
Analysis and Evaluation of Address Arithmetic Capabilities in Custom DSP
Architectures

Ashok Sudarsanam Stan Liao Srinivas Devadas
Department of Electrical Engineering Advanced Technology Group Department of EECS

Princeton University Synopsys, Inc. MIT

Abstract—Many application-specific architectures provide
indirect addressing modes with auto-increment/decrement
arithmetic. Since these architectures generally do not fea-
ture an indexed addressing mode, stack-allocated variables
must be accessed by allocating address registers and per-
forming address arithmetic. Subsuming address arithmetic
into auto-increment/decrement arithmetic improves both
the performance and size of the generated code.

Our objective in this paper is to provide a method for
comprehensively analyzing the performance benefits and
hardware cost due to an auto-increment/decrement feature
that varies from �l to +l, and allowing access to k address
registers in an address generator. We provide this method
via a parameterizable optimization algorithm that oper-
ates on a procedure-wise basis. Hence, the optimization
techniques in a compiler can be used not only to gener-
ate efficient or compact code, but also to help the designer
of a custom DSP architecture make decisions on address
arithmetic features.

We present two sets of experimental results based on
selected benchmark programs: (1) the values of l and k
beyond which there is little or no improvement in perfor-
mance, and (2) the values of l and kwhich result in minimum
code area.

I. INTRODUCTION

Microprocessors such as microcontrollers and fixed-point
digital signal processors (DSPs) are increasingly being em-
bedded into many electronic products. Two main trends in
the design of embedded systems are becoming clear: (1) the
amount of embedded software is growing increasingly larger
and more complex, and (2) all the electronics—microprocessor,
RAM, ROM, and ASICs—are being incorporated into a single
integrated circuit.

Since program code resides in on-chip ROM, the size of this
code translates directly into silicon area and cost. It is therefore
an important problem to minimize the size of the program code,
while simultaneously optimizing performance. However, cur-
rent compilers for microcontrollers and fixed-point DSPs gen-
erate code that is extremely unsatisfactory with respect to code
size and performance [8]—thus, programming in a high-level
language can incur penalties on code size and performance. We
believe that generating the best code for embedded processors
will require not only traditional optimization techniques (e.g.,
[1]), but also new techniques that take advantage of special ar-
chitectural features that decrease code size. Our recent efforts

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 97, Anaheim, California
c
 1997 ACM 0-89791-920-3/97/06 ..$3.50

in this direction are summarized in [7].
Many architectures, such as the VAX, Texas Instruments

TMS320C25, and most embedded controllers, provide indi-
rect addressing modes with auto-increment/decrement1 arith-
metic. These features allow for efficient sequential access of
memory and increase code density, since they subsume ad-
dress arithmetic instructions and result in shorter instructions
in variable-length instruction architectures. In particular, DSPs
and embedded controllers are designed assuming that software
that runs on them would make heavy use of auto-increment
addressing. In many cases, DSPs and controllers do not pro-
vide an addressing mode for indexing with a constant offset.
Thus, automatic variables (those variables that are dynamically
allocated on the stack frame) must be accessed by allocating
address registers and performing address arithmetic. Subsum-
ing address arithmetic into auto-increment arithmetic improves
both the size and performance of the generated code.

Determining the storage assignment of automatic variables
so as to maximize the use of auto-increment arithmetic has
received much recent attention. Bartley [2] was the first to
address a simple version of the offset assignment problem, and
presented an approach based on finding a maximum-weight
Hamiltonian path of an access graph. Offset assignment prob-
lems for unit increments on multiple address registers have
been addressed by Liao et al. [6] and Leupers [5]. While ef-
fective algorithms have been proposed, the machine model in
these works is quite restrictive and does not reflect the address
arithmetic capabilities of some of the more advanced DSP ar-
chitectures. For instance, the parallel processor in the Texas
Instruments TMS320C80 features eight address registers and
allows for increments ranging from�7 to +7. In this paper, we
extend previous work by permitting multiple address registers
with arbitrarily-large increments.

The motivation for this paper is based on the following sce-
nario: suppose that a designer of a custom DSP architecture,
given a set of applications, wishes to determine the number of
address registers and the range of auto-increment for the ad-
dress generation unit. Increasing the number of address regis-
ters k may improve the execution speed and/or static instruction
count. Furthermore, enlarging the range of increment [�l, l]
may also reduce the number of explicit address arithmetic in-
structions. However, increasing either k or l may increase the
number of bits required to encode the instruction word. Our
objective in this paper is to provide a method for comprehen-
sively analyzing the performance benefits and hardware cost
(in terms of code area) due to an auto-increment feature that
varies from�l to +l, and allowing access to k address registers
in an address generator (we use the term code area to empha-
size the fact that the overall code size depends not only on
the number of instructions, but also the width of the instruction

1Henceforth, increment will be used to represent both increment and
decrement.

word). We provide this method via a parameterizable optimiza-
tion algorithm that operates on a procedure-wise basis. Thus,
we illustrate the important role an optimizing compiler plays in
architecture design. To this end, we present a generalized for-
mulation of the storage assignment problem, parameterized by
the maximum allowable increment l and the number of address
registers k.

This paper is organized as follows: in Sec. II, we give an
example illustrating the simple offset assignment problem with
increment range [�l, l] (which we call l-SOA); in Sec. III, we
present a generalization of the SOA algorithm given in [6]
for l-SOA; in Sec. IV, we briefly generalize the general offset
assignment problem with increment range [�l, l] (which we call
(l, k)-GOA); in Sec. V, we describe how an offset assignment
for an entire procedure may be determined; Sec. VI provides
experimental results—two highlightsof these results are (1) the
values of l and k beyond which there is little or no improvement
in performance, and (2) the values of l and k which result in
minimum total code area; we finally present our conclusions in
Sec. VII.

II. EXAMPLE

We assume that the reader is familiar with the simple offset
assignment (SOA) problem presented in [6]. In this section,
we present an extension of the SOA problem that takes into
account the capability of increments ranging from �l to +l,
for arbitrary l. Although our optimizations are applied on a
procedure-wise basis, we focus on basic blocks in this section.

Fig. 1(a) shows an example code sequence and Fig. 1(b)
shows the optimal offset assignment for the variables in this
sequence, assuming that a single address register with unit
auto-increment is used. Address register AR0 is used to ad-
dress the variables; ADAR (SBAR) adds a constant to (subtracts
a constant from) AR0; LDAR loads AR0 with an address; fi-
nally, *(AR0)+ and *(AR0)- denote auto-increment and
auto-decrement by one, respectively, of AR0. The instructions
we intend to minimize are precisely the explicit address arith-
metic instructions, namely ADAR and SBAR. As highlighted in
Fig. 1(c), six such instructions are required, given the offset
assignment of Fig. 1(b).

Now if l = 2, then variables that are separated by a distance
of at most two may be accessed in sequence without requiring an
explicit address arithmetic instruction. Fig. 2(b) and Fig. 2(c)
show the optimal offset assignment and assembly code, re-
spectively, corresponding to the code sequence of Fig. 2(a).
Here, the notation *(AR0)+j denotes auto-increment of AR0
by j. Note that the additional capability afforded by increasing
l reduces the number of ADAR and SBAR instructions, since
adjacent accesses to variables that are distance-l apart in the
offset assignment incur no penalty.

III. SIMPLE OFFSET ASSIGNMENT PROBLEM

In this section, we assume that a single address register is
available to address the automatic variables of each procedure.
We term this the l-simple offset assignment (l-SOA) problem.
We first review the formulation of [6] for the l = 1 case, and
then extend it to the case where l > 1. We will subsequently
refer to this formulation as the 1-SOA problem, and the more
general formulation as the l-SOA problem.

A. Access Sequence and Access Graph
Given a code sequence for a basic block, we can uniquely

define an access sequence for this block. For an operation
z = x op y, the access sequence is x y z. The access sequence for

(a)

(b) (c)

LDAR AR0,&a

AR0

e = a + b;
b = b + g;
c = c + d + f;
a = h − c;
c = b − c + a;

h

c

a

b

e

g

d

f

ADAR AR0,2

SBAR AR0,2

SBAR AR0,2

ADAR AR0,5

SBAR AR0,6

SBAR AR0,2

LOAD *(AR0)+
ADD *(AR0)+
STOR *(AR0)−
LOAD *(AR0)

ADD *(AR0)

STOR *(AR0)

LOAD *(AR0)

ADD *(AR0)+
ADD *(AR0)

STOR *(AR0)−
LOAD *(AR0)+
SUB *(AR0)+
STOR *(AR0)+
LOAD *(AR0)

SUB *(AR0)+
ADD *(AR0)+
STOR *(AR0)

; a
; b
; e
; b

; g

; b

; c

; d
; f

; c
; h
; c
; a
; b

; c
; a
; c

Fig. 1. (a) Code sequence (b) Optimal offset assignment for l = 1 (c)
Assembly code

an ordered set of operations is simply the concatenated access
sequences for each operation in the appropriate order. The
access sequence for the basic block of Fig. 1(a) is shown in
Fig. 3(a).

Given the notion of an access sequence, it can be seen that
when l = 1, the cost of an assignment is equal to the number of
adjacent accesses of variables that are not assigned to adjacent
stack locations. For instance, six address arithmetic instruc-
tions are required for the offset assignment of Fig. 1(b), since
the followingsix two-symbol substrings of the access sequence
refer to variables assigned to non-adjacent stack locations: bg,
gb, bc, cd, fc, and bc.

The access graph GhV, Ei is derived from an access se-
quence as follows: each node v 2 V corresponds to a unique
variable, and edge ehu, vi 2 E exists with weight w(e) if vari-
ables u and v are adjacent to each other w(e) times in the access
sequence. The access graph for the basic block of Fig. 1(a) is
shown in Fig. 3(b).

With respect to the access graph, if l = 1, then the cost of
an assignment is equal to the sum of the weights of all edges
that connect variables assigned to non-adjacent stack locations.
For the example of Fig. 1, hb,gi, hb, ci, hc, fi, and hc,di
are such edges, and these have a total weight of 6. The other
edges connect variables that have been assigned to adjacent
stack locations and thus, incur no cost.

B. 1-SOA and the MWPC Problem
Definition 1: A disjoint path cover (henceforth cover) of a

weighted graph GhV, Ei is a subgraph ChV, E0i of G such that:
� for each v 2 V, deg(v) � 2 (degree constraint);
� there are no cycles in C (cycle constraint).

Note that the edges in C form a set of disjoint paths (some of
which may contain no edges), hence the name.

Definition 2: The weight of a graph G is the sum of the
weights of all edges in G. The cost of a cover C of G is the
sum of the weights of all edges in G, but not in C, i.e., cost(C)

AR0

(a)

(b) (c)

LDAR AR0,&a
e = a + b;
b = b + g;
c = c + d + f;
a = h − c;
c = b − c + a;

g

e

b

a

c

h

f

d

LOAD *(AR0)+
ADD *(AR0)+
STOR *(AR0)−
LOAD *(AR0)+2
ADD *(AR0)−2
STOR *(AR0)−2
LOAD *(AR0)

ADD *(AR0)+
ADD *(AR0)+2
STOR *(AR0)−
LOAD *(AR0)+
SUB *(AR0)+
STOR *(AR0)+
LOAD *(AR0)−2
SUB *(AR0)+
ADD *(AR0)−
STOR *(AR0)

; a
; b
; e
; b
; g
; b
; c

; d
; f
; c
; h
; c
; a
; b
; c
; a
; c

SBAR AR0,3

Fig. 2. (a) Code sequence (b) Optimal offset assignment for l = 2 (c)
Assembly code

a

b

e

g

c
d

f
h

2

2

1

11
2

(a)

(b)

a b e b g b c d f c h c a b c a c

3

2

2

Fig. 3. (a) Access sequence (b) Access graph

= weight(G) - weight(C).
Definition 3 (MWPC) Given an access graph G, find a cover

C with maximum weight.
Note that a cover with maximum weight is equivalent to

a cover with minimum cost. It has been shown in [6] that
solving the MWPC problem is equivalent to solving the 1-SOA
problem. Since MWPC is NP-complete, a heuristic algorithm
for 1-SOA is proposed.

C. l-SOA
The main inadequacy of the 1-SOA formulation is that when

l > 1, some edges of the access graph will have an effective zero
cost, even if they are not included in the cover. In Fig. 3(b), if
l = 2, then hc,fi (which contributed a cost of one in the l = 1
case) contributes zero cost since c and f are distance-2 apart

a b e b g b c d f c h c a b c a c
a

b

e

g

c
d

f
h

2

2

1

11
2

3

2

2

0

0

Induced edges

Cover of access graph

Fig. 4. A cover and its induced edges, for l = 2.

with respect to the final offset assignment (shown in Fig. 2(b)).
When loading f, AR0 can be auto-incremented by 2 so that it
points to the location for c.

Thus, we need to redefine the weight of a cover to take
into consideration those edges whose costs are subsumed by
virtue of l. Note that the edge-selection criteria for a disjoint
path cover do not change, because our goal remains to find
a linear ordering of variables; however, a different cost func-
tion must now be minimized. To accomplish this goal, we
must now consider complete graphs, rather than graphs con-
sisting of only positive-weight edges. The reason for this is
as follows: when l = 1, including zero-weight edges in the
cover affords no benefit, and including such edges in the ac-
cess graph only makes the optimization process less efficient;
however, when l > 1, selecting a zero-weight edge may induce
another positive-weight edge to become effectively cost-less,
even though the latter could not itself be selected due to the cy-
cle and degree constraints. To precisely describe which edges
have effectively zero cost, we introduce the notion of induced
(l + 1)-cliques:

Definition 4: Let GhV, Ei be a complete graph, and C be a
cover of G. A subgraph QhVQ, EQi of G consisting of (l + 1)
nodes and edges connecting these nodes is said to be an induced
(l+1)-clique of C if VQ are nodes of some subpath in C of length
l.

Definition 5: An edge of G is said to be induced by a cover
C if it is not in C but belongs to some induced (l + 1)-clique of
C.

Intuitively, if nodes u and v belong to an induced (l + 1)-
clique, then their distance from each other, with respect to
edges of C, is at most l. Since the address generation unit can
auto-increment by at most l, the edge hu, vi incurs no cost. We
define the l-induced weight of a cover as follows:

Definition 6: The l-induced weight of a cover C of a com-
plete, weighted graph G is the total weight of the edges in C and
those edges induced by C. The l-induced cost of C is the sum
of the weights of edges that are neither part of C nor induced
by C.

Definition 7 (l-SOA) The l-SOA problem consists of find-
ing a cover of an access graph G with minimum l-induced cost.

Fig. 4 shows an example of a cover and its induced (l + 1)-
cliques, for l = 2. The induced (l + 1)-cliques are: beg, abe,
abc, ach, cfh, and dfh, and the positive-weight induced

1 SOLVE-l-SOA(L)
2 f
3 /* L = access sequence for basic block or trace */
4 GhV, Ei ACCESS-GRAPH(L)
5 F list of edges in E
6 ChV0, E0i : V0 V, E0 f g
7 while (jE0j < jVj � 1 and F not empty) f
8 foreach edge e in F f
9 Compute the total weight, z(e), of those
10 edges that would become induced if
11 e were included in C
12 g
13 Select edge e� which maximizes z(e) + w(e)
14 E0 E0 [e�

15 Remove from F those edges made ineligible
16 due to cycle and degree constraints
17 g
18 /* Construct an assignment from E0 */
19 return CONSTRUCT-ASSIGNMENT(E0)
20 g

Fig. 5. Heuristic algorithm for l-SOA.

edges are hb,gi, hb,ci, and hc, fi (for clarity, edges with zero
weight are not shown unless they are part of the cover). In this
example, hc, di is the only edge for which we have to pay the
cost of explicit address arithmetic instructions.

Doubtless, the l-SOA problem is NP-hard. As with 1-SOA,
we propose a heuristic procedure, shown in Fig. 5 to solve l-
SOA: in each iteration of the edge-selection process, we com-
pute the weight each eligible edge e would contribute by sum-
ming up the weights of all edges that would become induced
if e were included in the current partial solution. The edge e�

with the largest contribution is selected.

IV. GENERAL OFFSET ASSIGNMENT PROBLEM

We briefly generalize the l-offset assignment problem to the
case where k address registers, AR0 through AR(k � 1), are
available. Since this formulation involves two independent pa-
rameters, we name it the (l, k)-general offset assignment ((l, k)-
GOA) problem. In this formulation, we assume that (1) there is
a fixed setup cost of introducing the use of an address register
and (2) each address register is used to point to a disjoint subset
of variables.

Definition 8: Let L be the access sequence of a basic block,
and V be the set of variables in L. The access subsequence
generated by W � V is the subsequence of L consisting of
those variables only in W.

Definition 9 ((l, k)-GOA) Given an access sequence L, the
set of variables V, and the number of address registers k, find a
partition of V, Π = fP1, P2, ..., Pmg, m � k, in which the total
cost of the optimal l-SOA of the corresponding access subse-
quences plus the setup costs for using m registers is minimum.

Since determining the optimal variable partition is NP-
complete, various partitioning heuristics are proposed in [6].
One heuristic partitions the set of variables into subsets of car-
dinality two, since the cost of performing l-SOA on an access
subsequence consisting of two unique variables is zero.

V. l-SOA FOR PROCEDURES

In this section, we describe how our address assignment
methods may be applied to entire procedures. We first dis-

cuss some pre-processing steps that not only reduce the data-
memory requirements of the application program, but may also
improve the quality of the final offset assignment. We then
describe the process of constructing an access graph for a pro-
cedure.

A. Minimizing Storage Requirements
We first perform a coloring of each procedure’s automatic

variables, such that identically-colored variables are allocated
to the same stack location. This optimization significantly re-
duces the run-time data-memory requirements of the program,
which is of extreme importance in embedded systems design.
It is also possible that reducing the size of the stack frame may
result in an offset assignment of lower cost.

The coloring process proceeds as follows: first, liveness
analysis [1] is performed on all variables so as to determine
their live ranges—the live range of a variable v specifies those
regions of the program where v is active. Secondly, an inter-
ference graph is constructed in which a vertex exists for each
variable, and edge ehi, ji exists if and only if the live ranges of
variables i and j overlap. This edge specifies that i and j must
be colored differently, or analogously, they must be allocated
to different stack locations. Finally, we apply Briggs’ heuristic
[3] to this graph in order to find a coloring that satisfies all
interference constraints.

In order to reduce the number of edges in the interference
graph and hence, possibly decrease the number of required col-
ors, we perform a renaming of all variable uses and definitions
prior to constructing this graph. This technique is analogous
to the register renaming hardware scheme employed in high-
performance processors [4]. Variable renaming reduces the
life-times of variables and hence, possibly reduces the number
of overlapping live ranges.

B. Constructing Procedural Access Graph
We can construct a procedural access graph on which the

l-SOA algorithm operates, thus allowing us to obtain an offset
assignment for the entire procedure. This is achieved by merg-
ing the access graphs of each basic block in the procedure, and
adding weights to the edges of the resulting access graph so
as to account for variable accesses along control-flow edges.
However, depending on the optimization objective, it may be
necessary to weight the access graph of each basic block differ-
ently: for optimization of static instruction count, we simply
weight each basic block equally; for optimization of dynamic
instruction count, we weight each basic block according to its
expected execution frequency.

The expected execution frequencies of basic blocks can be
determined statically or through the use of profiling data. Al-
though profile-driven estimations are generally more accurate,
the quality of static estimations is improving. We have imple-
mented the static estimation method of [9] to estimate basic
block frequencies. We briefly outline the steps involved in this
algorithm:

� first, the type of each control-flow edge (i.e., forward or
backward) is determined through the use of dominator
analysis [1], which is computed iteratively; we then clas-
sify the type of each edge ehi, ji as follows: if node j
dominates node i, then ehi, ji is a backward edge, other-
wise it is a forward edge;

� using various heuristics outlined in [9], a probability is
assigned to each edge based on its type;

� a system of linear equations is set up, in which the variables

correspond to basic blocks, and the coefficients are the
determined edge frequencies;

� a solution to these equations is found using a linear pro-
gramming solver – this solution specifies the execution
frequency of each basic block.

VI. EXPERIMENTS AND RESULTS

We present two sets of experimental results that demonstrate
the variation in dynamic instruction count and code area across
different values of l and k. All measurements were obtained
by running our parameterizable offset assignment algorithm
using various heuristics to partition the variables, and selecting
the best results. For the first set of experiments (dynamic
instruction count), the basic blocks were weighted according
to their estimated frequencies, whereas for the second set, they
were weighted equally.

It is important to note that basic block weighting and the two
experiments are orthogonal. In other words, given a particular
weighting, both experiments should be performed and the data
collected from these experiments serve different purposes. The
objectives are summarized in Table I. For instance, if our
primary goal is to optimize for performance, we weight the
basic blocks according to frequency, and we use the data set
from the second experiment to evaluate the impact on total
area. Thus, the experimental results given in this section only
represent cases (1) and (4) in Table I.

We performed our experiments on core routines from the
following programs: the image-processing program xv, an
implementation of the JPEG encoder/decoder, the compression
program gzip, and the DES and RSA cryptosystems. We
grouped these routines into three sets based on the total number
of automatic variables present (including front-end-generated
temporaries): there were 12 small examples with fewer than
20 variables, 23 medium examples with 20–60 variables, and
4 large examples with more than 60 variables.

A. Address Arithmetic Instruction Count
We present in Fig. 6(a), Fig. 6(b), and Fig. 6(c) results

indicating address arithmetic (i.e., ADAR, SBAR, and LDAR)
instruction counts for the small, medium and large examples,
respectively. In each plot, we give the minimum values of l
and k necessary to reduce address arithmetic instruction count
to less than 2%, 5%, and 10% of the l = 0, k = 1 case—in this
case, an ADAR or SBAR is required for each memory access.
For instance, for the small examples, to reduce the number of
address arithmetic instructions to 5% or less, the pair (l, k) has
to equal or exceed one of the following points: (1,3), (2,2), or
(4,1). Similarly, for the large examples, to reduce the address
arithmetic count to 2% or less, (l, k) has to be greater than or
equal to either (4,5) or (5,3).

It is interesting to note that the largest reduction in the num-
ber of address arithmetic instructions due to an increase in k
occurs at the transition from k = 1 to k = 2. Beyond that,
we observe diminishing returns, largely due to the setup costs
required for using additional address registers. For instance, in
Fig. 6(b) for the l = 3 case, it is not possible to obtain much
further improvement by increasing k beyond 3. However, if
k = 2, we can reach 2% by increasing l to 5.

B. Overall Code Area
Reducing the number of address arithmetic instructions by

increasing k and l incurs a cost: more bits are required in the
instruction word to encode which address register to use and
the increment amount. We present in Table II(a), Table II(b),

l

k

1 2 3 4 5 6

1

2

3

4

5

6

< 10%

< 2%

< 5%

(a)

l

k

1 2 3 4 5 6

1

2

3

4

5

6

< 10%

< 2%

< 5%

(b)

l

k

1 2 3 4 5 6

1

2

3

4

5

6

< 10%

< 2%

< 5%

(c)

Fig. 6. Dynamic address arithmetic instruction count for (a) small, (b) medium-
sized, and (c) large examples.

and Table II(c) results indicating total code area for the small,
medium and large examples, respectively. The calculations
were performed as follows: we assumed a 10-bit base instruc-
tion word, and for any (l, k) pair, we computed the bit-width of
the instruction word as 10 + dlog2(2l + 1)e+ dlog2 ke. For each
(l, k) pair in each set of examples, the total number of instruc-
tions was computed by adding the number of non-ADAR/SBAR
instructions to the number of address arithmetic instructions.
This number is multiplied by the instruction bit-width to obtain
the code area.

For the small examples, the minimum code area values occur

Dynamic instruction count Total code area
Frequency-weighted Optimize for performance (1) Evaluate impact on area (2)

Equally-weighted Evaluate impact on performance (3) Optimize for area (4)

TABLE I
ONE EXPERIMENT IS USED TO OPTIMIZE FOR AN OBJECTIVE (PERFORMANCE OR AREA), WHILE THE OTHER IS USED TO EVALUATE IMPACT ON THE OTHER OBJECTIVE

(AREA OR PERFORMANCE). FOR INSTANCE, IF OUR PRIMARY OBJECTIVE IS TOTAL CODE AREA (4), WE WOULD CONSTRUCT THE PROCEDURAL ACCESS GRAPH BY

WEIGHTING THE BASIC BLOCKS EQUALLY, AND THE MEASUREMENTS OBTAINED IN (3) WOULD THEN BE USED AS A GUIDE FOR TRADE-OFFS IN PERFORMANCE.

k
l 1 2 3 4 5 6
1 2.971 2.573 2.670 2.647 2.835 2.835
2 2.786 2.659 2.826 2.826 3.014 3.014
3 2.592 2.633 2.822 2.822 3.010 3.010
4 3.054 2.822 3.010 3.010 3.198 3.198
5 2.670 2.822 3.010 3.010 3.198 3.198
6 2.650 2.822 3.010 3.010 3.198 3.198

(a) �104

k
l 1 2 3 4 5 6
1 1.235 1.103 1.187 1.030 1.072 1.055
2 1.229 1.070 1.071 1.049 1.114 1.114
3 1.164 1.012 1.047 1.044 1.113 1.113
4 1.186 1.058 1.114 1.113 1.182 1.182
5 1.144 1.047 1.113 1.113 1.182 1.182
6 1.106 1.045 1.112 1.112 1.182 1.182

(b) �105

k
l 1 2 3 4 5 6
1 3.629 3.275 3.214 3.080 3.234 3.174
2 3.679 3.217 3.227 3.131 3.318 3.285
3 3.544 3.055 3.132 3.078 3.266 3.264
4 3.692 3.180 3.293 3.266 3.466 3.466
5 3.588 3.126 3.270 3.256 3.460 3.460
6 3.499 3.117 3.264 3.253 3.456 3.456

(c) �104

TABLE II
OVERALL CODE AREA (IN BITS) FOR (A) SMALL, (B) MEDIUM-SIZED, AND (C)
LARGE EXAMPLES. THE HIGHLIGHTED NUMBERS SHOW THE BEST RESULTS.

at the following (l, k) points: (1,2), (3,1), (3,2), and (1,4)—
these areas are within 2% of each other. For both the medium
and large examples, the minimum code area values occur at
the following (l, k) points: (3,2), (1,4), and (3,4)—these areas
are within 1% of each other. Therefore, we conclude that
l = 3, k = 2 and l = 1, k = 4 are the best options for a wide
range of examples. Our assumption about the base instruction
word is realistic for DSPs—varying the base width between 8
and 16 bits has minimal impact (qualitatively) on the results.

VII. CONCLUSIONS

We have presented a methodology for the analysis and eval-
uation of the impact on performance and code area due to
various address generation unit capabilities. Specifically, we
have examined two parameters: the number of address regis-
ters and the range of auto-increment. While increasing either

of these parameters may result in potential code size or perfor-
mance gains, doing so requires increasing the instruction word
width. We have identified, through the use of a parameteriz-
able optimization algorithm on a wide range of examples, the
optimal values for these two parameters with respect to perfor-
mance and code area. Our experimental results are particularly
valuable to designers of custom DSP architectures, who must
decide which features to incorporate into the address generation
unit. Our methodology may also be applied to a wider or more
narrow set of benchmarks, so as to obtain the best parameters
for the applications for which the architecture is intended.

ACKNOWLEDGMENTS

This research was supported in part by the Advanced Re-
search Projects Agency under contract DABT63-94-C-0053
and in part by NSF contract MIP-9612632.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] D. H. Bartley. Optimizing Stack Frame Accesses for Pro-
cessors with Restricted Addressing Modes. Software—
Practice and Experience, 22(2), February 1992.

[3] P. Briggs, K.D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation. ACM Transactions on
Programming Languages and Systems, 16(3), 1994.

[4] R.M. Keller. Look-Ahead Processors. Computing Surveys,
7(4), December 1975.

[5] R. Leupers and P. Marwedel. Algorithms for Address As-
signment in DSP Code Generation. In Proceedings of In-
ternational Conference on Computer-Aided Design, 1996.

[6] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang.
Storage Assignment to Decrease Code Size. In ACM
Transactions on Programming Languages and Systems,
volume 18, May 1996.

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang,
G. Araujo, A. Sudarsanam, S. Malik, V. Živojnović,
and H. Meyr. Code Generation and Optimization Tech-
niques for Embedded Digital Signal Processors. In G. De
Micheli and M. Sami, editors, Hardware/Software Co-
Design. Kluwer Academic Publishers, 1996. Proc. of the
NATO Advanced Study Institute on Hardware/Software
Co-Design.

[8] V. Živojnović, J. Martı́nez Velarde, and C. Schläger. DSP-
stone: A DSP-oriented Benchmarking Methodology. In
Proc. of the 5th Int’l Conf. on Signal Processing Applica-
tions and Technology, October 1994.

[9] T.A. Wagner, V. Maverick, S.L. Graham, and M.A. Harri-
son. Accurate Static Estimators for Program Optimization.
In Proceedings of the ACM SIGPLAN’94 Conference on
Programming Language Design and Implementation, June
1994.

