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Wastewater treatment plant (WW'TP) is the energy-intensive industries. Energy is consumed at every stage of wastewater treatment.
It is the main contributor to the costs of WWTP. Analysis and forecasting of energy consumption are critical to energy-saving. Many
factors influence energy consumption. The relationship between energy consumption and wastewater is complex and challenging to
identify. This article employed the fuzzy clustering method to categorize the sample data of WWTP and analyzed the relationship
between energy consumption and the influence factors in different categories. The study found that energy efficiency in various
categories was changed and the same influence factors in different types had different influence intensity. The Radial Basis Function
(RBF) neural network was used to forecast energy consumption. The data from the complete set and categories was adopted to train
and test the model. The results show that the RBF model using the date from the subset has better performance than the multivariable
linear regression (MLR) model. The results of this study provided an essential theoretical basis for energy-saving in WWTP.

1. Introduction

Wastewater treatment plant (WW'TP) is the energy-intensive
industries. Collecting, treating, and discharging wastewater
to acceptable permit standards needs a large amount of
energy. Wastewater includes three stages. Physical treatment
is used to remove the suspended solids and other impurities.
Around 25% of energy is consumed to drive the influent
pumps and aerated grit chamber [1]. Biological treatment
is used to process high concentrations of organic matter
and nitrogen. More than 90% of chemical oxygen demand
(COD) and 20% nitrogen in wastewater is removed. Aerobic
digestion and anaerobic digestion convert organic matter
into carbon dioxide, nitrogen, methane, and so on. Much of
the energy used by this stage is for aeration. Only a small
amount of energy is used for pumping water. About 60-70%
of energy is used in biological treatment [2]. Besides, sludge
thickening and dewatering contribute 4.1-13.9% of the total
energy consumption in WWTP [3]. The energy efficiency
of WWTP is influenced to a great extent by the wastewater
treatment technology, the size of the plant, and the sewage
inflow and effluent quality [4]. Energy efficiency measure and

treatment process modifications may be able to reduce their
energy cost by up to 30% [5]. Studies to understand the energy
consumption are critical to implementing target strategies for
energy reduction.

It is clear that an improvement in energy efficiency
enables the achievement of the same result with less energy
or achieving an improved performance with the same power.
Wastewater treatment is a nonlinear biological reaction
process. The relationship between wastewater and energy
consumption is complex and uncertain. The data analysis
seems a difficult task because the data are multidimensional,
complex, and nonlinear. In the scientific literature, there are
a large number of studies on energy consumption in WWTP.
Deborah et al. employed a multistep methodology to evaluate
the energy efficiency of wastewater treatment in Italy and
suggested some energy optimization solutions to decrease
energy cost [6]. Daw et al. concluded that the energy audit
could help to improve energy efliciency in wastewater treat-
ment [7]. Viktoria et al. identified that energy consumption
is decreasing with the increase of the amount of treated
wastewater [8]. Ortiz et al. applied the life cycle assessment
to evaluate water treatment technologies. They found that
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tertiary treatment did not increase the environment loads
significantly [9]. Gua et al. analyzed the overall influence
factors of energy use in WWTPs [10]. Abusoglu et al. used
the thermoeconomical methodology to assess a municipal
wastewater treatment system. [11]. Plappally and Lienhard
considered the wastewater treated with various processes, and
the results showed that membrane bioreactors were signif-
icant energy consumers in wastewater treatment [12]. The
energy intensity of advanced wastewater treatment process
is higher than the traditional method. Herndndez-Sancho et
al. employed the nonradial DEA model for estimating the
energy efficiency in Spanish wastewater treatment plant, and
results showed that the energy efficiencies of the analyzed
WWTPs were quite low [13]. Awe et al. discussed the energy
production, usage, and saving in WWTP [14]. Andersson
and Holmberg showed that electrical energy consumption
decreased by 10% by introducing an in-feed filter system
for the blowers [15]. Joao and Justina found that energy
saving of every WWTPs could vary from 20% up to 40%
[16]. Also, some scholars provide a review of the various
modeling techniques for modeling the wastewater treatment
process [17-20]. Xu et al. employed the artificial immune
algorithm to calculate the optimal setting value of the control
variables [21]. Ye et al. combined the RBF network and
immune algorithm to establishing the wastewater treatment
process models [22]. Guan et al. and Wang et al. proposed
the soft-sensing method for predicting the quality parameters
of wastewater treatment [23, 24]. Luo et al. developed a soft
computing approach based on the back propagation neural
networks and fuzzy-rough sets to predict effluent NH;-N,
COD, and total nitrogen (TN) concentration of a real WWTP
[25]. The results showed that the prediction by this approach
was better than the other traditional modeling approaches.
Chen et al. proposed a hierarchically neural network to
predict the COD and biochemical oxygen demand (BOD)
concentrations [26]. Yu et al. implemented the statistical
regression models to predict energy consumption in WWTP
[27]. Systematic analysis of energy efficiency and modeling
of the energy consumption in wastewater treatment under
various categories is somewhat rare in the literature.

As wastewater treatment system contains many statistics
about energy consumption, and FCM is an efficient tool to
divide a given set of data into categories so that elements
drawn from the same type are as similar to each other
as possible, while those assigned to different groups are
dissimilar [28]. FCM has been widely used in economics,
finance, science, and other fields and has obtained lots of good
results [29-32]. However, few studies have paid attention to
the application of FCM in analyzing energy consumption in
WWTP. The energy efficiency in different categories should
be considered. Thus, clustering analysis appears to be an
appropriate choice for categorizing energy efficiency with
similar energy consumption and facilitating the exploration
of the specific characteristics of each category and its influ-
ence factors. The Radial Basis Function (RBF) neural network
was adopted to establish an energy consumption model. The
central sample point is critical for the performance of the RBF
model. Often only the nearest sample point plays a vital role,
while the other samples far from the spot have very minimum
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impact, which can be ignored. Here, the RBF model used data
from a complete set and subset, respectively, to establish the
prediction models. The multivariable linear regression (MLR)
model was also used. The results showed that using the data
from the categories can improve the performance of these
models. The method could be used by wastewater managers
to accurately forecast the behavior of the energy consumption
in various WWTPs.

2. Methodology and Data

The energy consumption of WWTPs is ambiguous and
uncertain. It is influenced by many factors and involves
three standard process performance indicator variables that
are regarded as input parameters: Influent loads, COD, and,
TN removals. The energy efficiency in different condition
should be considered. Thus, clustering analysis appears to
be an appropriate choice for categorizing energy efficiency
with similar energy consumption characteristics. This paper
selects the FCM method to analyze the energy consumption
in WWTP.

2.1. The FCM Method. The FCM method was first proposed
by Dunn and Bezdek in the 1980s [28]. It has been applied in
many fields. FCM can be described as below. Given subsets
X = {X,X,..., Xn} where X = (31, Xpp .- > Xp) | €
R", xkj(j =1,2,...,n)is the jth element of a sample X, (k =
1,2,...,N) . 2" =(Z ), Zyy .. s Z) (Z; = (211> Zigs - > Z3) | €
R") is the cluster centers vector. The fuzzy c-clustering for X
can be described as below:

¢ N
min J,,(U,Z,c) = Z ZP‘ZdiZk
i=1 k=1

)

c
=S YW Xzl 1em<oo
k=1i=1

Yur=1 (1<k<N)
i=1

N ¢))
0<Yup <N, i=12,.. .,c
k=1
2/(m-1)\ 7!
0=
EAN A
7 ZZ:] (4 Xy)
k n m
Yot (U7)
where U = [py] (0 < py < 1,1 < i <¢1 <k <
N) is partition matrix. Z = [Z;] is the nuclear matrix of

clustering. y;; is the fuzzy membership grade belonging to
the kth category of the ith sample. d denote the distance
function between ith element and kth cluster center in the
same subset. m is the weighted index, usually set to 2. The
values of the original data must be normalized to the same
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FIGURE 1: Modified the process of the WWTP system (Tank 1-2. Anaerobic section. Tank 3—4 Aerated sections).

order as the inaccurate cluster will be induced by the order
variation of the data characterizing the factors. The procedure
of fuzzy c-clustering algorithm is as follows.

Step 1. Determine the cluster number and the cluster center;
initialize the partition matrix.

Step 2. Calculate the nuclear matrix of clustering.
Step 3. Update the partition matrix.

Step 4. For each partition matrix, compare the matrix norm
with its previous value.

Step 5. 1f the stopping iteration condition is not met, loop to
Step 2.

The FCM parameter values were set as follows: the
maximum number of iterations is 40; the weighted index is
4; the cluster number is 3.

2.2. Radical Basis Function (RBF) Neural Networks. Wastew-
ater treatment is a highly nonlinear dynamic process. It is
complicated and influenced by many factors. The relation-
ship between energy consumption and influencing factors
is nonlinear and complex. Meanwhile, the influent loads
and the concentration of contaminations in the sewage are
constant change. It is difficult to obtain reliable parameters
of many biochemical reactions and fit a reasonable energy
consumption model. Owing to many uncertain factors affect-
ing energy consumption in WWTP, the energy consumption
systems undergo nonlinear system changes dynamically.
Neural networks played an important role in solving these
problems. The model has been widely applied to various fields
of mathematics, engineering, economics [22, 33, 34]. It can
model any nonlinear system to a high degree of accuracy
by adjusting the network parameters and uses the steepest
descent method to search for the optimal solution. It includes
the input layer, the hidden layer, and an output layer. Each
sheet contains a massive parallel distributed neuron. The
network can acquire the knowledge and modify the synaptic
weights to attain the desired design objective in the learning
process. Here, the RBF neural networks were introduced
to forecast energy consumption in WWTP. Three leading
performance indicators of WWTP, influent loads, COD, and

TN removals were chosen as the input of these models. The
distribution density of the RBF network is 0.3.

2.3. Data Sources. The data in this paper was collected from
the daily records of a municipal WWTP located in Jimei
District, Xiamen, China. The data includes 360 samples (from
25th December 2015 to 24th December 2016) after remov-
ing six invalid samples. The WWTP applies the activated
sludge process, treating municipal sewage. The plant has a
design capacity of 90000 cubic meters per day, or nominally
560,000 equivalent population. The inflow loads are 53900-
95200 cubic meters per day. Figure 1 depicts the operation
of the WWTP system. The first two reactions are anoxic
section, followed by two aeration sections and the clarifier.
The effluent quality meets the national integrated discharge
standard. The statistical describes energy consumption and
influencing factors are depicted in Table 1. Table 1 describes
energy consumption, inflow load, COD removal, and total
nitrogen removal.

3. Results and Discussion

The energy consumption of WWTP could be depicted by
three indicators: inflow loads, COD, and TN removals. The
present study selected these indicators as the clustering
index to analyze the energy consumption of WWTP. The
energy consumption of this WWTP was determined into
three clusters with its significant characteristic. Figure 2
shows the scatter diagram of energy consumption in different
categories. Table 2 shows the center of different groups. The
partial correlation coefficient among energy consumption
and the influencing factors in different types are depicted in
Table 3.

3.1. Clustering Results. The electricity consumption per cubic
meter wastewater in the center of the first category is 0.2907
kWh/m®. This category contains 159 sets of data. As it can
be seen in Table 3, the partial correlation coefficients of the
influencing factors are 0.226, 0.374, and 0.283, respectively.
The results show that COD removal has a significant impact
on energy consumption, followed by total nitrogen removal,
while inflow loads.
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TaBLE 1: Statistical description of the energy consumption parameters.
Unit Inflow loads COD removal Total nitrogen removal Energy consumption
(10* x m?) (tons) (tons) (kWh)
1 7.48 17.27 2.08 21177
2 7.09 13.39 2 20085
3 7.18 16.37 1.99 20729
4 7.08 16.63 2.11 20688
5 7.01 1114 2.06 20906
355 8.43 20.58 3.17 23975
356 8.28 20.29 2.87 23762
357 8.5 10.8 3.03 24933
358 8.66 35.58 2.56 24110
359 8.53 8.35 1.38 23983
360 8.05 17.87 2.08 23841
1 —t . . . . . . energy consumption followed by COD removal, while inflow
09 * o+ | loads.
The electricity consumption per cubic meter wastewater
0.8 | i

- datal
O data2
* data3
+ datad
v data5

FIGURE 2: Scatter diagram of energy consumption in different
categories.

TaBLE 2: The center of different categories.

Center Inflowloads COD removal Total nitrogen removal
Index 1 0.7365 0.2009 0.2534
Index 2 0.7451 0.2857 0.4307
Index 3 0.7209 0.4308 0.3798

The electricity consumption per cubic meter wastewater
in the center of the second category is 0.2942 kWh/m’.
This category contains 121 sets of data. It can be seen
in Table 3 that the partial correlation coefficients of the
influencing factors are 0.338, 0.516, and 0.575, respec-
tively. Total nitrogen removal is positively contributing to

in the center of the third category is 0.2844 kWh/m®. This
category contains 80 sets of data. As it can be seen in
Table 3, the partial correlation coeflicients of the influencing
factors are 0.517, 0.323, and 0.355, respectively. The results
show that energy consumption is highly correlated with
inflow loads, followed by total nitrogen removal, while COD
removal.

The statistical description of energy consumption and
influencing factors in different categories are depicted in
Table 4. It can be seen that average electricity consumption
per cubic meter and inflow loads of three clusters are almost
the same. COD removal and total nitrogen removal vary
greatly. The COD removal of the first category is nearlyl.63
times of the second category and 2.79 times of the third
category. The total nitrogen removal of the first category
is 1.27 times of second category and 1.69 times of the
third category. The energy consumption of the first cate-
gory achieves improved performance with the same energy
consumption. It has better performance than other groups.
The results indicate that when inflow loads are stable, COD
removal and total nitrogen removal have a weak impact on
energy consumption. Effective removal of the COD and total
nitrogen are essential for improving the energy efficiency of
this WWTP.

It can be seen in Table 3 that efficient removal COD
and total nitrogen can improve the energy efficiency of the
second category. In the third category, inflow loads play a
prominent role in energy consumption and as is shown in
Table 3, efficient treating inflow loads are essential for the high
energy efficiency of this category.

The above results indicate that the energy efficiency
of WWTP in the different categories is different. Energy
efficiency has an excellent performance when a lot of COD
and total nitrogen are removed. Energy efficiency has poor
performance when COD and total nitrogen removal are
poor.



Mathematical Problems in Engineering

2.5
24
2.3
2.2
2.1

kWh

19+ a

1.8
1.7

1.6
0

2.4

2350 -
2371
225+

22

=
= 215
2.1
2.05

1.95+

1.9

x10*

—&—RBF
——+— Actual_value
MLRM

x10

15
Time
(a)
4

~—=— RBF
— = Actual_value ;
MLRM 7

kWh

20

kWh

15

4
28210 :
—&— RBF ]
= == Actual_value | .
2.7H MLRM -
26 ¥ ::'-a"--.». o 1l
. / i
=] \
\
2.5 \
241 * 4 LT
2.3 \
Ry
2.2
o
2.1F °© Ny
2_ i i 3
0 5 10 15 20
Time
(b)
4
26 210 .
—&+— RBF
Actual_value *
2.5 H MLRM £ ]
o / @
[ e\
24| " w ad T\ /a\d
& i | \\ /
23+ 5 X PANVIAY [t N g
+ \ f NN N G f P &
3 i e N &Y \ T
\ # = i E/ o \
221 A% o 2 4 L
2.1 oo & ¥
2 11
kX
1.9 '
0 5 10 15 20
Time
(d)

FIGURE 3: The actual value and forecasting value under different data set.

TaBLE 3: The partial correlation coefficient among energy consumption and the influencing factors in different categories.

Pearson Correlation Inflow loads COD removal Total nitrogen removal
Index1 Energy consumption 0.226 0.374 0.283
Sig. (2-tailed) 0.004 0.000 0.000
Index2 Energy consumption 0.338 0.516 0.575
Sig. (2-tailed) 0.000 0.000 .000
Index3 Energy consumption 0.517 0.323 0.355
Sig. (2-tailed) 0.000 0.004 0.001

TABLE 4: Statistical description of energy consumption and influencing factors in different categories.

Indexl1 Index2 Index3
Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation
Energy consumption (kWh) 22452 1790. 22577 1965 21483 1738
Inflow loads (10*m?) 7.751 0.560 7.626 0.693 7.645 0.628
COD (tons) 20.824 8.181 12.716 3.379 7.463 1.932
TN (tons) 2.215 0.398 1.747 0.433 1.309 0.397
Average electricity consumption (kWh/m®)  0.2897 0.2961 0.2810
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FIGURE 4: The relative error of the RBF model and multivariable linear regression model under different data set.

3.2. Forecasting Energy Consumption for WWTP. To compare
the superiority of the RBF model and the MLR model in
handling the data sets (the data sets were collected from
the WWTP from the from 25th December 2015 to 24th
December 2016) and subset (the clustering results), the 70
data were selected from these set. The first 50 data were used
in the in-sample period. The data from 51 to 70 were used to
evaluate the forecasting performance. The forecasting ability
of the RBF model and the MLR model for different data set
is compared in Table 5 and Figure 3. The relative errors of
different data sets are shown in Figure 4.

As can be seen in Table 5, the min relative errors of the
MLRM are lower than the RBF model. The max relative errors
of the RBF model for different data set is 18.32%, 12.85%,
13.97%, and 17.08%, respectively. The max relative error of
the three categories is lower than the data set. The mean
absolute percent error for the RBF model for various data
set is 9.13%, 6.02%, 6.33%, and 6.78%, respectively. The mean
absolute percent error of the RBF model for various data set
is 9.13%, 6.02%, 6.33%, and 6.78%, respectively. The results
show that the RBF model has better performance in three
categories than in the data set. The mean absolute percent
error of the MLRM model for various data set is 8.38%, 6.12%,

6.58%, and 7.58%, respectively. The outlet results show that
the model has higher accuracy in three categories than in the
data set. It means that using the clustering results can improve
the performance of two forecasting models. According to
Table 5, the empirical results indicate that the MLRM model
data set has higher accuracy than the RBF model. However,
for the three categories, the mean absolute percent error of
the RBF model is lower than the values of the MLM model.
Meanwhile, for the different categories, the forecasting effect
of the RBF model is better than the MLM model.

4. Conclusions

In this article, it is attempted to analyze and predict energy
consumption in WWTP. WWTP is the energy-intensive
industries. Analysis and forecasting of energy consumption
in WWTP are critical to energy-saving. The energy con-
sumption of WWTP is a complex nonlinear system and
influenced by many factors. A large amount of collected
data is complex, multidimensional, and nonlinearly related.
Therefore, the analysis and forecasting of energy consump-
tion are a difficult task due to the characteristic of the data.
This paper considered the direct energy use indexes related
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TaBLE 5: The relative errors of the RBF model and the multivariable linear regression model under different sets.
Min relative error (%) Max relative error (%) MAPE (%)

MLRM RBF MLRM RBF MLRM RBF
The data set 0.42 1.3 18.23 18.32 8.38 9.13
The first category 0.18 0.46 13.95 12.85 6.12 6.02
The second category 0.24 1.00 12.94 13.93 6.58 6.33
The third category 0.68 1.85 19.5 17.08 7.58 6.78

to energy consumption and employed the FCM method to
divide these indexes into three clusters with their significant
characteristic. The results show that the average electricity
consumption per cubic meter wastewater in various cate-
gories has a slight difference. In the first category, the average
electricity consumption can removal more COD and total
ammonia than the other categories. It means that the energy
efficiency of the first category has a better performance than
other classes. The partial correlation coefficient was used
to analyze the relationships between energy consumption
and various influencing factors in different types. It can be
discovered that the partial correlation coefficient in multiple
groups is different. In the first category, COD removal is
a significant factor affecting energy consumption. In other
groups, nitrogen and inflow loads have a substantial effect
on energy consumption. To remove more pollutions with the
same energy, the WWTP can determine the wastewater into
different clusters with its significant characteristic. Accord-
ing to the characteristics of sewage adjust the wastewater
treatment process to deal with sewage. Besides, the WWTP
should adopt new technology to improve energy efficiency.
The RBF model and the MLRM model were employed to
forecast energy consumption in WWTP for the different data
set. The numerical experiment indicates that these models
adopted the data from the different categories have better
performance than the data set. Meanwhile, for the different
groups, the forecasting effect of the RBF model is better than
the MLM model. The clustering analysis is a technique to
analyze the energy efficiency of WWTP. Meanwhile, use the
data from the clustering results can improve the performance
of the RBF model.

Wastewater industry faces the strict effluent limitations
for removal of currently-unregulated contaminants in the
future. To treat the influent to reduce these pollutions,
WWTPs would become more energy-intensive. The WWTP
should improve energy efficiency by applying new energy-
intensive technologies to handle wastewater. The results show
here could offer references to improve the energy efficiency of
WWTP.
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