
Analysis and experimental validation of processor load
for event-driven controllers1

J.H. Sandee§, P.M. Visser† and W.P.M.H. Heemels‡

§Technische Universiteit Eindhoven
Dept. of Electrical Engineering, Control Systems Group

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: j.h.sandee@tue.nl

†University of Twente, Dept. of Electrical Engineering, Email: p.m.visser@utwente.nl
‡Technische Universiteit Eindhoven, Dept. of Mechanical Engineering, Email: m.heemels@tue.nl

Abstract— Event-driven controllers differ from the standard
digital controllers as their sample times are generally not
periodic (time equidistant). In literature several proposals for
event-driven controllers are made in order to reduce the
number of control updates and consequently the processor
load needed for its implementation. This is possible without
deteriorating the control performance significantly. However,
experimental validation has not been presented in literature.
This paper aims at filling this gap. Simulations, as well as
experiments on a copier paper path test setup, show that a
reduction in the number of control updates indeed results in a
considerable reduction of the processor load, with only a small
decrease of control performance. Furthermore, we present a
method to predict the processor load very accurately, without
having to implement the controller on a test setup.

I. INTRODUCTION

In most applications nowadays, digital controllers are im-
plemented on embedded hardware with strong requirements
for both the control performance as well as the processor
load. Often, a high update rate of the controller algorithm
is chosen to be able to guarantee good control performance.
This, however, evokes high processor loads. Conventionally,
designers try to reduce the sample frequency of the digital
controller as much as possible, to minimize the processor
load, while keeping in mind the (minimal) required control
performance. In almost all of these designs, the sample
frequency is taken constant, creating a constant distribution
of the processor load for the specific control task.

The sample frequency is normally chosen on the re-
quirement to track fast changing reference signals or to
reject high bandwidth disturbance. However, in many cases
reference signals are not changing continuously and severe
disturbances appear only sporadically. Only during these
periods a high sample frequency is needed, while in other
periods of time we do not have to require the same (high)

1This work has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Senter
TS program.

‡Maurice Heemels is also at the Embedded Systems Institute, Eindhoven,
The Netherlands.

sample frequency of the controller. This rationale indicates
that it would be beneficial to vary the sample frequency to
optimize over both the control performance and the processor
load at the same time.

In literature [1], [2], [4], [5], [6], event-driven (or asyn-
chronous) controllers are proposed to make this trade-off
between control performance and processor load. Specially
designed event-generating mechanisms take care of trigger-
ing the controller to update the actuator signal at specified
moments in time. Henriksson et al. [4] use for example opti-
mal controllers to distribute processing power between three
controllers running at varying sample rates. Årzén [1] uses
an event-based strategy in combination with a standard PID-
controller in which the sample frequency of the controller
is chosen relative to the derivative of the measured tracking
error. In [2] a similar structure was proposed to reduce the
number of actuator updates. In [5] and [6] various control
structures are analyzed in which the sample frequency is
chosen relative to the absolute value of the measured tracking
error. When the error is small, fewer or even no computations
are carried out and the actuator signal is held constant.
Therefore, the controller will then put no effort in making
the error even smaller, reducing the processor load at those
periods of time.

In the above mentioned literature, all indications of pro-
cessor load reduction are obtained by simulating or analyzing
only the update rate of the controller. Several assumptions
are made to relate the simulated number of control updates to
the processor load, but experimental evidence has not been
presented in literature so far. One common assumption is
that only relatively few overhead is needed to implement the
event-generating mechanism of the event-driven controllers.
Furthermore, it is assumed that the execution of a time
synchronous task takes the same time as the execution of an
asynchronous task with the same average rate of occurrence.
This does not necessarily have to be the case, due to for
instance cache memory. For these reasons, the event-driven
controller could even reduce the number of control updates,
while increasing the processor load.

Proceedings of the 2006 IEEE
International Conference on Control Applications
Munich, Germany, October 4-6, 2006

ThB11.5

0-7803-9796-7/06/$20.00 ©2006 IEEE 1879

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

The purpose of this research is to validate the promise of
event-driven controllers to reduce processor load. Moreover,
this research investigates the relation between the reduced
number of control updates and the processor load. Both
a time-driven as well as an event-driven controller are
implemented on an experimental setup of a copier paper path,
driven by DC-motors. Measurement data will be compared
with simulation data to validate the assumptions made in
[5] and [6]. Furthermore, we will investigate the possibility
to predict the processor load beforehand, without having to
implement the controller on a test setup.

II. EVENT-DRIVEN CONTROLLER

We consider the plant described by

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)) (1)

where x(t) ∈ R
n is the state, u(t) ∈ R the control input

and y(t) ∈ R the output, respectively, at time t ∈ R+. f :
R

n × R → R
n and h : R

n → R can be linear as well as
non-linear functions.

In conventional digital control a fixed sample time Ts is
used, meaning that the event times are equal to kTs. We call
this a time-driven controller. In this paper we use a digital
PI feedback controller. The chosen controller is given by the
following difference equation:

uk = Pek + (ITs − P)ek−1 + uk−1, (2)

where ek := y(kTs) − rk is the tracking error at time t =
kTs and rk = r(kTs) ∈ R is the value of the reference
signal at time t = kTs. By using the zero-order hold u(t) =
uk for all t ∈ [kTs, (k+1)Ts). P and I are the proportional
and integral gain of the PI controller.

To reduce the number of required control calculations and
actuator signal updates, we propose to not update the control
value if the error ek is smaller than a threshold value eT . If
the error is smaller than eT at t = kTs, the controller output
will not be calculated and updated. If the error is larger than
eT , an update is performed according to (2).

Hence, the controller (2) is modified to

uk =
{

Pek + (ITs − P)ek−1 + uk−1 if |ek| > eT

uk−1 if |ek| ≤ eT

(3)
where again u(t) = uk for all t ∈ [kTs, (k + 1)Ts). Note
that whether the error is smaller than eT , is still detected on
a constant rate (at times t = kTs).

The aim of the control design (selecting Ts, eT , P and
I) is to get good control performance (in the sense that the
maximal tracking error emax := maxt∈R+ |y(t) − r(t)| is
acceptable) and the processor load is small.

III. EXPERIMENTAL SETUP

A. Plant

Figure 1 depicts a photograph of the experimental setup.
It represents the paper path of a copier that consists of 5
identical motors which drive 5 pinches. These pinches drive

the sheets of paper through the paper path, from the paper
input module (PIM), to the output tray.

For this case study we consider only one motor of the
paper path, which is a Maxon RE25 20 Watt motor. Its axis
is coupled to the pinch with a stiff belt. To the other end of
the motor axis, a 500-slit rotary encoder is connected. This
signal is acquired with quadrature demodulation, resulting
in a resolution of 2000 counts per rotation. An H-bridge
amplifier is used to control the motor. It operates at 22 volts
and is limited to a maximum current of 3 amps.

B. Model

The model that is used for simulation and synthesis of
the controller was built in 20-sim (a simulation package
developed at the University of Twente [7]). The model
consists of an accurate description of the motor (delivered
by the Maxon Motor company), a model of the load together
with a non-linear friction model of the bearings, the PI
controller and the quantizing effects caused by the encoder
and H-bridge amplifier. In terms of equation (1) y(t) is the
angular velocity of the motor and u(t) is the motor voltage.

C. Control system

The control system consists of a PC104+ CPU board with
a 600 MHz x86 compatible CPU, supplied with 256 MB
RAM and a 32 MB Flash disk which contains the RTAI
operating system. An FPGA is connected to the CPU board
via the PCI bus in order to perform the I/O operations. In this
setup the configuration for the FPGA contains a pulse width
modulated (PWM) output and encoder quadrature input. The
PWM output signal that drives the H-bridge amplifier, has
a frequency of 16kHz. The duty-cycle of the PWM signal
can be set in 2048 steps. A separate signal output determines
the rotation direction of the motor. The CPU sets the duty-
cycle and direction and the FPGA keeps these values until a
new value has been received (implementing the uk = uk−1,
equation 3). The encoder input increments a counter at the
FPGA on every pulse received from the encoder. The CPU
can read this counter.

D. Controller design

To control the angular velocity of the motor, the time-
driven PI controller as given in (2) was tuned using common
design rules and implemented on the test setup. The resulting

motor

pinch

PIM

output tray

H-bridge
control system

Fig. 1. Photograph of the paper path setup.

1880

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

10
0

10
1

10
2

−30

−20

−10

0

10

A
m

pl
itu

de
 [d

B
]

10
0

10
1

10
2

−250

−200

−150

−100

−50

0

P
ha

se
 [d

eg
]

Frequency [Hz]

Fig. 2. Closed-loop response of the motor.

closed-loop response (from reference velocity r to output
velocity y), depicted in figure 2, was derived from the
frequency response of the sensitivity function. The sensitivity
function was experimentally determined at the setup, by
injecting white noise at the actuator signal and measuring the
control output signal u. Note that the values for frequencies
below 6 Hz should be considered uncertain, as the coherence
of the sensitivity measurement was far below 1 for these
frequencies. In the figure, the bandwidth is indicated at
approximately 20 Hz. Rules of thumb advise to set the
controller frequency at a minimum of 6 times the closed-
loop bandwidth (see e.g. chapter 11 in [3]). We chose the
sample frequency at 100 Hz, which is only 5 times the
obtained closed-loop bandwidth. The choice for this low
sample frequency was made to assure an initial low processor
load for both the time-driven and the event-driven controller.

The event-driven controller, as given in (3), was imple-
mented using the same sample frequency of 100 Hz. The
event-driven controller can be written in pseudo code as
follows:

1 pos = input(encoder);
2 vel = (pos - previous(pos))/Ts;
3 error = reference - vel;
4
5 if (error > eT OR error < -eT) then
6 uP = P*error;
7 uI = previous(uI)+I*previous(error)*Ts;
8
9 u = limit(uP+uI, min_u, max_u);
10
11 motor_voltage = output(u);
12 end;

The time-driven controller was implemented in a similar
way, by omitting the lines with numbers 5 and 12. Note that
this indicates clearly the overhead introduced by the event-
driven controller. The benefit for the event-driven controller
can also be observed, as lines 6 to 11 are only carried out
under specific conditions.

IV. SIMULATION RESULTS

The simulation results for the time-driven controller are
depicted in figure 3. The first graph gives the velocity
reference signal in rotations per second (rot/s). In the setup,
this profile can be used for every motor (but shifted over
time) to drive several sheets of paper through the paper path

0 2 4 6 8 10
0

50

100

re
f.

ve
lo

ci
ty

 [r
ot

/s
]

0 2 4 6 8 10
−2

0

2

er
ro

r
[r

ot
/s

]

0 2 4 6 8 10
0

500

1000

1500

time [s]

ct

rl
up

da
te

s

Fig. 3. Simulation results of time-driven controller.

0 2 4 6 8 10
0

50

100

re
f.

ve
lo

ci
ty

 [r
ot

/s
]

0 2 4 6 8 10
−2

0

2

er
ro

r
[r

ot
/s

]

0 2 4 6 8 10
0

50

100

150

time [s]

ct

rl
up

da
te

s

Fig. 4. Simulation results of event-driven controller for eT = 0.9 rot/s.

sequentially. The profile starts and ends with a period of zero
velocity. During this period, no sheets need to be transported
and therefore the motor can halt. The second graph shows
the error of the controller. When the motor is running at
non-zero velocity, the error demonstrates a noisy behavior.
This is caused by the belt that inserts relatively high frequent
disturbances in the system. Although hardly visible, the error
signal is quantized in steps of 0.05 rot/s (100 samples/s
over 2000 counts/rot). The third graph shows the number
of control updates for the time-driven controller, which is
of course linearly increasing in time with 100 updates per
second for the 100 Hz controller.

The same signals are plotted in figure 4 for the event-
driven controller simulation with eT = 0.9 rot/s. The refer-
ence velocity is chosen the same, like in all other simulations
and experiments in this paper. As expected, the second plot
shows a larger error (up to 1.85 rot/s) compared to the time-
driven controller simulation (error up to 1.2 rot/s). When
the motor is running at constant velocity, the error stays
below the specified bound eT . The third graph shows how
the number of control updates increases over the simulation.
It can clearly be seen that when the motor is in stand-still,
or when the motor is running at constant velocity, no control
updates are needed. However, when more severe disturbances
are present updates might also be necessary in the constant
velocity phases. An example of such a disturbance could be
a sheet of paper that is traveling through the paper path,
creating a disturbance torque onto the motor. In the third

1881

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2
1

2

3

4

e
T

e m
ax

 [r
ot

/s
ec

]

simulation event−driven
experiment event−driven
simulation & experiment time−driven

0 0.5 1 1.5 2
0

200

400

600

800

1000

e
T

ct

rl
up

da
te

s

Fig. 5. Experimental and simulation results of time-driven and event-driven
controller. The event-driven controller was implemented for various values
of eT .

graph it can also be seen that the controller takes more
control updates per second when decelerating compared to
accelerating. This can be explained by the fact that the
controller is followed by a zero-order hold and that the
motor decelerates faster than it is accelerating. Therefore,
more actuator signal updates are needed to follow the varying
velocity with comparable performance.

As the control performance measure we use the maximum
error (emax) over each 10 seconds simulation, as described
in section II. When we increase eT , the maximum error
increases. This relation between eT and emax is investigated
and depicted in the first plot of figure 5 (solid line). In this
plot, the simulation results for 300 different values of eT in
the range [0, 2] are given. The straight dashed line in this
figure visualizes emax for the time-driven controller simula-
tion (being 1.2 rot/s). This value is somewhat lower than the
lowest maximum error that the event-driven controller can
achieve, which is realized for eT < 0.25 rot/s. This value of
1.3 rot/s is also the offset for the linearly increasing trend in
emax that can be observed for increasing values of eT for
the event-driven controller. Like the error signal, the value
of emax is quantized with a minimal step size of 0.05 rot/s.

The solid line in the lower graph of figure 5 shows how
eT relates to the total number of control updates over the 10
seconds simulation for the simulation results. When in the
event-driven controller eT is set to 0 rot/s, the total number
of control updates already decreases from 1,000 to 700. This
is because the reference velocity is zero for 3 seconds. No
motor voltage needs to be applied to keep the motor in
stand-still. This is only true when no excessive disturbance
is present that could force the angular velocity of the motor
to a non-zero value. The quantization effect can again be
observed, as the total number of control updates only changes
at values of eT at a multiple of 0.05 rot/s.

V. PREDICTION

From the number of control updates, obtained from the
simulations, we can predict the processor load. For this, we
need the processing time needed to execute the particular
actions in controller algorithm. The main actions that can
be distinguished in the event-driven controller algorithm are:

input (lines 1-3), check (lines 4 and 12), calculation (lines
6-9) and output (line 11). The numbers above coincide with
the line numbers of the pseudo-code in section III-D. For
the time-driven controller, the check is omitted, but the
other actions are identical. The computation times associated
with these actions, are indicated by tinput, tcheck, tcalc and
toutput, respectively. The total processing time of the time-
driven controller for a 10 seconds experiment (t10td), can be
computed as follows:

t10td = 10fs(tinput + tcalc + toutput) (4)

with fs the sample frequency of the controller.
For the event-driven controller, the total processing time

of a 10 seconds experiment (t10ed) is given as:

t10ed = 10fs(tinput + tcheck) + c10(tcalc + toutput) (5)

with c10 the number of control updates over a 10 seconds
experiment.

Quantitative estimates of the individual computation times
can be obtained from micro measurements, also called
benchmark numbers. These measurements give the time
duration of individual basic operations, like e.g. the addition
of two floating point numbers and depend on the speed
of the cpu, memory and on the floating point unit. The
tasks that run on the processor can be split up in terms of
those basic operations. From this we can obtain the expected
computation times of the tasks. For instance, check executes
two floating point comparisons and one logical operation
(OR). From micro-measurements we know that a floating
point comparison takes 0.025μs. The time that the logical
operation takes can be neglected with respect to a floating
point operation. Therefore, tcheck is estimated to be 0.05μs.
As calc has to perform a larger number of floating point
operations, we estimate tcalc to be 0.25μs.

Similarly, tinput and toutput are estimated at 2.4μs and
2.1μs respectively. The relatively large amount of time
consumed by an IO-operation is caused by context-switch
time and the time it takes to communicate with the slower
PCI-bus. In order to perform an IO operation, communication
via a device-driver with the FPGA is necessary. A context-
switch is made to and from the kernel-space to access
the device-driver. tinput is estimated somewhat larger than
toutput, because some additional processing is involved to
derive the velocity measurement from the position data.

The times for the various operations can be assumed to
be fairly constant. For this specific example, the controller is
the only real-time task running and its size allows it to run
entirely from cache memory, so no variations are expected.

Using equations (4) and (5), combined with the estimated
computation times of the individual tasks, we are able to
predict the total computation times of both the time-driven
and the event-driven control algorithm for various values of
eT . From the simulation results, depicted in the bottom graph
of figure 5, we use the number of control updates as the value
for c10 in (5). The results are depicted in figure 6 (dashed
and solid line).

1882

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

0 0.5 1 1.5 2
0

1

2

3

4

5

e
T

to
ta

l c
om

p.
tim

e
[m

s]
prediction event−driven
prediction time−driven
measurement event−driven
measurement time−driven

Fig. 6. Experimental results of computation time for time-driven and event-
driven controller using various values of eT for the event-driven controller.

From equations (4) and (5) we can also derive the maximal
achievable gain in processing time for the event-driven con-
troller, compared to the time-driven controller. The maximal
gain is obtained when we choose c10 = 0. This implies that
no control updates are needed to keep the error within the
bounds of eT . The maximum achievable gain Kmax in this
particular setup is:

Kmax =
10fs(tinput + tcalc + toutput)

10fs(tinput + tcheck) + c10(tcalc + toutput)

=
tinput + tcalc + toutput

tinput + tcheck
≈ 2 (6)

This can be verified in figure 6, as the time-driven controller
uses approximately 5 ms and the event-driven controller 2.5
ms for large values of eT .

VI. EXPERIMENTS

A. Processor load measurement

To measure the processor load of the control algorithm,
we measure the time the processor needs from the start of
read, to the end of write. For this purpose, we take two
time-stamps; the first before line 1 in the pseudo-code, and
the second after line 12. By subtracting the first time-stamp
from the second, we obtain the elapsed time. From this value,
we also need to subtract the time it takes to perform the
time measurement itself, as on an x86-compatible cpu, time
measurement is not atomic; it takes approximately 1 μs for
this particular setup.

In order to measure time, a function is called which reads
a time counter and returns its value. Some time will elapse
between the call and the read and between the read and
the return. Figure 7 illustrates this as well as the method to
determine the amount of time that is required to measure
time. The method consists of two successive ‘Gettime’
function calls. The time difference of the values returned
is the time required to perform one ‘Gettime’ function. It is
assumed that the ‘Gettime’ functions take an equal amount of

call return

read

call return

read

t1 t2

Gettime 1

Gettime 2

Fig. 7. Illustration of the time measurement.

0 2 4 6 8 10
0

50

100

re
f.

ve
lo

ci
ty

[r
ot

/s
]

0 2 4 6 8 10
−2

0

2

er
ro

r
[r

ot
/s

]

0 2 4 6 8 10
0

50

100

150

ct

rl
up

da
te

s

0 2 4 6 8 10
0

5000

time [s]

co
m

pu
ta

tio
n

tim
e

[n
s]

Fig. 8. Experimental results of event-driven controller for eT = 0.9 rot/s.

time and will not be interrupted. The latter is guaranteed by
the real-time operating system by assigning it to the highest
priority. The amount of time that is required to measure
time is measured each sample moment, next to the two time
measurements mentioned above.

B. Experimental results

The measurement results of one experiment with eT = 0.9
rot/s are depicted in figure 8. One can compare these plots
with the simulation results depicted in figure 4, as the same
value for eT is chosen. The second plot, which depicts the
velocity error, shows similar values for the experiment as
well as for the simulation. This is also the case for the third
plot, in which the number of control updates are plotted.
The fourth plot shows the measured execution time of the
controller algorithm at each sample time, i.e. every 0.01
second. The offset of 2.4 μs (tinput + tcheck) can clearly
be distinguished. The reason that the offset differs slightly
at periods [1, 2] and [9, 10] is that for those periods, the
reference as well as the measured velocity are exactly zero,
which involves less computation time for the implementation.
The extra time at the moments of the peeks in the plot during
non-zero velocity in the reference signal, is the time that is
needed for calc and output (tinput+tcheck+tcalc+toutput =
4.8μs).

The performance results (emax) of 20 experiments for dif-
ferent values of eT are depicted in the first graph of figure 5,
together with the simulation results. The experimental results
are very similar to the simulation results and we observe the
same lower bound and trend. The maximum error of the
time-driven controller experiment was the same as obtained
from simulation. The second graph of figure 5 shows the
number of control updates for these 20 experiments, together
with the simulation results. We observe again very similar
results.

The cumulated measured computation time for the same
20 experiments is depicted in figure 6, together with the
predicted computation times. This again is depicted for both
the time-driven and the event-driven controller. It can be
observed that the measurement results are very similar to
the predictions.

1883

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

VII. DISCUSSION

When comparing the results of the time-driven controller
with the results of the event-driven controller, we observe
a reduction of 30% in the number of control updates, for
very low values of eT (0 ≤ eT < 0.1). This resulted in a
processing time saving of 13% of the total processing time
needed for the control algorithm. For higher values of eT

a reduction could be achieved up to 95% in the number of
control updates. This however resulted in a saving of the
processing time of only 46%, due to the relative high offset
caused by the value of tinput (as this has to be performed
at 100 Hz in the event-driven controller as well). When
we choose for example eT = 0.4 rot/s in the presented
application, we already obtain a saving in the processor load
of 39%. This only increased the maximum error from 1.2
rot/s to 1.7 rot/s.

Of course, these figures depend heavily on the chosen
setup. Important aspects of the setup in this context are:
the complexity of the controller algorithm, the processing
platform together with communication mechanisms, the ref-
erence signal to be tracked and the disturbances acting on
the plant. For the experiments we used a very simple (PI)
control algorithm, that does not need much processing power
to execute (i.e. tcalc was small). If we choose a more complex
control algorithm, the savings in processing time increase.

If a different processing platform is used on which the in-
put and output actions would need only a very small amount
of the processing time, we would have gained up to a factor
of 5 in processing time in the presented situation. Indeed, in
that case we have that tinput ≈ toutput � tcalc ≈ 5 · tcheck.
Therefore, we see that the relation between the processor
load and the number of control updates is highly dependent
on the chosen processing platform. The presented case is
just one typical example out of many possible alternatives.
The strength of this paper is that it indicates that the gain in
processor load can be predicted for each new situation, in a
similar way as presented in this paper. If sensor and actuator
data have to be communicated over a network with limited
bandwidth, savings of these kinds might be considered as
well.

By applying the considered event-driven controller we
only decrease the average processor load and not the peak
load. Therefore, it should be noted that the processing power
that comes available temporarily should also be used to
create an advantage for the total system (e.g. the whole
paper path). One example is the execution of multiple motor
controllers on the same processor. If these controllers are
for instance used to control all 5 motor velocities in our
paper path setup, we can choose the profiles such that the
acceleration and deceleration phases do not overlap. This is a
very realistic choice, from a system level power perspective,
as it is often required to distribute high power demands over
time. When a motor is accelerating or decelerating, it uses

more power. Because we know that (for the non-disturbed
case) most control updates need to be executed during those
phases, the processing power is also nicely distributed among
the 5 controller tasks. Another example to reduce the overall
processor load, is the case in which soft-realtime tasks (e.g.
image processing), running on the same processor, can use
the released processing power.

VIII. CONCLUSIONS

The contributions of this paper are twofold:

1) The potential of event-driven controllers was validated.
2) The relation between reduced number of control com-

putations and a lower processor load was studied.

We validated for the first time experimentally the potential
of event-driven controllers. Experiments showed that event-
driven controllers can be used in practice to reduce the
processing time by a factor of almost 2, when compared
with conventional time-driven controllers. This involved only
a small degradation of the control performance. We also
argued that for the particular controller setup on a different
processing platform, even a factor of 5 reduction in processor
load could have been obtained, which shows the potential
value of event-driven controllers and future research in this
domain.

From simulation results, we were able to predict the
processor load in the experiment very accurately. This was
done with relative low effort, despite of the fact that many
complex implementation factors are to be accounted for. For
this purpose, micro measurements were used to estimate
the processing time of the various tasks of the controller
algorithm. The main benefit of the prediction method is that
one does not have to actually build the setup to quantify the
trade-off in processor load and control performance for the
event-driven controllers.

REFERENCES

[1] Årzén, Karl-Erik (1999). A simple event-based PID controller. In:
Proceedings of the 14th World Congress of IFAC. Beijing, P.R. China.

[2] Doff, R.C., M.C. Fatten and C.A. Phillips (1962). Adaptive sampling
frequency for sampled-data control systems. In: IRE Transactions on
Automatic Control. vol. AC-7. pp. 38–47.

[3] Franklin, G.F., J.D. Powell and M.L. Workman (1998). Digital Control
of Dynamic Systems. Third edition, MA: Addison-Wesley.

[4] Henriksson, D. and A. Cervin (2005). Optimal on-line sampling period
assignment for real-time control tasks based on plant state information.
In: Proceedings of the 44th IEEE Conference on Decision and Control
and European Control Conference, Seville, Spain, December 2005.

[5] Sandee, J.H., W.P.M.H. Heemels and P.P.J. v.d. Bosch (2005). Event-
driven control as an opportunity in the multidisciplinary development
of embedded controllers. In: Proceedings of the American Control
Conference, Portland, Oregon, USA, pp. 1776–1781.

[6] Heemels, W.P.M.H. and J.H. Sandee (2006). Practical stability of
perturbed event-driven controlled linear systems. Proceedings of the
American Control Conference, Minneapolis, Minnesote, USA.

[7] 20-Sim, modelling and simulation package (2006). Controllab Prod-
ucts Inc., Enschede, The Netherlands. [online] http://www.20sim.com.

1884

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:24 from IEEE Xplore. Restrictions apply.

