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By introducing a flux-controlled memristor with quadratic nonlinearity into a 4D hyperchaotic system as a feedback term, a novel
5D hyperchaotic four-wing memristive system (HFWMS) is derived in this paper. �e HFWMS with multiline equilibrium and
three positive Lyapunov exponents presented very complex dynamic characteristics, such as the existence of chaos, hyperchaos,
limit cycles, and periods. �e dynamic characteristics of the HFWMS are analyzed by using equilibria, phase portraits, poincare
map, Lyapunov exponential spectrum, bifurcation diagram, and spectral entropy. Of particular interest is that this novel system
can generate two-wing hyperchaotic attractor under appropriate parameters and initial conditions. Moreover, the FPGA re-
alization of the novel 5D HFWMS is reported, which prove that the system has complex dynamic behavior. Finally, syn-
chronization of the 5D hyperchaotic system with different structures by active control and a secure signal masking application of
the HFWMS are implemented based on numerical simulations and FPGA. �is research demonstrates that the hardware-based
design of the 5D HFWMS can be applied to various chaos-based embedded system applications including random number
generation, cryptography, and secure communication.

1. Introduction

Nonlinear science is a new interdisciplinary subject to study
the universality of nonlinear phenomena, which runs
through almost every subject of meteorology [1, 2], math-
ematics [3–6], fluid mechanics [7, 8], complex network
[9–12], electronics [13–15], and social science [16, 17]. Chaos
is one of the most important achievements of nonlinear
science. Its random-like and sensitive initial values make
chaos have good potential applications in the fields of
random number generation [18–20], cryptosystem [21, 22],
image encryption [23–25] and secure communication
[26–29]. In recent years, many new multiwing (or multi-
scroll) chaotic systems have been discovered and proposed
[30–35]. �e continuous introduction of various complex
chaotic attractor models not only provides research basis for

the development of chaotic system theory, but also provides
rich subjects for the practical application of chaotic theory.

Since Rossler proposed the first hyperchaotic system
with two positive Lyapunov exponents [36], a large number
of researchers have begun to devote themselves to the study
of hyperchaotic systems [37–42]. Hyperchaotic systems are
more sensitive, pseudorandom, and have larger key space,
which makes them more suitable for applications such as
secure communication and image encryption than chaotic
systems. In order to construct more complex chaotic
attractors, a large number of literatures have recently re-
ported the multiwing hyperchaotic systems [43–46]. In [43],
in order to overcome the inherent difficulties of iteratively
adjusting multiparameters in traditional multiparameter
control, a unified step function for single-parameter control
is proposed to construct a nonequilibrium multiwing
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hyperchaotic system. In [45], by introducing mirror sym-
metric transformation into the hyperchaotic system, various
hyperchaotic attractors with mirror symmetric grids are
obtained. In [46], a five-dimensional (5D) autonomous
hyperchaotic attractor with four wing is introduced, which
has only eight parameters to be controlled and only one
equilibrium point.

Memristor is an electronic device that describes the
relationship between charge and magnetic flux, which was
proposed in 1971 by Chua [47] and for the first time realized
by HP Labs in 2008 [48]. Because of its strong nonlinear
characteristics, memristors have potential applications in
many engineering fields, and their research has attracted
more and more attention [49, 50]. Recently, many nonlinear
memristive oscillators have been proposed [51–53], creating
amemristive hyperchaotic systemwith a multiwing attractor
having a practical significance, which has become a research
hotspot [54–57]. In [55], by introducing a flux-controlled
memristor into a multiwing system, a multiwing hyper-
chaotic attractor is observed in a no-equilibrium memristive
system. In [56], a hyperchaotic system is constructed by
adding only a smooth flux-controlled memristor to the 3D
pseudo four-wing chaotic system, which can generate a real
four-wing hyperchaotic attractor with a line of equilibrium.
In [57], flux-controlled memristors are used to replace the
resistors in the circuit of the modified Lü system, and this
new memristive system can exhibit the hyperchaotic mul-
tiwing attractor with two relatively large positive Lyapunov
exponents. However, a review of literature revealed there are
no research studies that examined the four-wing behavior
and three-positive Lyapunov exponents in memristive
hyperchaotic systems with dimensions greater than four.
*is kind of high-dimensional hyperchaotic systems cannot
be ignored. Because of their complexity, signal generation is
usually used for random number generation and secure
communication just to name a few.

In recent years, the main methods to realize chaotic or
hyperchaotic attractors are analog circuits, such as bread-
boards based on discrete components [55–57] and in-
tegrated circuits (ICs) based on CMOS technology
[14, 33, 34, 37]. With the change of time and temperature in
analog circuit, the device will have temperature drift and
poor control accuracy. *erefore, it is difficult to realize the
chaotic system with high precision by analog circuit, and the
breadboard is not easy to carry and digitally store.*e design
of high-dimensional chaotic systems using CMOS tech-
nology generally requires multipliers, which are difficult to
design. At the same time, ICs have the shortcomings of long
development cycle and high cost [58–60]. *erefore, re-
searchers began to focus on digital circuits with low cost,
short design cycle, fast speed, low power consumption, and
high accuracy, such as digital signal processor (DSP) [61, 62]
and field programmable gate array (FPGA) [63–66]. It takes
a long time for DSPs to generate chaotic signals at high
frequencies and DSP chips to perform operations in order to
calculate the value of output signals. On the other hand,
FPGA chips have a relatively flexible architecture to achieve
parallel operation, and the design and test cycles of the chips
is particularly low [67]. In order to increase and expand

engineering applications based on chaos, chaotic systems are
diversified and need flexible architecture support. With the
digitalization and reconfigurability of the FPGA, chaotic
systems and their applications can be more flexible. *us,
different forms of signals can be easily generated with the
change of parameters of chaotic systems. In addition, the
related memristive chaotic system can also be realized al-
ternately by various memristor functions. At present, there
are several studies related to designs of chaotic systems based
on FPGA. Tuna et al. [63] implemented the Liu-Chen
chaotic system on the Xilinx virtex-6 FPGA chip using the
32-bit IQ-Math fixed-point number Heun algorithm.
Ahmadi et al. [64] designed a 5D chaotic system on the
Xilinx Kintex-7 KC-705 kit FPGA chip using the IEEE 754
32-bit fixed-point number Euler’s method. Xu et al. [65]
designed a 3D memristive chaotic system on the Xilinx
Spartan-6 FPGA chip using the Euler’s method of IEEE 754
32-bit floating-point number standard. As far as we know,
few literatures have reported the realization of the 5D
memristive hyperchaotic system based on FPGA.

Synchronization of chaotic systems has attracted much
attention in recent years due to their applications in chemical
reactors, secure communication, and the development of
secure cryptosystems [68, 69]. Aiming at chaotic synchro-
nization, several methods such as linear feedback control [70],
sliding mode control [71], adaptive control [72–74], back-
stepping nonlinear control [75], shape control [76, 77], and
active control [78–80] have been proposed for synchroni-
zation of chaotic systems. Compared with other synchroni-
zation methods, the active control method is simple, efficient,
and flexible which has been successfully applied to the syn-
chronization of chaotic systems. In [79], the synchronization
and antisynchronization of the fractional-order chaotic fi-
nancial system with market confidence are studied by using
the active control method. *e results show that the speed of
synchronization (antisynchronization) increases with the
increase of the order. In [80], the synchronization of chaotic
systems with different orders under the influence of unknown
model uncertainties and external disturbances is studied by
using robust generalized active control approach. With the
rapid development of computer technology, more and more
attention has been paid to information security [81–91].
Secure communication based on chaotic synchronization is
an important branch of information security research, which
has been widely studied by many scholars [92–96]. Because of
the pseudorandomness, unpredictability, and initial sensi-
tivity of memristive chaotic systems, the encrypted in-
formation can be hidden in chaotic signals which are highly
similar to the noise. In [97], based on the synchronization of
the memristive chaotic system, the encrypting and decrypting
of information signals are carried out to realize the secure
communication with the help of LabVIEW. However,
whether chaotic synchronization is achieved by the active
control method [78–80] or secure communication based on
chaotic synchronization [92–96], numerical simulations is
used to achieve these designed methods. In some chaotic
information systems, such as chaotic-based CDMA com-
munications and many other chaotic digital information
systems, digital implementation may be required [98–100].

2 Complexity



Motivated by the above discussions, based on a flux-
controlled memristor model and the 4D hyperchaotic sys-
tem introduced in [39], a 5D hyperchaotic system is pro-
posed. Most importantly, the new system generates four-
wing and two-wing hyperchaotic attractor phenomenon
with three and two positive Lyapunov exponents, re-
spectively and exhibits hyperchaos with multiline equilib-
rium. Complete dynamic properties of this new system are
studied. Also, with the help of FPGA implementation, this
5D hyperchaotic four-wing memristive system (HFWMS) is
realized. Finally, active control synchronization of the 5D
hyperchaotic system with different structures and a secure
signal masking application of the 5D HFWMS are imple-
mented based on numerical simulations and FPGA.

*is paper is organized as follows. In Section 2, the novel
5DHFWMSwithmultiline equilibrium is introduced and its
dynamic properties are discussed. Section 3 is devoted to
design, test, and analysis results of FPGA-based HFWMS. In
addition, the active control synchronization and chaotic
secure communication design of the 5D HFWMS are
achieved, and the FPGA experimental results are presented.
Section 4 concludes this paper with a summary of the main
results.

2. Novel 5D HFWMS and Its
Dynamic Properties

2.1. &e 5D HFWMS. Recently, Volos et al. [39] have an-
nounced a novel 4D four-wing hyperchaotic system, which
is described by

_x � ax + y + yz − cw,

_y � yz − xz,

_z � − z − mxy + b,

_w � x,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where a, b, c, and m are all constants and x, y, z, andw are
the state variables. System (1) has two positive Lyapunov
exponents, showing the four-wing hyperchaotic attractor.
Unlike most existing hyperchaotic systems, this hyper-
chaotic system has a saddle-focus equilibrium and the
second equation of the system has no linear term.

In this paper, by introducing a flux-controlled mem-
ristor to the first equation of system (1), a novel 5D HFWMS
is derived by

_x � ax + dW(φ)y + yz − cw,

_y � yz − xz,

_z � − z − mxy + b,

_w � x,

_φ � y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where d is a positive parameter, expressed as memristor
strength and W(φ) is a memductance function, defined as
W(φ) � dq(φ)/dφ. Here, the φ − q characteristic curve of
the memristor is given by a smooth continuous cubic
monotone increasing nonlinearity [46–49], and then the
memductance is given by

W(φ) �
dq(φ)

dφ
�
d eφ + nφ3( 􏼁

dφ
� e + 3nφ2, (3)

where e and n are two positive constants. *is flux-con-
trolled memristor is easier to analyze and implement. At
present, many researchers use the special nonlinear dynamic
characteristics of this memristor to construct complex
chaotic oscillators [54–57].

2.2. Equilibria and Stability. *e equilibria of system (2) are
obtained by setting its right-hand side to zero, that is,

ax + d e + 3nφ2( 􏼁y + yz − cw � 0,

yz − xz � 0,

− z − mxy + b � 0,

x � 0,

y � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

*rough equation (4), we can easily observe that the
equilibria of system (2) is a multiline equilibrium point
O � (x, y, z, w)|x � y � w � 0, z � b, φ � η􏼈 􏼉, where b is an
integer and η is an arbitrary real constant.

*e Jacobian matrix of system (2) at the multiline
equilibrium point is

JO �

a d e + 3nφ2( 􏼁 + z y − c 6nφ dy

− z z y − x 0 0

− my − mx − 1 0 0

1 0 0 0 0

0 1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

According to the Jacobian matrix (5), we can obtain the
characteristic equation of system (2) as follows:

λ(λ + 1) λ3 − (a + b)λ2 + b2 + dbe + 3 dbnφ2 + c + ab􏼐 􏼑λ − bc􏽨 􏽩 � 0.

(6)
Equation (6) can be rewritten to as follows:

λ(λ + 1) λ3 +m1λ2 +m2λ +m3􏽨 􏽩 � 0, (7)

where

m1 � − (a + b),

m2 � b2 + dbe + 3 dbnφ2 + c + ab( 􏼁,
m3 � − bc.

⎧⎪⎪⎨⎪⎪⎩ (8)

From the eigenvalue equation (7), it can be seen that
Jacobian matrix (5) has one zero eigenvalue, one negative
eigenvalue, and three nonzero eigenvalues. To judge whether
system (2) is stable, it is necessary to discriminate the three
nonzero eigenvalues. According to the Routh–Hurwitz
stability criterion, the need equation (8) satisfies

m1> 0,
m3> 0,
m1m2 − m3> 0.

⎧⎪⎪⎨⎪⎪⎩ (9)
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If all three conditions in equation (9) are satisfied, the
multiline equilibrium point O is stable, otherwise it is un-
stable. *e unstable equilibrium of the system will lead to
chaotic behavior. When a � 1, b � 1, c � 0.7, m � 1, d � 0.2,
e � 0.1, n � 0.01, m1, and m2 are both less than zero, so we
can judge that system (2) is unstable.

2.3. Symmetry and Dissipativity. *e proposed 5D HFWMS
has the same symmetry as system (1), and both of them are
invariant with respect to z-axis symmetry under coordinate
transformation (x, y, z, w,φ)⟶ (− x, − y, z, − w, − φ).

Furthermore, by calculating

∇V � z _x

zx
+
z _y

zy
+
z _z

zz
+
z _w

zw
+
z _φ

zφ
� a + z − 1, (10)

when a + z< 1, system (2) is dissipative and converges
exponentially.

2.4. Analysis of the 5D HFWMS. Here, the dynamic be-
havior of the 5D HFWMS is numerically investigated by the
use of several tools such as the phase portraits, poincare map,
Lyapunov exponentials, and bifurcation diagram.

2.4.1. Four-Wing Hyperchaotic Attractor. When the system
parameters are selected a � 1, b � 1, c � 0.7, m � 1, d � 0.2,
e � 0.1, and n � 0.01 and the initial condition is set to
[1, − 1, 1, 1, 1], the phase portraits of system (2) shown in
Figure 1 are obtained by Matlab simulation, which is a
typical four-wing chaotic attractor, and the time variations
of state equations x, y, z, andw are provided in Figure 2.

*e Lyapunov exponent is used to measure the per-
turbation caused by initial conditions. If there are slight
differences in the system, two adjacent trajectories in the
phase space are separated exponentially with time. *e
Lyapunov exponent is a useful tool for measuring chaotic
systems, in particular, it is usually determines whether a
chaotic system is chaotic or hyperchaotic according to the
number of positive Lyapunov exponents. According to the
given system parameters and initial conditions, the Lya-
punov exponent of a ∈ [− 1, 1] is simulated by the Jacobi
matrix method. *e numerical results are shown in
Figure 3(a) (the five LE5 is out of plot). From Figure 3(a), we
can clearly see that the system has complex dynamic be-
haviors such as periodic orbit, chaos, and hyperchaos. When
a ∈ [− 1, − 0.03] and a ∈ (0.22, 0.3), the system is a periodic
orbit, and Figure 4 are the phase portraits of system (2) when
a � − 1 (the LEs are 0, − 0.0424, − 0.4394, − 0.6696, and
− 3.4835). When a � 0.2, the LEs are 0.0790, − 0.0078,
− 0.0627, − 0.1078, and − 1.9274, with a positive Lyapunov
exponent, so system (2) is in chaotic state (a ∈ [0.3, 0.48)
and a ∈ (− 0.03, 0.22]). When a ∈ [0.48, 1], the system is
hyperchaotic, and the typical four-wing hyperchaotic
attractor is shown in Figure 1. When a � 0.78, the LEs
are LE1 � 0.1712, LE2 � 0.0907, LE3 � 0.0107, LE4 � 0,
and LE5 � − 2.3243, and it can be judged that system (2) is
hyperchaotic and has three positive Lyapunov exponents.

Figure 3(b) describes the bifurcation diagram of system (2)
varying with parameter a. With the increase of a, the system
changes from period to chaos.*e Kaplan–Yorke dimension
of system (2) can be calculated by the following formula:

DL � j +􏽘
j

i�1

Lj

|Lj + 1|
� 4 +

0.1712 + 0.0907 + 0.0107 − 0

2.3243
� 4.1172,

(11)
where j is the largest integer satisfying 􏽐ji�1Lj≥ 0 and􏽐ji�1Lj< 0. It can be seen from DL � 4.1172 that the Lya-
punov dimension of system (2) is fractional. *erefore, the
proposed 5D FWMHS is a real hyperchaotic system with
strong complexity.

As an important analytical tool, the Poincare map is used
to further study the dynamic characteristics of the 5D
HFWMS. Figure 5(a) shows the Poincare map of the x − y
plane at z � 0 and four branches can be seen; Figure 5(b)
shows the Poincare map of the x − z plane at y � 0 and has
many branches; Figure 5(c) shows the Poincare map of the
y − z plane at w � 0 and the outline of the four wings can be
seen, indicating the existence of the four-wing phenomenon.
Figure 5 shows that system (2) has a four-wing chaotic
attractor with fractal structure.

2.4.2. Two-Wing Hyperchaotic Attractor. When the system
parameters are chosen as a � 11, c � 0.7, m � 1, d � 0.2, e �
0.1, and n � 0.01 and the initial condition is set to
[0, 1, 0, 0, 0], and the numerical results of the Lyapunov
exponent varying with the system parameter b is shown in
Figure 6(a). Figure 6(b) is a bifurcation diagram corre-
sponding to Figure 6(a). From Figure 6, we can see that
system (2) has more complex dynamic behavior in the
parameter b ∈ [− 10, 0] interval, such as quasi-periodicity,
period, chaos, and hyperchaos. Table 1 classifies these dy-
namical behaviors and then makes a detailed analysis of LEs
and their dynamical behaviors varying with parameter b as
follows:

(i) When b ∈ (− 4.4, 0], the Lyapunov exponents of
system (2) at b � − 1 are 0.5791, 0.1087, − 0.0316,
− 0.2607, and − 4.5443. *e system is in a hyper-
chaotic state, and the corresponding phase portraits
are shown in Figure 7(a).

(ii) When b ∈ [− 5.55, − 4.4], the Lyapunov exponents of
system (2) at b � − 5 are 0, − 0.0132, − 0.2670,
− 0.4978, and − 2.1754. *e system is in a period-5
state, and the corresponding phase portraits are
shown in Figure 7(b).

(iii) When b ∈ [− 7, − 6.6] and b ∈ [− 10, − 7.2], the Lya-
punov exponents of system (2) at b � − 8 are 0.0279,
− 0.0271, − 0.2093, − 0.3481, and − 1.9681. *e phase
portraits shown in Figure 7(c) show that the system
is in a quasi-periodic state.

(iv) When b ∈ (− 6.6, − 5.55) and b ∈ (− 7.2, − 7), the
Lyapunov exponents of system (2) at b � − 6.15 are
0.0918, − 0.0091, − 0.16–0.3278, and − 2.2332. *e
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system shows a chaotic state, and the corresponding
phase portraits are shown in Figure 7(d).

2.4.3. Complexity Analysis by Spectral Entropy. *e com-
plexity of spectral entropy (SE) is based on the discrete
Fourier transformation. *e distribution of energy in
Fourier transform domain is calculated, and then the SE
value is calculated by Shannon entropy, which reflects the

disorder of time series in frequency domain [61, 101, 102].
*e chaotic diagram using the complexity of SE usually
reflects the spatial complexity of chaotic system parameters.
In this section, the SE algorithm is used to analyze the
complexity of system (2). Figure 8 shows the complexity of
SE of system (2) under initial condition [1, − 1, 1, 1, 1]. It can
be seen that Figure 8(a) corresponds well to the maximum
Lyapunov exponent in Figure 3. *e control parameters a
and b of the chaotic system are divided into 101 × 101 parts,
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including a ∈ [− 1, 1] and b ∈ [0, 5]. *en, calculate the SE of
each point (a, b) in the parameter space, as shown in
Figure 8(b). *e results show that with the increase of pa-
rameter a, the more complex the chaotic system is, and the
higher the complexity of the system is mainly concentrated
in a ∈ [0.5, 1]. Figure 9 is the SE diagram of system (2) under
initial condition [0, 1, 0, 0, 0], where a ∈ [10, 20] and
b ∈ [− 10, 0]. Figure 9(a) corresponds well to the maximum
Lyapunov exponent in Figure 6. Figure 9(b) shows the
complexity of SE in the plane of control parameters a and b.
*e results show that when a � 11, with the increase of

parameter b, the larger the SE value is, and the higher the
complexity of the system is mainly concentrated in
b ∈ [− 3.8, 0].

3. The FPGA-Based Model of the Novel
5D HFWMS

Devices in analog circuits are easy to aging and inflexible,
which makes more and more researchers begin to pay at-
tention to digital devices on the FPGA. With the charac-
teristics of high-speed operation, high integration, and free

Table 1: *e LEs and dynamical behavior under different parameter range of b.

b (LE1, LE2, LE3, LE4, LE5) Dynamic

(− 4.4, 0] (+,+, 0, − , − ) Hyperchaotic
[− 5.55, − 4.4] (0, − , − , − , − ) Periodic
(− 6.6, − 5.55) (+, 0, − , − , − ) Chaotic
[− 7, − 6.6] (0, 0, − , − , − ) Torus
(− 7.2, − 7) (+, 0, − , − , − ) Chaotic
[− 10, − 7.2] (0, 0, − , − , − ) Quasi-periodic
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Figure 7: Simulated phase portraits of system (2) with different b: (a) b � − 1, (b) b � − 5, (c) b � − 8, and (d) b � − 6.15.
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design, FPGA can easily generate chaotic signals. Nowadays,
many numerical algorithms are used to solve the nonlinear
differential equations of chaotic systems. *e Euler algo-
rithm is the simplest of all algorithms, but its accuracy is not
high [64, 65]. *e Heun algorithm is more sensitive than the
Euler method [63]. *e Runge–Kutta algorithm is better
than other algorithms in operation effect, with high accu-
racy, stable calculation process, and easy realization. RK-4 is
easier to implement than RK-5, so RK-4 is widely used to
solve chaotic systems [103]. Equation (12) gives the formula
for calculating K1, K2, K3, andK4, which represents the
slope value of [y0, yi]:

ti+1 � ti + h,

K1 � f ti, yi( 􏼁,
K2 � f ti +

h

2
, yi +

h

2
K1􏼠 􏼡,

K3 � f ti +
h

2
, yi +

h

2
K2􏼠 􏼡,

K4 � f ti + h, yi + hK3( 􏼁.

(12)
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Figure 8: *e complexity of SE of system (2): (a) SE versus a when b � 1 and (b) in the a − b plane.
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For the designed HFWMS, the initial conditions x(0) �
1, y(0) � − 1, z(0) � 1, w(0) � 1, andφ(0) � 1 and the step
size h � 0.01 are given. Five equations in HFWMS are
calculated according to the RK-4 algorithm flow chart and
equation (12). By using the RK-4 algorithm of Verilog, the
designed HFWMS is implemented on FPGA. *e central
idea of designing a chaotic signal generator with FPGA is to
divide the whole system into several functional modules,
including RK-4 solving module, data selector module, ys
module, and numerical conversion module. *e function
module contains many arithmetic units, including multi-
plier, adder, and subtractor. *ese arithmetic units are
created in cooperation with the IP core generator and follow
the standard of IEEE 754.

*e top-level block diagram of the chaotic signal gen-
erator based on FPGA using the RK-4 algorithm is shown in
Figure 10. As can be seen from Figure 10, the design system
has three inputs and six outputs. *e output signal consists
of five 32-bit output signals (X out, Y out, Z out,W out,
and φ out) and 1 bit flag signal XYZWφ ready. When the
calculation produces X out, Y out, Z out,W out, and
φ out, the signal XYZWφ ready will be set to a valid bit.
Clock signal (Clk) and Reset are both 1 bit signals, which are
used to ensure synchronization between the system and
other modules; 32 bit Δh represents step size, which is used
to determine the sensitivity of the algorithm.

*e second block diagram of the chaotic signal generator
based on FPGA using the RK-4 algorithm is displayed in
Figure 11, which consists of a Multipler (MUX) and 5D
HFWMS oscillator. As can be seen from that the MUX unit
is used to obtain the initial condition signal at the first
operation. *ese signals were initially defined by the de-
signer, and then obtained as feedback signals by the output
signals (X out, Y out, Z out,W out, and φ out). Figure 12
is the third block diagram of the chaotic signal generator
based on FPGA using the RK-4 algorithm, which consists of
three parts: MUX unit, HFWMS oscillator unit, and data
processing unit. K1 unit, K2 unit, K3 unit, K4 unit, and ys
are important components of the HFWMS oscillator, which
are pipelined structures used in the calculation of Runge–
Kutta algorithm. ys unit can make the chaotic oscillator
produce output signal in a definite clock period. I.C. (initial
conditions) are initially defined by the designer. When
HFWMS generates a set of output values, the value of
XYZWφ ready is set to a valid bit and the values of
x(k + 1), y(k + 1), z(k + 1), w(k + 1), and φ(k + 1) gener-
ated by the oscillator are fed back to MUX as the initial
values of the next operation. *e data processing unit has
two functions: (1) converting 32-bit floating-point signals
(X out, Y out, Z out,W out, and φ out) generated by the
oscillator into 14-bit fixed-point signals and (2) converting
signed fixed-point signals into unsigned fixed-point signals.
*e digital-to-analog converter AN9767 (DAC) converts 14-
digit digital signals into analog signals for easy display on the
oscilloscope.

*e digital hardware implementation of the 5D hyper-
chaotic oscillator based on RK-4 has been synthesized on the
Xilinx ZYNQ-XC7Z020 FPGA chip. *is design is imple-
mented, synthesized, and downloaded using Vivado 2018.3.

*e parameter statistics of the related resource utilization of
the FPGA and the clock speed of each module are calculated.
In order to better analyze the experimental results, we
convert the experimental data into hexadecimal. Figure 13
shows a discrete time series (X out, Y out, Z out,W out,
and φ out) obtained for the HFWMS oscillator based on
FPGA, which corresponds to the x, y, z, w, and φ signals of
the continuous chaotic system. Figure 14 are the phase
portraits of Y out andZ out which are displayed by the 5D
HFWMS on the oscilloscope. From Figure 14, it can be seen
that several kinds of phase portraits designed based on
FPGA are consistent with the Matlab simulation diagrams,
which means that the designed HFWMS based on FPGA can
be implemented well. Table 2 provides statistical data on
resource utilization, chip speed, and performance of the
Xilinx ZYNQ-XC7Z020 FPGA chip. *e minimum clock
period and maximum operating frequency of HFWMS
based on FPGA are 6.763 ns and 147.863MHz.

3.1. Active Control Synchronization and Secure
Communication of the Novel 5D HFWMS

3.1.1. Synchronization of the Novel 5D HFWMS by the Active
Control Method. Synchronization design is the key to secure
communication.*erefore, it is necessary to synchronize the
designed chaotic system before realizing secure communi-
cation. A synchronization system consists of two parts, one
is the master system and the other is the slave system. In this
section, the active control method is used to synchronize
system (2), and system (2) is set as the master system and
rewritten as

_x1 � ax1 + dW φ1( 􏼁y1 + y1z1 − cw1,

_y1 � y1z1 − x1z1,

_z1 � − z1 − mx1y1 + b,

_w1 � x1,

_φ1 � y1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

Here, the slave system uses a 5D hyperchaotic system
proposed by Yang and Bai [104], which is described as

Reset

Clk

∆h (31 : 0)

X_out (31 : 0)

Y_out (31 : 0)

Z_out (31 : 0)

W_out (31 : 0)

φ_out (31 : 0)

XYZWφ_ready

FPGA-based
5D HFWMS

oscillator

Figure 10: *e top-level block diagram of the FPGA-based 5D
HFWMS.
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Figure 11: *e second-level block diagram of the FPGA-based 5D HFWMS.
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Figure 13: Simulation results of the FPGA-based HFWMS signal generator with the RK-4 algorithm.
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_x2 � a1 y2 − x2( 􏼁 + u1,
_y2 � c1x2 + d1y2 − x2z2 + φ2 + u2,

_z2 � − b1z2 − x
2
2 + u3,

_w2 � g1y2 + f1w2 + u4,

_φ2 � − r1x2 − k1φ2 + u5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where a1, b1, c1, d1, g1, f1, r1, and k1 are the system param-
eters and u � [u1, u2, u3, u4, u5]

T is the active controller of
synchronous systems, which can make the master and slave

systems gradually synchronize under different initial con-
ditions. Define the errors as

e1 � x2 − x1,

e2 � y2 − y1,

e3 � z2 − z1,

e4 � w2 − w1,

e5 � φ2 − φ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

*en, the error dynamic system can be obtained as

(a) (b)

(c) (d)

Figure 14: Implementation platform and exemplificative phase portraits generated by the FPGA implementation of the proposed HFWMS:
(a) four-wing hyperchaotic attractor, (b) two-wing hyperchaotic attractor, (c) period-5 state, and (d) quasi-periodic state.

Table 2: Xilinx ZYNQ-XC7Z020 FPGA chip hardware usage statistics of the 5D HFWMS.

Resource Used Available Utilization (%)

Slice register 26893 106400 25
Number of slice LUTs 23173 53200 43
Number of bonded IOBs 30 125 24
Number of BUFG 1 32 3
Max. clock frequency 147.863MHz — —
Latency 13.53 ns — —
*roughput 59.15Mbit/s — —
Power 0.275W — —
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_e1 � a − a1( 􏼁e1 + a1 + dg( 􏼁e2 − ce4 + cw2 − ax2 − dgy2 + a1 y1 − x1( 􏼁 − y1z1 − 3dnφ21y1 + u1,

_e2 � c1e1 + d1e2 + e5 + φ1 − x2z2 + x1z1 − y1z1 + c1x1 + d1y1 + u2,

_e3 � − b1e3 − e3 + x
2
2 +mx1y1 − b + z2 − b1z1 + u3,

_e4 � g1e1 + g1y1 + f1e4 + f1w1 + e1 − x2 + u4,

_e5 � − r1e1 − k1e5 − r1x1 − k1φ1 − y2 + e2 + u5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

By simplifying the linear term of equation (16), the active
controller can be obtained as

u1 � − cw2 + ax2 + dgy2 − a1 y1 − x1( 􏼁 + y1z1 + 3dnφ21y1 + v1,

u2 � − φ1 + x2z2 − x1z1 + y1z1 − c1x1 − d1y1 + v2,

u3 � − x
2
2 − mx1y1 + b − z2 + b1z1 + v3,

u4 � − g1y1 − f1w1 + x2 + v4,

u5 � r1x1 + k1φ1 + y2 + v5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where v � [v1, v2, v3, v4, v5]
T is the control input. *e sub-

stitution of (17) in (16) leads to a linear error dynamics
equation without the active controller:

_e1 � a − a1( 􏼁e1 + a1 + dg( 􏼁e2 − ce4 + v1,
_e2 � c1e1 + d1e2 + e5 + v2,

_e3 � − b1e3 − e3 + v3,

_e4 � g1e1 + f1e4 + e1 + v4,

_e5 � − r1e1 − k1e5 + e2 + v5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

In order to achieve synchronization of different struc-
tures, it is necessary to

lim
x⟶∞

ei � 0, i � 1, 2, 3, 4, 5. (19)

Equation (17) shows that if system (18) tends to be stable
over time and under the control of input v � [v1,
v2, v3, v4, v5]

T, the error variable e � [e1, e2, e3, e4, e5]
T tends

to zero, and then the master system (12) and the slave system
(13) realize the synchronization with different structures. To
achieve this goal, we define a matrix A to represent the re-
lationship between the error system and the control input,
which can be expressed as

v � A · e. (20)

According to the stability criterion, if equation (20) is
stable, all eigenvalues of matrix A are negative. *us,
equation (20) can be expressed as

v1

v2

v3

v4

v5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

a1 − a − 1 − a1 − dg 0 c 0

− c1 − d1 − 1 0 0 − 1

0 0 b1 0 0

− 1 − e1 0 − f1 − 1 0

r1 − 1 0 0 k1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1

e2

e3

e4

e5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(21)

where matrix A is

a1 − a − 1 − a1 − dg 0 c 0

− c1 − d1 − 1 0 0 − 1

0 0 b1 0 0

− 1 − e1 0 − f1 − 1 0

r1 − 1 0 0 k1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

*erefore, equation (21) can be transformed into

v1 � a1 − a − 1( 􏼁 x2 − x1( 􏼁 + c w2 − w1( 􏼁 − a1 + dg( 􏼁 y2 − y1( 􏼁,
v2 � − c1 x2 − x1( 􏼁 − d1 + 1( 􏼁 y2 − y1( 􏼁 − u2 − u1( 􏼁,
v3 � b1 z2 − z1( 􏼁,
v4 � − x2 − x1( 􏼁 − g1 y2 − y1( 􏼁 − f1 + 1( 􏼁 w2 − w1( 􏼁,
v5 � − y2 − y1( 􏼁 − k1 φ2 − φ1( 􏼁 + r1 x2 − x1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

By substituting equations (23) and (17) into equation
(14), the expression of slave system is obtained as follows:

_x2 � − x2 + 2x1 + d g + 3nφ21( 􏼁y1 + y1z1 − cw1,

_y2 � y1z1 − x1z1 − y2 + y1,

_z2 � − z2 − mx1y1 + b,

_w2 � x1 − w2 + w1,

_φ2 � y1 − φ2 + φ1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(24)

(1) Numerical Simulation Results Based on Matlab. *e ef-
fectiveness of synchronization results of active control for
different structures is verified by numerical simulation. Choose
the parameters of system (13) as a � 1, b � 1, c � 0.7, m � 1,
d � 0.2, g � 0.1, and n � 0.01 and initial states as [1, − 1, 1,
1, 1]; the parameters of system (14) as a1 � 35, b1 � 7, c1 �
35, d1 � − 5, g1 � 10.6, f1 � 1, r1 � 5, and k1 � 0.05 and ini-
tial states as [0.01, − 0.01, 0.01, 0.01, 0.01]. Figure 15 shows the
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time behaviors of the error states. As we can see, the error states
converge to 0 in 3 seconds, which means that the two
hyperchaotic systems with different structures can achieve
synchronization.

(2) Implementation Results Based on FPGA. Because of the
aging and temperature change of analog devices, the device
values are easy to change. Synchronization requires that the
parameters of the transmitter and the receiver be highly
matched. *is indicates that there are a series of problems in
synchronization using analog devices. It is an ideal choice to
synchronize the chaotic system with FPGA, which has high
reliability because it does not have the problem of tem-
perature drift of components. In this section, according to
the principle of active control synchronization, two different
5D hyperchaotic systems with different structures are syn-
chronized on ModelSim. *e Verilog design is simulated by
Vivado’s built-in simulator. *e simulation results of syn-
chronization errors in FPGA are shown in Figure 16. From
the graph, it can be seen that all synchronization errors tend
to zero. *is is the same as the Matlab simulation in Fig-
ure 15 of synchronization errors. *erefore, the synchro-
nization of 5D hyperchaotic systems with different
structures designed by FPGA can work normally on
hardware.

3.1.2. Chaotic Masking Communication of the Novel 5D
HFWMS. *e main idea of chaotic masking secure
communication design is to superimpose the signal
generated by the chaotic system on the useful signal to
form a modulation signal, and then use the channel for
transmission. *e receiver demodulates the modulated
signal by the output signal of the chaotic system

synchronized with the transmitter and recovers the
original useful signal. *e application of secure com-
munication studied in this paper is based on active
control synchronization between two 5D hyperchaotic
systems with different structures. *e schematic diagram
of the designed secure communication scheme is shown
in Figure 17, where s(t) is the information signal, m(t) is
the chaotic signal generated by the master system, p(t) is
the mixed signal encrypted by m(t) to s(t), n(t) is the
chaotic signal generated by the slave system, and d(t) is
the decrypted signal. *e signal transmitted in the
channel is a kind of chaotic signal similar to noise, from
which it is difficult to obtain useful signals. *e controller
unit can synchronize the master system and slave system,
which is the key of chaotic secure communication. *e
original useful signal can be recovered effectively by
using the signal generated by the synchronized chaotic
system of the controller to decrypt the encrypted signal.
Set the information signal to be encrypted at the
transmitter as

s(t) � 0.125 sin(0.1πt). (25)

*e encryption function and decryption function of the
chaotic masking communication are, respectively, adopted
as

p(t) � s(t) · [1 + km(t)],

d(t) �
p(t)

[1 + kn(t)]
.

(26)

*e error signal between the information signal and the
decrypted signal is

e(t) � s(t) − d(t). (27)

(1) Numerical Simulation Results Based on Matlab. *rough
the encryption function, decryption function, and syn-
chronization-related parameters, the numerical simula-
tion results are shown in Figure 18 with k � 10. As can be
seen that the signal p(t) is really difficult to be decrypted;
the signal d(t) generated by the decryption function
corresponds well with the information signal, which
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Figure 15: *e trajectories of the synchronization errors
e1, e2, e3, e4, and e5 based on Matlab.
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Figure 16: *e trajectories of the synchronization errors
e1, e2, e3, e4, and e5 based on FPGA.
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means that the receiver can recover the information signal
very well.

(2) Implementation Results Based on FPGA. In order to verify
the correctness of the proposed chaotic masking secure
communication scheme, ModelSim is selected as the ex-
perimental platform of FGPA. According to the scheme
shown in Figure 17, the hardware experiment results of the
FPGA are shown in Figure 19. From Figure 19, we can see
that the effective information signal s(t) can be completely
hidden in the chaotic sequence, the encrypted signal has
strong concealment, and the received decrypted signal has
good restoration quality, which is the same as the pre-
encrypted signal.

s(t) p(t)

m(t)

p(t)

n(t)

d(t)Function
decryption

Function
encryption

Master
system

Slave
systemController

Transmitter Receiver

Channel

Figure 17: *e schematic diagram of chaotic masking communication.

100 2000

t

–0.5

0

0.5

s(
t)

(a)

100 2000

t

–10

–5

0

5

10

p
(t

)

(b)

100 2000

t

–0.5

0

0.5

d
(t

)

(c)

100 2000

t

–0.4

–0.2

0

0.2

e(
t)

(d)

Figure 18: (a) Original signal s(t), (b) transmitted signal p(t), (c) recovered signal d(t), and (d) error e(t) � s(t) − d(t).
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Figure 19: Experimental results of chaotic masking secure com-
munication based on FPGA.
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4. Conclusion

In this study, a novel 5D continuous time HFWMS with
multiline equilibrium and three positive Lyapunov expo-
nents are first introduced. Dynamical analysis is performed
in terms of equilibrium points, phase portraits, Poincare
map, Lyapunov exponential spectrum, bifurcation diagram,
and spectral entropy. *en, the four-wing, two-wing, pe-
riod-5, and quasi-periodic phase portraits of the novel 5D
hyperchaotic memristive system are carried out on FPGA,
and a discrete time FPGA-based design of the 5DHFWMS is
implemented on ModelSim using the RK-4 algorithm. *e
maximum operating frequency of the designed chaos-based
system reaches 147.863MHz. Finally, an active control
synchronization of the 5D hyperchaotic system with dif-
ferent structures and a secure chaotic masking communi-
cation application are implemented on the platform of
Matlab and FPGA, respectively. All these results justify the
successful applications of the novel 5D HFWMS in active
control synchronization and various chaos-based embedded
secure chaotic masking communication systems. Our future
work is to study whether the system hasmultistability, and to
apply the system to image encryption and random number
generator.
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