Analysisand Evaluation of Address Arithmetic Capabilitiesin Custom DSP
Architectures

Ashok Sudarsanam

Stan Liao Srinivas Devadas

Department of Electrical Engineering Advanced Technology Group Department of EECS

Princeton University

Abstract—M any application-specific architectures provide
indirect addressing modes with auto-increment/decrement
arithmetic. Since these architectures generally do not fea-
ture an indexed addressing mode, stack-allocated variables
must be accessed by allocating address registers and per-
formingaddressarithmetic. Subsumingaddressarithmetic
into auto-increment/decrement arithmetic improves both
the performance and size of the generated code.

Our objective in this paper isto provide a method for
comprehensively analyzing the performance benefits and
hardware cost dueto an auto-increment/decrement feature
that varies from —I to +l, and allowing access to k address
registersin an address generator. We provide this method
via a parameterizable optimization algorithm that oper-
ates on a procedure-wise basis. Hence, the optimization
techniques in a compiler can be used not only to gener-
ate efficient or compact code, but alsoto help the designer
of a custom DSP architecture make decisions on address
arithmetic features.

We present two sets of experimental results based on
selected benchmark programs. (1) the values of | and k
beyond which there islittle or no improvement in perfor-
mance, and (2) thevaluesof | and kwhich result in minimum
code area.

|. INTRODUCTION

Microprocessors such as microcontrollers and fixed-point
digital signa processors (DSPs) are increasingly being em-
bedded into many eectronic products. Two main trends in
the design of embedded systems are becoming clear: (1) the
amount of embedded software is growing increasingly larger
and morecomplex, and (2) al the el ectroni cs—microprocessor,
RAM, ROM, and ASICs—are being incorporated into asingle
integrated circuit.

Since program coderesidesin on-chip ROM, thesize of this
codetrand atesdirectly intosiliconareaand cost. Itistherefore
an important problem to minimizethesize of the program code,
while simultaneously optimizing performance. However, cur-
rent compilers for microcontrollers and fixed-point DSPs gen-
erate code that is extremely unsatisfactory with respect to code
size and performance [8]—thus, programming in a high-level
language can incur penatieson code size and performance. We
believe that generating the best code for embedded processors
will require not only traditional optimization techniques (e.g.,
[1]), but &l so new techniques that take advantage of special ar-
chitectural features that decrease code size. Our recent efforts

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercia advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or afee.

DAC 97, Anaheim, California

© 1997 ACM 0-89791-920-3/97/06 ..$3.50

Synopsys, Inc. MIT

in thisdirection are summarized in [7].

Many architectures, such as the VAX, Texas Instruments
TMS320C25, and most embedded controllers, provide indi-
rect addressing modes with auto-increment/decrement? arith-
metic. These features alow for efficient sequentia access of
memory and increase code density, since they subsume ad-
dress arithmetic instructions and result in shorter instructions
invariable-lengthinstruction architectures. In particular, DSPs
and embedded controllersare designed assuming that software
that runs on them would make heavy use of auto-increment
addressing. In many cases, DSPs and controllers do not pro-
vide an addressing mode for indexing with a constant offset.
Thus, automatic variables (those variablesthat are dynamically
allocated on the stack frame) must be accessed by alocating
address registers and performing address arithmetic. Subsum-
ing address arithmeticinto auto-increment arithmeticimproves
both the size and performance of the generated code.

Determining the storage assignment of automatic variables
S0 as to maximize the use of auto-increment arithmetic has
received much recent attention. Bartley [2] was the first to
address a simple version of the offset assignment problem, and
presented an approach based on finding a maximum-weight
Hamiltonian path of an access graph. Offset assignment prob-
lems for unit increments on multiple address registers have
been addressed by Liao et a. [6] and Leupers [5]. While ef-
fective agorithms have been proposed, the machine model in
these worksis quite restrictive and does not reflect the address
arithmetic capabilities of some of the more advanced DSP ar-
chitectures. For instance, the paralée processor in the Texas
Instruments TMS320C80 features eight address registers and
alowsfor incrementsranging from —7 to +7. Inthispaper, we
extend previous work by permitting multiple address registers
with arbitrarily-largeincrements.

The motivation for this paper is based on thefollowing sce-
nario: suppose that a designer of a custom DSP architecture,
given aset of applications, wishes to determine the number of
address registers and the range of auto-increment for the ad-
dress generation unit. Increasing the number of address regis-
tersk may improvethe execution speed and/or staticinstruction
count. Furthermore, enlarging the range of increment [—I,1]
may a so reduce the number of explicit address arithmetic in-
structions. However, increasing either k or | may increase the
number of bits required to encode the instruction word. Our
objective in this paper is to provide a method for comprehen-
sively analyzing the performance benefits and hardware cost
(in terms of code area) due to an auto-increment feature that
variesfrom —| to +l, and allowing access to k address registers
in an address generator (we use the term code area to empha
size the fact that the overall code size depends not only on
the number of instructions, but also thewidth of theinstruction

IHenceforth, increment will be used to represent both increment and
decrement.

word). Weprovidethismethod viaa parameterizabl e optimiza-
tion algorithm that operates on a procedure-wise basis. Thus,
weillustratetheimportant role an optimizing compiler playsin
architecture design. To thisend, we present a generalized for-
mulation of the storage assignment problem, parameterized by
the maximum allowableincrement | and the number of address
registersk.

This paper is organized as follows: in Sec. Il, we give an
exampleillustrating the simpl e offset assignment problem with
increment range[—I, 1] (which we call I-SOA); in Sec. I11, we
present a generalization of the SOA agorithm given in [6]
for [-SOA; in Sec. IV, we briefly generalize the general offset
assignment problemwithincrement range[—I, 1] (whichwecall
(1,K)-GOA); in Sec. V, we describe how an offset assignment
for an entire procedure may be determined; Sec. VI provides
experimental results—two highlightsof theseresultsare (1) the
valuesof | and k beyond which thereislittleor noimprovement
in performance, and (2) the values of | and k which result in
minimum total code area; we finally present our conclusionsin
Sec. VII.

Il. EXAMPLE

We assume that the reader isfamiliar with the simple offset
assignment (SOA) problem presented in [6]. In this section,
we present an extension of the SOA problem that takes into
account the capability of increments ranging from —I to +,
for arbitrary 1. Although our optimizations are applied on a
procedure-wise basis, we focus on basic blocksin this section.

Fig. 1(a) shows an example code sequence and Fig. 1(b)
shows the optima offset assignment for the variables in this
sequence, assuming that a single address register with unit
auto-increment is used. Address register ARO is used to ad-
dressthe variables; ADAR (SBAR) adds a constant to (subtracts
a constant from) ARO; LDAR loads ARO with an address; fi-
naly, * (ARO) + and * (ARO) - denote auto-increment and
auto-decrement by one, respectively, of ARO. The instructions
we intend to minimize are precisely the explicit address arith-
metic instructions, namely ADAR and SBAR. Ashighlightedin
Fig. 1(c), six such instructions are required, given the offset
assignment of Fig. 1(b).

Now if | = 2, then variablesthat are separated by a distance
of at most two may beaccessed in sequencewithout requiring an
explicit address arithmetic instruction. Fig. 2(b) and Fig. 2(c)
show the optimal offset assignment and assembly code, re-
spectively, corresponding to the code sequence of Fig. 2(a).
Here, the notation * (ARO) +j denotes auto-increment of ARO
by j. Notethat the additional capability afforded by increasing
| reduces the number of ADAR and SBAR instructions, since
adjacent accesses to variables that are distance-l apart in the
offset assignment incur no penalty.

[11. SIMPLE OFFSET ASSIGNMENT PROBLEM

In this section, we assume that a single address register is
availableto address the automatic variables of each procedure.
We term this the I-simple offset assignment (I-SOA) problem.
We first review the formulation of [6] for thel = 1 case, and
then extend it to the case where | > 1. We will subsequently
refer to this formulation as the 1-SOA problem, and the more
general formulation as the-SOA problem.

A. Access Seguence and Access Graph

Given a code sequence for a basic block, we can uniquely
define an access sequence for this block. For an operation
z=xo0p Y, theaccess sequenceisxyz The access sequence for

LDAR ARO,&a ;
LOAD *(ARO)+
ADD *(ARO)+
STOR *(ARO)-
LOAD *(ARO)
ADAR ARO,2
ADD *(ARO)
SBAR ARO,2
(@) STOR *(ARO)
SBAR ARO,2 ;
LOAD *(ARO)
ADAR ARO,5
ADD *(ARO)+
ADD *(ARO)
SBAR ARO,6
STOR *(ARO)-
LOAD *(ARO)+
SUB *(ARO)+
STOR *(ARO)+
LOAD *(ARO)
SBAR ARO,2 ;c
SUB *(ARO)+ ;a
ADD *(ARO)+ ;
STOR *(AROQ)

e=a+b;
b=b+g;
c=c+d+f;
a=h-c;
c=b-c+a

T «Q STOTO

(9]

-a

TODOITO

S|o|lv|T|oo|l@| o ™

ARQO —»=

(b) ©

Fig. 1. (a) Code sequence (b) Optimal offset assignment for | = 1 (c)
Assembly code

an ordered set of operationsis simply the concatenated access
sequences for each operation in the appropriate order. The
access sequence for the basic block of Fig. 1(a) is shown in
Fig. 3(a).

Given the notion of an access sequence, it can be seen that
when | = 1, the cost of an assignment isequal to the number of
adjacent accesses of variablesthat are not assigned to adjacent
stack locations. For instance, six address arithmetic instruc-
tions are required for the offset assignment of Fig. 1(b), since
thefollowing six two-symbol substringsof the access sequence
refer to variables assigned to non-adjacent stack locations. b g,
gb,bc,cd,f c,andbec.

The access graph G(V,E) is derived from an access se-
guence as follows. each nodev € V corresponds to a unique
variable, and edge e{u, V) € E exists with weight w(e) if vari-
ablesu and v are adjacent to each other w(e) timesin the access
sequence. The access graph for the basic block of Fig. 1(a) is
shown in Fig. 3(b).

With respect to the access graph, if | = 1, then the cost of
an assignment is equal to the sum of the weights of al edges
that connect variables assigned to non-adjacent stack locations.
For the example of Fig. 1, (b,qg), (b,c), {c,f), and {(c,d)
are such edges, and these have a total weight of 6. The other
edges connect variables that have been assigned to adjacent
stack locations and thus, incur no cost.

B. 1-SOA and the MWPC Problem

Definition 1: A digoint path cover (henceforth cover) of a
weighted graph G(V, E) isasubgraph C{V,E’) of G such that:

« foreachv e V, deg(v) < 2 (degree congtraint);

+ thereare no cyclesin C (cycle congtraint).
Note that the edges in C form a set of digjoint paths (some of
which may contain no edges), hence the name.

Definition2: The weight of a graph G is the sum of the
weights of al edgesin G. The cost of a cover C of G isthe
sum of theweights of all edgesin G, but notin C, i.e., cost(C)

LDAR ARO,&a
LOAD *(ARO)+
ADD *(ARO)+
STOR *(ARQ)-
LOAD *(ARO)+2
ADD *(AR0)-2
STOR *(AR0)-2
LOAD *(ARO)
@ SBAR ARO,3
ADD *(ARO)+
ADD *(AR0)+2
STOR *(AR0)-
LOAD *(ARO)+
SUB *(ARO)+
STOR *(ARO)+
LOAD *(AR0)-2
SUB *(ARO)+
ADD *(ARO)-
STOR *(AROQ)

e=a+b;
b=b+g;
c=c+d+f;
a=h-c;
c=b-c+a

OTQT DT

OVDOTVDOITO HQ

ARO —»

Q|| T|Oo||T|OD|CQ

(b) (©

Fig. 2. (a) Code sequence (b) Optimal offset assignment for | = 2 (c)
Assembly code

abebgbcdfchcabcac
(@

(b)

Fig. 3. (a) Accesssequence (b) Accessgraph

= weight(G) - weight(C).

Definition 3 (MWPC) GivenanaccessgraphG, findacover
C with maximum weight.

Note that a cover with maximum weight is equivaent to
a cover with minimum cost. It has been shown in [6] that
solving the MWPC problem isequivalent to solving the 1-SOA
problem. Since MWPC is NP-complete, a heuristic algorithm
for 1-SOA is proposed.

C. I-SOA

Themain inadequacy of the 1-SOA formulationisthat when
| > 1, someedgesof theaccessgraph will havean effectivezero
cost, even if they are not included in the cover. InFig. 3(b), if
| = 2,then {c,f) (which contributed acost of oneinthel = 1
case) contributes zero cost since ¢ and f are distance-2 apart

Cover of access graph
Induced edges

Fig. 4. A cover and its induced edges, for | = 2.

with respect to thefinal offset assignment (shownin Fig. 2(b)).
When loading f , ARO can be auto-incremented by 2 so that it
pointsto the location for c.

Thus, we need to redefine the weight of a cover to take
into consideration those edges whose costs are subsumed by
virtue of |. Note that the edge-selection criteria for a digoint
path cover do not change, because our goal remains to find
alinear ordering of variables; however, a different cost func-
tion must now be minimized. To accomplish this goal, we
must now consider complete graphs, rather than graphs con-
sisting of only positive-weight edges. The reason for thisis
as follows: when | = 1, including zero-weight edges in the
cover affords no benefit, and including such edges in the ac-
cess graph only makes the optimization process |ess efficient;
however, when | > 1, selecting azero-weight edge may induce
another positive-weight edge to become effectively cost-less,
even though thelatter could not itself be selected dueto the cy-
cle and degree constraints. To precisely describe which edges
have effectively zero cost, we introduce the notion of induced
(I +1)-cliques:

Definition4: Let G(V, E) be a complete graph, and C be a
cover of G. A subgraph Q(Vq, Eg) of G consisting of (I + 1)
nodesand edges connecting these nodesissaid to be an induced
(I+1)-cliqueof Cif Vg arenodes of some subpathin C of length
[

Definition5: An edge of G issaid to beinduced by a cover
Cifitisnotin C but belongsto someinduced (I + 1)-clique of
C.

Intuitively, if nodes u and v belong to an induced (I + 1)-
clique, then their distance from each other, with respect to
edges of C, isat most |. Since the address generation unit can
auto-increment by at most I, the edge (u, v) incurs no cost. We
define the I-induced weight of a cover as follows:

Definition 6: The I-induced weight of a cover C of a com-
plete, weighted graph G isthetotal weight of theedgesin Cand
those edges induced by C. The I-induced cost of C isthe sum
of the weights of edges that are neither part of C nor induced
by C.

Definition 7 (I-SOA) The I-SOA problem consists of find-
ing acover of an access graph G with minimum I-induced cost.

Fig. 4 shows an example of a cover and itsinduced (I + 1)-
cliques, for | = 2. Theinduced (I + 1)-cliquesare: beg, abe,
abc, ach, cf h, and df h, and the positive-weight induced

1 SOLVE-I-SOA(L)
2{

w

/* L = access sequence for basic block or trace */
G(V,E) — AcCCESs-GRAPH(L)
F — list of edgesinE
C\V,E):V —V,E —{}
while(|E'| < |V| — 1and F notempty) {
foreach edgeeinF {
Computethe total weight, z(e), of those
10 edges that would become induced if
11 ewereincludedin C

13 Select edge € which maximizes z(€) + w(e)
14 E—~Fug

15 Remove from F those edges made ineligible
16 dueto cycle and degree constraints

18 /* Construct an assignment fromE’ */
19 return CONSTRUCT-ASSIGNMENT(E')
20}

Fig. 5. Heuristic algorithm for [-SOA.

edgesare (b, g}, (b,c),and {c,f) (for clarity, edges with zero
weight are not shown unlessthey are part of the cover). Inthis
example, {(c,d) isthe only edge for which we have to pay the
cost of explicit address arithmetic instructions.

Doubtless, the [-SOA problem isNP-hard. Aswith 1-SOA,
we propose a heuristic procedure, shown in Fig. 5 to solve |-
SOA: in each iteration of the edge-selection process, we com-
pute the weight each digible edge e would contribute by sum-
ming up the weights of all edges that would become induced
if e were included in the current partial solution. The edge €*
with the largest contributionis sel ected.

IV. GENERAL OFFSET ASSIGNMENT PROBLEM

We briefly generalize the I-off set assignment problem to the
case where k address registers, ARO through ARk — 1), are
available. Sincethisformulationinvolvestwo independent pa-
rameters, we nameit the (I, k)-general offset assignment ((1, k)-
GOA) problem. Inthisformulation, we assumethat (1) thereis
a fixed setup cost of introducing the use of an address register
and (2) each address register isused to point to adig oint subset
of variables.

Definition 8: Let L be the access sequence of abasic block,
and V be the set of variables in L. The access subseguence
generated by W C V is the subsequence of L consisting of
those variablesonly in W.

Definition 9 ((I, k)-GOA) Given an access sequence L, the
set of variables V, and the number of address registersk, find a
partition of V, M = {P1, P, ..., Pm}, m < k, in which the tota
cost of the optimal 1-SOA of the corresponding access subse-
guences plusthe setup costs for using m registers is minimum.

Since determining the optima variable partition is NP-
complete, various partitioning heuristics are proposed in [6].
One heuristic partitionsthe set of variablesinto subsets of car-
dinality two, since the cost of performing I-SOA on an access
subsequence consisting of two unique variablesis zero.

V. |-SOA FOR PROCEDURES

In this section, we describe how our address assignment
methods may be applied to entire procedures. We first dis-

CUSS some pre-processing steps that not only reduce the data-
memory requirements of the application program, but may aso
improve the quality of the final offset assignment. We then
describe the process of constructing an access graph for a pro-
cedure.

A. Minimizing Storage Requirements

We first perform a coloring of each procedure’s automatic
variables, such that identically-colored variables are alocated
to the same stack location. This optimization significantly re-
duces the run-time data-memory requirements of the program,
which is of extreme importance in embedded systems design.
It isalso possiblethat reducing the size of the stack frame may
result in an offset assignment of lower cost.

The coloring process proceeds as follows: firgt, liveness
analysis [1] is performed on all variables so as to determine
their liveranges—theliverange of avariablev specifiesthose
regions of the program where v is active. Secondly, an inter-
ference graph is constructed in which a vertex exists for each
variable, and edge e(i, j}) existsif and only if thelive ranges of
variablesi and j overlap. Thisedge specifiesthat i and j must
be colored differently, or analogously, they must be alocated
to different stack locations. Finally, we apply Briggs heuristic
[3] to this graph in order to find a coloring that satisfies all
interference constraints.

In order to reduce the number of edges in the interference
graph and hence, possibly decrease the number of required col-
ors, we perform arenaming of all variable uses and definitions
prior to constructing this graph. This technique is analogous
to the register renaming hardware scheme employed in high-
performance processors [4]. Variable renaming reduces the
life-times of variables and hence, possibly reduces the number
of overlapping live ranges.

B. Constructing Procedural Access Graph

We can construct a procedura access graph on which the
[-SOA agorithm operates, thus allowing us to obtain an offset
assignment for the entire procedure. Thisisachieved by merg-
ing the access graphs of each basic block in the procedure, and
adding weights to the edges of the resulting access graph so
as to account for variable accesses along control-flow edges.
However, depending on the optimization objective, it may be
necessary to weight the access graph of each basic block differ-
ently: for optimization of static instruction count, we simply
weight each basic block equaly; for optimization of dynamic
instruction count, we weight each basic block according to its
expected execution frequency.

The expected execution frequencies of basic blocks can be
determined statically or through the use of profiling data. Al-
though profile-driven estimations are generally more accurate,
the quality of static estimationsisimproving. We have imple-
mented the static estimation method of [9] to estimate basic
block frequencies. We briefly outlinethe stepsinvolvedin this
algorithm:

« firdt, the type of each control-flow edge (i.e., forward or
backward) is determined through the use of dominator
analysis[1], which is computed iteratively; we then clas-
sify the type of each edge €(i,]) as follows: if node |
dominates node i, then (i,]) is a backward edge, other-
wiseit isaforward edge;

« using various heuristics outlined in [9], a probability is
assigned to each edge based on itstype;

» asystemof linear equationsisset up,inwhichthevariables

correspond to basic blocks, and the coefficients are the
determined edge frequencies,

«+ asolution to these equations is found using a linear pro-
gramming solver — this solution specifies the execution
frequency of each basic block.

VI. EXPERIMENTS AND RESULTS

We present two sets of experimental resultsthat demonstrate
the variation in dynamic instruction count and code area across
different values of | and k. All measurements were obtained
by running our parameterizable offset assignment algorithm
using various heuristicsto partitionthe variables, and selecting
the best results. For the first set of experiments (dynamic
instruction count), the basic blocks were weighted according
to their estimated frequencies, whereas for the second set, they
were weighted equally.

Itisimportant to notethat basi c bl ock weighting and thetwo
experiments are orthogonal. In other words, given a particular
weighting, both experiments should be performed and the data
collected from these experiments serve different purposes. The
objectives are summarized in Table I. For instance, if our
primary goal is to optimize for performance, we weight the
basic blocks according to frequency, and we use the data set
from the second experiment to evaluate the impact on total
area. Thus, the experimental results given in this section only
represent cases (1) and (4) in Tablel.

We performed our experiments on core routines from the
following programs: the image-processing program xv, an
implementation of the JPEG encoder/decoder, the compression
program gzi p, and the DES and RSA cryptosystems. We
grouped these routinesinto three sets based on the total number
of automatic variables present (including front-end-generated
temporaries): there were 12 small examples with fewer than
20 variables, 23 medium examples with 20-60 variables, and
4 large examples with more than 60 variables.

A. Address Arithmetic Instruction Count

We present in Fig. 6(a), Fig. 6(b), and Fig. 6(c) results
indicating address arithmetic (i.e.,, ADAR, SBAR, and LDAR)
instruction counts for the small, medium and large examples,
respectively. In each plot, we give the minimum values of |
and k necessary to reduce address arithmetic instruction count
to less than 2%, 5%, and 10% of thel = 0,k = 1 case—in this
case, an ADAR or SBAR is required for each memory access.
For instance, for the small examples, to reduce the number of
address arithmetic instructionsto 5% or less, the pair (I, k) has
to equal or exceed one of the following points: (1,3), (2,2), or
(4,1). Similarly, for the large examples, to reduce the address
arithmetic count to 2% or less, (I, k) has to be greater than or
equa to either (4,5) or (5,3).

It isinteresting to note that the largest reduction in the num-
ber of address arithmetic instructions due to an increase in k
occurs at the transition fromk = 1 to k = 2. Beyond that,
we observe diminishing returns, largely due to the setup costs
required for using additional address registers. For instance, in
Fig. 6(b) for thel = 3 case, it is not possible to obtain much
further improvement by increasing k beyond 3. However, if
k = 2, we can reach 2% by increasing | to 5.

B. Overall Code Area

Reducing the number of address arithmetic instructions by
increasing k and | incurs a cost: more bits are required in the
instruction word to encode which address register to use and
the increment amount. We present in Table 11(a), Table I1(b),

A
6 1
[
50 |
[
4r- |
[
3r é . . . O <2%
2+ %@ . . . [0 <5%
/_
1t . ~%‘— F <10%
N
@
k
A
6 é .
5 %
I ¥
%
3L . \% O <2%
2+ . @ O <5%
1t F <10%
N
(b)
k
A
.
5| %
4t % . .
3t : % 0 O <2%
2t . . /A———— O <5%
1t F <10%
N
(©

Fig.6. Dynamicaddressarithmeticinstruction count for (a) small, (b) medium-
sized, and (c) large examples.

and Table I1(c) resultsindicating total code area for the small,
medium and large examples, respectively. The caculations
were performed as follows: we assumed a 10-bit base instruc-
tionword, and for any (I, k) pair, we computed the bit-width of
the instructionword as 10 + [1og,(2l + 1)] + [log, k]. For each
(I,K) pair in each set of examples, the total number of instruc-
tionswas computed by adding the number of non-ADAR/SBAR
instructions to the number of address arithmetic instructions.
Thisnumber ismultiplied by theinstructionbit-widthto obtain
the code area.

For the small exampl es, the minimum code areaval ues occur

| Dynamic instruction count

Total code area

Frequency-weighted

Optimize for performance (1)

Evauate impact on area (2)

Equally-weighted

Evauate impact on performance (3)

Optimizefor area (4)

TABLE |

ONE EXPERIMENT ISUSED TO OPTIMIZE FOR AN OBJECTIVE (PERFORMANCE OR AREA), WHILE THE OTHER ISUSED TO EVALUATE IMPACT ON THE OTHER OBJECTIVE
(AREA OR PERFORMANCE). FOR INSTANCE, IF OUR PRIMARY OBJECTIVE IS TOTAL CODE AREA (4), WE WOULD CONSTRUCT THE PROCEDURAL ACCESS GRAPH BY
WEIGHTING THE BASIC BLOCKS EQUALLY, AND THE MEASUREMENTS OBTAINED IN (3) WOULD THEN BE USED AS A GUIDE FOR TRADE-OFFS IN PERFORMANCE.

K
T [2 [3] 4 [5 [6
2971 | 2573 | 2670 | 2.647 | 2.835 | 2.835
2.786 | 2.659 | 2.826 | 2.826 | 3.014 | 3.014
2592 | 2633 | 2.822 | 2.822 | 3.010 | 3.010
3.054 | 2.822 | 3.010 | 3.010 | 3.198 | 3.198
2670 | 2.822 | 3.010 | 3.010 | 3.198 | 3.198
2650 | 2.822 | 3.010 | 3.010 | 3.198 | 3.198

(@) x10*

O O B[W|N| || —

K
T [2 [3] 4 5 6
1.235 | 1.103 | 1.187 | 1.030 | 1.072 | 1.055
1.229 | 1.070 | 1.071 | 1.049 | 1.114 | 1114
1164 | 1.012 | 1.047 | 1044 | 1.113 | 1.113
1186 | 1.058 | 1.114 | 1113 | 1.182 | 1.182
1144 | 1047 | 1.113 | 1113 | 1.182 | 1.182
1106 | 1.045 | 1.112 | 1112 | 1.182 | 1.182

(b) x10°

O O B W|N| || —

k
1] 2] 3 1] 4 1 5 1 6
3.629 | 3.275 | 3.214 | 3.080 | 3.234 | 3.174
3679 | 3217 | 3.227 | 3.131 | 3.318 | 3.285
3544 | 3.055 | 3.132 | 3.078 | 3.266 | 3.264
3.692 | 3.180 | 3.293 | 3.266 | 3.466 | 3.466
3588 | 3.126 | 3.2/0 | 3.256 | 3.460 | 3.460
3499 | 3.117 | 3.264 | 3.253 | 3.456 | 3.456

(c) x10*
TABLE Il

OVERALL CODE AREA (IN BITS) FOR (A) SMALL, (B) MEDIUM-SIZED, AND (C)
LARGE EXAMPLES. THE HIGHLIGHTED NUMBERS SHOW THE BEST RESULTS.

O O B W|N| || —

at the following (I,k) points: (1,2), (3,1), (3,2), and (1,4)—
these areas are within 2% of each other. For both the medium
and large examples, the minimum code area values occur at
the following (I, k) points: (3,2), (1,4), and (3,4)—these areas
are within 1% of each other. Therefore, we conclude that
| =3 k=2and!| = 1,k = 4 are the best optionsfor awide
range of examples. Our assumption about the base instruction
word is redlistic for DSPs—varying the base width between 8
and 16 bits has minimal impact (qualitatively) on the results.

VII. CONCLUSIONS

We have presented a methodol ogy for the analysisand eval -
uation of the impact on performance and code area due to
various address generation unit capabilities. Specificaly, we
have examined two parameters: the number of address regis-
ters and the range of auto-increment. While increasing either

of these parameters may result in potential code size or perfor-
mance gains, doing so requires increasing theinstruction word
width. We have identified, through the use of a parameteriz-
able optimization agorithm on a wide range of examples, the
optimal values for these two parameters with respect to perfor-
mance and code area. Our experimental resultsare particularly
valuable to designers of custom DSP architectures, who must
decidewhichfeaturestoincorporateinto the address generation
unit. Our methodology may a so be applied to awider or more
narrow set of benchmarks, so as to obtain the best parameters
for the applicationsfor which the architecture isintended.

ACKNOWLEDGMENTS

This research was supported in part by the Advanced Re-
search Projects Agency under contract DABT63-94-C-0053
and in part by NSF contract MIP-9612632.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] D. H. Bartley. Optimizing Stack Frame Accesses for Pro-
cessors with Restricted Addressing Modes. Software—
Practice and Experience, 22(2), February 1992.

[3] P Briggs, K.D. Cooper, and L. Torczon. Improvementsto
graph coloring register allocation. ACM Transactions on
Programming Languages and Systems, 16(3), 1994.

[4] R.M.Kédler. Look-Ahead Processors. Computing Surveys,
7(4), December 1975.

[5] R. Leupersand P. Marwedel. Algorithmsfor Address As-

signment in DSP Code Generation. In Proceedings of In-

ternational Conference on Computer-Aided Design, 1996.

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang.

Storage Assignment to Decrease Code Size. In ACM

Transactions on Programming Languages and Systems,

volume 18, May 1996.

[7] S. Liao, S. Devadas, K. Keutzer, S. Tjiang,vA. Wang,

G. Araujo, A. Sudarsanam, S. Madik, V. Zivojnovit,

and H. Meyr. Code Generation and Optimization Tech-

niques for Embedded Digital Signal Processors. In G. De

Micheli and M. Sami, editors, Hardware/Software Co-

Design. Kluwer Academic Publishers, 1996. Proc. of the

NATO Advanced Study Institute on Hardware/Software

Co-Design.

V. Zivojnovit, J. Martinez Velarde, and C. Schlager. DSP-

stone: A DSP-oriented Benchmarking Methodology. In

Proc. of the 5th Int’| Conf. on Signal Processing Applica-

tions and Technol ogy, October 1994.

T.A. Wagner, V. Maverick, S.L. Graham, and M.A. Harri-

son. Accurate Static Estimatorsfor Program Optimization.

In Proceedings of the ACM SIGPLAN' 94 Conference on

Programming Language Design and | mplementation, June

1994.

(6]

(8]

[9]

