally silent regarding security (ii). Merely

specify vague security goals (iii). Specify commonly

used security mechanisms as architectural constraints.

In the first case, security is not considered in

development stages. In second the specified security

requirements are unstructured and very hard to

evaluate. Third case bind the architectural decision too

early resulting in inappropriate security mechanisms.

Security requirements normally come under non-

functional requirements of the system which represent

how software performs rather than what it does as in

functional requirements. Information security cannot

be only represented by non-functional requirements,

since security goals often motivate new functionality,

such as monitoring, intrusion detection and access

controls which in turn need functional requirements

[8]. Specification of security requirements in a
concrete, well established and unambiguous form is

still lacking in the security engineering community

which poses a difficulties is evaluating the system

against these requirements. In [9] the various security

requirements characteristics such as completeness,

correctness, feasibility, necessity, prioritization,

unambiguity and verifiability have been presented.

These characteristic aims at the specification of

security requirements in a structured manner.

The reason behind the difficulty in security

requirement specification is the organizational specific

needs and the complex nature of the operational

environment under which these systems operate.

These requirements are usually drawn from the higher

level organizational policies. In [6] a framework for

 Analysis and Evaluating Security of Component-Based Software Development: 23

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

Service

Layer

Component

Layer

Object/Class

Layer

requirement centric and model based information

security evaluation has been proposed.

In our evaluation framework we considered the

security requirement specification ultimately should

satisfy and come under one or more of the well-

established security attributes as shown in above fig.1.

So at first place the system should be evaluated against

the common security attributes to satisfy the security

requirements.

Figure 1: Security Requirement centric security attributes

III. SOFTWARE ARCHITECTURE AND DESIGN

Constructing a software system by composing

prefabricated or newly developed components is

always an initiative and attractive vision for software

development [10]. There is a consensus on the fact that

for any large software systems the overall structure, i.e.

the high-level organization of computational elements

and interaction between those elements is the critical

aspect of the design [11]. Many definitions and

concepts regarding the software architecture have been
mentioned in literature. Architecture is a fundamental

organization of a system embodied in its components,

their relationship to each other and to environment and

the principles its design and evolution [12]. These

definitions of software architecture not only

acknowledge structural elements but the composition

of architectural elements, their relationship, the

connecters needed to support their relationships, their

interface and their partitions again. Unified Modeling

Language (UML) diagrams are widely used in

representing the functional architecture and design of

the software. The UML considerably lacks in

collecting the nonfunctional behavior like security

issues of the system. Software engineers address the

high-level aspect of the system while describing the

software architecture and design, such as the overall

organization, the decomposition into components,
assignment of functionality into components and way

the components interact. Design recognize a number of

distinct design levels, each with its own design issues,

model, notations , componentry and required analysis

technique [13]. The main focus of architecture and

design is on the functionality of the system. The

security is given less attention, if given that only to the

security mechanism and architectural constraints. The

focus towards evaluation of the security of a given

architecture and design is negligible, while these early

indicators provide the significant mean of improvement

and reduces the considerable cost in further patching

and management. Studies have showed that it is five to

hundred times cheaper to fix fundamental flaws in

systems at early development stages [14], making

architectural analysis more cost effective than fixing

the bugs after the system is developed. Also the use of

software architecture for predicting the quality

attributes of overall system is one of the original

motivations in the field of software architecture [15].

IV. COMPONENT-ORIENTED DESIG

Various software modeling disciplines such as

Object Oriented Analysis and Design (OOAD),

Enterprise Architecture Framework (EA), Service

Oriented Analysis and Design (SOAD) have been

presented in literature and used in the software

development process. Component Based Software

Engineering (CBSE) or Component Based Design

(CBD) is a successor of OOAD [16] and has been

supported by commercial component frameworks such

as Microsoft COM, Sun’s EJB, and COBRA. The
OOAD, CBSE and SOA, they all differ in the way of

level of abstraction in design specifications of the

system. In OOAD the system is viewed as classes and

objects their relationships like inheritance,

polymorphism etc. In SOAD the system is specified at

higher level of abstraction in which the system is

generally stateless, fully encapsulated, satisfying a

generic business service [17]. Adopting CBD does not

mean that OOAD is useless, instead the lower level

implementation of classes follow the OOAD. Similarly

service uses the lower level components for its

implementation. Fig.2. below shows how the

technology layer can be applied to application

architecture to provide the more coarse-grained

implementation [18].

Figure 2: Different Software Architecture Layers.

The term coined to refer to this part of the system is

the application edge, reflecting that a service is a great

way to expose an external view of system, with internal

24 Analysis and Evaluating Security of Component-Based Software Development:

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

reuse and composition using traditional component

design

As shown in fig.2 CBD is the best and manageable

level of abstraction for large scale software

development in a way that it is neither much coarse-

grained like SOA nor much fine grained like OOAD

which makes it the suitable for analyzing the quality

attributes like reliability, security etc. The fundamental

unit of a large scale software construction is a

component. In Component based software design

(CBD) the system is structured as a collection of

components and their interconnection and composition.

According to [19] a software component is a unit of
composition with contractually specified interfaces and

explicit context dependencies only. The abstract view

of a component is shown in fig. 3. It contains three

main parts (1) component name (2) code for

performing a service (3) interfaces for accessing

services.

Figure 3: Software Component Model

A. Component Composition.

Component composition in CBD is the central issue

as the components are supposed to be used as a

building blocks of a software system, created from

scratch or used from an existing repository and
assembled together into large sub-systems or systems.

Component composition is defined as

Figure 4: Design Phase Component Composition.

communication between components through their

composition interfaces. In composition a software

component may be composed of other components. In

such a composition, the component may bind the local

resources of other components and could access the

resources by invoking methods on the resources.

Composition can take place during different stages of

the life cycle of components [20] , namely , (a) the

design phase during which components are designed ,

defined , constructed in the source code, and possibly

compiled into binaries, (b) the deployment phase , in

which binaries of components are deployed into target

execution environment for the system under

construction (c) the runtime phase , during which the

component binaries are instantiated with data and these

instances are executed in the running system. Whether

in the design, deployment or the runtime phase, a

component composition is the interconnection of the
components from an atomic component into the

composition of two and successively into a cluster,

sub-system and up to overall software system. In our

evaluation we are concerned with the design phase so

at design phase components have to be constructed,

cataloged and stored in the repository [21]. The so

created components can be fetched from the repository

and composed into the composites and stored back in

the repository. Fig. 4 above show the design phase

composition

B. Various Component Model Found And Their

Composition.

Software components may be available in many

different forms ranging from procedure and object

libraries up to stand alone applications. A software

component may be already composed of other

components. There are various software component

models. In [21] the component models are grouped

according to the component semantic and syntax or

composition. Four such categories that cover the 13

models are presented. All these models are based on

the Acme like ADLs. In such Acme a component is an

architectural unit that represents a primary

computational elements and data store of a system [22,

23]. A set of ports defines the interface of the
component. These ports either act as sink to receive or

source to send the data between components. Below

fig.5 shows the components and the composition of

Acme component Model.

Figure 5: Component Composition of Acme Component

Model

Other models like COM, EJB, .NET[24], CCM [25].

All these follow the representation like EJB model. In

 Analysis and Evaluating Security of Component-Based Software Development: 25

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

EJB a component is an enterprise bean class, hosted

and managed by an EJB container on J2EE server [26].

The EJB container is responsible for the enterprise

beans execution, transaction management, remote

connectivity and java naming and Directory Interface

(JNDI) lookups. The java class for the enterpriser bean

defines the methods of bean. EJB container uses to two

types of interfaces Home interface and Remote

interface to manage and run the beans. These interfaces

are the gateways for the component for client

application. The home interfaces are responsible for the

life-cycle of the component such as the methods like

create, locate, and destroy. The Remote interface has
the methods that relate to a particular bean instance (i.e.

task performed by a bean). There are three types of

EJB Entity EJB, session EJB, and Message driven EJB

[26].

Figure 6: EJB Component Composition

A session bean represents transient user-specific data

that will die when user disconnects, A message-driven

bean is an Entity EJB represents the persistent global
data from the data base, enterprise bean that allows

J2EE applications to process messages asynchronously.

Fig.6 below shows the composition of an EJB.

Other component models like Kola [27], [28],

SOFA[29] and KorbaA[30], follow the representation

and model of Kola. In Kola the component having two

parts the component specification and implementation

[31]. These components are defined in an ADL like

language, in which IDL for defining the interfaces of

the component, CDL for defining component and DDL

for specifying local data. Below fig.7shows the

composition of Kola components.

Figure 7: Kola Component composition

The dark square represents the component and the

little squares with triangle like structure on the edges

represents the interfaces of the component whose

direction depicts the direction of function call.

V. SECURITY EVALUATION FRAMEWORK

In Component Based Design (CBD), various

component models exists today with varying

terminology but in general a component is a unit of

functionality with well-defined ports or interfaces

through which its functionality is exposed. In the

current software development component based design

play a vital role in the process of software development.
In CBD a system is the interconnection or the

composition of these components to provide the

required functionality. These components may be

either locally configured or remote. A system goes

from several phases from its design and development

phases to the running environment. The evaluation of

system for security at the early architectural and design

phases considerably reduces the cost and efforts at

further stages. Beside that these early metrics act as an

indicator for both the system developers and

consumers to explicitly know the level of security of

the system based on the facts at hand. The architecture

of the system considerably effects on the security of

the overall system. In CBD the architecture of a

system defines how the overall system can be

composed. In our evaluation framework we evaluate

the system based on the following and derive the

security metrics for the fundamental and most
important security attributes Availability,

Confidentiality and Integrity mentioned in section 2

above.

 Component Composition and Dependencies

 Inter Component information/data flow and
resource Sharing.

A. Component Composition and Dependencies.

As stated earlier in CBD, a system is composed of

various components each having the unit of

functionality with provided and required interfaces. So

a component may be either composite of other

components which in turn may also a composite of

other and finally leads to atomic components. An

atomic component is one which is atomic in nature and

provides the functionality without the calling upon the

services of the other component. Different composition

models are there but each model focus on the behavior

together with one or more presentations.

In our evaluation frame work we have used the

UML component composition as shown in fig 8. For

simplicity we have followed a tree like organization of
the system starting from the root (composites) to the

leaves (atomic) components. As shown in diagram in

UML a component presents its behavior by one or

more required and provided interfaces (ports). Any

26 Analysis and Evaluating Security of Component-Based Software Development:

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

required service is represented by a socket and every

provided service is represented by a lollipop [32].

Such a configuration or composition can certainly

affect the security level of the overall system (The

attributes specified above in the section.2). Here we

measure the two attributes of the software security

dependency and availability based on the component

composition and dependency. In CBD components

provide system functionalities by interacting,

cooperating and coordination [33]. Interaction,

cooperation and coordination will produce dependency

among them .Usually, a group of components depend

on each other in order to supply a complex system

functionality .Various types of dependencies exist in

CBD [34]. (1) Data

Figure 8: Software Component Composition and Dependencies

dependency produces by control integration in CBD. (3)

Interface dependency is produced by user-interface

integration. Usually, the interface-event dependency is

the main dependency form in CBD. When one

component needs another component to do something,

it sends a message to trigger an event through its
interface, which activates another component to

response the message. (4) Time dependency represents

that the behavior of one component precedes or follows

the behavior of another component.

Similarly there are other dependencies like state

dependency, cause and effect dependency, input output

dependency and context dependency. In this section we

measure the availability attribute specified in section 2

based on the dependency of the components. In fig. 8.

above the dashed line represents the dependency

explicitly beside the provided and required interface

dependencies.

A component can exhibit two types of dependencies,

in-dependency and out-dependency. The in-

dependency represents that other components directly

or indirectly dependent on it and out-dependency

represents that component depends on the other
components in the composition. We argue that the

degree of components in and out dependencies can

effect on the availability of the system and it becomes

more critical if the components composition is remote,

due to the overhead of transmission delay and of the

process of remote procedure call (RPC). We compute

the direct dependencies for the composition of above

fig.8 using the dependency matrix [34]. The direct

dependency matrix is an adjacency matrix (AM) in

which each component is represented by a column and
a row. If a component Ci is dependent on another

component Cj, then AM [i,j]= 1. In general, the values

of all the elements in AMn*n = (dij)n*n as follows:

The direct dependency matrix for the component

composition of above scenario of fig.8 is as:

 Analysis and Evaluating Security of Component-Based Software Development: 27

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

We further use the Warshall’s algorithm [35] to

compute all the indirect dependencies of the scenario in

fig.8 matrix FDB (full dependency metric) shows all

the direct and indirect dependencies.

We define the degree of a component dependency

deg(Ci) as the number of components dependent on it.

As mentioned earlier a component may have either in-

dependency, out-dependency or both. From the above

dependency matrix representation the degree of out-

dependency of a component is equal to

the number of 1’s in row i of the corresponding

component and the degree of in-dependency of a

component can be calculated as the number

of 1’s in the column j which can be computed as:

And

Software architectures are now shifting from simple

standalone application to large distributed software

based on OSI or J2EE n-tiers, which makes the security

a great challenge over the insecure cyber space. So the

structure of CBD must be analyzed and evaluated for

security as early at the design phase as possible.

Software developers need to ensure that service should

remain available in a timely manner. Availability in

CBD depends up on many factors in distributed CBD.

Components normally use Remote Procedure Call

(RPC) to invoke and get the services provided by other

components. When components call up on the other

components for service, there is certainly chance of

delayed response due to the chain of the dependencies

among the components, marshaling and unmarshalling

in case of remote procedure call (RPC), processing

delay and the transmission delay. In this framework

the processing and RPC delay together denoted

together by and the transmission overhead denoted

by . Also a component can act as a hub for handling

the requests of other components and calling on their

behalf the other components. In this section we derive

the Availability metrics of a CBD based upon their

dependencies (in and out) and the transmission delay.

There is a 1-N relationship between the and

of a component i.e. for each of the

component in , may call some or all of

the other components on its behalf in . So

the availability of a component denoted by is

inversely proportional to and

Thus

Where

 is the in-dependency of the component

 is the number of components

depends upon.

 and represents the processing and transmission

delay of the component and the processing and

transmission delay of all the components in the

 on which depends for providing the

required service to calling component.

The above equation can be simplified as where is

the processing delay of the component .

Where

 is the is the in-dependency of

component Ci .

 is the is the out-dependency of

component .

 is the total transmission delay of invoked

component and the transmission delay of all the

28 Analysis and Evaluating Security of Component-Based Software Development:

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

components invoked by in the for

each of the component .

With the above metric the critical component in the

system can be identified at the early stages of the

system development. The availability of overall

system can be derived as:

Where is the number of total components in the

system.

The results provided by above equation are within

the range (0, 1). Lower the values on scale more the

effect on the availability of the component/system.

B. Inter-Component Information/data Resource

Sharing.

In CBD the coordination, interaction, cooperation

and coordination makes the flow of data and

information between the components. Such flow of

information can affect the confidentiality and integrity

of data and data storage resources among the

components especially when the composition involved

some third party components. The flow of information

takes place through component interfaces (ports).

There are two types of data flow as shown fig.9 (1)

Inter component flow and (2) Intra component flow

[36]. In former the flow of data/information takes place

through the components interfaces by In-flow and Out-

flow. The in-flow carries information from client to a

provider interface through a list of in parameters and

the out-flow carries information from a provider

interface to a client through the list of out parameters.

In later it is assumed that a data structure is used to

store and retrieve information needed by the provider

interface. The in-flow gets mapped to intra-component

write-flow and out-flows to intra-component read-flow.

The data/information flow among components can be

either direct or indirect. In direct flow a component A

passes the data/information directly by calling upon the

methods of the component and in indirect mode a

component say A passes data/information to

component B which intern may passes it to other

components and finally to component C. Using UML

sequence diagrams it is easy to analyze the complex

data/information flow among the components. In this

section we derive the confidentiality and integrity

metrics for CBSE based on the data/information flow

and storage among the components. The main focus is

to analyze the effect of each of the component in of

overall system’s composition on the confidentiality and

integrity and to identify the most critical components

having high impact on these security attributes.

Each component in CBD poses certain number of

interfaces (both provided and required) for reading

from and writing into the component. We believe that

as the number of other system components writing into

and reading from a component increases, the

confidentiality of that component and of the

components depending on it will be affected. Also the

Figure 9: Component Information Flow

confidentiality is likely to be affected more by number

of read operation on for each of the write operation

on . We put it into the mathematical formulation by

taking into account the assumptions as:

For each of the required interface of a component

the number of components writing is .

Where .

Similarly for each of the provided interface of the

number of components reading from it are .

Where .

The confidentiality metric of the component is as:

Where

 is the total number of writing interfaces.

 is the total number of reading interfaces and,

 .

We argue that as the number of component reading

from i.e.as the increase for each of the component

in performing a write operation, the confidentiality

of is likely to be affected more than the increase in

number of Write i.e. alone. With the above metric

 Analysis and Evaluating Security of Component-Based Software Development: 29

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

the system developer can easily identify the most

critical component in the system by comparing the

results and be able to modify the initial design

decisions. The confidentiality level of overall system

can be computed by following equation.

Where, is the total number of component in the

system composition?

Similarly we compute and derive the metric for

integrity of each of the component in the system

composition and for the overall system. Integrity gets

affected when an unauthorized and uncontrolled

change to data/information is made. As the complexity

of the component composition increases, it becomes

very difficult to keeping track and ensuring the

integrity of the system. In our evaluation we have

considered, as the number of component capable of

sending the data/information to another component say

 increases the integrity of that component gets

affected. The goal is to identify the most critical

components in the system composition by which the

integrity of the system is likely to be affected more.

These early indicators provide the decision making

capabilities to designer for taking the necessary actions

and if required. In this context we define that the

integrity of a component is inversely proportional to

the number of components that can send

data/information into through interfaces . So the

integrity of a component can be represented by the

following mathematical equation.

Where the number is required interfaces of i.e.

the write interfaces of .

The overall integrity of the system formulated as :

Where N is the total number of components in the

system composition.

To keep the results on similar scale, the above

equation is further simplified as.

As in case of Availability, here also the range of

output values is within the range (0, 1) and lower the

resultant values the more effect on the

component/system will be.

VI. CONCLUSION AND FUTURE SCOPE

In this paper we have analyzed the various software

architectures and there place in software development.

We have also analyzed the non-functional security

requirements specification centric to the information

security attributes. Our focus was on to the component

based software development (CBD), because of the

level of abstraction and its place in the software

development which makes it the best level of software

architectural abstraction for evaluating the quality

attributes. We have also analyzed the various

component models currently in use. Finally we have

proposed a framework for the security evaluation of

component based software based on component

dependencies and information flow and derived the

security metrics for the fundamental three attributes,

Confidentiality, Integrity and Availability of security.

The proposed metrics can act as the early indicator of

the security for the system developers. In this we have

not provided the empirical evaluation of the proposed

framework, which will be the future enhancement.

REFERENCES

[1]. D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M.

Bishop. ―Software security checklist for the

software life cycle.‖ In Proceedings of the

Twelfth IEEE International Workshop on

Enabling Technologies: Infrastructure for

Colaborative Enterprises (WETICE’03), 2003.

[2]. W. Jansen, ―Directions in security metrics

research‖, U.S. National Institute of Standards

and Technology, NISTIR 7564, Apr. 2009

[3]. M. Howard and S. Lipner. The Security
Development Lifecycle. Microsoft Press, 2006.

[4]. Oman, P., Risley, A., Roberts, J., and Schweitzer

III, E.O. ―Attack and Defend Tools for Remotely

Accessible Control and Protection Equipment in

Electric Power Systems,‖ 55th Annual

Conference for Protective Relay Enginers, Texas

A&M University, April 9–11, 2002, College

Station, TX.

<http://www.selinc.com/techpprs/6132.pdf> (4

Mar. 2003)

30 Analysis and Evaluating Security of Component-Based Software Development:

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

[5]. Bayuk J.L. ―Alternate security metrics‖ Eight

International conference on Information

Technology: New Generation IEEE, 2011.

[6]. S. B. Lipner. The Trustworthy Computing

security development Life Cycle. In Proceedings

of 20th Annual Computer Security

Applications Conference. IEEE Computer

Society, December 2004, pp. 2-13.

[7]. D. Firesmith ―Specifying reuse able security

requirements‖ Journal of object technology

vol.3, No. 1, Jan 2004. Pp. 61-75.

[8]. R. Savola, ―Requirement Centric Security

Evaluation of Software Intensive Systems,‖
DepCOSRELCOMEX ’07, Szklarska Poreba,

Poland, jun., 14-16,2007, pp.135-142

[9]. B Thuraisingham ―Challenges and Future

Directions of Software Technology: Secure

Software Development‖ 34th Annual IEEE

Conference on Computer Software and

Application, 2010.

[10]. Hong Mei, Jichuan Chang, Fuqing Yang,

―Composing Software Components at

Architectural Level‖, IFIP WCC2000, Beijing,

2000.8

[11]. Perry, D.E, Wolf, A.L, Foundations for the study

of software architecture, ACM SIGSOFT

Software engineering notes,1992, 17(4), 40-52

[12]. IEEE 1471:2000—Recommended practice for

architectural description of software intensive

systems. Los Alamitos, CA: IEEE. 2000.

[13]. Bohem, B and W.L. Scherlis,
―Megaprogramming.‖ In Proceedings of the

DARPA Software Technology Conference 1992,

Los Angeles, CA, April 28-30, (Meridien Corp.,

Arlington, VA) 1992. pp. 63-82.

[14]. B. Boehm and V. Basili, ―Software defect

reduction top 10 list,‖ Foundations of empirical

software engineering: the legacy of Victor R.

Basili bach, and M. V. Zelkowitz, Eds.

Heidelberg, Germany: Springer, 2005, pp. 426-

431.

[15]. M.Shaw, D.Garlan Software Architecture,

Prentice Hall, Englewood Cliffy, NJ, USA, 1996.

[16]. C. Szyperski. Component Software: Beyond

Object-Oriented Programming. Addison-Wesley,

1998.

[17]. G. Pour, ―Component-Based Software

Development Approach: New Opportunities and
Challenges,‖ Proceedings Technology of Object-

Oriented Languages, 1998. TOOLS 26., pp. 375-

383.

[18]. A.W. Brown, S. Johnston, and K. Kelly. Large-

scale, using service-oriented architecture and

component-based development to build web

service applications. Rational Software White

Paper TP032, 2002

[19]. Kung-Kiu Lau and Zheng Wang. Software

component models. IEEE Transactions on

Software Engineering, 33(10), October 2007, pp.

709-724.

[20]. B. Christiansson, L. Jakobsson, and I. Crnkovic,

―CBD Process,‖ Building Reliable Component-

Based Software Systems, I. Crnkovic and M.

Larsson, eds., pp. 89-113, Artech House, 2002.

[21]. Kung-Kiu Lau and Zheng Wang ―Software

Component Models‖ , IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 33,

NO. 10, OCTOBER 2007.

[22]. P. Clements, ―A Survey of Architecture

Description Languages,‖ Proc. Eighth Int’l

Workshop Software Specification and Design

(IWSSD’96), pp. 16-25, 1996.

[23]. N. Medvidovic and R.N. Taylor, ―A
Classification and Comparison Framework for

Software Architecture Description Languages,

‖IEEE Trans. Software Eng., vol. 26, no. 1, pp.

70-93, Jan.2000.

[24]. A. Wigley, M. Sutton, R. MacLeod, R. Burbidge,

and S. Wheelwright, Microsoft .NET Compact

Framework (Core Reference). Microsoft Press,

Jan. 2003.

[25]. G. Alonso, F. Casati, H. Kuno, and V.

Machiraju, Web Services: Concepts,

Architectures and Applications. Springer-Verlag,

2004.

[26]. L. DeMichiel and M. Keith, Enterprise

JavaBeans, Version 3.0. SunMicrosystems, 2006.

[27]. R. van Ommering, F. van der Linden, J. Kramer,

and J. Magee, ―The Koala Component Model for

Consumer Electronics Software,‖ Computer, vol.

33, no. 3, pp. 78-85, Mar. 2000.
[28]. R. van Ommering, ―The Koala Component

Model,‖ Building Reliable Component-Based

Software Systems, I. Crnkovic and M. Larsson,

eds., pp. 223-236, Artech House, 2002.

[29]. F. Pla _́sil, D. Balek, and R. Janecek,

―SOFA/DCUP: Architecture for Component

Trading and Dynamic Updating,‖ Proc. Fourth

Int’l Conf. Configurable Distributed Systems

(ICCDS ’98), pp. 43-52, 1998.

[30]. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.

Laitenberger, R. Laqua, D. Muthig, B. Paech, J.

Wu ̈st, and J. Zettel, Component-Based Product

Line Engineering with UML. Addison-Wesley,

2001.

[31]. R. van Ommering, ―The Koala Component

Model,‖ Building Reliable Component-Based

Software Systems, I. Crnkovic and M. Larsson,
eds., pp. 223-236, Artech House, 2002.

[32]. J. Cheesman and J. Daniels, UML Components:

A Simple Process for Specifying Component-

Based Software. Addison-Wesley, 2000.

[33]. Binbin Qu, Zuwen Chen, Yansheng Lu ―An

approach of test sequence generation for

component-based software‖ 2nd International

Conference on Future Computer and

communication (ICFCC) vol.2. pp. 370-373,

May 2010.

 Analysis and Evaluating Security of Component-Based Software Development: 31

A Security Metrics Framework

Copyright © 2012 MECS I.J. Computer Network and Information Security, 2012, 11, 21-31

[34]. B. Li, ―Managing Dependencies in Component-

Based Systems Based on Matrix Model‖ Proc. of

Net.ObjectDays Conf., pp.22-25, 2003.

[35]. Rosen, Kenneth H., Discrete Mathematics and its

Applications, Third Edition, McGraw-Hill, Inc,

1994.

[36]. M. Abdellatief, ―Component-Based Software

System Depencey Metrics based on Component

Information Flow Measurement‖, The Sixth

International Conference on Software

Engineering Advances, ISBN: 978-1-61208-165-

6 ICSEA 2011.1

[37]. W. Jansen, ―Directions in security metrics
research‖, U.S. National Institute of Standards

and Technology, NISTIR 7564, Apr. 2009, 21

[38]. M. Howard and S. Lipner. The Security

Development Lifecycle. Microsoft Press, 2006.

Irshad Ahmad Mir is currently pursuing Ph.D degree

program in computer science department at University

of Kashmir, India.He did his bachelor’s degree in

computer application from Amar Singh College

Srinagar India and Master Degree in computer

application from Kashmir University India.

E-mail: irshad.mir@hotmail.com.

Dr. SMK Quadri is Head, PG department of computer

sciences, Kashmir University, India. He did his Mtech
in computer application from Indian school of Mines

and Ph.D in computer sciences from Kashmir

University, India.

